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Introduction

Trypanosoma brucei is a unicellular eukaryote that causes human African trypanosomiasis,

also known as sleeping sickness [1]. Parasite transmission between mammals is ensured by a

haematophagous insect vector of the genus Glossina, also called the tsetse fly. Trypanosomes

adapt to their natural hosts, in particular to the available carbon sources required to fuel cen-

tral metabolism and to produce ATP. For instance, in the digestive tract of the insect vector,

procyclic forms (PCFs) of T. brucei use proline abundantly present in the insect [2]. It has

recently been proposed that other carbon sources may also be required for the parasite in the

fly, such as glucose at the onset of infection or intermediates of the tricarboxylic acid cycle

[3,4]. By contrast, the bloodstream forms (BSF) rely on glucose present at homeostatic levels in

all mammalian fluids [2]. In addition to proline and glucose, glycerol can also fuel central car-

bon metabolism of the parasite, but its relevance has received little attention until recently.

This Pearl article will highlight recent data on glycerol metabolism and their implications for

understanding trypanosome biology.

Procyclic trypanosomes (PCF) prefer glycerol over glucose

As mentioned above, PCF evolve in the glucose-depleted midgut of their insect vector, where

they rely on proline [5,6], but, nevertheless, use glucose as the primary carbon source and

down-regulate proline consumption up to 7 times under in vitro conditions [7,8]. The molecu-

lar mechanism of this glucose preference over proline is currently unknown. Surprisingly, the

parasite also developed an absolute preference for glycerol over glucose, already described in

the 1960s by Ryley [9] and recently revisited by our group [10]. Indeed, glucose is not con-

sumed as long as glycerol is present in the medium. As far as we know, T. brucei is the only

unicellular eukaryote to date reported to prefer a nonglycolytic carbon source to glucose.

We characterised the molecular mechanism of this glycerol preference, which was called

“metabolic contest” since it is based on competition between 2 kinases (hexokinase [HK] and

glycerol kinase [GK]) for the same substrate (ATP) [10]. When glucose and glycerol enter the

cells via glucose transporters and aquaglyceroporins, they are first phosphorylated to glucose

6-phosphate (G6P) and glycerol 3-phosphate (Gly3P) by HK (step 1 in Fig 1) and GK (step

19), respectively. The phospho group prevents G6P, Gly3P, and the derived phosphorylated

metabolites from leaving the cell through transport processes, participates in ATP production,

and facilitates enzyme binding and activity. In trypanosomes, HK and GK, as well as most

other enzymes involved in glycolysis and glycerol metabolism, are located in peroxisome-

related organelles, named glycosomes, which show limited or no nucleotide exchange with the

cytosol on a metabolic timescale. Therefore, consumption and production of ATP are tightly
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balanced within the organelle [11], with each ATP molecule required to supply GK and HK

being regenerated by phosphoenolpyruvate carboxykinase (PEPCK, step 11) and pyruvate

phosphate dikinase (PPDK, step 15) in PCF glycosomes (Fig 1A and 1B). Hence, the limitation

of the glycosomal ATP pool available to glycosomal kinases offers a situation where a signifi-

cant excess of one kinase (here GK) can theoretically abolish the metabolic flux through

another one (here HK). In this context, the very large excess of GK activity compared to HK

activity (74-fold excess) explains the absolute glycerol preference confirmed by genetic manip-

ulations and metabolic approaches [10]. The competition of given enzymes for a common sub-

strate is a well-known process used to finely tune metabolic fluxes, in particular at metabolic

branch points [12]. However, this is the first example of a complete repression of one enzy-

matic catalysis (HK) by the large excess of another one (GK), as a mechanism to control nutri-

ent utilisation.

