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Abstract

We propose an Eulerian-Lagrangian (EL) Runge-Kutta (RK) discontinuous Galerkin (DG)
method for linear hyperbolic system. The method is designed based on the EL DG method
for transport problems [J. Comput. Phy. 446: 110632, 2021.], which tracks solution along ap-
proximations to characteristics in the DG framework, allowing extra large time stepping sizes
with stability with respect to the classical RK DG method. Considering each characteristic
family, a straightforward application of EL DG for hyperbolic system will be to transform to
the characteristic variables, evolve them on associated characteristic related space-time regions,
and transform them back to the original variables. However, the conservation could not be
guaranteed in a general setting. In this paper, we formulate a conservative semi-discrete EL DG
method by decomposing each variable into two parts, each of them associated with a different
characteristic family. As a result, four different quantities are evolved in EL fashion and recom-
bined to update the solution. The fully discrete scheme is formulated by using method-of-lines
RK methods, with intermediate RK solutions updated on the background mesh. Numerical
results for 1D and 2D wave equations are presented to demonstrate the performance of the
proposed ELDG method. These include the high order spatial and temporal accuracy, stability
with extra large time stepping size, and conservative property.

Key words: Eulerian-Lagrangian; discontinuous Galerkin; characteristic method; linear hy-

perbolic system; conservative property.

1 Introduction

In this paper, we propose an Eulerian-Lagrangian (EL) discontinuous Galerkin (DG) method for

the first-order hyperbolic system in the form of

Ut +
d∑
j=1

(Aj(x, t)U)xj = F (x, t), (x, t) ∈ Rd × [0, T ], (1.1)
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where d is the spatial dimension, U : Rd × [0, T ] → Rn, and Aj(x, t) ∈ Rn×d. Several systems of

this form including wave equations, Maxwell’s equations, linearized shallow water equations etc.

which have important physical applications [16]. There are many efficient DG methods for solving

the hyperbolic systems. A particularly powerful combination is applying the DG method in space

and a Runge-Kutta scheme in time to obtain RK DG scheme. There are a serize of works about

DG [8] and space-time DG [10, 25] methods.

One effective numerical approach for solving the hyperbolic equation is the characteristic method,

which updates time-dependent solution by tracking characteristics. For scalar hyperbolic equations,

there have been many pioneering works. In [6], Celia etc. developed an Eulerian Lagrangian Lo-

calized Adjoint Methods (ELLAM) [6], which introduces an adjoint problem for each test function

in the continuous finite element framework and has been applied to different problems [29, 28]. On

the other hand, the EL DG [30, 5] and SL DG [3] are being developed in the discontinuous Galerkin

finite element framework with a similar introduction of adjoint problems for test functions. More

important, the EL DG method takes the advantage of linear approximation of the characteratics,

which make it have stability with extra large time stepping size ∆t ∼ ∆x
(1+k) max |a−α| compared with

∆t ∼ ∆x
(1+k) max |a| of the classical Eulerian explicite RK DG method for linear advection problems,

where a is the volocity of advection problem and α is a linear approximation of a. So the time step

size of EL DG with stability can be very large when α approximate a well. The EL DG method

is also closely related to the Arbitrary Lagrangian Eulerian (ALE) DG method [15, 13] which is a

moving mesh DG method.

In this paper, we propose a conservative EL RK DG method for hyperbolic systems (1.1)

(F (x, t) = 0) with large time stepping sizes compared with that for classical RKDG method. We

start from 1D cases, for which we consider characteristic variables and the associated characteristic

space-time regions. For each characteristic family, a straightforward application of EL DG will

be to transform to characteristic variables, evolve them on associated space-time regions, and

transform them back to original variables. However, the conservation could not be guaranteed

in a general setting. We decompose each variable into two parts, each of them associated with

different characteristic families; as a result, four different quantities are evolved in EL fashion and

recombined to update the solution. The fully discrete scheme is formulated by using method-of-lines

RK methods, with intermediate RK solutions updated on the background mesh. For 2D hyperbolic
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systems, characteristic variables are no longer constant along the bicharacteristics, characteristic

Galerkin [26] or evolution Galerkin [2, 18, 19] methods have been proposed by taking into account

information propagated in all bicharacteristic directions. However, the algorithm implementation

is very complex. In this paper, we use the dimensional splitting method for higher dimensional

problem, which maintain the simplicity of EL DG method for 1D cases, as well as other great

properties such as conservation, high order spatial and temporal accuracy, and allows for extra

large time steps with stability.

