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Summary

For being the major source of noise pollution in aero-engines, fan forward and rearward noise is of
primary importance in the aeronautics industry. The computation of aircraft engine noise is usually treated
in frequency domain. Relevant quantities like acoustic power spectrum or sound directivity can be easily
post processed out of such simulation.

Considering that a constant number of grid points per wavelength is required, the size of the linear
systems is growing like f3, if f is the frequency. Because the systems to solve are stiff, especially in the
presence of a mean flow, frequency domain solvers cannot handle very large problems. Typically, if D is the
diameter of the engine nacelle and λ is the wavelength of the signal, frequency domain solvers are limited
to a ratio kr = D/λ of around 30. The limited efficiency and scalability of direct solvers do not make them
good candidates for addressing problems where the Helmholtz number kr is as high as 50, especially on
distributed memory computers.

A possible way to increase the range of frequencies of the calculations is to switch to time domain. It is
still possible to compute both power spectrum and sound directivity but not as directly as it was done in the
frequency domain. So, a time domain approach has to be proven to be at least as efficient as the frequency
domain one.

In the framework of the Messiaen project(European collaborative project under the Sixth Framework
Programme), an efficient high order discontinuous Galerkin method (DGM) has been developed that solves
the linearized Euler equations. The DG method1–4 is a popular scheme for the resolution of hyperbolic
conservation laws. The properties of the quadrature free implementation of the method5 allows to obtain
an efficiency that is close to the peak efficiency of the processor. Moreover, good scalability properties are
obtained in parallel. This method is now implemented in an industrial framewok (Actran DGM). It has been
demonstrated that such a method is a good alternative to the frequency domain at high Helmholtz number.6

The aim of our work is to participate to a more general research that aim is to find ways to reduce the
noise of aircraft engines. One technology that enables noise reduction the use of acoustic liners. Liners
notably reduce the noise power spectrum and allow to change the sound directivity.

Liners are usually modeled in the frequency domain as a frequency dependant wall impedance. This model
has to be translated in the time domain where all the frequencies are present, even when we try to solve for
a fixed frequency input data. Therefore, an impedance model that matches the design impedance and that
is valid for a range of frequency is needed. In7 S.W. Rienstra has developed a modified Helmholtz resonator
model in time-domain. Starting from the quadrature free RK-DGM framework, we provide a description of
the data structures and algorithms that are required to implement this time domain impedance model. We
will discuss the conversion from the direct expression of the relation between acoustic pressure and normal
velocity to boundary conditions implemented in the discontinuous Galerkin code for aeroacoustic problems.
First, we will detail the non-flow case. Then, we will extend the model when a mean flow is present. The
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latest problem is, from far, the most difficult one. We will show what has already been conjectured, i.e.
that the Ingard-Myers condition8,9 that is usually used in the flow case is unstable in the time domain. In
this work, we propose a way to circumvent this instability. Here, the model is itself unstable and the usual
numerical tricks that prevent numerical instabilities do not apply. Some examples are provided that show
the new approach to be stable and accurate. Comparisons with a frequency domain code are provided.

I. introduction

In the frequency domain, soft walls (liners) are modeled by a complex impedance Z(ω) that depends on
the pulsation ω. This impedance defines a relation between the pressure p̂ and normal velocity v̂:

p̂(ω) = Z(ω)v̂(ω). (1)

Equation (1) is valid when there is no mean-flow. In the presence of a mean-flow, the relation becomes:8,9

(v̂ · n) = (iω + v0 · 5 − n · (n · 5v0))
p̂

iωZ
(2)

where n is the outward normal and v0 is the mean-flow velocity. Since we are interested in the relation on
wall, the no-penetration of the mean-flow condition(v0 · n = 0), allows to recast (2) to

(v̂ · n) = (iω + v0 5+v0 · (n · 5n))
p̂

iωZ
(3)

From equation (1) in frequency domain, one can cast the equation in time domain by mean of an inverse
Fourier transform to get, for the no mean-flow case:

p(t) =
1
2π

∫ +∞

−∞
z(t− τ)v(τ)dτ (4)

and
∂

∂t
p + v0 · 5p + v0 · (n · 5n)p =

1
2π

∫ +∞

−∞
z(t− τ)

∂

∂t
v(τ)dτ (5)

in presence of a mean-flow, where p is the time domain pressure, v is the time domain normal velocity and
z(τ) denotes the inverse Fourier transform of Z(ω).

When one wants to solve acoustic problem in time domain, one needs a model for Z(ω), since detailed
knowledge of Z(ω) is not available. What is usually given is the impedance for one or more design frequency
ω0 such as Z0 = Z(ω0).

The challenge is to develop a model for which Z(ω) has an explicitly known inverse Fourier transform,
and which is physically possible. In S.W. Rienstra paper,7 conditions on the expression of the impedance
function are derived and applied on different example. Mass-spring-damper, rational function of ω, basic
Helmholtz resonator and finally the so-called Extended Helmholtz Resonator were tested.