Metabolic contest is a new concept to describe metabolic choices that resembles the well-

characterised catabolic repression or carbon catabolite repression observed in prokaryotes,

yeasts, and fungi, albeit based on a completely different molecular mechanism. The mecha-

nisms by which carbon catabolite repression is imposed are quite variable. They follow a

Fig 1. Mechanism of metabolic contest between glycosomal HK and GK. Pathways leading to excretion of end products (succinate, acetate, and pyruvate, highlighted

in white rectangle) from metabolism of glucose and glycerol are indicated in red and blue, respectively. The production and consumption of ATP within the glycosomes

are indicated and maintenance of the glycosomal ATP balance is highlighted by black arrows. The thickness of the arrows reflects metabolic fluxes and metabolic steps

detected only at relatively very low activity or not at all are represented by dotted lines. The GK/HK activity ratio for procyclic and bloodstream forms is indicated below

the corresponding schemes (A–B and C–D, respectively). Enzymes are (those underlined are glycosomal kinases producing or consuming ATP) the following: 1,

hexokinase (HK); 2, glucose-6-phosphate isomerase; 3, phosphofructokinase; 4, aldolase; 5, triose-phosphate isomerase; 6, glyceraldehyde-3-phosphate dehydrogenase; 7,

phosphoglycerate kinase (PGK); 8, phosphoglycerate mutase; 9, enolase; 10, pyruvate kinase; 11, phosphoenolpyruvate carboxykinase (PEPCK); 12, malate

dehydrogenase; 13, fumarase; 14, NADH-dependent fumarate reductase; 15, pyruvate phosphate dikinase (PPDK); 16, pyruvate dehydrogenase complex; 17, acetate:

succinate CoA-transferase; 18, acetyl-CoA thioesterase; 19, glycerol kinase (GK); 20, glycerol-3-phosphate dehydrogenase; 21, fructose-1,6-bisphosphatase. Abbreviations

are: BSF, bloodstream forms; DHAP, dihydroxyacetone phosphate; G3P, glyceraldehyde 3-phosphate; G6P, glucose 6-phosphate; Gly3P, glycerol 3-phosphate; PCF,

procyclic form; PEP, phosphoenolpyruvate.

https://doi.org/10.1371/journal.ppat.1010035.g001
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general rule, however, with complex sensory systems relying mostly on protein kinases and

phosphatases [13], which include the sugar uptake phosphotransferase system characterised in

the 1960s [14]. The advantage of the metabolic contest versus carbon catabolite repression

mechanism is mainly an immediate switch to the less preferred carbon source when the pre-

ferred one is exhausted. Theoretically, a metabolic contest could be found in any organism

provided that 3 conditions are met, i.e., (i) the sequestration of both metabolic pathways in the

same subcellular compartment; (ii) the competition for the same substrate between 2 enzymes,

one in each pathway; and (iii) an unbalanced activity between the competing enzymes.

The physiological role of glycerol metabolism in vivo in the fly is still an open question. The

preference of glycerol over glucose is based on the huge overexpression of GK, which could be

reduced by at least 90% without affecting the glycerol metabolic flux [10]. Incidentally, glycerol

also induces a 2.3-fold reduction of GK expression, without affecting metabolic contest, sug-

gesting that the very high GK level in glucose-rich conditions is not compatible with glycerol-

rich conditions, may be due to accumulation of Gly3P or other downstream metabolites, and/

or a sharp decrease in the glycosomal ATP/ADP ratio [10]. It is also noteworthy that, in T. bru-
cei, GK is encoded by 5 duplicated GK genes, while the genome of almost all other trypanoso-

matids contains a single GK gene, suggesting that GK gene duplication was positively selected

in T. brucei to allow the preference for glycerol. Although, one cannot exclude that the high

GK level has other reasons (see next section).

Glycerol has also been shown in vitro to prevent differentiation of early PCF, which

expressed the surface protein GPEET, to late PCF, which are GPEET negative [15]. GPEET is

expressed during midgut infection, and its down-regulation correlates with trypanosomes

crossing the peritrophic matrix and colonising the ectoperitrophic space [16], suggesting that

glycerol may be present in the digestive tract of the insect to prevent down-regulation of

GPEET expression. Unfortunately, with the exception of amino acids [5], the metabolite con-

tent in the midgut and other organs of the tsetse has not been studied so far. Thus, further

investigation should be done to determine whether glycerol plays a role in the biology of try-

panosomes in the insect vector.