This paper is organized as follows. In Section 2, we review the EL DG for one-dimensional (1D)

linear transport problems. In Section 3, we develop the EL DG method for a first-order hyperbolic

system by evolving each component associated with each characteristic families, recombining them

to update the solution. We also develop it to 2D problems by dimensional splitting. Conservation

of ELDG schemes are proved. In Section 4, performance of the proposed ELDG method is shown

through extensive numerical tests. Finally, concluding remarks are made in Section 5.

2 Review of EL DG formulation for 1D linear transport problems

To illustrate the key idea of the EL DG scheme, we start from a 1D linear transport equation in

the following form

ut + (a(x, t)u)x = 0, x ∈ [xa, xb]. (2.1)

For simplicity, we assume periodic boundary conditions, and the velocity field a(x, t) is a continuous

function of space and time. Ω is the whole computational domain. We perform a partition of the

computational domain xa = x 1
2
< x 3

2
< · · · < xN+ 1

2
= xb as the background mesh partition. Let

Ij = [xj− 1
2
, xj+ 1

2
] denote an element of length ∆xj = xj+ 1

2
− xj− 1

2
and define ∆x = maxj ∆xj . We

define the finite dimensional approximation space, V k
h = {vh : vh|Ij ∈ P k(Ij)}, where P k(Ij) denotes

the set of polynomials of degree at most k. We let tn be the n-th time level and ∆t = tn+1 − tn to

be the time-stepping size. There are a lot of notations we need to mention in this paper, now we

use A
.
= B to denote A as B for simplicity.

The key idea in the EL DG formulation is, design adjoint problems for test functions to take

advantage of information propagation along characteristics. The EL DG method proposed in [5] is

formulated on a space-time region Ωj = Ĩj(t)× [tn, tn+1] with

Ĩj(t) = [x̃j− 1
2
(t), x̃j+ 1

2
(t)], t ∈ [tn, tn+1]
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being the dynamic interval with size ∆xj(t) = x̃j+ 1
2
(t)− x̃j− 1

2
(t), see Figure 2.1. Here x̃j± 1

2
(t) =

xj± 1
2

+ (t − tn+1)νj± 1
2

are straight lines emanating from cell boundaries xj± 1
2

with slopes νj± 1
2

=

a(xj± 1
2
, tn+1) and I?j

.
= Ĩj(t

n) = [x∗
j− 1

2

, x∗
j+ 1

2

] is the upstream cell of Ij at tn. The dynamic interval

of Ĩj(t) can always be linearly mapped to a reference cell Ij by a mapping. A local adjoint problem

Ωj

tn

tn+1

xj− 1
2

xj+ 1
2

x?
j− 1

2

x?
j+ 1

2Ĩj(t
n) = I?j

Ĩj(t
n+1) = Ij

Ĩj(t)ν j
−

1
2

ν j
+

1 2

xj−1/2 xj+1/2

Figure 2.1: Illustration for dynamic element Ĩj(t) of ELDG.

of (2.1) for all test function is defined as:®
ψt + α(x, t)ψx = 0, (x, t) ∈ Ωj ,

ψ(t = tn+1) = Ψ(x). ∀Ψ ∈ P k(Ij).
(2.2)

Here α(x, t) is a bilinear function of (x, t) with ∀t ∈ [tn, tn+1],

α(xj− 1
2
, tn+1) = a(xj− 1

2
, tn+1)

.
= νj− 1

2
, α(xj+ 1

2
, tn+1) = a(xj+ 1

2
, tn+1)

.
= νj+ 1

2
, (2.3)

and

α(x, t) = −νj− 1
2

x− x̃j+ 1
2
(t)

∆xj(t)
+ νj+ 1

2

x− x̃j− 1
2
(t)

∆xj(t)
∈ P 1(Ĩj(t)). (2.4)

