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ON SOME GENERIC CLASSES OF ERGODIC MEASURE

PRESERVING TRANSFORMATIONS

E. GLASNER, J.-P. THOUVENOT, AND B. WEISS

Abstract. We answer positively a question of Ryzhikov, namely we show that being
a relatively weakly mixing extension is a comeager property in the Polish group
of measure preserving transformations. We study some related classes of ergodic
transformations and their interrelations. In the second part of the paper we show

that for a fixed ergodic T with property A, a generic extension ̂T of T also has
property A. Here A stands for each of the following properties: (i) having the same
entropy as T , (ii) Bernoulli, (iii) K, and (iv) loosely Bernoulli.

Introduction

Motivated by a question of Valery Ryzhikov [37], regarding the nature of the class
of ergodic transformations X = (X,X , μ, T ) which admit a proper factor X → Y with
Y = (Y,Y , ν, T ) nontrivial and where the extension is relatively weakly mixing (we call
this class RWM), we consider in this paper the RWM property and some related classes
as follows:

We view the collection MPT (measure preserving transformations) of invertible mea-
sure preserving transformations on a nonatomic standard probability space (X,X , μ), as
the group Aut (μ) of automorphisms of (X,X , μ). The topology on Aut (X,μ) is induced
by a complete metric

D(S, T ) =
∑
n∈N

2−n(μ(SAn � TAn) + μ(S−1An � T −1An)),

with {An}n∈N a dense sequence in the measure algebra (X , dμ), where dμ(A,B) = μ(A�
B). Equipped with this topology Aut (X,μ) is a Polish topological group. The set
MPTe ⊂ Aut (μ), comprising the ergodic transformations, is a dense Gδ subset of Aut (μ).
Thus MPT = Aut (μ) and we use the latter when we want to emphasise the group
structure of this space.

Definition 0.1. Given an ergodic system X we say that a factor map π : X → Y is
nontrivial when Y is not the trivial one-point system and π is not an isomorphism. (We
often refer to a factor map π : X → Y from X to Y also as an extension of Y.) An
ergodic dynamical system X = (X,X , μ, T ) is:

(1) RD (relatively distal) if there exists a nontrivial factor map π : X → Y such
that the extension is relatively distal. Every ergodic distal system which is not
isomorphic to a cyclic permutation on Zp with p a prime number is RD.

(2) RWM (relatively weakly mixing) if there exists a nontrivial factor map π : X → Y
such that the extension is relatively weakly mixing; i.e. such that the relative
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16 E. GLASNER, J.-P. THOUVENOT, AND B. WEISS

product X×Y X is ergodic. By the Furstenberg–Zimmer theorem, every ergodic
system which is neither distal nor weakly mixing is RWM.

(3) TRD (totally relatively distal) if every nontrivial factor map π : X → Y is rel-
atively distal. Every distal system is TRD. Every prime system is (vacuously)
TRD.

(4) TRD∼ if it is TRD, but not prime. Every distal system which is not isomorphic
to Zp for some prime number p is TRD∼. By Veech’s theorem every nonprime
weakly mixing simple system is in TRD∼ (see [15, Theorem 12.3]). The example
in [7] is a weakly mixing system in TRD∼ with no prime factor.

(5) TRWM (totally relatively weakly mixing) if every factor map π : X → Y which
is nontrivial is relatively weakly mixing. Every prime system is (vacuously)
TRWM, and probably also products of disjoint prime systems are TRWM, but
it is not clear to us what else there is in this class. An ergodic system X in
TRWM is either weakly mixing, or it admits the finite system Zp = Z/pZ as
a factor, for some prime number p ≥ 2, such that the extension X → Zp is
relatively weakly mixing and X is not of the form X = Zp × W for a weakly
mixing system W. (An example of a system which has the latter form—but is
not TRWM—is provided in [28].) In fact, by the Furstenberg–Zimmer structure
theorem an ergodic system X ∈ TRWM has the structure X → Y, where Y is
the maximal distal factor of X and the extension is relatively weakly mixing. If
Y is the trivial system then X is weakly mixing. Otherwise, as X is TRWM,
we must have Y = Zp for some prime p ≥ 2. Finally X cannot have the form
X = Zp ×W for a weakly mixing system W, since if it were the projection map
X → W would not be a relatively weakly mixing extension.

(6) An ergodic system X is called 2-fold quasi-simple (2-fold distally simple) if every
ergodic non-product 2-fold self-joining of it is compact (relatively distal, respec-
tively) over the marginals. Every simple system (hence every weakly mixing MSJ
system) is 2-fold quasi-simple.

For more details and results concerning these notions see (among other publications)
the following list:

(i) In [32] Rudolph introduced the notion of MSJ (minimal self-joinings), and in [46]
Veech introduced 2-simple systems. Simple systems of higher order and their
joinings were studied in [8]. In [23] King has shown that simplicity of order 4
implies simplicity of all orders, and in [16] this was improved to showing that
order 3 suffices.

(ii) Various generalizations of simplicity were introduced and previous results were
sharpened in [10] and [36].

(iii) The first genericity type theorem was King’s paper [24] where he has shown that
having roots of all orders is generic. This was followed by Ageev who first proved
that, for every finite abelian group G, having G in the centraliser is generic [2],
thereby showing that the class of prime transformations is meager, and then in
[4], that the generic system is neither simple nor semisimple.

(iv) Stronger and stronger results of this nature are to be found in [12, 42, 38, 11, 40],
and [6].

For information concerning the Furstenberg–Zimmer theorem and structure theory in
ergodic theory we refer to [15].

In Section 1 we present a preliminary study of the nature of these classes and their
interrelations. In Section 2 we answer positively Ryzhikov’s question [37], namely we
show that the property RWM is comeager.
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GENERIC CLASSES OF ERGODIC TRANSFORMATIONS 17

In the second part of the paper, we change slightly the framework of our discussion.
We mainly fix an ergodic transformation T with a certain property, and then consider
either its family of factors or its family of ergodic extensions.

In Section 3 we show that the relatively weakly mixing factors of any fixed positive
entropy T form a dense Gδ set. In Section 4 we show that a generic extension of any
ergodic T does not add entropy. In Section 5 we prove that for any fixed Bernoulli trans-
formation of finite entropy the generic extension is Bernoulli. In Section 6 we show that
for any fixed K” automorphism T , the generic extension is K, and it is relatively mixing
over T . Finally, in Section 7 we show that for any fixed loosely Bernoulli transformation
T , the generic extension is loosely Bernoulli.

We remind the readers that the classes of weakly mixing, rank-1, rigid, χ-mixing and
zero-entropy systems, are all comeager sets in MPT (see e.g. [20, 22] and [41]).1

Note that, whereas by Austin [5], every positive entropy ergodic T decomposes non-
trivially as a direct product, Friedman’s result [13] that, for 0 < χ < 1, a χ-mixing
system admits no non-trivial product as a factor, combined with the fact that χ-mixing
is comeager [41], show that the generic (zero-entropy ergodic) T does not split (and
moreover cannot have a non-trivial product as a factor).

We would like to thank Valery Ryzhikov for bringing his question in [37] to our at-
tention and for several helpful e-conversations. We also thank Oleg Ageev for a careful
and thorough reading of a previous draft of the paper. His useful comments and correc-
tions considerably improved our work. We also thank Tim Austin for pointing out an
inaccuracy in the proof of Theorem 6.1 in an earlier version.

1. Some general results concerning the classes mentioned

in the Introduction

Claim 1. Every ergodic system with positive entropy is RD.

Proof. It is well known that every Bernoulli system is RD. The case of a positive entropy
ergodic system follows from the weak Pisnsker theorem [5]. �

Claim 2. The property TRD is inherited by factors.

