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Abstract Turning the divergent ε-expansion into a numerically sensible
algorithm, relies on the knowledge of the behaviour of the large order contri-
butions. Two different pictures are known to compete there. The first one
was based on Lipatov’s instantons, which is known to deal with the multi-
plicity of Feynman diagrams which grows factorially at high orders. However
this was challenged by ’t Hooft’s renormalons who pointed out that renormal-
ization could yield a similar growth through one single diagram. We study
here a well-known model, the O(N) model, in the large N limit. The reason
for returning to this familiar model, is that it deals with diagrams known to
give renormalon effects.Through an explicit analytic result, we find no sign
of a non-analyticity of perturbation theory due to these renormalons.



1 Introduction

A little more than fifty years ago K.Wilson and M.Fisher introduced the
ε-expansion in the celebrated article [1] Critical Exponents in 3.99 Dimen-
sions. This article has had a considerable influence both in the area of critical
phenomena and in quantum field theory in general. However in practice, if
the first two terms of the expansion provided often a reasonable approxima-
tion to the measured indices in dimension three, the situation deteriorated if
one pushed the procedure to higher orders [2]. Clearly the expansion looked
divergent, it is believed to be at best asymptotic, and in fact limited in its ap-
plicability. Of course summation procedure, such as Borel transforms, Padé
approximants, could be tried, but in the absence of further indication, it
was a blind shot. Therefore at the time analytic calculations, and computer
simulations, appeared to be limited in their ability of reproducing precision
measurements by the renormalization group approach.

The situation changed significantly in 1977 with Lipatov approach to
the characterization of large orders in pertubation theory [3]. His instanton
method , which he developed for the field theory gφ4 in dimension four, pre-
dicted a large order behaviour of the perturbation expansion of the various
correlation functions, β-function, etc, of the form gkk!(−a)kkbc for large k,
with calculable coefficients a, b, c . I shall recall below why this information,
the explicit knowledge of a, b, c, is essential to extract a numerically sensi-
ble result from such a divergent series. With Le Guillou and Zinn-Justin
[4] we first checked these results in lower dimensions. For instance the one-
dimensional quartic anharmonic oscillator had been extensively studied by
Bender and Wu [5] who had found, on the basis of a WKB method, that
indeed perturbation theory diverged with a k! growth as above. We verified
that the instanton method reproduced exactly what they had found. Ex-
tension to field theory in higher dimensions was similar [4] except that the
instanton solution is not known in analytic form except in dimension four [6].
In dimensions lower than four the interpretation of these results is simple :
at a given order all Feynman diagrams have the same sign (we are consider-
ing an Euclidean field theory) and their number grows proportionaly to k!.
The situation is less transparent in dimension four since diagrams require
counterterms and subtractions. This is the central point of the investigation
that we try to carry in this paper.

The knowledge of the large order behaviour of the perturbative expansion
was the source of considerable improvements in the ability to get a sensible
answer from those rapidly divergent series [8]. In practice it led to numerically
convergent algorithms developed around Zinn-Justin and collaborators[8, 9],
Borel transform of the series, followed by conformal mappings relying on
the explicit knowledge of the coefficients a.b, c here above, were among the
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techniques that they used and examples, such as the anharmonic oscilla-
tor, revealed that the divergent perturbation series could lead, after those
mappings, to many digits exact results.