Notice that the test function ψ stays the same polynomial, if Ĩj(t) is mapped to a reference interval

Ij . The EL DG [5] scheme can be formulated by
∫
Ĩj(t) (2.2) · u+ (2.1) · ψ

d

dt

∫
Ĩj(t)

(uψ)dx = −
Ä
F̂ψ
ä ∣∣∣∣x̃j+ 1

2
(t) +

Ä
F̂ψ
ä ∣∣∣∣x̃j− 1

2
(t) +

∫
Ĩj(t)

Fψxdx. (2.5)

where F (u)
.
= (a− α)u and F̂ is the Lax-Friedrichs flux. A method-of-lines RK discretization can

be used for high order temporal accuracy [5].

3 The EL DG algorithm for hyperbolic system

The design of the EL DG algorithm for hyperbolic system shares a similar spirit as the 1D scalar

case. We start from a 1D hyperbolic system. We firstly formulate the EL DG scheme by tracking

information along different characteristics families.
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3.1 1D hyperbolic system

We consider the hyperbolic system

Ut + (A(x)U)x = F (x, t), (3.1)

where U =
[
u1, u2

]T
is a column vector, A is a 2 by 2 matrix, F is also a 2 by 1 vector. We use

the following notations for the eigen-decomposition of A(x):

• eigenvalue: λ(1)(x), λ(2)(x).

• A(x) = R(x)ΛR−1(x), where Λ(x) = diag(λ(1)(x), λ(2)(x)),

R(x)
.
=
[
r(1)(x) | r(2)(x)

]
=

ï
r11(x) r12(x)
r21(x) r22(x)

ò
(3.2)

contains the right column eigenvectors r(1), r(2), and

R−1(x)
.
=

ñ
l(1)T (x)

l(2)T (x)

ô
=

ï
l11(x) l12(x)
l21(x) l22(x)

ò
(3.3)

contains the left row eigenvectors l(1)T , l(2)T .

In the following, we propose a conservative EL DG scheme for the system (3.1) by the procedure

below. The notion of its background meshes is the same as the 1D scalar case.

(1) Two partitions of space-time regions Ω
(1)
j and Ω

(2)
j . According to the first and second

characteristic families, we partition the computational domain as two sets of space-time regions

Ω
(1)
j and Ω

(2)
j respectively. Here Ω

(1)
j = Ĩ

(1)
j (t) × [tn, tn+1] is related to the first characteristic

family. Ĩ
(1)
j (t) = [x̃

(1)

j− 1
2

(t), x̃
(1)

j+ 1
2

(t)] is the dynamic interval emanating from cell boundaries xj± 1
2

with slopes ν
(1)

j± 1
2

approximating the first characteristic velocity, see Figure 3.2 (left). In general, we

choose ν
(1)

j± 1
2

= λ(1)(xj± 1
2
). I

?,(1)
j

.
= Ĩ

(1)
j (tn) is the upstream cell of Ij from the first characteristic

family at tn. The dynamic interval Ĩ
(1)
j (t) can be linearly mapped to a reference cell ξ ∈ Ij , (see

Figure 2.1). Here, we let x̃(1)(τ ; (ξ, tn+1)) be the linear map from Ĩ
(1)
j (t) to Ij . Similar definition

can be made to Ω
(2)
j , Ĩ

(2)
j (t) and I

?,(2)
j for the second characteristic family. See Figure 3.2 (right)

for illustration of Ω
(2)
j .

(2) Adjoint Problems. We consider an adjoint problem for the first characteristic family on Ω
(1)
j :®

(ψ(1))t + α(1)(ψ(1))x = 0, t ∈ [tn, tn+1],

(ψ(1))(t = tn+1) = Ψ(1)(x),
(3.4)
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Ω
(1)
j

tn

tn+1

xj− 1
2

xj+ 1
2

x
?,(1)

j− 1
2

x
?,(1)

j+ 1
2Ĩ

(1)
j (tn) = I

?,(1)
j

Ĩ
(1)
j (tn+1) = Ij

Ĩ
(1)
j (t)ν

(1
)

j−
1

2

ν
(1

)
j+

1 2

Ω
(2)
j

tn

tn+1

xj− 1
2

xj+ 1
2

x
?,(2)

j− 1
2

x
?,(2)

j+ 1
2Ĩ

(2)
j (tn) = I

?,(2)
j

Ĩ
(2)
j (tn+1) = Ij

Ĩ
(2)
j (t)ν (2)j−

1
2

ν
(2

)

j+
12

Figure 3.2: Illustration for dynamic elements Ĩ
(1)
j (t) (left) and Ĩ

(2)
j (t) (right) of ELDG for the first

and second characteristic families of the system.