Proof. Let X be a TRD system and X → Y a nontrivial factor. Suppose Y → Z is
a nontrivial factor of Y. Let Y → Zrd → Z be the diagram obtained by the Furstenberg–
Zimmer structure theorem (the relative version); i.e. Zrd is the largest distal extension
of Z in Y and Y → Zrd is a relatively weakly mixing extension. Now from the combined
diagram

X → Y → Zrd → Z

and the fact that X is TRD, we deduce that the map X → Zrd is a relatively distal
extension, and it follows that the intermediate extension Y → Zrd is also distal (this
is a nontrivial result; see [15, Theorem 10.18]). Thus the extension Y → Zrd is both
relatively weakly mixing and relatively distal, hence an isomorphism. This means that
indeed Y → Z is a relatively distal extension, as claimed. �

Claim 3. An ergodic X is not RWM iff it is TRD. Thus

MPTe = RWM � TRD.

1For χ ∈ [0, 1], T is said to be χ-mixing if there is a sequence nk ↗ ∞ in N such that for any two
measurable sets A,B ∈ X limk→∞ μ(TnkA ∩ B) = χμ(A)μ(B) + (1− χ)μ(A ∩ B).
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18 E. GLASNER, J.-P. THOUVENOT, AND B. WEISS

Proof. Suppose X is not RWM and X → Y is a factor map. Then by the Fursten-
berg–Zimmer structure theorem (the relative version) there is a canonical diagram X →
Yrd → Y, where Yrd → Y is relatively distal and X → Yrd is relatively weakly mixing.
However, by assumption the map X → Yrd is an isomorphism, so that X = Yrd → Y is
relatively distal. The other inclusion is trivial: if X is TRD it cannot be RWM. �

Claim 4. Every 2-fold distally simple system is TRD. A fortiori, every 2-fold quasi-
simple system is TRD.

Proof. Suppose X → Y is a proper factor of a 2-fold distally simple system X. Let
X → Yrd → Y be the corresponding Furstenberg–Zimmer diagram. Consider the factor
map X ×Yrd

X → X defined by the projection map (on either the first or the second
coordinate). By definition the system X×Yrd

X is ergodic and it is a non-product self-
joining of X. By the definition of 2-fold distal simplicity the extensions X×Yrd

X → X
and hence also the intermediate extension

X×Yrd
X → Yrd ×Yrd

X ∼= X

are distal extensions.
On the other hand, by [15, Theorem 9.23], the extension X ×Yrd

X → X is weakly
mixing, and therefore it is an isomorphism. In turn, this means that X → Yrd is an
isomorphism, so that the extension X → Y is relatively distal, as required. �

Problem 1.1. Is the example in [18] TRD?

Problem 1.2. What is the extent of the class TRWM?

Claim 5. Every TRWM system has zero entropy.

Proof. By Sinai’s theorem every ergodic positive entropy system, say X, admits a Ber-
noulli factor X → B. The Bernoulli system B has a nontrivial factor σ : B → Z, such
that the extension σ is a compact group extension. Now the resulting factor map X → Z
is not relatively weakly mixing. It follows that every TRWM system has zero entropy. �

By Krieger’s theorem every factor of an ergodic system X → Y, with Y having
entropy < log 2, is determined by a partition α = {A,X \A} for some A ∈ X of positive
measure, so that Y = ∨N∈N ∨N

j=−N T jα.

Proposition 1.3. If a dynamical system X is RWM, then, for any δ > 0, it has a factor
π : X → Y such that (i) Y is infinite with entropy < δ, and (ii) the extension π is
nontrivial and relatively weakly mixing. In particular, taking δ = log 2, we conclude, by
Krieger’s theorem, that Y can be taken as a subshift on two symbols; i.e. that Y admits
a generator of the form {A,Ac}.

Proof. We give two proofs as follows:
(a) There is by definition a factor map σ : X → Z with Z infinite and such that the

extension σ is relatively weakly mixing. If Z has zero entropy there is nothing to prove.
Otherwise there is a factor map Z → Y′ with Y′ infinite and having entropy < δ. Let
Z → Y → Y′ be the relative Fustenberg–Zimmer tower, so that Y is the maximal
distal extension of Y′ within Z. Now as the extensions Z → Y and X → Z are both
relatively weakly mixing extensions, so is the iterated extension X → Y. Finally, as
distal extensions do not raise entropy, the entropy of Y is < δ.

(b) By definition there is a nontrivial factor map σ : X → Z such that the extension σ
is relatively weakly mixing. By the weak Pinsker property [5], we have a decomposition
Z = B × Y with B a Bernoulli system and Y having entropy < δ. Now clearly the
composed map X → Y satisfies the assertion of the proposition. �
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GENERIC CLASSES OF ERGODIC TRANSFORMATIONS 19

We denote by M the measure algebra associated to (X , μ) consisting of equivalence
classes of the relation A ∼ B ⇐⇒ μ(A� B) = 0, equipped with the complete metric
dM(A,B) = μ(A�B).

In [2] Ageev shows that the generic automorphism of a Lebesgue space is conjugate
to a G-extension for any finite abelian group G. Thus, in particular, it follows that the
generic automorphism is not prime. In [4] he shows that the collection of 2-fold quasi-
simple systems (and a fortiori that of simple systems) forms a meager subset of MPT or
MPTe, the spaces of measure preserving and ergodic measure preserving transformations,
respectively.

Proposition 1.4. RWM is an analytic subset of MPT.

Proof. We consider the space MPT consisting of the invertible measure preserving trans-
formations of a nonatomic standard probability space (X,X , μ). Given an ergodic T in
MPT, each positive set A ∈ X , 0 < μ(A) < 1, determines a partition α = {A,X \ A}
which, in turn, defines a T -invariant σ-algebra A = ∨N∈N ∨N

j=−N T jα. We let π : X →
Y = (Y,Y , ν, T ) be the corresponding factor map, so that A = π−1(Y). By Proposition
1.3 every RWM system X admits a nontrivial factor π : X → Y with π relatively weakly
mixing and Y a two-set generator as above.

Let μ =
∫
Y
μy dν(y) be the disintegration of μ over ν, and let

λ =

∫
Y

(μy × μy) dν(y)

be the relative product measure of μ with itself over ν. Using a Rohklin skew product
representation for the ergodic system X as (X,μ) = (Y × Z, ν × η), we have μy = η for
ν-a.e. y, and for functions f and g in L∞(μ), we have∫

X×X

f(x1)g(x2) dλ(x1, x2) =

∫
Y

( ∫
Z

f(y, z1) dμy(z1) ·
∫
Z

g(y, z2) dμy(z2)

)
dν(y).

Another way of writing
∫
Z
f(y, z) dμy(z) is E(f |A), a function on X measurable with

respect to A. Therefore

(1)

∫
X×X

f(x1)g(x2) dλ(x1, x2) =

∫
X

E(f |A)(x) · E(g|A)(x) dμ(x).

If

P1 ≺ . . . ≺ Pn ≺ Pn+1 ≺ . . .

is a sequence of finite partitions such that the corresponding algebras P̂n satisfy ∨n∈NP̂n

= A, then, by the martingale convergence theorem,

(2) E(f |Pn) → E(f |A).

Now by definition the extension π : X → Y is a relatively weakly mixing extension
when the measure λ is ergodic. This is the case if, for a dense sequence of pairs of sets
{(Cn, Dn)}n∈N in M×M, we have for all n ∈ N

1

L

L−1∑
i=0

(T × T )i(1Cn
× 1Dn

)
L2−→

∫
(1Cn

× 1Dn
) dλ,

i.e. with an =
∫
(1Cn

× 1Dn
) dλ,∫ ∣∣∣ 1

L

L−1∑
i=0

(T × T )i(1Cn
× 1Dn

)− an

∣∣∣2dλ → 0.