In our 1977 paper [4] we tried to carry the large order knowledge of
perturbative series to the ε-expansion. In most procedures one has to perform
a double expansion in g and ε. Since the fixed point g∗ is of order ε one has
to consider at order k, terms of order gk, gk−1ε, gk−2ε2, · · · . Fortunately the
well-known technique of minimal subtraction allows one to avoid this double-
expansion. In this renormalization scheme [12] by definition the counter-
terms contain only poles in ε without any finite part. As a result one obtains
the renormalization group β and γ functions in dimension d from their four-
dimensional counterpart

βd(g) = −εg + β4(g)

γd(g) = γ4(g) (1)

The fixed point g∗ is then ε-expanded from

εg∗ = β4(g∗) (2)

(β(g) is a series starting at order two), and the critical exponent η, which is
(twice) the conformal anomaly of the φ-field is then expanded in ε from

η = γ4(g∗) (3)

Therefore computing the ε-expansion is reduced to four-dimensional calcula-
tions. Using the 4D large-order calculation from Lipatov method we obtained
an estimate of the asymptotic orders in the ε-expansion [4] which was again of
the k!-type as before. Then Zinn-Justin and co-workers based a summation
procedure on this large order behaviour [8, 9], and the process looked nicely
convergent : at least adding one more order in the ε-expansion improved the
previous result, instead of destroying it as the straight expansion does.

The confidence in this process was severely affected after ’t Hooft’s dis-
covery of a phenomenon [10], now called renormalons, which appears only
in renormalizable theories such as φ4 in dimension four (and not in lower
dimensions). His argument was based on the fact that one single diagram
at order k could be proportional to k! , whereas the k! , for d < 4, resulted
from their multiplicity. In a renormalizable theory a diagram, such as the
(renormalized) bubble diagram, grows logarithmically for a large external
momentum. A repeated insertion of such diagrams leads to an integral with
a log at k-th power, which gives after integration a k!. Clearly this shed
doubt on Lipatov’s estimate for large order, although ’t Hooft’s argument
didn’t show explicitely that it was wrong. It was not really clear either how
those renormalons affected quantitatively the actual calculation.
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I have remained puzzled by this problem since then, wondering whether
the ambitious RG work based on the ε-expansion, was simply an approxi-
mation which should not be pushed too far. I want to present here a simple
well-known problem, namely the O(N)-model in the large-N limit. The rea-
son for returning to this familiar model is that it is clearly a candidate for
showing up renormalons effect, whereas this time we do not need an instan-
ton asymptotics since there are only a few diagrams of a given order. I do not
pretend that it solves the instanton-renormalon competition, but I wonder
on the basis of this calculation whereas renormalons affect the perturbation
series as badly as one could think.

2 The O(N) model in dimension four

This, half a century-old, model consists of an N -component order parameter
φa, a = 1, · · · , N , with an interaction invariant under O(N) [7]. This model
has been studied by hundreds of authors and elaborate techniques have al-
lowed to compute several orders in a 1/N expansion. We will limit ourselves
here to the leading large N terms for the RG functions β(g) and γ(g) in
the minimal subtraction scheme which allows to make easy contact with the
ε-expansion. The reason for our interest is that γ(g) is of order 1/N and the
expansion in powers of g of this leading term involves exactly the diagrams
which have been identified as generating renormalon singularities in the per-
turbative expansion. With the help of previous results on critical indices we
will try to understand what the renormalons do to this expansion.

The model is given by an (Euclidean) action

S =
∫
d4x[

1

2
∇φa∇φa +

1

2
m2
oφ

2 +
g0

4!N
(φ2)2] (4)

which one could regularize by an ultra-violet cut-off. For the reasons men-
tioned above we prefer here the dimensional regularization by going to 4− ε
dimensions, and then renormalize minimally by a coupling constant renor-
malization Z1 and a field rescaling φ =

√
Zϕ. We work in the massless theory

(critical temperature) and the action in terms of the renormalized field reads
(omitting mass counterterms)

S =
∫
ddx[

Z

2
∇ϕa∇ϕa + µε

gZ1

4!N
(ϕ2)2] (5)

Varying µ at fixed bare theory we obtain the standard renormalization group
functions of the Callan-Symanzik equation [11]

εg + β(g)(1 + g
d

dg
ln(Z1/Z

2)) = 0 (6)
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γ(g) = β(g)
d

dg
ln(Z) (7)

We are interested in computing the leading terms in a 1/N expansion of Z1

which is O(N0) and Z since Z = 1 +O(1/N).