where

α(1)(x, t) = −ν(1)

j− 1
2

x− x̃(1)

j+ 1
2

(t)

∆x
(1)
j (t)

+ ν
(1)

j+ 1
2

x− x̃(1)

j− 1
2

(t)

∆x
(1)
j (t)

∈ P 1(Ĩ
(1)
j (t)). (3.5)

Similarly on Ω
(2)
j : ®

(ψ(2))t + α(2)(ψ(2))x = 0, t ∈ [tn, tn+1],

(ψ(2))(t = tn+1) = Ψ(2)(x),
(3.6)

where

α(2)(x, t) = −ν(2)

j− 1
2

x− x̃(2)

j+ 1
2

(t)

∆x
(2)
j (t)

+ ν
(2)

j+ 1
2

x− x̃(2)

j− 1
2

(t)

∆x
(2)
j (t)

∈ P 1(Ĩ
(2)
j (t)). (3.7)

The adjoint problems provide finite dimensional time-dependent test function space, please see

more details in the Appendix.

(3) Formulation of a conservative semi-discrete ELDG scheme.

For linear hyperbolic system, a straightforward generalization of ELDG is to transform the

original variable to the characteristic variables by a localized cell dependent appriximating eigen-

decomposition. So we firstly formulate a EL DG scheme by a localized characteristic field, but

that is proved not conservative. We show the details in Appendix. To obtain the conservation,

a critical point is that eigen-decomposition has to be consistent among two characteristic families

and independent of partitions Ω
(1)
j ,Ω

(2)
j . We directly use the exact eigen-decomposition (3.2) and

(3.3). The following equalities hold

(r11(x)l(1)T (x) + r12(x)l(2)T )U(x) = u1,

(r21(x)l(1)T (x) + r22(x)l(2)T )U(x) = u2,

(3.8)

from R(x)R−1(x) = R−1(x)R(x) = I. They are critical to design a conservative ELDG scheme.
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Take the vector product of r11(x)l(1)T (x) from left with (3.1), we have a scalar equation

r11(x)l(1)T (x)(Ut + (A(x)U)x) = r11(x)l(1)T (x)F (x, t). (3.9)

Multiply ψ(1) to the equation above,

r11(x)l(1)T (x)(Ut + (A(x)U)x)ψ(1) = r11(x)l(1)T (x)F (x, t)ψ(1). (3.10)

Meanwhile, from r11(x)l(1)T (x)U · (3.4), we have

r11(x)l(1)T (x)U(ψ(1))t + r11(x)l(1)T (x)Uα(1)(ψ(1))x = 0. (3.11)

Next, sum equations (3.10) and (3.11), and integrate over the space-time interval Ω
(1)
j , then∫

Ω
(1)
j

(
r11(x)l(1)T (x)Utψ

(1) + r11(x)l(1)T (x)U(ψ(1))t + r11(x)l(1)T (x)(A(x)U)xψ
(1)
)
dxdt

+

∫
Ω

(1)
j

r11(x)l(1)T (x)Uα(1)(ψ(1))xdxdt =

∫
Ω

(1)
j

r11(x)l(1)T (x)F (x, t)ψ(1)dxdt.