The impedance function for the Extended Helmholtz Resonator model can be written has follow:

Z(ω) = R + iωm− iβ cot(
1
2
ων∆t− i

1
2
ε) (6)

Where ε is the damping in the cavity’s fluid, β is the cavity reactance, ν∆t = 2L/c0 represent the depth of
the cavity, R is the face-sheet resistance and ωm is the face-sheet mass reactance. This model is proved to
insure reality condition, is passive and causal, if we have :

R ≥ 0 (7)
m ≥ 0 (8)

ν∆t ≥ 0 (9)
β > 0 (10)
ε > 0 (11)
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The inverse Fourier transform z(t) of Z(ω) can be written explicitly as:

z(t)
2π

= (R + β)δ(t) + mδ′(t) + 2β

∞∑
n=1

e−εnδ(t− nν∆t) (12)

which, in the no-flow case, gives an equation for the boundary condition in terms ofp(t), v(t), v′(t) and values
of v(t) in the past:

p(t) = (R + β)v(t) + mv′(t) + 2β

∞∑
n=1

e−εnv(t− nν∆t) (13)

An alternative derivation give the following expression :

p(t)− e−εp(t− ν∆) = (R + β)v(t)− (R− β)e−εv(t− ν∆) + m(v′(t)− v′(t−∆t)) (14)

Other forms of the time domain pressure, normal velocity relation are available. In the first part of this
study, we will consider the implementation of relation (14). If the impedance is given for one design frequency
only, the model is over parameterized and some parameters can be chosen freely. For any of these choices,
the response in frequency domain to a forced harmonic input will be the same, while the transitory response
will be different. In particular, it’s always possible to choose m = 0, and avoid the computation of the inertia
term in the equation. This is an advantage in term of computation time of course. Nevertheless, we will
consider this term for several reason. First, the model with mass fully represents a Helmholtz resonator in
time domain. Analytical solution of the response of such Helmholtz resonator in time domain are available.10

Then, the treatment of the mass term will be mandatory in the flow case anyway.

II. Liner boundary condition : the no-flow case

In order to discuss the implementation of the boundary condition, we need first to briefly remind the
construction of the discontinuous Galerkin discretization. We start with a conservation law of the form:

∂tu + ∂xF + ∂yG + ∂zH = r (15)

where u is a set of Eulerian variables, F, G and H are convective fluxes and r is a source term. The following
variational form

∫

Ω

∂tu û dv =
∫
Ω

F ∂xû dv +
∫
Ω

G ∂yû dv +
∫
Ω

H ∂zû dv

− ∫
∂Ω

f û ds +
∫
Ω

r û dv , ∀û (16)

is obtained by multiplying by an arbitrary test function û, and integrating by part over the domain Ω.
In (16), ∂Ω is the boundary of Ω and f is the flux in the direction n normal to Ω. The domain is then
divided in a set of elements e, where the field variables are approximated by u = ue

kφk, where φk are the
polynomial shape functions and ue

k are the coefficients of the shape function attached to the element e. The
test function û are approximated on the same space than u, so that we get symmetric mass matrices. Note
that no continuity conditions are imposed between elements. After the assumption that the fluxes are linear,
and that the Jacobian of the element is constant, a linear system of equations is obtained in each element
that enables to compute the derivative of the discretized field variables:

∂tue
k

∫

e

φk φj dv = (F)e
k

∫

e

φk ∂xφj dv

+ (G)e
k

∫

e

φk ∂yφj dv

+ (H)e
k

∫

e

φk ∂zφj dv

+ (r)e
k

∫

e

φk φj dv

−
ne∑

l=1

f̄(uel

L ,uel

R )k

∫

el

φk φj ds = 0. (17)
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In (17), el is the lth boundary of element e (e.g the lth edge of a triangular element for two dimensional
domain or the lth triangular face of a tetrahedron for three dimensional problems). f̄(uel

Lk,uel

Rk) is the
numerical normal flux between the values of the field at left and right of boundary el, in the direction normal
to el, pointing outside el. This flux is usually computed by solving a Riemann problem between the two
states, to get the right up winding that ensures the convergence of the scheme. In the case of linearised
Euler equation, the Riemann problem can be solved exactly and the solution is linear with regard to the left
and the right states uL and uR. Boundary conditions are usually inserted in the scheme by imposing the
normal flux on the boundary of the domain.

