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Recent experimental and theoretical results show that weakly interacting atomic Bose-Bose mixtures with
attractive interspecies interaction are stabilized by beyond-mean-field effects. Here we consider the peculiar
properties of these systems in a strictly one-dimensional configuration, taking also into account the nontrivial role
of spin-orbit and Rabi couplings. We show that when the value of inter- and intraspecies interaction strengths are
such that mean-field contributions to the energy cancel, a self-bound bright soliton fully governed by quantum
fluctuations exists. We derive the phase diagram of the phase transition between a single-peak soliton and a
multipeak (striped) soliton, produced by the interplay between spin-orbit, Rabi couplings and beyond-mean-field
effects, which also affect the breathing mode frequency of the atomic cloud. Finally, we prove that a phase
imprinting of the single-peak soliton leads to a self-confined propagating solitary wave even in the presence of
spin-orbit coupling.

DOI: 10.1103/PhysRevA.99.063618

Introduction. Solitons are localized solitary waves propa-
gating with constant shape in a nonlinear medium: due to a
simple underlining mathematical structure they are ubiquitous
in physics, with applications to optics [1] and hydrodynamics
[2], from quantum field theory [3] to proteins and DNA [4,5],
polymers [6], plasmas [7], and ultracold gases [8]. In the latter
field bright solitons emerge as a balance of kinetic energy and
nonlinear self-interaction in the Gross-Pitaevski equation of
the condensate [9] and were first discovered in 2002 [10,11].

In uniform and weakly interacting Bose-Bose mixtures the
crucial role of beyond-mean-field quantum fluctuations for the
existence of self-bound localized states was recently empha-
sized. In three-dimensional mixtures with repulsive intracom-
ponent interaction and attractive intercomponent one, a mean-
field (MF) collapsing system is stabilized by the inclusion
of beyond-mean-field (BMF) effects [12], as experimentally
observed with dipolar systems [13–16] and for isotropic con-
tact interactions [17–19]. Contrary to the three-dimensional
(3D) case, in a strictly one-dimensional Bose-Bose mixture
the BMF attractive energy stabilizes a repulsive MF term [20].

Here we study the one-dimensional quantum bright soli-
ton, namely a fully quantum self-bound state in which the
interparticle interactions are tuned to eliminate completely
the MF contributions. Due to the intrinsic attractive nature
of the 1D BMF energy an external confining potential is not
necessary, different from the 3D analog of this system [21].
Thus reaching a one-dimensional confinement is truly crucial
to observe this new self-bound state. We investigate the influ-
ence of spin-orbit (SO) [22–26] and Rabi couplings between
the species, deriving a phase diagram for the phase transition
between a single-peak soliton and a striped soliton. Regarding
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the dynamical properties, we calculate the breathing mode
frequency of the soliton and we find that despite the broken
Galilean invariance [27], the single-peak soliton propagation
is shape invariant.

Model. Let us consider a uniform one-dimensional Bose-
Bose gas made of two species with equal mass m and uniform
number densities n1 and n2. We suppose that the real two-
body interaction potential between the atoms can be substi-
tuted with the same one-dimensional zero-range coupling g =
g11 = g22 for intracomponent interactions and with g12 for
intercomponent ones. The beyond-mean-field energy density
of the mixture reads [20]

E1D(n1, n2) = g

2
(n1 − n2)2 + δg

4
(n1 + n2)2

− 2
√

m

3π h̄
g3/2(n1 + n2)3/2, (1)

where h̄ is the reduced Planck constant and δg = g12 + g.
In particular, we model a weakly interacting mixture near
the instability point of the mean-field theory, considering
the regime of 0 � δg � g, with attractive intercomponent
interaction g12 < 0 and repulsive intracomponent one g > 0.