(3.12)

A further manipulation on the left hand side (L.H.S.) of (3.12) gives∫
Ω

(1)
j

(
(r11(x)l(1)T (x)Uψ(1))t + r11(x)l(1)T (x)(A(x)U)xψ

(1) + r11(x)l(1)T (x)Uα(1)(ψ(1))x

)
dxdt

=

∫
Ω

(1)
j

(
(r11(x)l(1)T (x)Uψ(1))t + (r11(x)l(1)T (x)A(x)Uψ(1))x − (r11(x)l(1)T (x))xA(x)Uψ(1)

)
dxdt

−
∫

Ω
(1)
j

(
r11(x)l(1)T (x)A(x)U(ψ(1))x − r11(x)l(1)T (x)Uα(1)(ψ(1))x

)
dxdt

=

∫ tn+1

tn

(
d

dt

∫
Ĩ

(1)
j (t)

(r11(x)l(1)TUψ(1))dx+ [r11(x)l(1)TA(x)Uψ(1) − ν(1)r11(x)l(1)TUψ(1)]|j+
1
2

j− 1
2

)
dt

−
∫ tn+1

tn

∫
Ĩ

(1)
j (t)

(
(r11(x)l(1)T (x))xA(x)Uψ(1) + r11(x)l(1)T (x)(A(x)U − α(1)U)ψ(1)

x

)
dxdt.

(3.13)

Letting f11(U) = r11l
(1)T (AU − α(1)U), the time differential form of (3.12) with (3.13) gives

d

dt

∫
Ĩ

(1)
j (t)

(r11(x)l(1)T (x)Uψ(1))dx+
Ä
f11ψ(1)

ä ∣∣∣∣∣x̃(1)

j+ 1
2

(t)
−
Ä
f11ψ(1)

ä ∣∣∣∣∣x̃(1)

j− 1
2

(t)
−
∫
Ĩ

(1)
j (t)

f11ψ(1)
x dx

−
∫
Ĩ

(1)
j (t)

(r11(x)l(1)T (x))xA(x)Uψ(1)dx =

∫
Ĩ

(1)
j (t)

r11(x)l(1)T (x)F (x, t)ψ(1)dx.

(3.14)
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Similarly, we have an equation related to λ(2)

d

dt

∫
Ĩ

(1)
j (t)

(r12(x)l(2)T (x)Uψ(2))dx+
Ä
f12ψ(2)

ä ∣∣∣∣∣x̃(2)

j+ 1
2

(t)
−
Ä
f12ψ(2)

ä ∣∣∣∣∣x̃(2)

j− 1
2

(t)
−
∫
Ĩ

(2)
j (t)

f12ψ(2)
x dx

−
∫
Ĩ

(2)
j (t)

(r12(x)l(2)T (x))xA(x)Uψ(2)dx =

∫
Ĩ

(2)
j (t)

r12(x)l(2)T (x)F (x, t)ψ(2)dx,

(3.15)

where f12(U) = r12l
(2)T (AU − α(2)U). Then, we can update u1 by (3.8), (3.14), (3.15), taking

Ψ(1)(x) = Ψ(x) in (3.4) and Ψ(2)(x) = Ψ(x) in (3.6):∫
Ij

u1,n+1Ψ(x)dx
(3.8)
=

∫
Ij

r11l
(1)TUn+1Ψ(x)dx+

∫
Ij

r12l
(2)TUn+1Ψ(x)dx

=

∫
I
∗,(1)
j

r11l
(1)TUnψ(1)dx−

∫ tn+1

tn

Ä
f11ψ(1)

ä ∣∣∣∣∣x̃(1)

j+ 1
2

(t)
+
Ä
f11ψ(1)

ä ∣∣∣∣∣x̃(1)

j− 1
2

(t)
dt

+

∫ tn+1

tn

∫
Ĩ

(1)
j (t)

r11(x)l(1)T (x)F (x, t)ψ(1) + (r11(x)l(1)T (x))xA(x)Uψ(1) + f11ψ(1)
x dxdt

+

∫
I
∗,(2)
j

r12l
(2)TUnψ(2)dx−

∫ tn+1

tn

Ä
f12ψ(2)

ä ∣∣∣∣∣x̃(2)

j+ 1
2

(t)
+
Ä
f12ψ(2)

ä ∣∣∣∣∣x̃(2)

j− 1
2

(t)
dt

+

∫ tn+1

tn

∫
Ĩ

(2)
j (t)

r12(x)l(2)T (x)F (x, t)ψ(2) + (r12(x)l(2)T (x))xA(x)Uψ(2) + f12ψ(2)
x dxdt.