Licensed to Biblio De Sorbonne UniversitÃƒÂ© (BSU). Prepared on Tue Jan  3 10:05:25 EST 2023 for download from IP 134.157.64.194.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



20 E. GLASNER, J.-P. THOUVENOT, AND B. WEISS

Now expanding the expression∫ ∣∣∣ 1
L

L−1∑
i=0

(T × T )i(1Cn
× 1Dn

)− an

∣∣∣2dλ,
writing 1Cn

= fn and 1Dn
= gn, and using (1), we get∫ ∣∣∣ 1

L

L−1∑
i=0

(T × T )i(1Cn
× 1Dn

)− an

∣∣∣2 dλ
=

∫ ∣∣∣ 1
L

L−1∑
i=0

(T × T )i(fn × gn)− an

∣∣∣2 dλ
=

1

L2

∑
i,j

∫ (
(T × T )i(fn × gn)(T × T )j(fn × gn)

− an(T × T )i(fn × gn)− an(T × T )j(fn × gn) + a2n
)
dλ

=
1

L2

∑
i,j

∫
(T ifn · T jfn)× (T ign · T jgn) dλ− a2n

=
1

L2

∑
i,j

∫
E(T ifn · T jfn|A) · E(T ign · T jgn|A) dμ− a2n.

Taking PM = ∨M
j=−MT jα and applying (2) we can approximate this by the corres-

ponding sum

1

L2

L−1∑
i,j

∫ [
E

(
T ifn · T jfn

∣∣∣ M∨
j=−M

T jα

)
· E

(
T ign · T jgn

∣∣∣ M∨
j=−M

T jα

)]
dμ− a2n,

which we denote by
EA(Cn, Dn, L,M).

Let {Em}∞m=1 be a sequence of sets in X which is dense in the subspace of M com-
prising sets E with μ(E) > 1/10. Let {(Cn, Dn)}∞n=1 be a dense sequence in M × M.
For positive integers, m,n, k, L,M,N , we consider the set

U(m,n, k, L,N,M) ⊂ M×MPTe,

comprising those pairs (A, T ) of M×Aut e(μ) that, with α = {A,X \A} 0 < μ(A) < 1,
satisfy the following inequalities:

(1) dM

(
Em,∨N

j=−NT jα
)
> 1/100,

(2) EA(Cn, Dn, L,M) < 1/k,

where the distance dM

(
Em,∨N

j=−NT jα
)

is defined as the minimum of the distances

d(Em, B), whenB ranges over the elements of the finite algebra generated by the partition
∨N
j=−NT jα.

The set U(m,n, k, L,N,M) is open and we let

rwm =
∞⋃

m=1

∞⋂
N=1

∞⋂
n=1

∞⋂
k=1

∞⋃
L=1

∞⋃
M0=1

∞⋂
M=M0

U(m,n, k, L,N,M).

Now, in view of Proposition 1.3, RWM is the projection of the set rwm in Aut e(μ); i.e.

RWM = {T ∈ Aut (μ) : ∃A ∈ M, (A, T ) ∈ rwm}.
As we have shown that the set rwm is Borel, it follows that the set RWM is analytic. �

The next proposition is proved similarly and we use the notation of the previous proof.
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GENERIC CLASSES OF ERGODIC TRANSFORMATIONS 21

Proposition 1.5. TRWM is a co-analytic subset of MPT.

Proof. By Claim 5 it suffices to show that TRWM is a co-analytic subset of the Gδ set of
0-entropy ergodic transformations. We also recall that by Krieger’s theorem every such
transformation admits a two-set generator.

Let {(Cn, Dn)}∞n=1 be a dense sequence in M × M. For positive integers, n, k, L,M
we consider the set

U(n, k, L,M) ⊂ M×Aut e(μ),

comprising those pairs (A, T ) ∈ M×Aut e(μ) that, with α = {A,X \A}, 0 < μ(A) < 1,
satisfy the following inequality:

EA(Cn, Dn, L,M) < 1/k.

The set U(n, k, L,M) is open and we let

trwm =

∞⋂
n=1

∞⋂
k=1

∞⋃
L=1

∞⋃
M0=1

∞⋂
M=M0

U(n, k, L,M).

Now TRWM is the collection of T ∈ Aut e(μ) such that T has zero entropy and (A, T ) ∈
trwm for all A ∈ M, i.e.

Aut e(μ) \ TRWM = {T ∈ Aut (μ) : ∃A ∈ M, (A, T ) �∈ trwm}. �

Problem 1.6. Ryzhikov’s question in [37] is whether the set RWM is co-meager.

Remark 1.7. In view of Definition 0.1(4) and Claim 3 we have that

MPTe = RWM � TRD = RWM � TRD∼ � PRIME

and the last union is disjoint (note that the prime systems of the form Zp do not belong
to Aut (μ)). Since by [2] the collection PRIME (which is shown to be co-analytic in [17])
is meager, we conclude, by the zero-one law (see [17]), that one of the, clearly invariant,
collections RWM and TRD (or RWM and TRD∼) is meager and the other comeager. In
the next section we will show that the set RWM is the comeager one.

In the next proposition we determine the, relatively low, complexity of the class PROP
consisting of elements of MPTe which admit a proper factor.

Proposition 1.8. (1) The set

prop =

{
(A, T ) : α = {A,X \A}, Y =

∨
N∈N

N∨
j=−N

T jα � X
}

is a Gδ,σ subset of M×MPTe which is invariant under the diagonal action of G = Aut (μ)
on M×MPTe defined by

g · (A, T ) = (gA, gTg−1), A ∈ M, T ∈ MPTe .

(2) Its projection

PROP =

{
T ∈ MPTe : ∃α, Y =

∨
N∈N

N∨
j=−N

T jα � X
}

is a nonempty Gδ,σ subset of MPTe.

Proof. (1) Let {Em}∞m=1 be a sequence of sets in X which is dense in the subspace of
M comprising sets E with μ(E) ≥ 1/10.
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22 E. GLASNER, J.-P. THOUVENOT, AND B. WEISS

For positive integers, m,N set

U(m,N) =

{
(A, T ) ∈ M×MPTe : dM

(
Em,

N∨
j=−N

T jα

)
> 1/100

}
,

with α = α(A) = {A,X \ A} (for A ∈ X of positive measure), The U(m,N) is an open
set and the set

U(m) =

∞⋂
N=1

U(m,N) =

{
(A, T ) ∈ M×MPTe : dM

(
Em,

∨
N∈N

N∨
j=−N

T jα

)
> 1/100

}
is a Gδ set. Finally we have that

prop =
∞⋃

m=1

U(m) =

{
(A, T ) ∈ M×MPTe) :

∨
N∈N

N∨
j=−N

T jα �= X
}

is a Gδ,σ set. The invariance is clear.
(2) The projection P : M × MPTe → MPTe is an open homomorphism of Pol-

ish dynamical systems. Therefore each P (U(m,N)) is an open set, so that the image
PROP = P (prop) is a non-empty invariant Gδ,σ subset of MPTe. �

2. RWM is generic

Let (X,X , μ) be a standard Lebesgue space, were the probability measure μ has no
atoms. Let B denote the W ∗-algebra of bounded linear operators on the Hilbert space
L2(μ), equipped with the strong operator topology. It is easy to see that the space MPT,
comprising the Koopman operators corresponding to the invertible measure preserving
transformations of (X,X , μ), is a closed subset of B. Let P be the set of positive
projections, i.e. those elements P of B such that ‖P‖ = 1, P 2 = P , P (1) = 1, and
Pf ≥ 0 for every 0 ≤ f ∈ L2(μ). This is a closed subset of B.

