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Background
Monitoring the disease progression in blood cancers requires the identification of 
pathology-specific molecular markers. In acute myeloid leukemia (AML), one of the 
strongest risk factor used for risk stratification is the presence of an internal tan-
dem duplication in the FLT3 gene (FLT3-ITD), which occurs in 20-30% of the cases 
[1–4]. FLT3-ITD are in-frame duplications of highly variable size, ranging from 3 
to more than 400 nucleotides, mostly located within the receptor’s autoinhibitory 
juxatamembrane domain. This mutation represents a strong prognostic biomarker 

Abstract 

Background: Internal tandem duplications in the FLT3 gene, termed FLT3‑ITDs, are 
useful molecular markers in acute myeloid leukemia (AML) for patient risk stratifica‑
tion and follow‑up. FLT3‑ITDs are increasingly screened through high‑throughput 
sequencing (HTS) raising the need for robust and efficient algorithms. We developed a 
new algorithm, which performs no alignment and uses little resources, to identify and 
quantify FLT3‑ITDs in HTS data.

Results: Our algorithm (FiLT3r) focuses on the k‑mers from reads covering FLT3 exons 
14 and 15. We show that those k‑mers bring enough information to accurately detect, 
determine the length and quantify FLT3‑ITD duplications. We compare the perfor‑
mances of FiLT3r to state‑of‑the‑art alternatives and to fragment analysis, the gold 
standard method, on a cohort of 185 AML patients sequenced with capture‑based 
HTS. On this dataset FiLT3r is more precise (no false positive nor false negative) than the 
other software evaluated. We also assess the software on public RNA‑Seq data, which 
confirms the previous results and shows that FiLT3r requires little resources compared 
to other software.

Conclusion: FiLT3r is a free software available at https:// gitlab. univ‑ lille. fr/ filt3r/ filt3r. 
The repository also contains a Snakefile to reproduce our experiments. We show that 
FiLT3r detects FLT3‑ITDs better than other software while using less memory and time.
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since patients with FLT3-ITD are at higher risk of relapse and have decreased event-
free and overall survival [5]. The importance of allelic ratio (AR), as assessed by the 
ratio between the mutated allele and the wild-type allele, has been demonstrated in 
several studies [4, 6]. Presence of FLT3-ITD has a major therapeutic impact, such as 
indication of allogeneic hematopoietic stem cell transplantation (allo-HSCT) in first 
complete remission [6–8]. FLT3-ITD is also a therapeutic target with the emergence 
of FLT3 inhibitors, used in combination with chemotherapy during induction and 
consolidation courses [9, 10] and more recently as maintenance therapy [11].

Historically, according to European LeukemiaNet (ELN) guidelines, the identifi-
cation and quantification of FLT3-ITD were performed with fragment analysis [7]. 
DNA fragments were fluorescently labeled, then separated by capillary electrophore-
sis [12, 13]. One or more peaks were obtained depending on the presence or absence 
of ITD(s). The size of the ITD was determined by subtracting the size of the wild 
type fragment from that of the mutated fragment, using a scale. The AR was evalu-
ated by dividing the area under the curve of the mutated fragment’s peak by that of 
the wild-type fragment’s peak. Although robust, this technique has several limita-
tions: (i) the lower limit of quantification of the AR is high, generally at least 1% 
[14, 15], (ii) the determination of the size of the ITD using the scale is approximate, 
(iii) the exact position of insertion and complete sequence of the ITD are not avail-
able [16, 17] and (iv) sample multiplexing cannot be performed (v) quantification of 
very large insertions might be biased. Development of high-throughput sequencing 
enabled the detection of several genetic alterations in a single sequencing run and 
has the potential to overcome several of those limitations. However, classical map-
pers, such as Bowtie2 or BWA, cannot directly identify structural variants such as 
tandem duplications. Thus initially, the data produced were analysed using pindel, a 
general-purpose algorithm that detects and quantifies indels and structural variants 
[18]. Although using a general-purpose software can be appealing, it may be under-
optimised to address the specific problem of identifying and quantifying tandem 
duplications, especially FLT3-ITD. Thus, many methods were specifically developed 
to detect FLT3-ITD in high-throughput sequencing data [19]. Yuan and colleagues 
distinguished the assembly-based methods from the alignment-based ones, and 
demonstrated better accuracy of alignment-based methods.