(3.16)

As the EL DG method for scalar equations, the dynamic interval of I
(1)
j (t) and I

(2)
j (t) can always

be linearly mapped to a reference cell ξ ∈ Ij , the EL DG discretization of eq. (3.16) is to find

u1
h(x, t) ∈ P k(Ij(t)), so that∫

Ij

u1
h(x, tn+1)Ψ(x)dx =

∫
I
∗,(1)
j

r11l
(1)TUnhψ

(1)dx+

∫ tn+1

tn
L11(Uh(t), t, Ĩ

(1)
j (t))dt

+

∫
I
∗,(2)
j

r12l
(2)TUnhψ

(2)dx+

∫ tn+1

tn
L12(Uh(t), t, Ĩ

(2)
j (t))dt,

(3.17)

for ψ(1)(x, t) satisfying the adjoint problem (3.4) with ∀Ψ(x) = ψ(x, tn+1) ∈ P k(Ij). Here

L11(Uh(t), t, Ĩ
(1)
j (t)) = −‘f11

j+ 1
2

ψ
(1),−
j+ 1

2

+ ‘f11
j− 1

2

ψ
(1),+

j− 1
2

+

∫
Ĩ

(1)
j (t)

f11ψ(1)
x (x, t)dx

+

∫
Ĩ

(1)
j (t)

(r11l
(1)T )xAUhψ

(1)(x, t) + r11l
(1)TFψ(1)(x, t)dx,

L12(Uh(t), t, Ĩ
(2)
j (t)) = −‘f12

j+ 1
2

ψ
(2),−
j+ 1

2

+ ‘f12
j− 1

2

ψ
(2),+

j− 1
2

+

∫
Ĩ

(2)
j (t)

f12ψ(2)
x (x, t)dx

+

∫
Ĩ

(2)
j (t)

(r12l
(2)T )xAUhψ

(2)(x, t) + r12l
(2)TFψ(2)(x, t)dx,

(3.18)
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where ψ
(1),±
j± 1

2

= ψ(1)(x
(1),±
j± 1

2

(t), t) and ”f11 at a cell boundary can be taken as a monotone flux, e.g.

the Lax-Friedrichs flux‘f11
j+ 1

2

(U) = r11(xj+ 1
2
)l(1)T (xj+ 1

2
)
¤�

(A · U − ν(1)

j+ 1
2

U)
j+ 1

2

.

ψ
(2),±
j± 1

2

= ψ(2)(x
(2),±
j± 1

2

(t), t) and ”f12 can be similarly defined at a cell boundary. We can similarly

obtain the EL DG scheme for u2
h.

(4) Fully discrete EL DG scheme with method-of-lines RK schemes.

To update (3.17) from Unh to Un+1
h , we first apply the forward Euler time discretization to get

1st order accuracy, then we generalize the scheme to general RK methods. There are two main

steps involved here. In order to describe the implementation procedure of the fully discrete EL DG

scheme, we define the L2 projection.

Definition 3.1. (L2 projection) Let u ∈ L2(Ω), M = {Ij}Nj=1 and M̃ = {Ĩj}Nj=1 be two different

meshes of the whole computational domain Ω. We have function spaces V k
h = {u : u|Ij ∈ P k(Ij),∀j}

and Ṽ k
h = {ũ : ũ|Ĩj ∈ P

k(Ĩj), ∀j} corresponding to meshes M and M̃ . The L2 projection of uM ∈ V k
h

onto space Ṽ k
h can be defined as, find ũM̃ ∈ Ṽ

k
h , s.t.∫

Ĩj

ũM̃ (x)ϕ(x)dx =

∫
Ĩj

uM (x)ϕ(x)dx, ∀ϕ ∈ Ṽ k
h . (3.19)

We denote ũM̃ (x) = Proj[uM (x);M,M̃ ]. The evaluation of the right hand side of (3.19) can be

done in a subinterval-by-subinterval fashion. The implementation details can be found in [12].