A sub-σ-algebra Y ⊂ X determines a standard probability space (Y,Y , ν), a closed
subspace H = H(Y) ⊂ L2(μ), and a positive projection P : L2(μ) → H. More precisely,
a positive projection P can be identified with a conditional expectation operator over the
subspace H = PL2(μ) that can be described as the set of functions in L2(μ) which are
measurable with respect to a sub-σ-algebra Y ⊂ X . As was shown by Rokhlin, we can
realize the latter inclusion as a map (X,X , μ) → (Y,Y , ν), where (Y,Y , ν) is a standard
Lebesgue space, so that the projection P has the form

(Pf)(y) =

∫
Y

f(x) dμy(x), for ν-a.e. y ∈ Y.

Clearly the collection of projections P whose range has dimension ≤ k for k ∈ N is
a closed set and it follows that the collection Pi of the projection whose range is infinite
dimensional forms a Gδ subset of P. We denote by Pci the set of P ∈ P such that
P �= Id, and such that in the corresponding Rokhlin representation, in the disintegration
μ =

∫
Y
μy dν(y), a.e. μy has no atoms. Finally let Q = Pi ∩Pci.

We denote by T the collection of weakly mixing MPT’s, which we often identify with
their Koopman operators. By Halmos’ theorem T is a dense Gδ subset of MPT. Thus we
view the elements of both P and T as operators in B. Note that if T is weakly mixing
and (X,X , μ, T ) → (Y,Y , ν, T � Y) is a nontrivial factor, then the corresponding P is
necessarily in Pi. The group G = Aut (μ) acts continuously on B by conjugations, and
both T and Q are invariant subsets under this action. Let

L = {(T, P ) : PT = TP, P ∈ Q, T ∈ T}
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GENERIC CLASSES OF ERGODIC TRANSFORMATIONS 23

and we will consider the diagonal action of Aut (μ) on L. Denote by π1 and π2 the
projections of L on its first and second coordinates, respectively. Note that if T =
π1(T, P ) for (T, P ) ∈ L, then T is weakly mixing and is not prime, and if P = π2(T, P )
for (T, P ) ∈ L, then the operator TP , defined on the infinite-dimensional space PL2(μ),
is a factor of T and is therefore weakly mixing on L2(Y,Y , ν) with ν atomless.

Lemma 2.1. A pair (T, P ) is in L iff T , as a transformation in MPT, is weakly mix-
ing and it admits a factor map X = (X,X , μ, T ) → Y = (Y,Y , ν, S) with PL2(μ) ∼=
∼= L2(ν) = L2(Y), where ν has no atoms, and X has the form of a Rokhlin skew product

(X,X , μ, T ) = (Y × Z,Y ⊗ Z, ν × η, Ŝ),

where (Z,Z, η, T ) is a standard Lebesgue space with η atomless, and S : Y → Aut (Z, η)

is a measurable cocycle with Ŝ(y, z) = (Ty, Syz) μ-a.e.

Proof. If (T, P ) ∈ L then T is weakly mixing, hence ergodic, and it then follows that the
Rokhlin presentation has this form (see e.g. [15, Theorem 3.18]). Conversely, clearly if
T is a weakly mixing skew product as described, then the corresponding pair (T, P ) is
in L. �
Proposition 2.2.

(1) Q is a Gδ subset of B.
(2) G acts transitively on Q.
(3) T is a Gδ subset of B.
(4) The action of G on the Polish space T is minimal.
(5) L is a closed subset of the Polish space T×Q.
(6) G acts minimally on L.

Proof. (1) We already observed that the condition (i) that PL2(μ) be infinite dimensional
defines a Gδ subset, Pi of B. Thus a positive projection P ∈ Pi is in Q iff it is in Pci.
We claim that this is equivalent to the following condition:

For all positive measure sets A ∈ X there exist sets B and C such that

(i) 1A = 1B + 1C ,
(ii) P (1B) = P (1C).

Now we can express this property as the intersection of a countable collection of open
sets as follows. Let {An} be a dense sequence in the measure algebra and define

U(N,n, i, j)

=
{
P ∈ P : μ(An � (Ai ∪Aj)) < 1/N, ‖P (1Ai

)− P (1Aj
)‖ < 1/N, μ(Ai ∩ Aj) < 1/N

}
.

Now set
Pci =

⋂
n≥1

⋂
N≥1

⋃
(i,j)

U(N,n, i, j).

To see that this intersection captures the property that the conditional measures are
continuous we argue by contradiction. If {μy}y∈Y are the conditional measures associated
to the projection P , and for a set B ⊂ Y with ν(B) > 0, there are atoms of μy for all
y ∈ B with measure ≥ c > 0, then there is a measurable function f : B → X such that
μ({f(y)}) ≥ c, y ∈ B. The range A = f(B) is a measurable subset of X and

(P1A)(y) = μy({f(y)}).
Now we take 1/N � μ(A) and An0

such that μ(A� An0
) < 1/N . We see that if

μ(A� (Ai0 ∪ Aj0)) < 1/N,

then the approximate equality P1Ai0
≈ P1Aj0 cannot hold. Thus P is not in the inter-

section Pci, as required.
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24 E. GLASNER, J.-P. THOUVENOT, AND B. WEISS

To prove claim (2) observe that P determines a Rokhlin decomposition of X over
Y as explained above, and that clearly any two such decompositions are measurably
isomorphic. Claim (3) is well known. Claim (4) follows from Halmos’ Conjugacy Lemma
[20, page 77], which asserts that the conjugacy class of each aperiodic element of Aut (μ)
is dense. Claim (5) is easy to check. Finally claim (6) can be easily deduced from
claim (2) and [19, Proposition 2.3], which is a relative analogue of Halmos’ conjugacy
lemma. �

Remark 2.3. In the definition of Q we excluded the two extreme cases, when H = L2(μ)
(i.e. when P = Id) and when H is finite dimensional. We note however that due to this
exclusion, in the projection of L on the T coordinate, the weakly mixing transformations
that are missing are: (i) The prime transformations, which according to Ageev [2] form
a meager subset of T. (ii) Those weakly mixing transformations for which every factor
map X → Y is finite to one. Such transformations are in TRD, and e.g. by Ageev [3],
or by Stepin and Eremenko—who show in [42] that the generic ergodic transformation
admits the infinite torus in its centralizer, form a meager set.

Recall the following (see [27, Apendix A] and [26, Definition 2.7, Definition 2.4]).

Definition 2.4. Let Y, Z be Polish spaces and let f : Y → Z be a continuous map.

(1) We say that f is category preserving if it satisfies the following condition: For
any comeager A ⊆ Z, f−1(A) is comeager in Y .

(2) A point y ∈ Y is a point of local density for f if for any neighborhood U of y the

set f(U) is a neighborhood of f(y).

We then have the following ([26, Proposition 2.8]; see also Tikhonov’s work [44]):

Proposition 2.5. Let Y, Z be Polish spaces and f : Y → Z a continuous map. Then
f is category preserving if and only if the set of points which are locally dense for f is
dense in Y .

We also recall the following well-known observation called Dougherty’s lemma (see
e.g. [24] and [26, Proposition 2.5]).

Proposition 2.6. Let Y, Z be Polish spaces and let f : Y → Z be a continuous map
such that the set of points which are locally dense for f is dense in Y . Let B ⊂ Y be
a comeager subset of Y . Then f(B) is not meager in Z.

The following statement is shown in [27].

Theorem 2.7. Let Y, Z be Polish spaces, and f : Y → Z be a category preserving map.
Also, let A be a subset of Y with the property of Baire. Then the following assertions
are equivalent :

(i) A is comeager in Y ,
(ii) {z ∈ Z : A ∩ f−1(z) is comeager in f−1(z)} is comeager in Z.

