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Numerical study of buoyancy induced arrest of viscous coarsening

Hervé Henry∗

Laboratoire PMC, École Polytechnique, IPP, CNRS, 91128 Palaiseau, france

The effect of buoyant forces on viscous coarsening is studied numerically. It is shown that at
any time buoyant forces induce a vertical flow that scales like the Stokes velocity. This does no
induce any noticeable change in the morphology of the coarsening microstructure under a value of
the characteristic length of the pattern. Above this threshold the pattern evolves toward a quasi

two D pattern and coarsening stops. The characteristic length is shown to scale like
√

γ/(g∆ρ)
where γ is he surface tension and ∆ρ the mass dnsiy difference between the phases.

I. INTRODUCTION

In multiphase material the specific spatial organiza-
tion of the phases affects dramatically material proper-
ties. This is illustrated for instance by the nacre where
the arrangement of soft and hard phases leads to a frac-
ture toughness much higher than the fracture toughness
of bulk materials[1, 2]. Another example are metamate-
rials where the spacial organization of the phases leads to
new physical properties[3, 4]. In both these examples the
structure of the material that leads to peculiar properties
has been designed. However in most man made materials,
it arises through self organization during the manufactur-
ing process[5]. Among the mechanisms that lead to self
organization, phase separation followed by coarsening is
ubiquitous[6]: an homogeneous mixture of two (or more)
chemical species is stable at high temperature due to en-
tropic effects. When the temperature is decreased it is
no longer stable and the mixture phase separates in re-
gions of different compositions through diffusion. This
phase separation takes place at small lengthscales. It
is followed by a coarsening regime[7, 8] during which
the characteristic lengthscale of the pattern, l, increases
through diffusion proportionally to t1/3. If both phases
are liquid this diffusive coarsening can be followed by a
viscous coarsening[9] characterized by a linear increase
of l with time. This viscous coarsening process can only
take place in a bicontinuous microstructure and is due to
the breakup of capillary bridges of one phases that are
part of a percolating network. After a breakup, the two
protrusions created by this event retract and contribute
to the reinforcement of other bridges that are on average
thicker and longer.

In the case of diffusive coarsening it has been shown
that the details of the kinetics affect the microstructure
dramatically[10]. This is also the case of hydrodynamic
coarsening as it has been shown both experimentally[11–
13] and numerically[14, 15]. In all these cases, the mi-
crostructure is isotropic as can be expected since there
is no symmetry breaking with respect to orientation.
In actual systems this is often not the case since both
phases do not share the same density (except in very
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specific cases) which leads to a symmetry breaking due
to buoyant forces. The question that arises is when this
symmetry breaking translates into a significant change
in the microstructure and how it translates. It is ex-
pected that the buoyant forces will lead to sedimenta-
tion and the formation of a heavy-phase rich region at
the bottom (light-phase rich region at the top). How-
ever, how the pattern changes in the bulk between these
boundary regions is unclear and the rate at which the
sedimentation process will take place is not easy to es-
timate. Considering the existence of a threshold wave-
length in the Rayleigh Taylor instability, it is even possi-
ble that below a threshold lengthscale there is no global
flow. In a different context, the sedimentation of iso-
lated inert monodisperse particles there is no apparent
modification of the microstructure[16] in the absence of
bottom and top wall interaction. In the context of hydro-
dynamic coarsening of bicontinuous microstructure, the
superimposition of a plane Couette flow leads to strongly
anisotropic patterns[17, 18] but the flow is imposed exter-
nally. Hence, despite the fact that have dramatic effects
on material properties, the influences of buoyant forces
or body forces such as magnetic ones[19, 20] on the mi-
crostructure during viscous coarsening are not well un-
derstood yet.
Here, we present numerical results about the pattern

changes induced by buoyant forces on a coarsening bi-
continuous structure. The results show that first there
is a clear vertical macroscopic flow that does not lead
to any visible microstructure changes. This stage is fol-
lowed by a regime where the pattern becomes strongly
anisotropic and where the coarsening velocity is dramati-
cally reduced. The remaining of the paper is organized as
follows. First we present briefly the mathematical model
that is used and the numerical methods together with the
method of analysis that are used. Thereafter we present
and discuss the numerical results and conclude.