Then, we propose a fully discrete EL RK DG scheme with procedure as described:

1. Obtain the initial condition on upstream meshes Ĩ
(1)
j (tn) and Ĩ

(2)
j (tn) of (3.17) by U

(1)
h (tn) =

Proj[Unh ; Ij , Ĩ
(1)
j (tn)] and U

(2)
h (tn) = Proj[Unh ; Ij , Ĩ

(2)
j (tn)], which are the L2 projections of so-

lutions from the background mesh to the upstream mesh.

2. Update (3.17) from Unh to Un+1
h , component-by-component.

(a) Get the mesh information of the dynamic element Ĩ
(1)
j (t(l)), l = 0, ..., s on RK stages by

x̃
(1)

j± 1
2

(t) = xj± 1
2

+ (t − tn+1)ν
(1)

j± 1
2

. Here s = 1 for forward-Euler method and s = 2 for

Heun’s method (SSPRK2), see the blue domain in Figure 3.2 and for explicit midpoint

RK2 with intermediate stage in Figure 3.3.
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(b1) For forward-Euler method, compute∫
Ij

u1,n+1
h Ψ(x)dx =

∫
I
∗,(1)
j

r11l
(1)TUnhψ

(1),ndx+ ∆tL11(Unh , t
n, Ĩ

(1)
j (tn))

+

∫
I
∗,(2)
j

r12l
(2)TUnhψ

(2),ndx+ ∆tL12(Unh , t
n, Ĩ

(2)
j (tn))

=

∫
I
∗,(1)
j

r11l
(1)TUnhψ

(1),ndx+ ∆t
(
−‘f11

j+ 1
2

(U
(1)
h (tn))ψ

(1),n,−
j+ 1

2

+ ‘f11
j− 1

2

(U
(1)
h (tn))ψ

(1),n,+

j− 1
2

+

∫
I
∗,(1)
j

f11(U
(1)
h (tn))ψ(1)

x (x, tn)dx+

∫
I
∗,(1)
j

(r11l
(1)T )xAU

n
hψ

(1)(x, tn)dx

+

∫
I
∗,(1)
j

r11l
(1)TF (x, tn)ψ(1)(x, tn)dx

)

+

∫
I
∗,(2)
j

r12l
(2)TUnhψ

(2),ndx+ ∆t
(
−‘f12

j+ 1
2

(U
(2)
h (tn))ψ

(2),n,−
j+ 1

2

+ ‘f12
j− 1

2

(U
(2)
h (tn))ψ

(2),n,+

j− 1
2

+

∫
I
∗,(2)
j

f12(U
(2)
h (tn))ψ(2)

x (x, tn)dx+

∫
I
∗,(2)
j

(r12l
(2)T )xAU

n
hψ

(2)(x, tn)dx

+

∫
I
∗,(2)
j

r12l
(2)TF (x, tn)ψ(2)(x, tn)dx

)
(3.20)

where ∆tn = tn+1 − tn, U
(1)
h (tn) = Proj[Unh , {Ij}Nj=1, {I

∗,(1)
j }Nj=1] and

U
(2)
h (tn) = Proj[Unh , {Ij}Nj=1, {I

∗,(2)
j }Nj=1]. We compute the four integration terms of

(3.20)
∫
I
∗,(1)
j

r11l
(1)TUnhψ

(1),ndx,
∫
I
∗,(2)
j

r12l
(2)TUnhψ

(2),ndx,
∫
Ĩ

(1)
j (tn)

(r11l
(1)T )xAU

n
hψ

(1)(x, tn)dx

and
∫
Ĩ

(2)
j (tn)

(r12l
(2)T )xAU

n
hψ

(2)(x, tn)dx highlighted in blue with Unh on background meshes

in order to makes the scheme satisfy conservation. Thus they have to be evaluated

subinterval-by-subinterval since DG solution is discontinuous. In summary, we can get

u1,n+1
h on Ij by (3.20). Similarly, we can get u2,n+1

h on Ij .