Next we have a dynamical version of the Kuratowski–Ulam theorem [26, Proposition
2.10]:

Proposition 2.8. Let H be a Polish group, Y, Z be two Polish H-spaces and f : Y → Z
an H-map. Assume that Y is minimal (i.e. every orbit is dense) and f(Y ) is not meager.
Then f is category preserving.

Remark 2.9. An older result of Veech [45, Proposition 3.1] shows this result for compact
topological systems. See also [14, Lemma 5.2] where a topological analogue of simplicity
was studied.
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The next theorem answers positively Ryzhikov’s question.

Theorem 2.10. The property RWM is generic.

Proof. We first show that RWM is comeager. Consider the closed set L ⊂ T × Q. By
[39] (see also [19, Theorem 1.3]) we know that for every fixed P ∈ Q the set of elements
T ∈ T such that T is a relatively weakly mixing extension of T � Y , where Y is the
σ-algebra determined by P , is a dense Gδ subset of LP , where

LP = {T ∈ T : (T, P ) ∈ L}.
Consider the set

LRWM = {(T, P ) ∈ L : T is relatively weakly mixing over the factor determined by P}.
By Proposition 1.4 the set RWM ∩T is an analytic subset of T, hence has the BP. De-
noting by π1 the projection from T×Q onto T we observe that LRWM = L∩π−1

1 (RWM),
and as L is a closed subset of T×Q, we conclude that LRWM has the BP.

Applying Proposition 2.8 to the minimal Polish system (L, G) and the projection map
π2 : (L, G) → (Q, G), we conclude that the map π2 is category preserving. (Note that
π2(L) = Q.) Applying Theorem 2.7 to LRWM ⊂ L, we conclude that LRWM is comeager
in L.

Now by the same token also the other projection map π1 : (L, G) → (T, G) is category
preserving and so, by Dougherty’s lemma, Proposition 2.6, the image of the set LRWM

under π1, namely the subset π1(LRWM) ⊂ T, is not meager in π1(L) ⊂ T. Since this
subset is also invariant, it follows from the zero-one law that it is comeager in T. We now
note that this subset is exactly the set of nonprime, weakly mixing systems which are
RWM and, in view of Remark 2.3, it follows that the set RWM ∩ T is indeed comeager
in π1(L) ⊂ T. �

Remark 2.11. Our proof of Theorem 2.10 uses Ageev’s result, which asserts that the class
PRIME is meager, so of course it does not provide a new proof of this statement. However
note that whereas Ageev’s proof demonstrates the prevalence of group extensions, ours
demonstrates the prevalence of relatively weakly mixing extensions.

3. The relatively weakly mixing factors of a positive entropy T
form a dense Gδ set

In the second part of the paper, Sections 3 to 7, we slightly change the framework
of our discussion. We mainly fix an ergodic transformation T with a certain property,
and then consider either its family of factors, as in the present section, or its family of
ergodic extensions, as in Sections 4 to 7.

Recall that P denotes the Gδ set of positive projections in B, the W ∗-algebra of
bounded linear operators on L2(μ).

Proposition 3.1. For a fixed T ∈ MPTe, the set WT of those P ∈ P such that TP =
PT , and such that T is relatively weakly mixing over the factor determined by P , is a Gδ

set.

Proof. Let PT denote the closed subset of P comprising the projections P satisfying
TP = PT . First note that for two bounded functions f, g in L2(μ) the integral of the
product f(x1)g(x2) with respect to the relative product measure λ = μ ×

ν
μ over the

factor Y defined by P ∈ PT is given by∫
f(x1)g(x2) dλ(x1, x2) =

∫
Pf(x)Pg(x) dμ(x).
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26 E. GLASNER, J.-P. THOUVENOT, AND B. WEISS

Now we fix a sequence {fi} of bounded functions that are dense in L2(μ) and then define
the sets

U(k,N, i, j) =

{
P ∈ PT :

∫ ∣∣∣1/N N−1∑
n=0

TnPfi(x)T
nPfj(x)− aij

∣∣∣2 dμ(x) < 1/k

}
where aij =

∫
Pfi(x)Pfj(x)dμ(x). These are open sets and we let

W =
⋂
(i,j)

⋂
k≥1

⋃
N≥1

U(N,n, i, j).

Now W is a Gδ set and if P ∈ W, then T is RWM. Clearly also when P ∈ P is such that
PT = TP and the extension over the factor determined by P is weakly mixing, then
P ∈ W. Thus W = WT . �

Theorem 3.2. If T ∈ MPTe has positive and finite entropy, then among the positive
projections P which commute with T (i.e. among the factors of T ), for a dense Gδ set
the corresponding extension over the factor determined by P is relatively weakly mixing.

Proof. This is just the set WT above and hence, by Proposition 3.1, it is a Gδ set.
To see that it is dense we use the fact that is proved by Thouvenot for a T with

the weak-Pinsker property [43, Lemma 7]. Namely, given ε > 0 one can perturb by no
more than ε any partition Q to a partition Q so that the new partition splits off with
a Bernoulli complement B:

(1) |Q − Q| < ε,
(2) (Q)T ⊥ (B)T ,
(3) (Q)T ∨ (B)T = X ,
(4) the partitions T iB, i ∈ Z, are independent.

Now given a projection P ∈ PT that one wants to approximate, we find a generator
Q for the factor determined by P and apply Thouvenot’s lemma.

However, to make sure that the Bernoulli part of Thouvenot’s splitting is not trivial
we first modify the generator Q by a little bit so that the entropy of the new Q is strictly
less than the entropy of T . Then we choose the ε in the conclusion of [43, Lemma 7] so
small that the factor defined by Q still has less than full entropy. Now we are sure that
the Bernoulli complement is non-trivial. Finally, by Austin’s recent result [5], the weak
Pinsker property always holds and our proof is complete. �

Problem 3.3. Can one prove an analogous claim for relative Bernoulli extensions?

4. A generic extension does not add entropy

In the last few sections of the paper we show that for a fixed ergodic T with property

A, a generic extension T̂ of T also has the property A. Here A stands for each of the
following properties: (i) having the same entropy as T , (ii) Bernoulli, (iii) K, and (iv)
loosely Bernoulli.

Theorem 4.1. For any fixed ergodic transformation T , the generic extension does not
increase entropy.

Proof. Let X = (X,X , μ, T ) be an ergodic system with finite entropy, which for conve-
nience we assume equals 1. Let R ⊂ X be a finite generating partition with entropy
1. Let S be the collection of Rokhlin cocycles with values in MPT(I, λ), where λ is the
normalized Lebesgue measure on the unit interval I = [0, 1]. Thus an element S ∈ S
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GENERIC CLASSES OF ERGODIC TRANSFORMATIONS 27

is a measurable map x �→ Sx ∈ MPT(I, λ), and we associate to it the skew product
transformation

Ŝ(x, u) = (Tx, Sxu), x ∈ X, u ∈ I.

Let Y = X × I and set Y = (Y,Y , μ× λ), with Y = X ⊗ B.
We recall that, by Rokhlin’s theorem, every ergodic extension Y → X either has this

form or it is n to 1 a.e. for some n ∈ N (see e.g. [15, Theorem 3.18]). Thus the collection
S parametrises the ergodic extensions of X with infinite fibers. This defines a Polish
topology on S which is inherited from MPT(X × I, μ × λ). Of course a finite-to-one
extension does not add entropy and thus it suffices to show that for a dense Gδ subset

S0 ⊂ S we have h(Ŝ) = 1 for every S ∈ S0.
For each n ∈ N let Qn denote the dyadic partition of [0, 1] into intervals of size 1/2n,

and let

Pn = R×Qn.

Clearly, for any S ∈ S we have h(Pn, Ŝ) ≥ 1.

Lemma 4.2. For any ε > 0, the set

U(n, ε) = {S ∈ S : h(Pn, Ŝ) < 1 + ε}

is open.