II. MODEL AND NUMERICAL METHOD

The model used in this study is a phase field model[21]
where the interface between the phases is not tracked ex-
plicitly but is defined implicitly as an isosurface of an
indicatrix function. This class of models has become
popular in the multiphase flow community and is now

mailto:herve.henry@cnrs.fr


2

widely used[22]. The model used here has already been
used in our study of the Rayleigh Taylor instability and
is discussed in details in [23] where the convergence of the
model toward a biphasic fluid is shown and the scaling
of the model parameters to achieve the fastest conver-
gence is discussed in relation with previous theoretical
studies[24]. So, we limit ourselves to a rapid description
of the equations and of the effects of the model parame-
ters. The equations are usually named the Cahn-Hilliard
Navier-Stokes model and write :

F =

∫
dV G(c) +

ϵ

2
(∇c)2 (1)

µ =
δF
δc

= G′(c)− ε∆c (2)

∂tc+ v.∇c = ∇(M∇µ) (3)

∂tv + v.∇v = −1

ρ
∇P + ν∆v +

∆ρc

ρ
g − 1

ρ
c∇µ (4)

∇v = 0 (5)

In eq.1 the expression for the total free energy F of the
system is given as in Ref. [6]. It is a function of the con-
centration c of one chemical component. The exact form
of the function G(c) and the value of ϵ affect the prop-
erties of the interface between two phases : the surface
tension γ and the interface thickness wint (see table I).
The chemical potential µ that derives from this total free
energy is given in 2. And finally the advection diffusion
equation is 3 where v is the fluid velocity. The last two
equations are the fluid flow equations. Eq.5 expresses the
incompressibility condition while the eq.4 is the Navier-
Stokes equation using the Boussinesq approximation. ν
is the fluid velocity that is iindependant of the concen-
tration c The source terms, c∇µ/ρ and ∆ρcg correspond
to the osmotic pressure ( once integrated through the
interface it provides the Laplace pressure jump) and to
the buoyant force. Here, both phases share the same vis-
cosity. The details of the model parameters are given in
table I. This set of equation is solved numerically using a
semi-implicit pseudospectral algorithm that is described
in [14] and briefly recalled in appendix. The use of a
spectral method implies periodic boundary conditions in
all directions and that the pattern characteristic length-
scale is limited by the box size. In the simulations pre-
sented here there are a few structure in each direction
and the results should not be affected by finite size ef-
fects. This was confirmed by running simulations in twice
larger and twice smaller boxes that lead to quantitatively
similar results. . The initial condition is, an already
phase separated mixture with a volume fraction of the
minority phase ranging from 0.35 to 0.5 as described in
[14]. In the following we discuss the case 0.35 because in
this case the topological changes are more visible. Be-
fore turning to the discussion of numerical results, we
find it necessary do discuss the different parameters that
are present in the model.

First, the parameters A and ϵ are present in the poten-
tial eq. 1 through the prefactor of the gradient squared

term and through parameters of G(c) that is given in
table I . They can be combined to give both a length-
scale and an energy scale that correspond to the inter-
face thickness wint