However, alignment-free methods have gained importance in bioinformatics [20] 
as they usually have the advantage of using only a fraction of the resources required 
by alignment methods while providing similar results. km is an example of an align-
ment-free strategy for FLT3-ITD detection [21]. It is based on Jellyfish [22], a k-mer 
counting algorithm, to efficiently count k-mers in the reads. Then km first builds 
a linear k-mer graph of the reference sequence and traverses it using their count 
table. Any divergent path that can be identified with the count table is a potential 
duplication. We introduce a new alignment-free approach based on k-mers, which 
is faster than km because it doesn’t require counting the k-mers from the reads. For 
the detection of duplications, we were inspired by the methodology used in the work 
of [23] by analysing the occurrences of the k-mers in the reads.
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Methods
We introduce our heuristic aimed at finding duplications compared to a reference 
sequence, though it can more generally detect insertions and deletions. In what follows 
what is described for duplication also holds for indels without loss of generality.

To determine if a read contains a duplication, we first need to consider all k-mers from 
the read and identify their positions in the reference sequence. The main principle con-
sists of identifying any read in which k-mer positions on the reference sequence would 
suddenly go back. Such an event would correspond to a duplication with respect to the 
reference sequence. To further explain this principle, here is a concrete example of its 
application. Let T be the reference sequence and R a read. Fig.  1 illustrates an exam-
ple where AGAT  is duplicated in R. When querying at which positions the k-mers of R 
occur in T, the positions of the k-mers gradually increase from 3 to 5 and then go back to 
4 at the start of the duplication. This phenomenon is the signature of a duplication. We 
use this observation to detect duplications efficiently. As will be shown later, this infor-
mation is also sufficient to determine the length of the duplication.

The FiLT3r algorithm

Our algorithm can be summarised in three main steps: 

1. Indexing k-mers of the reference sequence with their original positions.
2. Traversing all the reads: keep the ones with enough k-mers from the reference 

sequence and determine the position of the read’s k-mers in the reference sequence.
3. Detect a duplication event in reads using the k-mers positions in the reference 

sequence.

The indexing step is trivial, as the reference sequence (basically exons 14 to 15 in the 
FLT3 gene) is very short. With short values of k, there may exists several occurrences of 
the same k-mer in the reference sequence (see A in Fig. 2). Thus, all positions are stored 
to prevent loss of information. Ambiguities in the positions will be resolved afterwards.

The second step only consists of reading the reads one by one and then querying the 
index (a hash table) with the k-mers of each read (see C in Fig. 2). The main difficulty 
comes from the third step. Fig.  1 introduces a simplified version of the problem, but 

Fig. 1 Identifying duplications from a reference sequence T in a read R with k‑mers ( k = 3 ). The bottom line 
represents the positions of the k‑mers from R in T. For instance, the first element (3) corresponds to the k‑mer 
CAG which appears in position 3 in T. The dashes (–) correspond to k‑mers from R that do not occur in T (eg. 
ATA or TAG)
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other cases may arise that should be handled correctly to prevent false negatives or false 
positives as will be shown later.

Duplications are only searched in reads whose number of k-mers from the reference 
sequence is above a given threshold to prevent spending time on reads not coming from 
the gene of interest. For each of these reads we will now focus on the k-mers occurrences 
in the reference sequence. We call trace of R in T, denoted by tR , the list of k-mers posi-
tions in T from a read R. Then tR[i] is a list of positions where the k-mer R[i . . . i + k − 1] 
occurs in T (see traces of kept reads in Fig. 2 for examples). This list can obviously be 
empty whenever the k-mer doesn’t occur in T. We call a break (as in [23]) the maximal 
span of positions where tR[i] is empty (denoted by tR[i] = − ). Thus, a break is identified 
by its starting position and its ending position. For a read R if we have a break ( j1, j2 ), 
then trace[j] = − , for each j1 ≤ j ≤ j2 , and either j1 = 0 or tR[j1 − 1] �= − , and either 
j2 = |R| − 1 or tR[j2 + 1] �= −.

Whenever a duplication occurs in a read R, this will create a break in the trace. Note 
that the converse is not true: many other events can also create breaks. Actually, any dif-
ference between the read and the reference sequence will lead to a break. Also, in some 
rare cases, the duplication will not create a break. However, the probability of this phe-
nomenon decreases exponentially with k.