Within an effective field theory (EFT), we describe the
species with the complex scalar bosonic fields ψ1(x) and
ψ2(x), thus extending the definitions of the uniform particle
densities n1 and n2 to the local quantities n1 = |ψ1|2 and n2 =
|ψ2|2. In the spirit of density functional theory we introduce
the energy functional

E =
∫

dx

{
E1D(|ψ1|2, |ψ2|2) +

∑
j=1,2

[
h̄2

2m
|∂xψ j |2

− (−1) j iγψ∗
j ∂xψ j − �ψ∗

j ψ3− j

]}
, (2)
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which is obtained adding a kinetic energy term to the beyond-
mean-field energy of Eq. (1), and including the contributions
of an artificial spin-orbit coupling with strength γ and a
Rabi coupling with strength � between the species. This
low-energy EFT, in our regime of application, is a reliable

tool to determine the static properties of the system [28].
Indeed, the minimization of Eq. (2) with the chemical po-
tential μ as a Lagrange multiplier fixing the total number
of particles N1 + N2 = 2N leads to two coupled stationary
Gross-Pitaevski equations (GPE)

μψ j =
[
− h̄2

2m
∂2

x + δg

2
(|ψ1|2 + |ψ2|2) − (−1) jg(|ψ1|2 − |ψ2|2) −

√
m

π h̄
g3/2(|ψ1|2 + |ψ2|2)1/2 − (−1) j iγ ∂x

]
ψ j − �ψ3− j, (3)

with j = 1, 2. To study the static properties of the mixture, we
will focus on the analytical and numerical solution of Eq. (3)
for N1 = N2 = N , considering the case in which the beyond-
mean-field terms are removed, i.e., δg = 0.

Quantum bright soliton. We now find an analytical solution
of the GPE Eq. (3) within the single-field approximation [29]

ψ1(x) =
√

N φ(x),

ψ2(x) =
√

N φ∗(x).
(4)

By substituting it in the coupled GPE, we get the same
stationary equation for the time-independent complex field
φ(x), namely

μ φ =
[

− h̄2

2m
∂2

x + iγ ∂x + δgN |φ|2 −
√

2m

π h̄
g3/2N1/2|φ|

]
φ

−�φ∗. (5)

This equation can be solved analytically in the absence of
spin-orbit and Rabi couplings, i.e., if γ = � = 0 [28]. How-
ever, here we investigate the remarkable case where also
δg = 0, in which the nonlinearity of Eq. (5) contains only
beyond-mean-field effects

μ φ =
[
− h̄2

2m
∂2

x −
√

2m

π h̄
g3/2N1/2|φ|

]
φ. (6)

The 3D analog of this equation, in which quantum fluctuations
are not masked by mean-field contributions, has been recently
investigated [21], although including a confining potential.
Assuming a real non-negative field φ(x) and considering that
a bright soliton has μ < 0, Eq. (6) takes the form

φ′′ = −∂W

∂φ
, with W (φ) = −α φ2 + β φ3, (7)

where each mark ′ represents a derivative with respect to x,
and

α = 1

2

(
2m

h̄2

)
|μ|, β = 1

3

(
2m

h̄2

)√
2m

π h̄
g3/2N1/2. (8)

The solution of Eq. (7), with vanishing boundary conditions
at infinity, is

φ(x) = φ(0)sech2(
√

α/2 x), (9)

where φ(0) = α/β, and the implicit dependence on the
chemical potential |μ| is fixed by imposing the nor-
malization condition 1 = ∫

dx |φ(x)|2, obtaining |μ| =
21/3mg2N2/3/(32/3π4/3h̄2). We underline that Eq. (9) rep-
resents a fully quantum bright soliton, whose existence is

entirely due to beyond-mean-field quantum fluctuations.
Moreover, while a GPE equation in 1D with a cubic nonlinear-
ity admits a sech(x) solitonic solution [30], here we consider
a quadratic nonlinearity and we obtain a solution in the form
of sech2(x).