Proof. Let S0 ∈ U(n, ε). Then, there exists N such that

H

(
∨N−1
0 S−i

0 Pn

)
N

= 1 + a,

with 0 ≤ a < ε. If δ = ε−a
2 and S is sufficiently close to S0, then∣∣∣∣∣∣∣∣

H

(
∨N−1
0 S−iPn

)
N

−
H

(
∨N−1
0 S−i

0 Pn

)
N

∣∣∣∣∣∣∣∣ < δ,

so that S will be in U(n, ε). �

It follows from the lemma that

S0 =
⋂
n∈N

⋂
k∈N

U(n, 1/k)

is a Gδ subset of S consisting of those S ∈ S such that h(Ŝ) = 1. Clearly S0 is nonempty;
e.g. we can take S to be the constant cocycles with a fixed value Rα, an irrational rotation
on the circle. Thus by the relative Halmos theorem [19, Proposition 2.3], it follows that
S0 is a dense Gδ subset of S, as claimed. �

Using the classical Kuratowski–Ulam theorem we can “lift” this theorem to the col-
lection of ergodic transformations which commute with a fixed P ∈ Q (see Section 2).

As usual let (X,X , μ) be a standard atomless Lebesgue space and let Y ⊂ X be
a σ-algebra such that ν = μ � Y is atomless and such that

(X,X , μ) = (Y × Z,Y ⊗ Z, ν × η),

where (Z,Z, η) is a standard Lebesgue space with η atomless. Let P ∈ P be the projec-
tion of L2(μ) on L2(Y).

Licensed to Biblio De Sorbonne UniversitÃƒÂ© (BSU). Prepared on Tue Jan  3 10:05:25 EST 2023 for download from IP 134.157.64.194.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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Set

N = {T ∈ Aut (μ) : T leaves the σ-algebra Y invariant}
= {T ∈ Aut (μ) : TP = PT},

and let

N0 = {T ∈ N : T is ergodic and does not add entropy to T � Y}.
As the collection of ergodic transformations is a dense Gδ subset of Aut (ν), Theorem
4.1, combined with the Kuratowski–Ulam theorem [30, Theorem 15.4], immediately yield
the following result.

Corollary 4.3. The collection N0 forms a residual subset of N .

5. A generic extension of a Bernoulli system is Bernoulli

Theorem 5.1. For any fixed Bernoulli transformation T of finite entropy the generic
extension is Bernoulli.

Proof. We first recall the following

Definition 5.2. A finite measurable partition P of X is called very weak Bernoulli
(VWB for short) if for every ε > 0, there is a positive integer N such that for all k ≥ 1,
there is a collection Gk of atoms of the partition ∨−1

i=−kT
−iP such that

(1) μ
(
∪ {A ∈ Gk}

)
> 1− ε,

(2) d̄N
(
∨N−1
i=0 T −iP,∨N−1

i=0 T −iP � A
)
< ε, for every atom A of Gk.

Here d̄N is the normalized Hamming distance of distributions, and ∨N−1
i=0 T −iP � A is

the conditional distribution of ∨N−1
i=0 T −iP restricted to the atom A of the partition

∨−1
i=−kT

−iP.

As the inverse limit of Bernoulli systems is Bernoulli, to show that a transformation
T on (X,X , μ) is Bernoulli it suffices to show that for a refining sequence of partitions

P1 ≺ . . . ≺ Pn ≺ Pn+1 ≺ . . .

such that the corresponding algebras P̂n satisfy ∨n∈NP̂n = X , for each n, the process
(T,Pn) is VWB.

With no loss of generality we assume that the entropy of the Bernoulli transformation
T is 1. We keep the notations of the previous section (Section 4), and we will show that
the generic element of the space S0 is Bernoulli. By Theorem 4.1 for every S ∈ S the

corresponding extension Ŝ of T has entropy 1. We want to show that for a generic set

of S ∈ S0, the corresponding Ŝ is Bernoulli. To do this we need to express the fact that
the partition Pn is VWB in a “finite way”.

The problem is that in the definition of the VWB property the inequality

d̄N

(
N−1∨
i=0

T −iPn,

N−1∨
i=0

T −iPn � A
)

< ε,

for A ∈ Gk, has to hold for all large k. The key to being able to express this with one

value of k0 lies in the fact that we know that the entropy of Pn with respect to Ŝ for
S ∈ S0 equals 1. This is done as follows.

Definition 5.3. For two labeled partitions P = {P1, . . . , Pa} , Q = {Q1, . . . , Qb} of
(X,μ) we say that P is ε-independent of Q if there is a set of indices J ⊂ {1, . . . , b} such
that

(1)
∑

j∈J μ(Qj) > 1− ε,
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(2)
∑a

i=1 |μ(Pi|Qj)− μ(Pi)| < ε for each j ∈ J .

One can use entropy to express independence since H(P|Q) = H(P) if and only if P
is independent of Q. If the number of elements of P is fixed, then the following is also
well known. Given ε > 0 there is a δ > 0 such that if H(P) < H(P|Q) + δ, then P is
ε-independent of Q. The conditional version of this also holds. Namely, if R is a third
partition, given ε > 0 there is a δ > 0 such that if

(3) H(P|R) < H(P|R ∨ Q) + δ,

then P conditioned on R is ε-independent of Q. That is, there is a set of atoms A of R
whose union has total measure > 1 − ε, such that conditioned on A, P is ε-inependent
of Q.

Here is another general fact. If the entropy of a partition P in (X,X , μ, T ) equals h,
then for all N ,

(4) H

(N−1∨
i=0

T −iP
∣∣∣ −1∨
i=−∞

T −iP
)

= Nh,

hence

Nh ≤ H

(N−1∨
i=0

T −iP
∣∣∣ −1∨
i=−k

T −iP
)

= H

(N−1∨
i=0

T −iP
∣∣∣( −1∨

i=−k0

T −iP
) ∨(−k0−1∨

i=−k

T −iP
))
,

for all k > k0 ≥ 1.
Now in the inequality (3) we let P = ∨N−1

i=0 T −iP, R = ∨−1
i=−k0

T −iP and Q =

= ∨−k0−1
i=−k T −iP. It follows that, given ε > 0, there is a δ > 0 such that, if k0 is

sufficiently large so that

H

( N−1∨
i=0

T −iP
∣∣∣ −1∨
i=−k0

T −iP
)

< Nh+ δ,

then, by (4),

H

( N−1∨
i=0

T −iP
∣∣∣ −1∨
i=−k0

T −iP
)

< H

(N−1∨
i=0

T −iP
∣∣∣( −1∨

i=−k0

T −iP
) ∨(−k0−1∨

i=−k

T −iP
))

+ δ;

hence, by (3), ∨N−1
i=0 T −iP conditioned on ∨−1

i=−k0
T −iP, is ε-independent of ∨−k0−1

i=−k T −iP,
for all k > k0.

With this background we come to the main step of the proof. Define the set
U(n,N1, N2, ε, δ) to consist of those S ∈ S0 that satisfy:

(1) H
(
∨N1−1
i=0 Ŝ−iPn

∣∣ ∨−1
i=−N2

Ŝ−iPn

)
< N1 + δ,

(2) d̄N1

(
∨N1−1
i=0 Ŝ−iPn,∨N1−1

i=0 Ŝ−iPn � A
)
< ε, for a set GN2

of A ∈ ∨−1
i=−N2

Ŝ−iPn,

such that (μ× λ) (∪{A : A ∈ GN2
}) > 1− ε.