Using the trace of the reads we start by identifying all the breaks in a trace and by 
determining if the positions before and after the break are compatible with a duplication. 
Thus, assuming for now that tR[j1 − 1] and tR[j2 + 1] both correspond to a single posi-
tion in the reference sequence, we check whether tR[j1 − 1] + g − 1 > tR[j2 + 1] , where 
g is the size of the break. In such a case, a duplication has been detected (see E in Fig. 2).

The length of the duplication can be deduced from the k-mer posi-
tions. Let (j1, j2) be a break corresponding to a duplication. tR[j1 − 1] + k − 1 
is the last nucleotide position before the duplication, while tR[j2 + 1] is the 
first nucleotide in the duplication. Thus the length of the duplication is 
tR[j1 − 1] + k − 1− tR[j2 + 1] + 1 = tR[j1 − 1] − tR[j2 + 1] + k . For instance, in Fig. 1, 
the break is (3, 4) and the length of the duplication is 5− 4 + 3 = 4 . However, the for-
mula does not hold whenever short insertions occur at the breakpoint or when there 

Fig. 2 How FiLT3r processes the reads. A The k‑mers of the reference sequence are indexed in a hash table 
and a Bloom filter. The keys of the hash table are k‑mers and the values are a list of positions where the key 
occurs in the reference sequence. B The reads matching a sufficient number of k‑mers with the reference are 
kept. C The k‑mer positions in the reference are considered. D Substitutions are removed. E Duplications, and 
more generally indels, are called only using the positions of the k‑mers
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is an overlap between the start of the duplication and what follows it in the refer-
ence sequence. All those cases can actually be easily dealt with. Each inserted nucleo-
tide will lead to a break length increased by one. Conversely, each overlap will lead to 
a decreased gap length. We note that when no such insertion or overlap occurs, we 
have j2 − j1 + 2 = k . Hence, we deduce that more generally the duplication size is 
tR[j1 − 1] − tR[j2 + 1] + j2 − j1 + 2 . The formula also holds when substitutions occur 
at d < k nucleotides from the breakpoint (see Fig. 3). In this case, this will make the 
break longer by d nucleotides, but this will also decrease tR[j1 − 1] by d or increase 
tR[j2 + 1] by d (depending where the substitution occurs). Thus, the computed dupli-
cation size won’t change compared to the situation where no such substitution occurs. 
Thus, our heuristic is robust to such events.

We are finally able to identify duplications within a read in linear time. In order to 
limit the false positives, we introduce several strategies to mitigate this risk.

Mitigating false positives

False positive detection of duplication can be encountered because k-mers are short 
sequences that can occur by chance because of sequencing errors, or other events. We 
must not detect a duplication whenever a (few) short k-mers occur in the wrong place.

Fig. 3 Computing the duplication length. Three examples are shown using the same reference as in  Fig. 1. In 
the first example (left) we also have the same read as in Fig. 1. The break (j1, j2) = (3, 4) is due to a duplication. 
Its length will be computed with tR[j1 − 1] − tR[j2 + 1] + j2 − j1 + 2 = 5− 4+ 4− 3+ 2 = 4 . In the 
second example (right) a single nucleotide is modified leading to a longer break (1, 4). Thus j′1 decreased by 
2 compared to the first example. However, in the meantime tR′ [j′1 − 1] = 3 also decreased by 2 compared 
to the first example (where tR[j1 − 1] = 5 ). Thus, the duplication length is identical: 3− 4+ 4− 1+ 2 = 4 . 
This is an example where our algorithm can detect the duplication even when it contains a substitution. The 
process is similar with an indel. In the third example (bottom) the duplication starts with the same letter (C) 
as the letter that follows the duplication, in position 10. The consequence is a shorter break as the k‑mer in 
position 3, that overlaps the duplication breakpoint exists in the reference. However, the duplication length is 
correctly computed as tR[j′′1 − 1] − tR[j

′′
2 + 1] + j′′2 − j′′1 + 2 = 6− 3+ 2 = 5
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Disambiguating positions

In the read trace, some k-mers may occur at several locations in the reference sequence. 
Of course only one (at most) is correct, thus only one is kept. Assuming we want to dis-
ambiguate tR[i] (ie. |tR[i]| > 1 ), we follow those rules: 

1. First, if tR[i − 1] is non-ambiguous and tR[i − 1] + 1 appears in tR[i] , then we retain 
this value.

2. Otherwise, among the possible positions in tR[i] we choose the one which minimises 
the distances (ie. the absolute values of the subtractions) with the neighbouring posi-
tions in tR (both the original one and the one currently cleaned). The neighbouring 
positions considered are all the ones that don’t imply crossing a break, or a break can 
be crossed only if position i is just before or just after a break.