Time-dependent variational ansatz. We now study the
dynamical properties of the quantum bright soliton by us-
ing a Gaussian time-dependent variational ansatz. The Bose-
Bose mixture dynamics derives from the following effective
Lagrangian:

L =
∫

dx
∑
j=1,2

ih̄

2
(ψ∗

j ∂tψ j − ψ j∂tψ
∗
j ) − E, (10)

in which we implicitly introduce the time dependence t in the
fields ψ1,2 and where E is given by Eq. (2). The low-energy
collective excitations of the system can be studied analytically
with the Gaussian ansatz [31]

ψ1(x, t ) = ψ2(x, t )

= N1/2

π1/4σ 1/2(t )
exp

(
− x2

2σ 2(t )
+ ib(t )x2

)
, (11)

where σ (t ) and b(t ) are time-dependent variational param-
eters. Substituting the ansatz into Eq. (10) and integrating
along x one obtains an effective Lagrangian L for σ (t ) and
b(t ). In the absence of SO and Rabi couplings the Euler-
Lagrange equation for the variational parameter b admits the
algebraic solution b = mσ̇ /(2h̄σ ). Employing this condition,
the Euler-Lagrange equation for the Gaussian width σ is in
a simple harmonic-oscillator form. In the case of δg = 0 it
can be linearized for small perturbations around the equilib-
rium configuration σst = (3π5/6h̄2)/(24/3mgN1/3), obtaining
the oscillatory solution σ (t ) = σst + A cos(ωbt + ϕ0), where
A is the oscillation amplitude, ϕ0 is an integration constant,
and ωb is the breathing mode frequency of the quantum
soliton, which is given by

ωb = 213/6

33/2π5/3

m

h̄3 N2/3g2. (12)

In the numerical part we will compare the quantum soli-
ton oscillation frequency with the analytical result for ωb.
Moreover, we will see that an oscillatory behavior char-
acterizes also the low-energy excitations of the quantum
bright soliton in the presence of nonzero SO and Rabi cou-
plings. Even though the ground-state solution of Eq. (9) is
not in a Gaussian form, we will show that our ansatz of
Eq. (11) gives a better result than an analogous procedure with
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ψ1,2 ∝ sech2(
√

α/2 x) eibx2
, which leads to ω

′
b = c ωb, with

c = (311/6π1/3)/[25/651/2(π2 − 6)1/2] ≈ 1.4.
Numerical results: static properties. The ground state of

the system is obtained through a two-component predictor-
corrector Crank-Nicolson algorithm, which solves Eqs. (3)
with the formal substitution μ → −h̄∂τ , where τ is the imag-
inary time. The evolution of an initial discretized spinor state
(ψ1 ψ2) is performed and the wave functions are renormalized
at each time step [32]. We stress that, in the presence of SO
and Rabi couplings, the imaginary time dynamics of the algo-
rithm is highly dependent on the phase of the initial conditions
and can converge to local minima of the energy instead of
the absolute one [33]. Therefore, to reach the ground state,
we take as initial condition for both components a Gaussian
centered in x = 0 and width σ = 2.

Following a standard approach [29,34], we rescale the
lengths in units of the characteristic length l⊥ = √

h̄/(mω⊥)
of the transverse harmonic confinement with frequency ω⊥.
The system is strictly one-dimensional only if the transverse
width of the bosonic sample is equal to l⊥ [31]. Consistently,
here we rescale time in units of ω−1

⊥ , while g, δg, γ are in units
of h̄2/(ml⊥), and � is in units of h̄ω⊥. We point out that, in a
macroscopic system with N 
 1, the mean-field contribution
of the intraspecies interaction in Eqs. (3) is negligible and the
relevant interaction term is the beyond-mean-field one, which
scales with gN1/3.