We claim that the sets U(n,N1, N2, ε, δ) are open (easy to check) and that the Gδ set

S1 =
⋂
n,k,l

⋃
N1,N2

U(n,N1, N2, 1/k, 1/l)
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comprises exactly the elements S ∈ S0 for which the corresponding Ŝ is Bernoulli. Thus,

if S ∈ S0 is such that Ŝ is Bernoulli, then for every n, ε, δ, there are N1, N2 such that

S ∈ U(n,N1, N2, ε, δ), and conversely, every for Bernoulli Ŝ the corresponding S is in S1.
Note that (1) holds for any N1 and δ if only N2 is sufficiently large, because for S ∈ S0

H

( N1−1∨
i=0

Ŝ−iPn

∣∣∣ −1∨
i=−∞

Ŝ−iPn

)
= N1.

Finally the collection S1 is nonempty; e.g., by a deep result of Rudolph [33, 34], every
weakly mixing group extension of T is in S1. In fact an explicit example of such an
extension of the 2-shift is given by Adler and Shields, [1].

Again we now apply the relative Halmos theorem [19, Proposition 2.3] to deduce that
S1 is a dense Gδ subset of S, as claimed. �

6. A generic extension of a K system is K

Theorem 6.1. For any fixed K transformation T , the generic extension is K.

Proof. The process (T,P) is a K-process if it has a trivial tail, i.e.

∞⋂
k=1

−k∨
i=−∞

T−iP

is the trivial σ-field. Thus this can be expressed by the property that for all N and ε > 0
there is a k0 such that ∨N−1

i=0 T−iP is ε-independent of ∨−k
i=−∞T−iP for all k ≥ k0. As we

have seen one can express the ε-independence in terms of entropy so that the K-property
can also be expressed by saying that for all N and ε > 0, there is a k0 such that for all
k ≥ k0

(5) H(∨N−1
i=0 T−iP | ∨−k0

i=−k T
−iP) > H(∨N−1

i=0 T−iP)− ε.

To rid ourselves of the need for (5) for all k ≥ k0, notice that for all n if k1 is sufficiently
large then

(6) H(∨n−1
i=0 T

−iP | ∨−1
i=−k1

T−iP) < nh+ δ = n+ δ,

where h = 1 is the entropy of the process (T,P). Now given ε if we take k0 as above and
for n = N + k0 and δ sufficiently small find k1 so that (6) holds then (5) for k = k0 + k1
will imply (5) with 2ε , instead of ε for all k ≥ k0 + k1. Remark too that if a system is
K for each member of a refining sequence of partitions, then it is K, as the inverse limit
of K automorphisms is K.

So, keeping the notations of Section 5, we define U(n,N, k0, k1, ε, δ) to consist of those
S ∈ S0 that satisfy

(1) H(∨N−1
−k0

Ŝ−iPn | ∨−1
i=−k1

Ŝ−iPn) < N + k0 + δ,

(2) H
(
∨N−1
i=0 Ŝ−iPn,

∣∣ ∨−k0

i=−k1
Ŝ−iPn

)
> H

(
∨N−1
i=0 Ŝ−iPn

)
− ε.

It is now easy to check that the set U(n,N, k0, k1, ε, δ) is open and that the Gδ set

S1 =
⋂

n,l,m,N

⋃
k0,k1

U(n,N, k0, k1, 1/l, 1/m)

consists of those S ∈ S0 for which Ŝ is K.
To see that S1 is not empty when the base T is an arbitrary K-automorphism, we

use a result of Parry [31, Theorem 6] who showed that if a circle extension of a K-
automorphism is weakly mixing, then it is K. By a theorem of Jones and Parry [21,
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Theorem 8], a generic circle extension of a weakly mixing system is weakly mixing and
we conclude that the generic circle extension of the K-automorphism T is K.

Finally, again applying the relative Halmos theorem [19, Proposition 2.3], we deduce
that S1 is a dense Gδ subset of S, as claimed. �

In the context of factors of Bernoulli shifts the following question is open. Can there
be a full entropy factor (Y, S) of a Bernoulli shift (X,T ) such that the relative product
X ×Y X is ergodic but not a K-automorphism—i.e. can this relative product have
a nontrivial zero entropy factor? We will next show that for any finite entropy K-

automorphism (X,T ) the generic extension (X̂, T̂ ) is such that the relative product

X̂ ×X X̂ is also K. We use (a bit modified) notation as in Section 4.

Theorem 6.2. Let X = (X,X , μ, T ) be a finite entropy K-automorphism, and S a Rokhlin
cocycle with values in MPT(I, λ), where I = [0, 1] and λ is a Lebesgue measure on I. We

denote by Ŝ the transformation on the relative independent product X × I × I defined by

Ŝ(x, u, v) = (Tx, Sxu, Sxv), (x, u, v) ∈ X × I × I.

Then for a generic S ∈ S the transformation Ŝ is a K-automorphism.

Proof. As usual the proof divides into two parts, showing that our property is a Gδ

subset of S and then showing that it is nonempty.
Now Qn will denote the product dyadic partition of I× I into squares of size 1

2n × 1
2n ,

and if R is a generating partition of (X,T ), we denote it by Pn = R × Qn. It follows

from Section 4 that for a dense Gδ subset S0 ⊂ S, the corresponding Ŝ for S ∈ S0 has
the same entropy as T . With this change of notation the proof of Theorem 6.1 shows

that the set of S ∈ S0 such that Ŝ is a K-automorphism is a Gδ set. It remains to show
that it is not empty.

Fix a mixing zero entropy system Z = (Z,Z, ν, R) and an independent partition
{C0, C1, C−1} of X such that μ(C1) = μ(C−1) < 1/4, define f(x) by setting f(x) = i for
x ∈ Ci, i = 0, 1,−1, so that

∫
f dμ = 0, and define Tf : X × Z × Z → X × Z × Z by

Tf (x, z1, z2) = (Tx,Rf(x)z1, R
f(x)z2).

An easy version of the proof by Meilijson [25] shows that Tf is ergodic. Now, according
to Rudolph [35, Corollary 8], when T is a K-automorphism and R (hence also R×R) is
mixing, then if Tf is ergodic, it must be K.

Another way to see this is as follows. Use Austin’s result [5] to write the K-system X
as a product X = Y×B with Y a K-system and B Bernoulli. Let Z be a mixing system
and apply Meilijson’s construction [25] to obtain a skew product extension on B × Z

which is K. Now the system X̂ on X̂ = X × Z = Y × B × Z is K and the independent
relative product

X̂ ×
X
X̂ = (Y ×B × Z) ×

Y×B
(Y ×B × Z) ∼= Y × ((B × Z)×

B
(B × Z))

is also a K system.
Again an application of the relative Halmos theorem [19, Proposition 2.3] finishes the

proof. �

Let us recall the definition of relative mixing.

Definition 6.3. A factor map π : X → Y is called relatively mixing if for f, g ∈ L∞(X)

(7) lim
n→∞

‖E(Tnf · g | Y )− E(Tnf | Y )E(g | Y )‖2 = 0.
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When g is Y-measurable then

E(Tnf · g | Y )− E(Tnf | Y )E(g | Y ) = gE(Tnf | Y )− gE(Tnf | Y ) = 0,

so we can replace in equation (7), g by g−E(g|Y ), whose conditional expectation is zero.
Thus an equivalent condition is: for f, g ∈ L∞(X) with E(g | Y ) = 0,

(8) lim
n→∞

‖E(Tnf · g | Y )‖2 = 0.

It is well known that the set of mixing transformations is meager (see [20]). In the
paper [39] by Mike Schnurr, the following relative version is proved (theorem 6): the
set of transformations T acting on the product X1 × X2 and leaving the σ-algebra X2

invariant, in such a way that T is relatively mixing with respect to X2, is meager.
However, as a consequence of Theorem 6.2, we will show that, when T acting on X is

K, then the generic extension of T will be relatively mixing over X.
Let us mention that this result sheds some light on the following old question, originally

due to D. Ornstein: given a Bernoulli shift T , does there exist a factor of T relative to
which T is weakly mixing but not strongly mixing? Now, in view of the following theorem,
there is no hope of using Baire category arguments to resolve this question, as was done
historically in the “absolute” case.