Eliminating substitutions

Substitutions are the most frequent mutations and sequencing errors (at least for Illu-
mina sequencers, see [24]). Therefore, many breaks will be due to substitutions. To 
limit the number of breaks to consider, and to have traces with more valid positions, we 
remove substitutions by correcting them (either mutations or sequencing errors). This 
also allows detecting duplications in spite of proximate substitutions, and it will improve 
the estimation of the quantification.

The correction is carried out as follows: let a break (j1, j2) , we extract the k-mer start-
ing at position j1 . Since this k-mer doesn’t exist in T, as position j1 is the first one of a 
break, we try the three other nucleotides at position k − 1 in this k-mer. If one of the 
corrected k-mer occurs at a position p such that p− 1 occurs in tR[j1 − 1] , then we cor-
rect the k-mer this way, and we move on to the next k-mer. In case the correction did not 
work, the k-mers in the break are not corrected.

Simulating larger k‑mers

Before reporting a duplication event, we make sure this event is robust by check-
ing that δ consecutive positions in the trace are consistent. Verifying that δ con-
secutive positions are consistent is equivalent to considering k + δ-mers instead 
of k-mers. Thus, if we have a candidate break (j1, j2) , we report this as an event 
if and only if tR[j1 − 1− i] + i = tR[j1 − 1] , for 1 ≤ i ≤ δ , and conversely iff 
tR[j2 + 1+ i] − i = tR[j2 + 1] , for 1 ≤ i ≤ δ . δ is a user-defined parameter that is set to 2 
by default.

Moreover, if two breaks (j1, j2) and (j′
1
, j′
2
) are consecutive by less than δ positions (ie. 

j′
2
≤ j2 + δ ), we merge them as soon as the indels they correspond to are longer than the 

one called using the merged break (j1, j′2).

Estimating duplication abundance

Identifying a duplication is not sufficient, as its abundance is also a prognosis fac-
tor. Rather than a raw abundance, a relative abundance is much more meaningful. We 
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express the relative abundance as a VAF (Variant Allele Frequency) or an AR (allelic 
ratio). All the duplications sharing the same characteristics (same length and same start-
ing and ending positions) are pooled together.

Briefly speaking, the abundance is computed from the number of reads in which 
a given duplication is found and the number of reads corresponding to the wildtype 
sequence. The read counts is further corrected to take into account the duplications that 
cannot be observed when they occur at one end of the reads.

More precisely, to determine the VAF or the AR we need to know, at the position of 
the duplication, both the coverage of the wildtype version and of the duplicated ver-
sion, ie. the number of reads that cover the position of the duplication in the reference 
sequence and in the duplicated version. To do so, we use the disambiguated traces. The 
traces provide the positions that were covered in the reference sequence, we can thus 
count the coverage at each position in the reference. More formally, when tR[i] = j , we 
increment the coverage at position j in the reference sequence. This corresponds to the 
total coverage, which thus includes the coverage of the wildtype as well as the coverage 
of all the duplications or indels detected. We deduce the wildtype coverage by removing 
all the coverages from the duplications/indels that have been detected.

However, with our approach we cannot detect duplications that would occur at the 
start or at the end of a read. As explained previously, for a duplication to be detected, we 
need to have δ positions in the trace before and after the break. For a duplication creat-
ing a break of size b, we will need to have t = 2δ + b+ k − 1 nucleotides in the read. 
That means that we will not be able to detect duplications occurring in the first t − 1 or 
the last t − 1 nucleotides of the reads. Thus, when quantifying a duplication, the quanti-
fication will be under-estimated because 2(t−1)

R  of the duplications could not be detected 
and, thus,counted, where R is the size of the reads. The counts are corrected to take this 
observation into account, and by assuming that any indel has a uniform probability of 
occurrence within the read. Let q be the raw quantification, ie. the number of reads in 
which the duplication was identified, the corrected quantification is q′ = q 1+

2(t−1)
R  . 