The top-left panel of Fig. 1 shows the density profile
from numerical simulations for γ = � = 0. The profile is
indistinguishable from the analytical prediction in Eq. (9).
We have verified that, for � = 0, the square modulus of the

FIG. 1. Density distribution of the quantum bright soliton (δg =
0) for different values of spin-orbit γ and Rabi � couplings, obtained
for a fixed intraspecies interaction gN1/3 = 1. In the top-left panel
we show the square modulus |φ|2 of our analytical solution Eq. (9),
exactly coincident with the numerical solution of the coupled Eqs. (3)
for δg = 0, γ = 0, and � = 0. In the other panels we report the
normalized components |ψ1|2N−1 (black line) and |ψ2|2N−1 (red
dashed line) with nonzero γ and �, which turn out to be coincident.
Here the axial coordinate x is rescaled in units of the transverse
harmonic-oscillator length l⊥ = √

h̄/(mω⊥), with ω⊥ the transverse
frequency of the confining potential, while g, δg, and γ are in units
of h̄2/(ml⊥) and � is in units of h̄ω⊥.

FIG. 2. Phase diagram of the phase transition from a single peak
quantum bright soliton to a striped (multipeak) soliton, obtained for
a fixed intraspecies interaction strength gN1/3 = 1. The couplings
gN1/3, γ , and � are rescaled as in Fig. 1.

wave functions does not depend on γ , as previously shown in
Ref. [29]. This is due to the fact that the spin-orbit coupling
can be reabsorbed in a phase shift of the fields. The other
panels of Fig. 1 show the interplay between the spin-orbit
γ and Rabi � couplings. The qualitative effect of SO is to
split the bright soliton into many peaks. In particular, tuning
γ from values lower than � to greater ones a larger number
of peaks is obtained, but with a finer spatial distribution
and a smaller density displacement. Figure 1 also shows that
the two components have the same ground-state distribution,
underlining the effectiveness of a single-field approximation
in the study of attractive Bose-Bose mixtures.

In Fig. 2 we show the phase diagram of the quantum bright
soliton for the intraspecies interaction coupling gN1/3 = 1.
The top-left part of the diagram is where the quantum bright
soliton has a single-peak shape, while in the bottom-right one
gets a striped bright soliton, as can be seen in comparison
with Fig. 1. The transition black line is given by the equation
� = −0.17 − 0.19γ + 0.85γ 2, obtained with a polynomial
fit of the transition points in the (�, γ ) plane: this curve
characterizes a quantum phase transition fully driven by spin-
orbit and Rabi couplings.

Numerical results: dynamical properties. The dynamics of
the quantum bright soliton is investigated through the solution
of the following coupled Gross-Pitaevski equations:

ih̄∂tψ j =
[

− h̄2

2m
∂2

x + δg

2
(|ψ1|2 + |ψ2|2)

− (−1) jg(|ψ1|2 − |ψ2|2)

−
√

m

π h̄
g3/2(|ψ1|2 + |ψ2|2)1/2

− (−1) j iγ ∂x

]
ψ j − �ψ3− j, (13)

which are the Euler-Lagrange equations of the Lagrangian
(10). In particular, we study the breathing mode frequency ωb

after an excitation of the quantum bright soliton [31].
In the top panel of Fig. 3 we report ωb as a function of the

intraspecies interaction strength gN1/3 for fixed values of γ

and �. The numerical simulation for γ = 0 and � = 0 shows
a g2N2/3 dependence of the breathing mode frequency, and
is reproduced by our Gaussian ansatz of Eq. (12) within a
9% relative error for gN1/3 ∈ [0.5, 2]. As previously shown,
an analogous calculation of ωb with a variational sech2(x)
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FIG. 3. Top panel: breathing mode frequency ωb as a function
of gN1/3, for γ = 0 and � = 0. The symbols are obtained solving
numerically Eq. (13), the black solid line represents our Gaussian
ansatz Eq. (12), while the green dashed line is obtained with a
sech2(x) ansatz (see text). Bottom panel: ωb as a function of γ ,
for many values of �, and gN1/3 = 1. Notice that ωb increases at
the transition between a single-peak and a multipeak soliton. The
solid lines are a guide to the eye. Here we rescale ωb in units of
the transverse frequency ω⊥, while t is in units of ω−1

⊥ and all the
remaining couplings are rescaled as in Fig. 1.

ansatz gives the same proportionality to g2N2/3, but a different
coefficient. We stress that, although the soliton density is not a
Gaussian, the Gaussian ansatz captures the correct oscillatory
behavior of the quantum bright soliton. In the bottom panel of
Fig. 3 we show how the breathing mode frequency changes for
tuning γ with � and gN1/3 = 1 fixed. We find an increase of
ωb at the phase transition between a single-peak and a striped
soliton: this dynamical behavior is a simple experimental
test to observe this quantum phase transition. Notice that
we only report the results for one component, since the two
species oscillate in time with the same frequency and in
opposition of phase, such as the center of mass remains always
at x = 0.