In the case of aeroacoustic, we aim to solve the linearized Euler equation with mean flow in primitive
variable :

p′ = O · fp (18)
u′ = O · fu (19)
v′ = O · fv (20)

w′ = O · fw (21)

where p is the acoustic pressure, u, v, w are the three component of the velocity. .′ is the time derivative
operator, fp, fu, fv, fw are the fluxes and are linear functions of p, u, v and w. We have

fp =
[

ρ0c
2
0u + pu0 ρ0c

2
0v + pv0 ρ0c

2
0w + pw0

]T

(22)

fu =
[

1
ρ0

p + uu0 uv0 uw0

]T

(23)

fv =
[

vu0
1
ρ0

p + vv0 vw0

]T

(24)

fw =
[

wu0 wv0
1
ρ0

p + ww0

]T

(25)

where u0, v0, w0 are the component of the mean flow velocity, c0, ρ0 are the meanflow sound speed and
density. If the mean flow is not constant, an additional source term need to be computed, that depends on
spatial derivatives of the mean flow quantity.

Following the DG scheme, we have, for each element e, the followings uncoupled systems of discretized
ODE to solve.

Mp′e = Ke
xF

e
p + Ke

yG
e
p + Ke

zHp +
nb∑

l=0

Klfp
sl

ve
= Rp (26)

Mu′e = Ke
xF

e
u + Ke

yG
e
u + Ke

zHu +
nb∑

l=0

Klfu
sl

ve
= Ru (27)

Mv′e = Ke
xF

e
v + Ke

yG
e
v + Ke

zHv +
nb∑

l=0

Klfv
sl

ve
= Rv (28)

Mw′e = Ke
xF

e
w + Ke

yG
e
w + Ke

zH
e
w +

nb∑

l=0

Klfw
sl

ve
= Rw (29)

In (26), ve is the volume of element e and sl is the area of surface element l on the boundary of e. Ke
x,

Ke
y, Ke

z are the elementary matrices corresponding to the components of the gradient operator. Rp, Ru,
Rp, Rp are shortcuts for the residual of each equation. We have

Ke
x =

1
ve

∫

e

φk ∂xφj dv (30)

=
∫

ref

φk(∂ξφj∂xξ + ∂ηφj∂xη + ∂ζφj∂xζ)dξdηdζ (31)

= Kξ∂xξ + Kη∂xη + Kζ∂xζ (32)
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where ξ, η ζ are the coordinate in the reference element. ∂xξ and term of the like are the component of
the Jacobian of the mapping from the reference element to element e. Note that the Jacobian is supposed
to be constant. This is the case for simplexes (tetrahedron, triangles). This simplification allows to write
the quadrature free version of the DG scheme. With a simple rearrangement of 26, the volume term can be
computed all at once for all the elements by three matrix-matrix computation since the matrices Kξ, Kη

and Kζ are the same for each element.
For each face l of element e, the interface term can be computed as :

∫

l

φiφjfjdh (33)

If nodal shape function are used, the φi are null for each i corresponding to a node other than the one
on the face considered. Therefore, only the flux on the node on the face have to be computed. Provided
that we know how to link boundary degree of freedom to their numbering in the full element space, we can
compute the matrix ∫

l

ψk, ψlfjdh (34)

where k and l are indices on the space on the edge. (e.g. for order 3 triangle, we have 10 degrees of freedoms
per element and each edge uses 4 of them). ψk are now the face shape functions. In the case of triangular
meshes, there exists 6 possibilities to pass from edge degree of freedom numbering to element degree of
freedom numbering, depending on which edge of the element is used and in which direction it is used.

Now comes the impedance boundary conditions. At time step t, we take the normal velocity of the fluid
on the liner boundary pl and update pressure using relation (13). The normal flux of this variables are the
computed and included in the part of the residual corresponding to the right equation. The normal flux f
are computed with the new pressure as if the field was continuous on the boundary using the new pressure.

vn = n0u + n1v + n2w (35)
fp = (un0 + vn1 + wn2) (36)
fu = n0Pl (37)
fv = n1Pl (38)
fw = n2Pl (39)

Note that we used here the assumption that the mean flow was not penetrating the liner(v0 · n = 0). with
more detail, at each boundary node we need to compute :

fu = n0((R + β)v + mv′ + 2β

∞∑
n=1

e−εnv(t− nν∆t)) (40)

The term in v need no particular treatment. The term in v′, the inertia term will need special treatment
since the time derivatives are not known explicitly. The last term, the memory term need some extra storage
that will be detailed in the next subsection.

A. Memory term

To compute pl(t), we need the following memory term I(t), recast from 40 in a more numerically usable way:

I(t) =
∞∑

n=1

e−εnv(t− nν∆t) (41)

By making the assumption that for t < 0, v(t) = 0, we can born the sum to a value q such as t−qν∆t > 0
and t− (q + 1)ν∆t < 0

The sum in equation 40 should be expressed differently in order to show that only ν values need to be
stored.