The VAF or AR are then computed using the corrected counts and the wildtype coverage 
at the position of the duplication.

Optimising data processing

As specified previously, we only search duplications in reads having enough k-mers com-
ing from the reference sequence. However, in most cases most of the reads would not 
come from the region of interest. Thus, the most time-consuming step in our algorithm 
is to determine whether the read is coming from that region. To lower this time con-
sumption, we use a heuristic: k-mers from the region of interest are stored in a Bloom 
filter [25].

The first step is therefore to query the Bloom filter to determine how many k-mers 
come from the region of interest in the read. If this value is above a threshold then the 
read goes to the following stages of the algorithm, otherwise it is discarded. By default, 
this threshold is set at 30 %.

Bloom filters do not yield any false negative, therefore we have the guarantee that this 
heuristic will not prevent us from identifying a read that actually comes from the region 
of interest. As the region of interest, namely exons 14 to 15 from the FLT3 gene, is quite 
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short the Bloom filter can be very small and will likely be stored in the CPU cache, which 
will allow very quick accesses.

Implementation and benchmarking

FiLT3r is implemented in C++ using the GATB library [26] and is freely distributed git-
lab. univ- lille. fr/ filt3r/ filt3r.

We compared FiLT3r with state-of-the-art approaches. We made a preliminary assess-
ment on our cohort with several other software detecting FLT3-ITD-ext, such as pin-
del [18], ITDSeek [27], ScanITD [28], getITD [29] and Genomon ITDetector [30] (see 
Additional file 1: Table 1). However, with the later publication of [19] we preferred refer-
ring to their independent assessment and chose to use in our paper the best tool they 
assessed: FLT3-ITD-ext [31]. We also added km [21] as it was not evaluated in Yuan 
et  al’s benchmark and showed good performances in our preliminary assessment. km 
is an alignment-free approach already presented in the introduction. We also add that 
km is not focused on FLT3 and can more generally detect variations in raw reads. FLT3-
ITD-ext relies on a general-purpose aligner (BWA-MEM, [32]) to align reads to the ref-
erence sequence (the FLT3 genomic sequence of exons 14-15).

FiLT3r was launched with a k-mer size of 121, km with a k-mer size of 31 (as advised 
by km authors) and with a threshold for duplication detections of .01 (thresholds .1 and 
.001 were attempted, but the best results were achieved with a threshold of .01), Jelly-
fish parameters were identical to the ones used in km publication (-C -L 2 -Q+ -s 
1000000). FLT3-ITD-ext was launched with default parameters. For FLT3-ITD-ext, the 
deletions were not considered as it would have lead to too many false positives. Within a 
sample, all the duplications of the same length are pooled together to take into account 
the fact that the allelic ratio method only differentiates duplications on their lengths. The 
experiments can be reproduced with a Snakefile available on the Git repository of the 
software.

All the experiments were performed on a server with 24 Intel®Xeon®CPU E5-2420 
and 193 GB of RAM. The data was stored on a NAS connected to the server through 
NFS. The programs were run on a single thread. User times and peak memory consump-
tions were measured.

Benchmarking data

We assessed the three software packages on high-throughput sequencing data of 185 
patients aged from 18 to 60 years old, diagnosed with de novo or secondary AML at the 
haematology laboratory of the University Hospital of Lille. This population was com-
posed of 114 FLT3-ITD positive patients and 71 FLT3-ITD negative patients, according 
to the gold-standard fragment analysis [33]. The study was conducted according to the 
Declaration of Helsinki and was approved (nos. CSTMT289) by the Human Research 
Committee of Lille and the institutional review board of the Lille University Hospital 
Tumor Bank (certification NF 96900-2014/65453-1).

1 For a discussion on the choice of k, see the Additional files 1–15, section Choosing the parameters.

https://gitlab.univ-lille.fr/filt3r/filt3r
https://gitlab.univ-lille.fr/filt3r/filt3r


Page 9 of 16Boudry et al. BMC Bioinformatics  2022, 23(1):448 

Exons 14-15 of FLT3 were sequenced in all patients using the following methodol-
ogy: the library was prepared by a capture method, targeting 62 genes with SureSelect-
QXT (AGILENT®) according to the manufacturer’s protocol. Samples were sequenced 
with NextSeq Illumina®(2× 121 bp). The region of interest was sequenced with a 
mean depth of 2116x (range: 421.32 – 4538.84). The base calling was performed with 
bcl2fastq2 (v:2.20.0) and fastq were trimmed with fastp (v:0.20.0). The number of 
paired-end reads per sample ranged from 1.8 million to 35 million (median: 4.8 million). 
The sequences were deposited on SRA (see Additional file 3). The quantification of the 
expected ITDs were obtained using the reference method (by capillary electrophoresis) 
explained in the introduction.