Bloodstream trypanosomes (BSF) also metabolise glycerol efficiently

The topology of the central carbon metabolic network is similar between PCF and BSF, with

one main exception, i.e., the cytosolic and glycosomal localisation of phosphoglycerate kinase

(PGK, step 7), respectively [17]. Another major difference resides in the 10-fold higher glyco-

lytic flux in BSF (for example, HK activity is up-regulated 28-fold [10]), with pyruvate repre-

senting up to 95% of the end products excreted from metabolism of glucose [18] (Fig 1C),

while PCF mainly convert glucose to excreted acetate and succinate [19] (Fig 1A). Conse-

quently, PGK is responsible for the regeneration of glycosomal ATP in BSF (Fig 1C), rather

than PEPCK/PPDK as mentioned above for PCF (Fig 1A). It is noteworthy that the high glyco-

lytic flux described in T. brucei BSF, as well as in plant-infecting Phytomonas spp., remains the

exception in the trypanosomatid world as most of the trypanosomatid parasitic forms deve-

loped a “procyclic-like” form of glycolysis, i.e., relative low glycolytic flux and pyruvate being

further metabolised in the glycosomes and the mitochondrion [2,20].

Because of the intronless and polycistronic expression nature of trypanosome genes, differ-

ential expression of glycolytic enzymes should be controlled posttranscriptionally [21]. No

RNA-binding protein directly involved in this process has been identified so far; however,

knockout of a major type I protein arginine methyltransferase (PMRT1) induced changes that

resemble the metabolic remodelling that occurs during T. brucei life cycle progression to PCF,

including down-regulation of HK expression [22].
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Besides glucose, glycerol utilisation as substrate for ATP production was first proposed

decades ago [23], but the possibility of prolonged growth with this substrate has not been

addressed until recently. In fact, glycerol was considered a poison, because of its high toxicity

for BSF grown in anaerobiosis or in combination with drugs targeting the alternative oxidase

[24], since glycerol prevents ATP production by reversal of the GK that must occur under

these conditions to maintain the glycosomal ATP/ADP balance. However, in 2018, 2 groups

independently reported that glycerol can support growth of BSF in vitro, so far believed to be

exclusively dependent on glucose for growth [25,26]. This resonates with the recent discovery

that the parasite colonises and propagates in the skin and adipose tissues of its mammalian

hosts, where adipocytes produce significant amounts of glycerol [27–29], suggesting that glyc-

erol metabolism may play a role for the in vivo development of BSF. It is to be noted that the

low GK/HK activity ratio (2.2) provides a rational explanation for the absence of metabolic

contest for ATP between GK and HK, resulting in concomitant consumption of glucose and

glycerol when both are present (Fig 1D). Indeed, although GK is constitutively expressed in T.

brucei grown under glucose-rich conditions, HK activity is 28-fold higher in BSF than in PCF,

as mentioned above [10].

The glycerol-dependent reduction of GK expression mentioned above for PCF also occurs

in BSF [25]. Considering the absence of glycerol preference in this parasitic form, this observa-

tion suggests that the reason for the large excess of GK level may be related to glycolysis.

Indeed, high GK activity may be required for production of glycerol from glycolysis, for

instance, when oxygen is limiting, since GK’s specific activity for glycerol production is much

lower than that for glycerol phosphorylation [30]. However, it cannot be excluded that extra-

vascular trypanosomes require high GK activity to adapt to glycerol-rich tissue.

The relatively low abundance of glycerol in the bloodstream (50 to 100 μM) [31,32] com-

pared to glucose (5 mM) and the slight preference of BSF for glucose over glycerol [25], imply

that glucose is indeed the main source of ATP for BSF in mammalian fluids. However, in the

interstitial fluid of mammalian tissues, the extravascular trypanosomes meet a glucose-rich

environment (in the range of 3 mM) containing from 0.2 to 3 mM glycerol, depending on the

report and the tissues analysed [31,32], suggesting that trypanosomes may adapt and benefit

from this potentially glycerol-rich environment. In this context, the resulting in vivo glycerol

gradient between the intra- and extravascular compartments could influence the parasite tro-

pism to particular tissues via specific sensing pathways, such as the social motility phenome-

non described in PCF in the insect midgut [33]. The ongoing analyses of these recently

discovered extravascular trypanosomes will certainly reveal fascinating new features, especially

on carbon source utilisation. Although the exact role of glycerol metabolism in BSF in vivo is

not understood yet, these data open novel avenues for developing new diagnostic tools and/or

treatments based on unexplored molecular targets.
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