The time step of the explicit time marching procedure being ∆t, lets assume that the k time step was
computed, and we want to compute the solution for k + 1th time step, the solution procedure being started
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at t0 = 0 Lets define vk = v(k∆t) and pk = p(k∆t) and let be r the rest of the division of k by ν. With this
definition of k, q is the integer quotient of k/ν such as k = qν + r

at time step k, we need Ik = I(k∆t) to compute the flux.

Ik = Iqν+r (42)

=
∞∑

n=1

e−εnv(((q − n)ν + r)∆t) (43)

=
q∑

n=1

e−εnvr+(q−n)ν (44)

since for t < 0, v(t) is supposed to be null, and then vr+(q−n)ν = 0 ∀n > q. The expression of Ik can then
be rewrite as an expression of Ik−nu :

Iqν+r = e−ε(I(q−1)ν+r + vr+(q−1)ν) (45)

or

Ik = e−ε(Ik−ν + vk−ν) (46)

From previous equation, it is clear that we only need to store ν values for each point where we need to
compute the field : at time step k, we have to have access to Ik which was computed at time step k−ν, and
we are able to compute Ik+ν . At the beginning of time step k, the values of Ik+i 0 < i < ν are in storage.

Since any value of I is only needed every ν time step, it is very convenient to implement storage and
computation of it as a stack with ν container. At the beginning of time step k, the back of the stack contain
Ik, the front contain Ik+ν−1. The last container is then removed from the stack, the value Ik is used to
compute the fluxes, and together with vk to compute Ik+ν whose value is then put at the front of the stack.
Note that the value Ik+ν won’t be used until time step k + ν when it will be at the back of the stack.

Ik+2Ik+1

Ik Ik+1 Ik+2 Ik+ν−1

Ik+νIk+ν−1

Figure 1. state of the queue at begin (top) and end (bottom) of time step k

This operation have to be done for each degree of freedom on the liner boundary, and they can be done
for all this degree of freedom at once. Each container of the stack will in practice contain all the I term for
each degree of freedom. For example, for a mesh of tetrahedron, all the triangle classified on boundary faces
attached to liner need to be marked as such. For each of this triangle, the field is described by the restriction
on this triangle of the field on the tetrahedron to which this triangle is attached to (only one tetrahedron
here, since the triangle is on the boundary). In terms of lagrange or hierarchic shape functions basis, this
restriction can be computed by getting from the shape functions and coefficients of the tetrahedron on the
field those attached to the face we consider. Such operator already exist in the code since that’s exactly
what we do to extract ”left” and ”right” degrees of freedoms to compute the normal flux on an interface
between two elements. This said, we need in case of order p shape functions on the tetrahedron to keep
(p + 1) ∗ (p + 2)/2 values of degree of freedom per Triangle on the liner, per field variable (here just v · n)
for each time step we need to keep a memory of. So to keep memory of velocity on the liner for n time step,
we need an extra storage of : ν ∗ nl(p + 1) ∗ (p + 2)/2 double. where nl is the number of boundary elements
on the liner. Since the number of boundary elements on the liner is typically much smaller than the number
of elements to model a full engine, this extra storage is negligible.
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B. inertia term

The inertia term need to be treated carefully. Indeed, at each time step, the explicit time marching procedure
consist of computing the residual for given value of the field at time t, and use it has the time derivative of
the fields to update the variables. The time derivative of the field are there for not known explicitly.

A first naive implementation could approximate the time derivative of the field,since they are not known
explicitly when the boundary flux is computed (In fact this flux is computed in order to evaluate this same
derivative). Therefore, the problem become nonlinear calculated this way and could lead to instability. If
no formal proof of the above hypotheses are provided in this paper, all the numerical experiments that we
did in this way could not converge and were blowing up quite quickly. The inertia term need to be to take
it into account implicitly to obtain stable solutions. Keeping the time derivatives v′n as a unknown in the
computation of the flux integral, an additional mass matrix appear for each element that share one of his
boundary with the discretization of the liner.

f is split into an explicit part, which depend only on u, v and w, and a part that will be treated implicitly.
With, fu = n0(R +β)(un0 + vn1)+2βI +m(u′n0 + v′n1 +w′n2) let’s call Lu the inertia term of the flux fu.