To assess how the three software behaves on datasets with very different character-
istics, we used public RNA-seq data. RNA-seq is gaining importance in clinical set-
tings and RNA-seq data differs widely from capture sequencing in terms of quantity of 
data, variation of expression and random starting positions of the reads. We launched 
the three software on data from CCLE (Cancel Cell Line Encyclopedia) [34]. We ran-
domly selected 76 samples from haematopoeitic and lymphoid tissues and 76 samples 
from lung tissues (list of accessions in Additional file 10). It is not known which samples 
should contain FLT3-ITD. However, from a biological point of view, we do not expect to 
detect any FLT3-ITD in lung tissues while we could expect some in haematopoeitic and 
lymphoid tissues. This dataset will help assess how the three software scale on massive 
datasets (from 112,328 reads to 1,364,951,510 reads, median: 72.9M) with an average 
read length ranging from 68nt to 150nt (median: 101nt).

Finally, to check that our results holds on controlled data, we simulated ITDs at differ-
ent ratios with different qualities.

Results
Capture sequencing of 185 AML patients

The software results on HTS data were compared to DNA fragment analysis, the gold-
standard method. Any duplication found by a software, at whatever abundance, and 
identified with the reference method was considered as a true positive. Any duplication 
found by a software with an allelic ratio (AR) above .01 and that was not identified by the 
reference method was for now considered as a false positive. After analysing the results 
in details, we will change this definition of false positivity as HTS appear to be more sen-
sitive to detect lowly expressed ITDs.

Raw results are shown in Table 1 (a) (detailed results for each duplication are shown in 
Additional file 1). FiLT3r and FLT3-ITD-ext showed similar performances. FiLT3r was 
slightly better in terms of true positives, but at the apparent cost of more false positives.

However, some (7/17) of the false positives were shared with either km or FLT3-
ITD-ext. We repeated a fragment analysis on the two samples where the false positives 
were the most abundant, to assess whether they were real false positives. We eventu-
ally obtained a sequence by Sanger for both (see Additional file 8). Two other duplica-
tions classified as false positives detected by FiLT3r in SRR15006540 and undetected 
by the other software had cumulative lengths (16 and 56) corresponding to the length 
of a duplication detected by the conventional method (72). We thus believe that those 
two duplications are not false positives and are a consequence of our more fine-grained 
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method that is able to distinguish multiple duplications. This is illustrated in Additional 
file 1: Fig. 1, with a dotplot of a read from SRR15006540 against our reference sequence. 
Finally, seven other false positives were due to short single nucleotide deletions that 
could easily be filtered out.

It is noteworthy that all the false positives were identified in positive samples (apart 
from one of the Sanger-confirmed duplication) and at lower ratios than the duplication 
identified by the reference method. Thus, we consider that our original definition of false 
positive was too broad. Instead, we switch to the following, more strict definition: a false 
positive corresponds to any duplication detected at the threshold of .01 in a negative 
sample. No software detected a duplication above that threshold among the 71 negative 
samples. Hence, the most important metric in this context is the false negativity. We 
show a corrected version of the results in Table 1 (b) where false positivity is thus at 0 
and where the two Sanger-confirmed sequences are moved from the false positives to 
the true positives for FiLT3r and km (and added to the false negatives for FLT3-ITD-ext). 
Among those 185 samples, FiLT3r displayed perfect results as it did not report any false 
positive nor false negative result. FLT3-ITD-ext discarded all duplications whose length 
is not a multiple of 3. In AML, it was thought that the FLT3-ITD duplication should have 
a length multiple of 3. However, in our cohort, we showed that two duplications that 
had not been identified with the reference method did not have lengths multiple of 3. 
For km the false negatives are of varying lengths (from 6 nt to 126 nt) but with low con-
centrations. All the false negatives but one has a quantification ≤ 0.03 with the reference 
method, while the first half of the most abundant duplications were correctly called by 
km. Also, km correctly detects 10 duplications but is unable to provide a reliable quanti-
fication (it gives zero instead).