√
2ϵ/A between the two equilibrium

phases c = 0 and c = 1 and to corresponding surface the
surface tension γ =

√
Aϵ/18. The effect of the mobil-

ity M is more complex. As discussed in [23], it enters
in the Péclet number that compares the velocity of the
coarsening process induced by diffusion to the velocity of
coarsening that is induced by interface motion and was
first introduced in [9] vS ∝ γ/(ρη). In the case where
the diffusive transport is neglectable the mobility must
be chosen small enough to ensure that diffusion trans-
port can be neglected at large scales. It must also be
chosen large enough to keep the interface profile close to
its equilibrium shape despite fluid flow induced deforma-
tion. We have used the parameter values that were found
to be optimal in [23] (for each given flow condition using
as reference velocity vS and for characteristic length, the
initial size of the pattern). Since the Péclet number is
varying during coarsening we have checked that chang-
ing the mobility by a factor of 2 and 1/2 did not lead
to any measurable change. This was expected since the
relative error was found very close to the minimal error
for a wide range of mobility values in [23].
The influence of gravity terms can be measured

through , another characteristic velocity: the Stokes sedi-
mentation velocity that is a function of the characteristic
lengthscale of the microstructure and of the viscosity. It
scales like R2∆ρ/(ρν) and increases with the character-
istic lengthscale.
In our simulations surface tension is fixed, so that the

Siggia’s coarsening velocity is kept constant. The param-
eter that are varied are the initial pattern characteristic
lengthscale (together with the interface thickness to keep
the Cahn number wint/l unchanged and the mobility, to
keep the Péclet number unchanged). The magnitude of
the buoyancy force is changed through the variation of
∆ρ.
In order to quantify the pattern observed here a few

quantities are used and must be defined. First in order to
derive a characteristic lengthscale we use simply the ratio
of the total volume over the surface area of the interfaces
and in order to evaluate the later we use the ratio of the
surface tension with the integral of the squared gradient
of c multiplied by ϵ which is actually the surface energy
of a plane interface at equilibrium.

l =
V

(2
∫

ϵ
2 (∇c)2)/γ

(6)

This lengthscale is independent of the interface thickness.
This contrasts with the length defined the ratio of the sec-
ond and the third moment of the power spectrum which
is affected by the interface thickness. In addition in order
to characterize the geometry of the pattern and its mor-
phological changes we consider the probability distribu-
tions of the principal curvatures of the interface rescaled
by the characteristic length[25–27]. It is sensitive to pat-
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Symbol value description

ρ 1000 kg/m3 inertial mass density

ρ(c) ρ+ c×∆ρ buoyant mass density

∆ρ 0.0625 to 64 kg/m3

M Mobility

G(c) Ac2(1− c)2 free energy functional

A 6γ/wint

ϵ 3wintγ coeficient of the squared gradient term in eq.1

wint

√
2ϵ/A equilibrium interface thickness

γ 0.005=
√

Aϵ/18 Surface tension

ν kinematic viscosity

vs γ/(ρν) Siggia’s coarsening velocity

TABLE I. List of parameters used in the simulations and other useful quantities

tern changes invisible to the naked eye and can be used
to better understand the evolution of the microstructure.

The flow is solely characterized by the flow rate of one
phase (and the other) long the three axis x, y, z. It
should be equal to 0 if the flow is isotropic. Here since
there is an obvious difference between the z axis and the
other 2 axis we choose to consider the vertical flow rate
Q∥ :

Q∥ =

∫
V

v.ez(1− c) or

∫
V

v.ez(c) (7)

In the same spirit the horizontal flow rates are defined
for i ∈ {x, y} as:

Q⊥ =

∫
V

v.ei(1− c) or

∫
V

v.ei(c) (8)

The choice between the two expressions depends wether
one is interested in the flow rate of the heavy or of the
light phase.

As in [15], we also consider the conductance of the mi-
crostructure along a given orientation when one phase
is conductive and the other not. Here we consider both
G⊥ and G∥ depending on whether the considered direc-
tion is perpendicular or parallel to the gravity field. This
quantity gives a measure of the connectivity changes of
the pattern without a strong sensitivity on small struc-
tures that can be seen when considering topological in-
variants such as the genius number. And furthermore we
only present the evolution of the conductance of the mi-
nority phase since it is more sensitive to changes of the
microstructure.

III. RESULTS

We now turn to a description of our results. To begin
we give a qualitative description of the microstructure
changes. Thereafter the effects are described more quan-
titatively.