Lu = n0m(u′n0 + v′n1 + w′n2) (47)

In the framework of the DG scheme, Lu, multiply by the test function, is integrated over the liner
boundary :

Rl =
∫

l

Lu û ds +
∫

l

Lv û ds +
∫

l

Lw û ds (48)

Lu is then approximated using the shape function by :

Lu = (Lu)kφk (49)

where the k are the indices of nodes on the boundary face.Together with the shape function, and after
integration, we get the discrete term associated to a face on the boundary :




Lp

Lu

Lv

Lw


 =




0 0 0 0
0 n0n0Mlsl n0n1Mlsl n0n2Mlsl

0 n1n0Mlsl n1n1Mlsl n1n2Mlsl

0 n2n0Mlsl n2n1Mlsl n2n2Mlsl







p′l
u′l
v′l
w′

l


 (50)

Where (Ml)i,j =
∫

reftri
φi φj ds,and reftri is the reference triangle. sl the surface of the triangle

considered. Note that the matrix Ml is independent of the element considered. To be able to add this
term to the equations to solve for each element, we have to expand the matrix Ml, which is defined on the
nl degree of freedom of a boundary triangle, to a matrix Me

l defined on the ne degrees of freedom of the
tetrahedron it is attached to. This is much like a classical assembly procedure, which is perform at the
element level, to assemble the degrees of freedom associated to one boundary of the element to the degree
of freedom of the whole element. The assembly procedure will depend only on the position and orientation
of the face with regard to the tetrahedron it is linked to. In case the Tetrahedron case, there is 24 possible
orientation/position and so as much possible Me

l .
The inertia term of the normal flux of u now depend on u′, w′, v′ which are the unknown of the system

we wanted to solve. The four decoupled linear system 26 on each element are now coupled for elements
having a boundary on the liner. and we have to solve.




M 0 0 0
0 M + n0n0Me

l
sl

ve
n0n1Me

l
sl

ve
n0n2Me

l
sl

ve

0 n1n0Me
l

sl

ve
M + n1n1Me

l
sl

ve
n1n2M

e
l

sl

ve

0 n2n0Me
l

sl

ve
n2n2Me

l
sl

ve
M + n1n2Me

l
sl

ve







p′

u′

v′

w′


 =




Rp

Ru

Rv

Rw


 (51)

The Mass matrix is therefore not independent of the element any more, and the system is coupled between
u′ and v′. For each element charing a boundary with the liner, a special mass matrix have to be computed
and stored.

For all other element the matrix are the same, and therefore we can compute all the solution at once for
these element and keep BLAS level 3 efficiency.11 For all the element on the boundary we are stuck with
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Table 1.

Case ∆t ν ε R β

1 0.004 190 0.87 0.0140774 1.3428
2 0.004 190 0.1 0.899 0.944
3 0.004 190 0.0001 0.999 0.939
4 0.004 248 0.0001 0.9908 0.025138

BLAS level 2. Usually the number of element sharing a boundary with the liner is small enough so that the
impact on performance and memory size is not to huge.

C. validation

1. convergence to design impedance

The aim of the first test case is to validate that the design impedance indeed correspond to the numeric
impedance. On a rectangular domain, we impose an incoming plane wave coming from the left. The top and
bottom boundary of the rectangle are hard wall. The right boundary is a soft wall modeled with the liner
model. Pressure and normal velocity are sampled in time. The Incoming mode 0 is set at frequency f = 1
(plane wave). The length of the domain is a of one wave length (since ρ0 and c are set to one, wave length is
one). We choose a design impedance such as Z(2πf) = 1. + i. We fix our time step to ∆t = 0.004, sufficient
to assure stability for the explicit Runge Kutta time stepping with p going from 0 to 4. The Coefficient of
the Extended Helmholtz resonator model can then be selected to fit design impedance.7 m is set to 0, ν
must be chosen between 125 and 249 ε can then be chosen between 0 and 0.868793. Once this choices are
made, R and ε are uniquely defined. We report the result for four choices of the parameters summarized in
table 1. On figure 2 pressure as a function of time is plotted for case 1 and 4. Case 4 takes much more time
to converge to the harmonic solution.

A convergence analysis in time is reported on table 1. The effective impedance is computed by Fourier
transforming v(t) and p(t) on sampling on a time interval of T = 1/f , starting at T , 2T , 3T , 4T , 5T and
100T for each of the 4 choice of the parameter. For case 1 to 3 we observe a fast convergence to harmonics
solution. When the highest the value of the damping parameter, the faster is the convergence. Case 4 is
extremes : it uses a high number ν, far from the recommended values and convergence is very slow, since
we need to wait 100T to be close to the design impedance.
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Figure 2. p(t) with Z = 1 + i, left : case 1, right case 4

This first experiment show that the time domain Helmholtz resonator as implemented is able to model
a given design impedance.
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Table 2.

Case T 2T 3T 4T 5T 100T

1 Z 1.533+0.321i 0.975+0.979i 0.999+1.000i 1+i 1+i 1+i
2 Z 2.098+0.507i 1.028+1.185i 0.956+0.984i 1.005+0.995i 1+i 1+i
3 Z 2.214+0.563i 1.008+1.229i 0.936+0.970i 1.011+0.992i 1+i 1+i
4 Z 1.024+0.i 1.076+0.003i 1.129+0.008i 1.183+0.017i 1.512+0.153i 0.938+0.939i

2. transient time depend 1d case

In time domain, the response of the Dirac wave impacting an impedance wall in one dimension with the
Helmholtz resonator model admit an exact solution computed by S. W. Rienstra.10 Since it’s the response
in time domain of a non-harmonic problem that we have here, the response for a given design impedance will
change if we use different parameters that matches the design impedance. More phenomenon can appear.
Therefore we don’t limit ourselves to the m = 0 case.