Theorem 6.4. Let X = (X,X , μ, T ) be a K-automorphism, then the generic extension
of X is relatively mixing over X.

Proof. This result is a consequence of Theorem 6.2 and the following lemma

Lemma 6.5. Let X be ergodic and Y be a factor of X with factor map π : X → Y.
Then the following are equivalent :

(1) X is a relatively mixing extension of Y,
(2) in the relatively independent product X ×Y X, the Koopman operator restricted

to L2(Y )⊥ is mixing.

Proof. Let X = Y ×Z be the Rohlin representation of X over Y and let μ =
∫
Y
μy dν(y)

be the disintegration of μ over ν. Let

W := X ×
Y
X = {(x1, x2) ∈ X ×X : π(x1) = π(x2)},

and let the relative product measure λ, supported on W , be given by

λ =

∫
Y

μy × μy dν(y).

Thus for F ∈ L2(λ)∫
F (x1, x2) dλ(x1, x2) =

∫
Y

( ∫
X×X

F (x1, x2) dμy(x1) dμy(x2)

)
dν(y).

Note that a function F (x1, x2) ∈ L2(λ) is in L2(Y )⊥ iff

E(F | Y )(y) =

∫
X

F (x1, x2) dμy(x1)dμy(x2)

is ν-a.e. 0.
(1) ⇒ (2). Given f1, f2, g1, g2 ∈ L∞(X), let

f1 ⊗ f2(x1, x2) = f1(x1)f2(x2), g1 ⊗ g2(x1, x2) = g1(x1)g2(x2),

and note that, e.g., E(f1 ⊗ f2 | Y ) = E(f1 | Y )E(f2 | Y ). Let

F = f1 ⊗ f2 − E(f1 | Y )E(f2 | Y ),

G = g1 ⊗ g2 − E(g1 | Y )E(g2 | Y ).
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Since linear combinations of functions of the form f1 ⊗ f2 are dense in L2(λ), mixing in
L2(Y )⊥ will follow from

(9)
∣∣∣ ∫

W

TnF ·Gdλ
∣∣∣ → 0

(where we write TnF for the diagonal action of T on X ×X). Expanding the left-hand
side of the last formula we get∫

Y

E ([Tn(f1 ⊗ f2)− Tn(E(f1 | Y )E(f2 | Y ))] [g1 ⊗ g2 − E(g1 | Y )E(g2 | Y )] | Y ) dν.

There are four terms in the product TnF ·G. The first one is∫
W

Tn(f1 ⊗ f2) · g1 ⊗ g2 dλ

=

∫
Y

( ∫
X

Tnf1(x1)g1(x1) dμy(x1)

)( ∫
X

Tnf2(x2)g2(x2) dμy(x2)

)
dν(y).

By (1), i. e. by relative mixing (7) (and boundedness of the functions), for large n,
we can replace, with only a small error, the expression

∫
X
Tnf1(x1)g1(x1) dμy(x1) by

E(Tnf1 | Y )E(g1 | Y )(y).
Similarly the other three terms can be replaced by the same expression, one with a

plus sign and two with a minus sign, and thus the total is indeed close to zero, as claimed.
(2) ⇒ (1) Assuming E(g | Y ) = 0, we need to show that equation (8) holds. Now

under this assumption, with f = f1 = f2 and g = g1 = g2 real-valued functions, equation
(9) reads∫

W

Tnf(x1)T
nf(x2) · g(x1)g(x2) dλ =

∫
Y

E(Tnf · g | Y ) · E(Tnf · g | Y ) dν(y)

= ‖E(Tnf · g | Y )‖2
2
→ 0. �

Applying the lemma to the relative independent product in Theorem 6.2, and recalling
the fact that every K-automorphism is mixing, these arguments complete the proof of
Theorem 6.4. �

7. A generic extension of a LB system is LB

Theorem 7.1. For any fixed loosely Bernoulli transformation T , the generic extension
is loosely Bernoulli.

Proof. We recall first one of the definitions of Loosely Bernoulli (LB) transformations.
There are two kinds, one with zero entropy and the other having positive entropy.

For the latter, (X,X , μ, T ) is called loosely Bernoulli if there is some set A ∈ X such
that the induced transformation TA is isomorphic to a Bernoulli shift. The zero entropy
loosely Bernoulli are defined in a similar fashion except that now TA is required to be
isomorphic to an irrational rotation. For the basic theory and facts that we will use see
[29].

There is a characterization of process that define LB transformations similar to the
VWB condition, but with the d̄n metric replaced by the f̄n metric which we proceed to
define.

For two words u, v ∈ {1, 2, . . . , a}n we define

f̄n(u, v) = 1− k

n
,
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where k is the maximal integer for which we can find subsequences 0 ≤ i1 < i2 < . . .
. . . < ik ≤ n− 1 and 0 ≤ j1 < j2 < . . . < jk ≤ n− 1, with

u(ir) = v(jr), 1 ≤ r ≤ k.

This defines a metric on words, and using it instead of the normalized Hamming metric
we also define the f̄n metric on probability distributions on {1, 2, . . . , a}n.
Definition 7.2. A finite measurable partition P of X is called very loosely Bernoulli
(VLB for short) if for every ε > 0, there is a positive integer N such that for all k ≥ 1,
there is a collection Gk of atoms of the partition ∨−1

i=−kT
−iP such that

(1) μ
(
∪ {A ∈ Gk}

)
> 1− ε,

(2) f̄N

(
∨N−1
i=0 T −iP,∨N−1

i=0 T −iP � A
)

< ε, for every atom A of Gk.

Here f̄N is the normalized f̄N distance of distributions, and ∨N−1
i=0 T −iP � A is the condi-

tional distribution of ∨N−1
i=0 T −iP restricted to the atom A of the partition ∨−1

i=−kT
−iP.

For zero entropy LB there is a simpler formulation as follows.

Definition 7.3. Let P = {P1, . . . , Pa} be a measurable partition of X. Given α ∈
{1, 2, . . . , a}n, we set [α] = ∩N−1

i=0 T −iPαi
. A zero entropy process, defined by P =

{P1, . . . , Pa}, is very loosely Bernoulli if given ε > 0 there is an N and a subset GN ⊂
{1, 2, . . . , a}N such that

(1)
∑

{μ([α]) : α ∈ GN} > 1− ε,
(2) for all α, α′ ∈ GN , f̄N (α, α′) < ε.

Once again it suffices to show that there is a refining sequence of partitions

P1 ≺ . . . ≺ Pn ≺ Pn+1 ≺ . . .

such that the corresponding algebras P̂n satisfy ∨n∈NP̂n = X , and such that for each n,
the process (T,Pn) is VLB.

In zero entropy, to see that a generic extension of an LB T is LB, we keep notations
from previous sections and define, for each n,N, ε,

U(n,N, ε) = {S ∈ S0 : the process (Ŝ,Pn) satisfies (1) and (2)}.
These are open sets and the set ⋂

n,k

∞⋃
N=1

U(n,N, 1/k)

is a Gδ set and consists of LB transformations. To see that it is not empty we can use
the fact that for any LB transformation T with zero entropy, a compact abelian group
extension is also LB [29, Theorem 7.3].

For the positive entropy case we repeat exactly the same argument as in Section 5
with f̄N replacing d̄N . The fact that there are relative zero entropy extensions of any LB
transformation of positive entropy again follows from the fact that, in positive entropy,
any ergodic isometric extension of an LB transformation is LB [33, Corollary 8]. �
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