Beyond the correct detection of ITDs, it is important to also correctly assess the quan-
tification of those duplications as they are meaningful for the prognosis of the patients. 
Figure  4 shows the quantification computed by the three software packages for the 
duplications found. Their quantifications are compared to the one found by the reference 

Table 1 (a) Raw results of the three software packages assessed on the samples of 185 patients. 
Any result from a software is considered as a false positive as long as its quantification is at least 1% 
and it is not detected by the reference method. (b) Corrected results, after taking into account two 
Sanger sequencing to verify the two FLT3‑ITDs detected by two software, and by considering as false 
positive only FLT3‑ITDs detected above 1% by a software in any negative sample

FiLT3r km FLT3-ITD-ext

(a)

True pos. 145 134 144

False neg. 0 11 1

False pos. 17 6 9

(b)

True pos. 147 136 144

False neg. 0 11 3

False pos. 0 0 0

Precision 1 1 1

Recall 1 0.93 0.98

F1 1 0.96 0.99
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method. With FiLT3r and FLT3-ITD-ext the quantification is closer to the fragment 
analysis quantification (respectively r = .93 and r = .88 for the log-transformed quan-
tifications), compared to km ( r = .76 ). One underestimation of FiLT3r quantification 
corresponded to the 72nt duplication we previously detailed. Interestingly, the other 
duplication FiLT3r largely underestimated (in SRR15006376) was also underestimated 
by a factor of 10 by FLT3-ITD-Ext and was not detected by km.

Regarding time and space consumption, FiLT3r showed the best performances (see 
Figs. 5 and 6 ). We also show the time and memory usage for counting k-mers, with Jel-
lyfish, which is a required step for km.

In Fig.  5 we see that km at thresholds 0.01 is very fast as it systematically took less 
than 10 seconds to detect the duplications. However, this does not include Jellyfish time, 
which must be launched on each sample. While Jellyfish is a very efficient k-mer counter, 
it was 2-3 orders of magnitude slower than km itself. FiLT3r’s median user time (65 s) is 
6 times quicker than Jellyfish’s and 9 times quicker than FLT3-ITD-Ext’s. In some cases 

Fig. 4 Quantification of duplications found with FiLT3r, km (threshold .01) and FLT3‑ITD‑ext compared with 
the fragment analysis method. The grey straight line corresponds to y = x and ideally the dots should be 
aligned along that line. The grey area is centred around that line and its width is of one log. The hotter the 
colour of the dots, the higher the quantification error. Only 8 results are not within this grey area for FiLT3r, 27 
for km and 16 for FLT3‑ITD‑ext

Fig. 5 Time consumption of FiLT3r, km and FLT3‑ITD‑Ext on the 185 samples analysed. km‑JF is the time 
taken by Jellyfish (preliminary step required for km), km (0.01) is the time taken by km with the corresponding 
threshold
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FLT3-ITD-Ext can be very time-consuming, taking several hours, while FiLT3r never 
took more than 10 minutes. The progression margin for FiLT3r is quite low as gunzip 
on the same files took about a third of the time took by FiLT3r (see Additional file 1: 
Fig. 2).

For FiLT3r it appeared that using a Bloom filter dramatically speeded up the software 
as deactivating the Bloom filter makes FiLT3r one order of magnitude slower (see Addi-
tional file 1: Fig. 3).

Memory consumption was very limited in FiLT3r as we stored a Bloom filter and a 
hash table of the reference sequence. We also stored reads that match the reference 
sequence in main memory, but there were generally just a few thousands of them. FLT3-
ITD-Ext median memory consumption was close to FiLT3r’s as it was twice as space 
consuming. However, in some cases the space consumption could reach several GB 
while FiLT3r used at most 300  MB. Jellyfish memory usage was systematically above 
that highest memory usage recorded for FiLT3r. We could still improve FiLT3r memory 
usage by storing on the disk the reads matching the reference sequence. This would how-
ever lead to a time penalty.