Finally, we analyze the effect of a phase imprinting of the
quantum bright soliton, which consists in a sudden quench
of the phase of the mixture [35]. Given the stationary ground-
state solution (ψ1, ψ2), with Eq. (13) we perform the time evo-
lution of the shifted state [exp(ikx) ψ1, exp(ikx) ψ2], where k
is a constant wave vector.

With this phase imprinting the soliton moves with the ve-
locity v = h̄k/m. To avoid the excitation of transverse modes,
which will make the system no longer one dimensional, we
choose a kick with an energy h̄2k2/(2m) much smaller than

FIG. 4. Time evolution of the quantum bright soliton after a
phase imprinting in the form of exp(ikx), with wave vector k =
2π/60. The unperturbed initial conditions are the striped soliton
with gN1/3 = 1, γ = 4, and � = 2 (top panel) and the single-peak
soliton for gN1/3 = 1, γ = 1, and � = 4 (bottom panel): notice how
the Galilean invariance is violated only for the striped soliton. The
physical quantities are rescaled as in Figs. 1 and 3.

the energy of the transverse confinement h̄ω⊥. Our striped
soliton is not shape invariant: as can be seen in the top
panel of Fig. 4, during the time evolution in which the fluid
drifts along x, the smaller density peaks do not move. This
is not surprising, because in the presence of SO coupling,
the equations are not Galilei invariant [27]. However, we find
that the single-peak soliton (bottom panel) propagates without
changing its shape even with a nonzero SO coupling. This is
due to the fact that the initial wave function is real.

Conclusions. We have obtained, choosing the interaction
strength parameters in a way that the mean-field terms in the
Gross-Pitaevski equation add to zero, an analytical expression
of the quantum bright soliton, namely a self-bound structure
which can be experimentally observed only in a strictly one-
dimensional Bose-Bose mixture. We have analyzed the phase
diagram of the phase transition driven by the interplay of
spin-orbit γ , and Rabi � couplings, which produce either
a single-peak soliton for γ � � or a striped soliton for
γ > �. Up to now, the only bosonic system with spin-orbit
coupling realized in the experiments is 87Rb. Unfortunately,
for this species it is truly difficult to tune the intracomponent
scattering lengths [36]: this is instead possible with 39K atoms
[37,38], as recently demonstrated in 3D experiments [17,19].
We suggest this atomic sample as a possible tool to realize in
the near future quantum bright solitons with spin-orbit cou-
pling, overcoming the difficulties expected from the heating
of the cloud by the Raman beams [39,40].

Let us consider N ≈ 2 × 105 atoms in different hyper-
fine levels of 39K, confined in a 1D configuration with the
very strong harmonic confinement ω⊥ = 4π × 103 s−1. For
γ /(h̄2/m) = 6 × 106 m−1, the three-dimensional scattering
lengths a11 = a22 = 40a0, and a12 = −50a0, where a0 is the
Bohr radius, the transition from a multipeak quantum soliton
to a single-peak one can be observed by tuning �/(2π h̄)
from 1 × 103 s−1 to 4 × 103 s−1 [40]. We stress that our
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simulations show that the transition between a single and a
multipeak is qualitatively unchanged for a11 = a22 ≈ −a12.
Moreover, under these conditions the system is very far from
the confinement induced resonance [41], since l⊥ ≈ 4700a0

is much larger than all of the suggested values of the s-wave
scattering lengths. The present work paves the way to the

study of other fully quantum nonlinear excitations, like dark
solitons, quantized vortices, and shock waves.
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