First, our simulations show that the buoyant term can
induce a pattern change that is not related to bottom (or
top) hard wall effects. Indeed it was found while for low
buoyant forcing it is nearly impossible to measure any ef-
fect, if ∆ρ is large enough the microstructure is affected.
In this case, the typical evolution of the pattern can be
described as follows. After a self similar regime where
the effects buoyant forces are almost neglectable, there is
an increase of the anisotropy of the pattern that keeps its
bicontinuous nature. Interfaces along the gravity axis are
becoming more important while structures transverse to
the gravity axis tend to vanish. This results in the forma-
tion of a quasi-2D pattern that is almost no longer bicon-
tinuous. It consists of layers of on phase or the other that
are mainly oriented along the z axis and that are flowing
vertically as can be seen in fig. 1. It induces an arrest of
viscous the coarsening process at a critical lengthscale
lmax that is the characteristic lengthscale of the 2D pat-
tern. The later evolution of the microsctructure is out
of the scope of this work. This behavior is illustrated in
figure 1 where the initial microstructure is represented,
followed by two patterns obtained at later times. While
the only difference between the first two pattern seems to
be the characteristic length, there is a dramatic change
when considering the last picture where the interfaces are
mostly vertical. During this evolution one can also notice
the presence of multiple bubbles (whose presence is made
more obvious through a coloring of the interface with the
gaussian curvature). Their origin is illustrated in figure
2. Indeed, in this figure, a small region of the simula-
tion domain is represented and in this region a capillary
bridge just before breakup is represented. This bridge is
roughly orthogonal to the vertical axis and one can see
that it presents two necks that correspond to the future
breaking points. This will eventually lead to the breakup
of both ends of the capillary bridge and the formation of
a bubble. The formation of two necks is due to the force
exerted by the vertical flow of the on the capillary bridge
that bends the filament. This behavior is not observed
in zero-gravity coarsening where the breakup takes place
in the middle of the filament. It should be noted that
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FIG. 1. pattern during the gravity induced slow down/arrest of the coarsening process. Here the volume fraction of the minority
phase is 0.35. The interface between the two phases, that is defined as the isosurface c = 0.5 is colored with the gaussian
curvature in order to make more apparent the numerous bubble that are present. In the absence of a buoyant driving force,
there are not such bubbles.

FIG. 2. Detail of the structure in fig.1 where one can see a
capillary bridge close to breakup. The presence of two necks is
due to the vertical flow that pulls on the filament and favors
breakup at the ends, leading to the formation of bubbles.
This contrasts with the situation in the absence of buoyant
flow where the bridges tend to breakup at the middle.

during early stages of the coarsening the formation of
small bubbles is a visible specificity of coarsening with
gravity. Less visible when looking at the microstructure
is the vertical flow that is present and can be measured
through vertical flow of phase defined by eqs 7, 8. In
the case considered here, due to the buoyant forces we
expect the flow rate along the vertical axis, Q∥ to differ
from 0 while the flow rate along the horizontal directions
Q⊥ should remain 0.

In the following of this section the effects of the pa-
rameters is discussed. To this purpose we first consider
a set of numerical simulations that share the same ini-
tial conditions and parameters with the exception of ∆ρ
that is varied from 8 to 32. In figure 3, one can see both
the evolution of the characteristic lengthscales and of the
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−0.0004

0

0 20 40
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δρ = 16
δρ = 32
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t

FIG. 3. Evolution of the characteristic length (left solid ) and
of the vertical flow rate of the heavy phase (right solid). The
dashed lines correspond to the difference with the linear fit
that corresponds to the evolution of the characteristic length
with the same parameters in the absence of buoyancy(right)
and to the horizontal flow rate in one horizontal direction
(right). The averrage flow rate for the 20 last time units of
the δρ = 8 case correspond to a motion of about 20% of the
computation domain (that is a few characteristic lengths of
the pattern). In the inset, the flow rates rescaled by δρ.