Since the response of a Dirac impulsion can not be solved in our numerical framework, we will solve for
a Gaussian pulse instead. if the time length of the pulse is small with regard to the time length of the liner
(we typical used a factor of 20 in our computations) the response is similar to the one to a pulse.

Again, the one dimensional problem is solved on a two dimensional mesh in our case. A square divided
in two element of order p = 3 was used. On the left side of the square, a right going wave is imposed such

as p(t) = e−
(t−tref )2

σ2 Results compared to the analytical solution are plotted on figurefig:1Dcompana, where
pressure versus time is plotted for different value of the model parameters, showing a wide range of possible
responses.

the analytical solution was computed according to:10

g(t) = δ(t)− 2
m

N(t)∑
n=0

exp(−R + 2
m

tn − εn)L(−1)
n (2tn/m) (52)

where N(t) = tc0/2L and L
(−1)
n is a generalized Laguerre polynomial :

L−1
n (x) =

n∑

k=0

(−1)k

k!

(
n− 1
k − 1

)
xk (53)

For all the tested parameters set, the transient solution match very well with the analytical solution,
which validate the implementation for the case m > 0.

3. harmonic two-dimensional case

To validate the code on a more complex problem, we show result for the following model problem : a
plane wave is generated at the left of a rectangular domain has shown on figure 4. On the first half of the
rectangle, hard wall boundary condition are applied, on the second half, soft wall with typical impedances
are modelized using the time domain impedance model. An incoming mode is imposed on the left of the
domain and an outlet characteristic boundary condition is imposed on the right of the computation domain.
To avoid spurious reflection on both side, two buffer zones, where a version of the ”PML” (perfectly matched
layer12), are connected to the area of interest. Briefly, a dissipative source term, proportional to the difference
between the actual field and a target field, multiplied by a damping factor is added to the residual. The
damping factor vary smoothly from 0 on the boundary of the area of interest to 5 at the end of the buffer
zone. The target field is 0 on the outlet side and is set to the value of the chosen duct mode on the inlet
side.

For all the presented results we have a sound speed, c0 = 1 a mean flow density of ρ0 = 1, the plane
wave is of pulsation ω == 2π, and the length L = 5. The impedance of the liner is set to Z = 1 + i. We
use polynomial order p = 6 for the shape functions, and the mesh is a structured 10 ∗ 42 grid of rectangles
divided in triangles.
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Figure 3. Comparing DG Result versus Analytical results.
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Results are compared with those obtained by the Actran/TM code, a tool developed by Free Field
Technologies. Briefly, Actran/TM13 computes the propagation of harmonic acoustic disturbances in non-
uniform, homentropic mean flow and their radiation to the far field. Using Myers formulation of acoustic
boundary conditions the effect of acoustic liner is accurately accounted for. Strong coupling with duct
acoustic modes allows one to both specify incident modes and compute the amplitude of reflected ones. The
algebraic system of equations resulting from the finite and infinite element discretization of the acoustic
potential equation in frequency domain is solved with a parallel, out-of-core, direct solver. For the frequency
domain solution, no buffer zone are needed, instead boundary condition are applied by imposing incoming
duct mode.

Figure 5 show the pressure map for both Actran/TM and DG results. Figure 6 show the result along the
line y = 2.5 (axis of symmetry of the duct) and y = 1 near the liner. Again, the results are very close which
validate our implementation considering that the two methods are completely different.

Figure 4. DG (top) and Actran (bottom) problem setup

11 of 20

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d 

by
 N

ic
ol

as
 C

he
va

ug
eo

n 
on

 J
un

e 
17

, 2
01

5 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/6
.2

00
6-

25
69

 



Figure 5. Pressure map, top Actran/tm result, bottom DG results
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Figure 6. Comparing DG (black) Result versus actran/TM (red) pressure plot along y = 1 (top

and y = 2 bottom.
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III. mean-flow case

If a mean flow exist on top of which the linearized Euler Equation are solved, the liner boundary condition
need to be corrected in order to take into account the shear-layer associated along the liner. The classical way
to take into account the mean flow is to apply the Ingard-Myers8,9 limit of a vanishing mean flow boundary
layer along a lined wall. The equation for the liner, developed for the case of the extended Helmholtz
resonator become:

p′(t) = (R + β)v′(t) + mv′′(t) + 2β

∞∑
n=1

e−εnv′(t− nν∆t) + v0 · Op (54)