2.1 The β-function at order N 0

The coupling constant involving an explicit factor 1/N , the leading terms
maximize diagrams with internal index-loops which provide a compensating
factor N . For the two-point function the leading diagrams are of order 1/N
and the field renormalization Z = 1 + O(1/N). For the four-point function
the leading diagrams consist of a string of ”bubbles” all of order 1/N and
this yields a vertex renormalization Z1 of order N0 which we now compute.

Let us begin with a bubble with external momentum p

B(p) =
∫ ddq

q2(p− q)2
(8)

where we use the convention of omitting the usual geometric factor 2πd/2

(2π)dΓ(d/2)

included into a rescaling of g that will be implied ; we take the scale factor
µ as unit of momentum.

r@@
��

q

p− q
��
@@
rB(p) =

A standard calculation (using a Feynman parameter) yields

B(p) = a(ε)
p−ε

ε
,

a(ε) =
1− ε/2
1− ε

Γ3(1− ε/2)Γ(1 + ε/2)

Γ(1− ε)
= 1 +

ε

2
+O(ε2) (9)

i.e.

B(p) =
1

ε
+ 1/2− ln p (10)

Then the four-point function, for external indices a,a,b,b is given by a
geometric series

..
@@

@@
��
��· · · ......

@@

@@
��

��+ + ...... ...@@
��

��
@@

+ · · ·Γ(4) =
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−1

2
Γ(4) =

1

N6
gZ1 −

g2Z2
1

N62
B(p) +

g3Z3
1

N63
B2(p) + · · ·

=
1

N

gZ1/6

1 + gZ1/6 B(p)
=

1

N

g/6

1/Z1 + g/6 B(p)
+O(1/N2) (11)

Note that the Z factor omitted here would give only a 1/N2 contribution.
Then taking

1/Z1 = 1− g

6ε
(12)

which satisfies the minimal subtraction rule, we obtain a finite Γ(4) in the
limit ε→ 0, at order zero in 1/N . The β-function follows immediately

0 = εg + β(g)[1 +
g

6ε− g
] (13)

i.e.

β(g) = −εg +
1

6
g2 +O(1/N) (14)

One can check this result which is valid to all orders in g , but zeroth order
in 1/N , with the literature. We copy from Zinn-Justin’s book [13] in which
he used the minimal subtraction scheme

β = −εg +
N + 8

6N
g2 − 3N + 14

12N2
g3 + · · · (15)

and higher terms in g are of order 1/N , which agrees with (14) when N goes
to infinity.

2.2 The two-point function

We are now considering the diagrams for the inverse two-point function
Γ(2)(p).

p ...

p− q

...Γ(2)(p) =

At order g2 we have one inserted bubble diagram, thus

Γ(2)(p) = Zp2 − 2
(gZ1)2

N62

∫
ddq

B(q)

(p− q)2
+O(g3, 1/N2) (16)
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The integral over q diverges as − 1
8ε

, we will compute explicitly the integral
with a string of bubbles of arbitrary length herefafter. So at order g2

Z = 1− 1

144N

g2

ε
+O(g3, 1/N2) (17)

giving

γ(g) =
g2

72N
+O(g3, 1/N2) (18)

.
Tot all orders in g the string of bubbles gives

Γ(2)(p) = Zp2 − 2

N

∑
k=1

(
−gZ1

6
)k+1

∫
ddq

Bk(q)

(p− q)2
+O(1/N2) (19)

We will sum the series later, but it is interesting to study the finite order k
dealing thus with the integral

Ik =
∫
ddq

Bk(q)

(p− q)2
=
ak(ε)

εk

∫
ddq

q−kε

(p− q)2
(20)

with B(q) and a(ε) given in (9).

r r r r rIk = p

p− q

· · · · · ·.