vertical and horizontal flow rates as a function of time. In
all cases there is a well defined regime during which the
characteristic lengthscale grows linearly with time (dur-
ing this regime it is multiplied by a factor of at least
10). For ∆ρ = 8 the linear regime spans the time range
considered. This contrasts with the cases ∆ρ = 16 and
∆ρ = 32 for which the characteristic lengthscale stops
growing after a finite time (or at a given value). There-
after it decreases. This allows to define the coarsening
arrest length as the maximal value of the characteris-
tic lengthscale lmax. The fact that the formation of a
quasi 2D pattern corresponds to an arrest of the coars-
ening process is expected. Indeed, the viscous coarsening
regime described by Siggia can only take place in a bi-
continuous structure. Such pattern can be easily found
in 3D systems but they cannot exist in 2D. Hence once
the pattern has reached a quasi bidimensional state, it
cannot coarsen through hydrodynamic coarsening mech-
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FIG. 4. Plot of the probability distributions of the principal
curvature at different times for three different values of the
mass density difference. On the leftmost plots, two times have
been superimposed (dashed and solid lines) and the charac-
teristic lengthscale has been multiplied by ≈ 2 between these
two instants.

anism. After the coarsening has stopped, the characteris-
tic lengthscale of the pattern decreases. This corresponds
to an increase of the interface surface that can be at-
tributed to the formation of bubbles discussed above and
hydrodynamic instabilities that are not discussed here.

While below the maximal length (until ≈ lmax/2) the
buoyant forces have little visible effect on the evolution
of the pattern, the flow is affected by the buoyant forces.
Indeed, as illustrated in fig.3 the vertical flow rate grows
like t2 (i.e. like l2) which is consistent with the scaling
of the Stokes sedimentation velocity. Hence there is a
regime for which the vertical flow rate is present while
the pattern is apparently unchanged. This is confirmed
by the study of the principal curvature PDFs. Indeed,
one can see in fig. 4 (a1,b1) that, at the beginning of the
coarsening process (the lengthscale has been multiplied
by ≈ 2 ), the self similar regime is still present: the
contour lines taken at two different times superimpose
very well after rescaling. However, at later times there is
a visible change of the PDF indicating that the pattern
is changing and the change is not due to the presence
of bubbles that are out of the range of the plots (high
curvatures). There is a slight shift of the pattern toward
the lκ2 = 0 axis that corresponds to surfaces that contain
straight lines such as planes, cylinders. Here since the
outcome of the pattern evolution is a similar to vertically
aligned fluid sheets we attribute this to the fact that the
interfaces are remodelled by the flow and tend to align
with it.

Finally, we discuss the evolution of conductivities with
time. Indeed in both cases for which there is the forma-
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FIG. 5. Evolution of the conductivities of the microstructure
(assuming the minority phase is conductive and the majority
phase is isolant) with time. On the left the conductivities
along the z axis are plotted while on the righ the conductivi-
ties along the x (solid) and y (dashed) axis are plotted.

tion of a quasi 2D pattern (only clearly visible at the very
end of the evolution), one can see a slow and continuous
decrease ofG⊥ with time that is consistent with the align-
ment of the pattern with the flow: the vertically aligned
non conductive majority phase acts as a barrier to the
flux (of electrons, of diffusing particles). The fact that
there is a significant increase of the conductivity along
the vertical axis is also consistent with this phenomenon.
However the complexity of fluxes in the irregular geom-
etry [28, 29] including phase separated mixtures [30, 31]
does not allow to be more specific.
From this we have a clearer view of the behaviour of

an infinite coarsening medium in the presence of buoy-
ant forces. However, it is still unclear how the threshold
length above which the quasi 2D pattern appears is scal-
ing. From a comparison between the two characteristic
velocities present in the system: the Siggia’s coarsening
velocity and the Stokes sedimentation velocity one ex-
pects the length to scale as