Note that we have neglected here the curvature term v0 · (n · On)p, which is valid if the curvature on
the liner is not too large. The equation is now written in terms of time derivatives of p and v (here v is the
normal velocity to the wall). The approach that we used in the no-flow case which consisted in computing
the explicit part of the flux and add it to the residual is no longer possible. Instead, the contribution of term
depending on derivative are computed implicitly, the same way as we did in the no mean flow case for the
inertia term : by coupling the system of four equations though a modified mass matrix. Since the inertia
term is not needed to obtain the harmonic solution we will drop it from the development. Keeping it is
possible, one just need to keep memory of the derivative of normal velocity of one preceding time step and
compute the implicit contribution of the acceleration using a backward Euler. What need to be discussed is
the computation of the contribution of the convective term v0Op

A. convective term

We need to compute v0·Op on the liner. p is defined on the three dimensional mesh as a discontinuous
finite element field. A first approach could be to compute the gradient every where and then scale with the
velocity. But since the convective term is needed only on the liner, we need only to compute it only on it’s
surface, and since v0 · n = 0, we only need to compute the projection of the gradient on the tangent plane
to the liner surface.

In order to compute the gradient, we search the discrete field Gx = and Gy and Gz defined on the liner
surface s such that on each surface element sedescribing the surface of the liner, we have Gx = Gx

e
kφk ,

Gy = Gy
e
kφk and Gz = Gz

e
kφk :

Gx
e
k

∫

se

φkφj − ∂xpφjds = 0 (55)

where p is approximated using computed value on the elements at previous time step. Remember that
the discretization of p is itself discontinuous. Integration by part give a system of equation to solve on each
surface element se :

MelGx
e
k =

∫

se

piφi∂ξφjdξdη +
∑

k

∫

sek

tr[pi]φiφjn0dξdη (56)

Where ξ and η are local coordinate on liner element se, sek is the kth boundary of liner element se and tr
is the trace of the discontinuous discrete p on the edge. In our case we choose tr[p] = (pL + pR)/2 where pL

and pR are respectively the value of the discrete pressure at right and left of the kth boundary of se. Solving
this system on each liner element yield discrete value for Gx. Similar systems are constructed for Gy and
Gz to compute the other components of the gradient.

The algorithm to compute the gradient on the surface of the liner was tested as well as the fully implicit
version of the boundary condition without mean flow, both giving satisfactory result, enough to move on to
the computation of the a lined duct simulation with constant mean flow.

B. Presence of instability

To test the implementation we first did the same test case as in section 3, at the only difference that we
add a constant meanflow of u0 = −0.5, going from right to left. When the problem is under resolved, we
are in general able to get a solution. However, when the resolution is increased, either by increasing the
polynomial order or by increasing the number of elements, instability starts to appear. Figure 7 and 8 show
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examples of these instabilities. We display the pressure map after 15s and 20s of simulation along with the
pressure curve along the top side of the duct. A t 15s the instability starts to kick in, and jump in the
pressure appear near the liner edge. At 20s the instability is fully developed at greatly pollute the solution.
Attempts where made to stabilize the scheme by changing the computation of the trace of the pressure
between two elements. We tried different up winding schemes to no significant effects. It seems in fact that
this instability is not an artifact of the numerical scheme but is inherent to the Ingard-Myers correction
to mean flow. Analytical development14–16 seems to show serious indications that the boundary conditions
coming from the limit of a vanishing mean flow boundary layer along a lined wall allows for the presence of
instabilities for any frequency. Özyörük17 reported the same type of instabilities in his numerical experiment
with mean flow. It seems that the instabilities is triggered by the short wave length component that appear
in time domain at the transition between hard and soft wall. Discussion about the validity of the boundary
condition are clearly beyond the scope of this paper. We remind that our goal is to be able to reproduce
frequency domain result in mean flow case with lined duct. In frequency domain result the instability is
never triggered, and we need to be able to filter out this instability from time domain result to be able to
do meaning full comparisons. In the next section we therefore propose a practical way to do just that.

C. Smoothing operator

In order to stabilize the scheme in presence of mean flow, we made the empirical assumption that the short
wave component of the pressure gradient in the convective term were responsible for the triggering of the
instability. To verify this assumption we develop a smoothing procedure, valid for discontinuous Galerkin
solution on unstructured meshes.

The field we are interested in are defined on a mesh. On each element of the mesh the field is defined as
a lagrange polynomial of relatively high order(typical order range from 1 to 10 in our simulation), and the
field is discontinuous between element. The overall strategy here is to replace the value of the approximation
at each interpolation point by an approximation of the mean value of the field integrated on a disk of given
radius r0. The radius serve as the filtering parameter, any signal component of wave length much higher
than r0 will be almost not affected, short wave length will be smeared out.