It is interesting to compute Ik explicitly to understand what happens at
higher k’s. Standard techniques give

Ik = − k

4(k + 1)

akp2−ε(k+1)

εk
Γ2(1− ε/2)Γ(1− ε(k + 1)/2)Γ(1 + ε(k + 2)/2)

Γ(1− ε(k + 2)/2)Γ(1 + εk/2)

× (1− ε/2)

(1− ε(k + 2)/4)(1− ε(k + 2)/2)

= − k

4(k + 1)

p2−ε(k+1)

εk
[1 + (5k/4 + 1)ε+O(ε2)] (21)

The calculations from thereon are straightforward, we just have to expand in
powers of ε the various explicit functions which appear in (20,9) and chose
Z to cancel all the poles in ε. For instance at order g3 if we take

Z = 1− g2

N144ε
− g3

N64ε2
(1− ε/4) +O(g4/N, 1/N2) (22)
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we verify that Γ(2) is finite up to this order, as renormalization theory implies,

Γ(2)(p) = p2 − g2

144N
p2(2 ln p− 7/8)− 9g3

64N
p2 ln2 p+O(g4/N). (23)

From (22) we obtain immediately at leading order 1/N

γ(g) =
1

72N
[g2 − 1

24
g3 +O(g4)] (24)

which agrees for N large with the result in [13]

γ(g) =
N + 2

72N2
g2[1− N + 8

24N
g +

5(−N2 + 18N + 100)

576N2
g2] + · · · (25)

We can proceed in this fashion to all orders in g, but it is tedious. One
can also sum the series (19) but it is not simple either to extract Z from the
sum.

Γ(2) = Zp2 − g2Z1

18N

∫ ddq

(p− q)2

1
1

Z1B(q)
+ g/6

(26)

Fortunately previous results on the 1/N expansion of this model allow
us to recover γ(g), at order 1/N , to all orders in g as explained in the next
section.

3 Where are the renormalons?

If instead of dimensional regularization we had stayed in four dimensions
with an ultra-violet cut-off Λ we could have computed the same diagrams
The bubble-diagram (8), ∫

Λ

d4v

(v − q)2v2
(27)

behaves as ln q/Λ at small momentum. Inserted in the two-point the k -th
iterated bubble behaves as lnk q/Λ and inserted in the two-point function it
yields the integral ∫

Λ
d4q[

1

(p− q)2
− 1

q2
] lnk q/Λ (28)

where we have explicited the zero-momentum subtraction of the massless
theory (which automatically vanished in the minimal scheme). The resulting
integral is porportional to p2 and it yields an integral over q which is infra-
red singular in the p small region. Taking ln q/Λ = −x the singular part is
given by a power of a logarithmic singularity in p , with a coefficient which
behaves for large x as

∫
dxe−x(−x)k, i.e. a factorial growth with alternating
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signs. This is the argument for a perturbation expansion exhibiting (infra-
red) renormalons [7].

Our goal is to compute the renormalized correlation functions, the scaling
limit of the theory in which distance are much larger than the lattice spacing
Λ−1. We have seen in the previous section how complex is the interplay
between the diagrams and the counter-terms and this is not transparent in
the above cut-off regularized theory. So let us return to the results of the
previous section within dimensional regularization. Looking back at the k-th
order, i.e. the integral (21), we see explicitly that the k large and ε small
limits do not commute. The renormalization procedure is strictly defined as
ε goes to zero first, cancelling the poles in ε through the poles coming from
Z and Z1. It is only after we have removed those singular terms that we may
examine the asymptotic behavior for large k. In the minimal subtraction
scheme that we have followed here, this is done by cancelling all the poles
and multiple poles in ε occuring in the results such as (21) with the poles in
Z and Z1.