152 RNA-Seq samples from CCLE

As expected none of the software detected a FLT3-ITD among the 76 lung samples. This 
tends to confirm the three software have a very low false positive rate. However on 10 
samples (all with more than 1 billion reads), FLT3-ITD-ext had to be killed before the 
results were output as it took too much time (more than 24  h) or too much memory 
(more than 100 GB).

On the 76 haematological samples, some FLT3-ITD were detected by the three soft-
ware. At the same 0.01 threshold as for the capture sequencing, FiLT3r detected 3 ITDs 
that were also detected by km, although one of them was only detected by km with -p 
0.001 not with -p 0.01. FLT3-ITD-Ext detected the remaining two.

Fig. 6 Memory consumption of FiLT3r, km and FLT3‑ITD‑Ext on the 185 samples analysed. km‑JF is the 
memory taken by Jellyfish (preliminary step required for km), km (0.01) is the memory taken by km with the 
corresponding threshold
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km additionally detected a 60nt ITD in SRR8657348 that was not detected neither by 
FiLT3r nor FLT3-ITD-Ext. However this 60nt duplication seemed to be an artifact from 
a 30nt duplication that was actually detected by the three software. km seemed to detect 
a duplication of the duplication, however we found no read with evidence of such an 
event.

FLT3-ITD-ext detected three ITDs above the .01 threshold, two of which were not 
detected by FiLT3r or km: a 108nt ITD in SRR8615750, and a 105nt ITD in SRR8615696. 
The third ITD (a 78nt duplication in SRR8615696) was also detected by FiLT3r but at 
a much lower AR (.0007 instead of .02). In this sample we found evidence of only two 
reads containing the ITD breakpoint, casting doubt on the .02 AR given by FLT3-ITD-
Ext. Moreover, km did not detect this ITD but was launched with options -p 0.01 or 
-p 0.001 and thus could not detect a very lowly expressed ITD. Regarding the 108nt 
ITD only found by FLT3-ITD-Ext, we found evidence of such a breakpoint in only one 
read. Concerning the 105nt ITD, the sequence reported by FLT3-ITD-Ext does not align 
in full-length on the reference, only the first 70nt do align. The last 35nt did not align on 
NCBI Blast non-redundant nucleotide sequences either. See Additional file 1 for more 
details.

Overall, FiLT3r completed each task in less than 3 hours with less than 32 MB or RAM 
(median: 344  s and 26  MB). km (including Jellyfish step) took at most 9.5 hours and 
37 GB of RAM for one sample (median: 962 s and 2.5 GB). FLT3-ITD-ext median time 
was 4400s with a median memory usage of 799 MB of RAM.

Simulated data

We simulated FLT3-ITDs using itdsim which is part of ITDseek [27]. Then the ITDs 
were sequenced in silico using art with the MiSeq v3 profile of errors [35]. The detailed 
results are presented in the Additional files 1–15. In short, they confirmed the results 
obtained on real data. We also noticed that, the more sequencing errors there are, the 
more false positives FiLT3r has. However, those false positives are always quantified at 
ratio below .001. Contrarily to km or FLT3-ITD-ext, FiLT3r did not miss any ITD on the 
datasets with a normal coverage. FiLT3r also provided the best trade-off between quan-
tification and F1 score.

Conclusions
We introduced FiLT3r, a time and memory efficient algorithm implemented in an open-
source C++ software, which showed very good detection and quantification perfor-
mances compared to state-of-the-art software. On our capture dataset, FiLT3r had a 
perfect recall, which was not the case of the other software. Even the reference fragment 
analysis method, exhibited two false negatives, as shown by further Sanger sequencing 
of the samples. Similarly to the other software, FiLT3r had a perfect precision. FiLT3r 
performances were better than that of FLT3-ITD-ext, the best software identified so 
far by an independent benchmark, which is alignment-based. Moreover FLT3-ITD-ext 
could not run on several RNA-seq dataset due to large resource requirements (both time 
and memory). In two cases on RNA-seq dataset, FLT3-ITD-ext reported quantification 
that appeared largely overestimated.
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This illustrates that alignment-free algorithms can be more efficient than alignment-
based algorithms while using a fraction of the resources they need. Beyond the FLT3-
ITD analysis, FiLT3r can also be used to detect duplications in any gene as soon as the 
reference sequence is known. We plan to apply our method to other genes in other con-
texts, as it has been shown that tandem duplications can be prognostic signatures in 
other cancers (such as gastric cancers [36]).
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