√
γ/δρ and to be indepen-

dent of the viscosity. We have chosen to consider that
the lengthscale at which the transition takes place is the
maximal lengthscale that is reached during the coarsen-
ing. In figure 6 this length is ploted as a function of ∆ρ
together with a fit using A

√
δρ and using a logarithmic

scale together with linear fits with slope 0.5 (the best fit
with varying slope is obtained for a slope of 0.53). One
can see that the agreement is very good while initial con-
ditions were varied (different characteristic lengthscales)
and viscosity was also varied. This indicates that the
expected scaling is verified at leading order: for a given
parameter set the variations of the maximal length that
was reached were at most of a factor 2 while the ini-
tial condition’s characteristic lengthscale was varied by a
factor up to 4. This was typically the case for ∆ρ = 4,
parameter for which the changes in lmax are at most of
20%. From this it appears that the pattern keeps a
three dimensional structure as long as the Stokes semdi-
mentation velocity is significantly lower than the Siggia’s
coarsening velocity, which allows us to that below a crit-
ical lengthscale that scales like

lmax ∝
√

γ

δρ
(9)

the pattern remains isotropic while above this critical
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FIG. 6. Plot of the maximal lengthscale as a function of the
density difference. In (a) a linear scale is used while in (b) a
logarithmic scale is used. The points correspond to different
initial conditions, with different characteristic lengthscale. All
initial conditions used here are isotropic.

lengthscale it evolves toward a quasi two dimensional
pattern and the coarsening process is almost stopped.

IV. CONCLUSION

Here the effect of buoyant forces on viscous coarsen-
ing has been studied in the Stokes regime and when the
transport through diffusion can be neglected. It has been
shown that there exists a characteristic lengthscale range
for which the microstructure is apparently unaffected de-
spite the fact there is a global vertical flow that has
an average velocity of the order of the Stokes velocity.
Above this characteristic length the microstructure dra-

matically changes: from an interconnected networks in
3D to a quasi 2D pattern. This transition to a quasi
2D pattern induces an arrest of the hydrodynamic coars-
ening since the microstructure is no longer bicontinuous.
Hence our results bring light on two aspects of the effects
of buoyant forces on coarsening systems. First an esti-
mate of the flow rate as a function of both the density dif-
ference and the characteristic lengthscale of the pattern
is given when the microstructure is not visibly affected.
Second an estimate of the threshold lengthscale above
which the microstructure is affected and becomes quasi
2D is given. This work can be of interest in the context
of phase separation in industrial processes since it allows
to actually estimate the sedimentation rate and hence
how the material will organize along the vertical axis.
It also allows to predict when the bulk phase will loose
isotropy. This could be used for instance to produce ori-
ented microstructure that have different properties, such
as conductance, along different directions. It must also
be noted that the computations presented here were per-
formed with buoyant forces, but this can be easily ex-
tended to materials where the phases respond differently
to external fields such as electromagnetic fields[20, 32].
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Appendix A: Numerical scheme

Here we discuss briefly the numerical scheme used in
our simulations. It is based on a Pseudo-spectral meth-
ods similar to the one that have been used to compute
turbulent flows [33, 34], and multi-phase flows [35] due to
their high spatial accuracy(i.e. both amplitude and phase
errors decaying exponentially with the resolution). The
low dispersion characteristics of the method ensures, that
the subtle balance between inertial and viscous forces will
not be modified by the numerical dissipation. A further
advantage of the method, that a numerically more stable
solution is possible using the operator splitting technique
at no extra cost: using backward Euler time integration
for the viscous term, while forward Euler for the remain-
ing terms. Besides is is straightforward to ”force” incom-
pressibility using the Helmholtz theorem: projection to
divergence-free velosity field does not require to explicitly
compute pressure, that is used to force incompressibility.
The evolution equation for the concentration is also

solved using a similar approach: the linear high order
term is solved using an implicit scheme in Fourrier space
while non linear terms are computed in real space.
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