Could that produce the same renormalon-k! ? Indeed if we return to (21)
the factor 1

εk
p2−ε(k+1) will end up expanded k times in powers of ε by the time

all the subtractions manage to produce a finite four-dimensional theory (i.e,
ε = 0). This might yield a behaviour of the two-point function at order k
with a term p2[−(k + 1) ln p]k and of course (−k)k ' (−a)kk!, but this is far
from obvious, the algebra could produce a 1/k! which would kill this would-
be renormalon. However our goal here is to understand the large orders of
the ε-expansion and that relies on the expansion of the renormalization group
γ function. There we will see that there is no room for a renormalon large
order behavior.

4 An explicit solution through earlier results

Since the removal of the poles in ε is increasingly more cumbersome when the
order increases, fortunately we can call on previous results on the large N
limit to bypass this long algebra. In fact there are better ways of dealing with
the 1/N expansion, like adding to the action a Lagrange multiplier λ(ϕ2−ψ),
replacing the quartic term in ϕ by ψ2 and tracing out the Gaussian ϕ’s. The
expansion around the saddle-point of the resulting (λ, ψ) action yields the
1/N -expansion [13, 7]. The reason for not following this procedure here is
that we needed to stick to the minimal subtraction scheme. Several terms of
the 1/N expansion of the critical exponents have been computed for arbitrary
dimensions, much more than what we needed here. In particular we find in
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[7] the critical exponent η at leading order, and copy here the result

η =
1

N
[
ε2

2

Γ(1− ε)
Γ3(1− ε/2)Γ(1 + ε/2)

1− ε
(1− ε/4)(1− ε/2)

] +O(
1

N2
) (29)

But we know that η = γ(g∗) and g∗ = 6ε + O(1/N). Therefore we obtain
the RG function γ(g) by replacing ε by g/6 in η providing the result to all
orders in g

γ(g) =
g2

72N
[

Γ(1− g/6)

Γ3(1− g/12)Γ(1 + g/12)

1− g/6
(1− g/24)(1− g/12)

] +O(
1

N2
) (30)

This is the result valid to all orders in g, first order in 1/N , that we were
looking for. One verifies easily that this, expanded in g, reproduces what we
had found before at low order (24).

5 Concluding remarks

• The result (30) is analytic in g in the neighbourhood of the origin : it
is meromorphic in g with the closest singularity at g = 12. Had the
large orders of the expansion in g be growing factorially that the result
would not be analytic at g = 0. This is reminiscent of what is familiar in
matrix models : the matrix integral is not analytic in g, the coefficient
in gTrM4. However if one considers the largeN limit, and the successive
terms of the 1/N -expansion, every term of the expansion is analytic at
g = 0. It has been argued by previous authors that renormalons are
not present in ϕ4

4 [16] : the explicit calculation performed here confirms
this position.

• The potentially dangerous renormalons do not show up in the final
result

• We have not shown that other correlation functions, other than the
one we have computed here, could not show renormalons, but it seems
likely, in view of what we did, that they are simply absent at first order
in 1/N and we are inclined to believe that this remains true to all orders
in a 1/N expansion.

• We have not shown that renormalons would not show up at fixed N ,
but the argument in their favour being a priori operative, but finally
absent, for the case that we have considered here, we see no reason
to believe that they spoil the old result [4] on the large orders of the
ε-expansion.
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• The model that we have considered, was considered as a candidate
for infra-red renormalons. We have nothing to say on potential UV
renormalons as in gauge theories.

• Many contemporary scientists probably consider that the problem dis-
cussed here is obsolete ; who needs the ε-expansion given the magnif-
icent precision of the conformal bootstrap [14], which defeats earlier
methods in their accuracy at predicting critical exponents ? However
I believe that there are many problems of interest in the scaling region
for which the tools of conformal bootstrap are not (not yet?) available.
For instance, the universal scaling equation of state, still relies on ex-
pansions : it was my first article (with Wallace and Wilson) [15] using
the ε-expansion, fifty years ago!

Acknowledgement I thank Giorgio Parisi for a discussion which led me
to reconsider this ancient story.
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