Around one interpolation point, as shown of figure 9, the disk span on several element, and therefore, the
function we which to integrate is discontinuous. Integration formula on a disk are therefore useless here. If
an element if fully inside the circle, gauss quadrature rule can give the exact contribution to the integral for
this element. For an element that intersect the boundary of the disk, we could try to use a gauss quadrature
rule on this element and set the contribution to any gauss point outside the disk to zero. In this case, it’s
effectively trying to compute the integral of a discontinuous function inside an element, and we therefore be
better of by using a

Monte-Carlo method. An other solution would be to precisely triangulate the intersection of a disk with
an element and then

integrate over each sub-element. This would probably be over-kill and have a computation price we
don’t want to pay. The solution we propose here is to replace the integration of the discontinuous function
on element that cut the circle be the integration of the field we want to integrate multiplied by a smooth
blending function b(r) such as the integral of b over the full surface of the liner is one, value of b inside is
close to 1, value outside is tend to 0 when r increase. Typically we choose :

b(r) =
1
2
− 1

π
atan((r − r0)/δ) (57)

with typical values of δ which represent the size of the blending zone that range between r0/5 and r0/10.
This procedure is general enough to treat all the cases we need to address. In case of a structured mesh

on the liner, a simpler smoothing procedure could be devised.

validation of the smoothing procedure To validate the above procedure and experiment the pa-
rameters, we set up the following problem : on the unit square, discretized by an unstructured mesh of 100
elements, and a polynomial order of p = 5 we set up by an L2 projection an initial solution of the following
form:

p = cos(2πX) + cos(10πX)
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So that we have a main signal of wave length 1 superposed to an other signal of wave length 1/5. We test the
smoothing procedure to see if we are able to filter out the small wave length while keeping the component
of wave length 1. The plot of figure 9 reproduce the pressure value on an horizontal line at y = 0.5 crossing
the unit square. On each plot, we have for different value of r0, the smoothing radius, the initial solution,
the ”target” solution, e.g. the solution we wish to obtain after filtering out(p = cos(2piX)), and the solution
for one and two path of the smoothing procedure. Best result are obtain by setting the radius to half the
wavelength we wish to filter out and applying 2 times the filter.

D. Two dimensional duct with mean flow : comparison with actran

The computation in section B that failed before due to the presence of an instability was completed again,
but this time, the smoothing operator was applied on the gradient of p before adding its contribution to the
residual. The smoothing operation permitted to get rid of the instability. The hypothesis that the short
wave length component of the gradient of p trigger the instability seems to be verified numerically. Results
are shown on figures 11 and 12 and compared to frequency domain results obtain with Actran/tm. We
achieve very good agreement with the Actran/tm results. It’s seems that at least in this particular case and
all the cases that we have tested so far this simple smoothing procedure, only applied on the discretized ·Op
is enough to prevent the triggering of the instability.

E. two-dimensional nacelle with mean flow

To assess the efficiency and flexibility of the code and therefore to show that the implementation is ready to
solve industrial test case, we solved the two dimensional nacelle problem depicted on figure13, which describe
the geometry and the mean-flow velocity distribution. Figure 14 show the pressure map near the fan for a
lined and a hard walled case. Note that directivity and pressure maximum value are modified due to the
presence of the liner.

Conclusion

In this paper we have shown how to implement the extended Helmholtz resonator model in the context
of the DGM both with and without mean flow. Instability in the presence of mean-flow were encountered
in time domain, as reported by several authors. Those instabilities are usually not triggered in frequency
domain, and we provided a way to filter them out to be able to obtain the same results as in frequency
domain. From our numerical experiment it seemed that it was the short wave length component of the
convective term in the Ingard-Meyers boundary conditions, that triggered the instabilities. Since the wave
length that trigger the instabilities are smaller than the well resolved wave length of interest, we propose
to filter them out of the convective term using a gaussian smoothing procedure. Other filtering techniques
could be employed, in particular it is certainly possible to Fourier transform in space the convective term
and filter out the high wave number in the Fourier space before projecting back to physical domain. In the
chapter of interesting extensions, we will consider in the future to implement the curvature term that we
decided to neglect from the Ingard-Meyers boundary conditions and investigate it’s influence on the results.
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Figure 8. Pressure at t = 20s and pressure along the liner at Y = 5.

16 of 20

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d 

by
 N

ic
ol

as
 C

he
va

ug
eo

n 
on

 J
un

e 
17

, 2
01

5 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/6
.2

00
6-

25
69

 



Figure 9. sketch of the smoothing procedure
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Figure 10. Pressure in space
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Figure 11. Pressure at t = 30s top : DG results, bottom Actran results
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Figure 12. Pressure along a cut line in the duct. Red curve: Time domain DG Results. Black curve: Frequency
Domain Actran TM Results top : Y =1. bottom : Y=2.5
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Figure 13. two dimensional nacelle problem set up. geometry and Mach number

Figure 14. pressure map near the fan left : lined wall, right hard wall
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