0
1 1

1
2

1
2

Table 3.1: Heun’s method (SSPRK2) Butcher
Tableau

0
1
2

1
2

0 1

Table 3.2: Explicit midpoint RK2 Butcher
Tableau

(b2) For SSPRK2 method with Butcher tableau: 3.1, we get u1
h(t(1)) from (3.20), then com-

pute ∫
Ij

u1,n+1
h Ψ(x)dx =

∫
I
∗,(1)
j

r11l
(1)TUnhψ

(1),ndx+ 0.5∆tL11(Uh(t(1)), t(1), Ij)

+

∫
I
∗,(2)
j

r12l
(2)TUnhψ

(2),ndx+ 0.5∆tL12(Uh(t(1)), t(1), Ij),

(3.21)

where t(1) = tn+1, u1
h(t(1)) and u2

h(t(1)) are defined on background mesh Ij .
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(b3) For general RK methods with intermediate stages, we will update intermediate RK

solutions on background mesh as in [9]. For example, for a 2nd order RK method with

Butcher tableau 3.2. It has an intermediate stage at t(1) = tn + ∆t
2 , we propose the

following steps as [9], see Figure 3.3.

i. We denote the dynamic domain tracking Ij from t(1) to tn with speed ν
(1)

j± 1
2

at mesh

point xj± 1
2

as Ĩ
(1)
j,(1)(t), see the green domain in Figure 3.3. Ĩ

(2)
j,(1)(t) related to second

characteristic is defined similarly. Then we can update U
(1)
h on Ĩ

(1)
j,(1)(t) and Ĩ

(2)
j,(1)(t)

from tn to t(1) as in a forward-Euler method.

ii. We update Un+1
h on dynamic domain Ĩ

(1)
j (t) and Ĩ

(2)
j (t) from Unh with projection

onto I
∗,(1)
j and Uh(t(1)) with projection onto Ĩ

(1)
j,(1)(t

(1)).

Ĩ
(1)
j,(1)(t)

tn

tn+1

xj− 1
2

xj+ 1
2

x
?,(1)

j− 1
2

x
?,(1)

j+ 1
2Ĩ

(1)
j (tn) = I

?,(1)
j

Ĩ
(1)
j (tn+1) = Ij

Ĩ
(1)
j (t(1))

ν
(1

)
j−

1
2

ν
(1

)
j+

1 2

Figure 3.3: Update RK intermediate solution at background mesh (red line) from the first charac-
teristic family of a hyperbolic system.

Theorem 3.2. (Conservation) The proposed fully discrete ELDG scheme with strong stability

preserving Runge-Kutta (SSPRK) time discretization for (3.1) with F = 0 is locally conservative.

In particular, given a DG solution uh(x, tn) ∈ V k
h with a periodic boundary condition, we have

N∑
i=1

∫
Ij

Uh(x, tn+1)dx =

N∑
i=1

∫
Ij

Uh(x, tn)dx.

Proof. We firstly consider the forward Euler time discretization. Taking Ψ = 1 and F = 0 in the
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scheme (3.20), we have∫
Ω
u1,n+1
h dx =

∑
j

∫
Ij

u1,n+1
h dx

=
∑
j

[∫
I
∗,(1)
j

r11l
(1)TUnh dx+ ∆t

(
−‘f11

j+ 1
2

(U
(1)
h (tn)) + ‘f11

j− 1
2

(U
(1)
h (tn)) +

∫
I
∗,(1)
j

(r11l
(1)T )xAU

n
h dx

)]

+
∑
j

[∫
I
∗,(2)
j

r12l
(2)TUnh dx+ ∆t

(
−‘f12

j+ 1
2

(U
(2)
h (tn)) + ‘f12

j− 1
2

(U
(2)
h (tn)) +

∫
I
∗,(2)
j

(r12l
(2)T )xAU

n
h dx

)]

=
∑
j

(∫
I
∗,(1)
j

r11l
(1)TUnh dx+

∫
I
∗,(2)
j

r12l
(2)TUnh dx

)

+ ∆t
∑
j

(∫
I
∗,(1)
j

(r11l
(1)T )xAU

n
h dx+

∫
I
∗,(2)
j

(r12l
(2)T )xAU

n
h dx

)

=

∫
Ω

(r11l
(1)T + r12l

(2)T )Unh dx+ ∆t

∫
Ω

(r11l
(1)T + r12l

(2)T )xAU
n
h dx

=

∫
Ω
u1,n
h dx,

(3.22)

which follows from the cancellation of unique fluxes at cell boundaries, r11l
(1)T + r12l

(1)T = [1, 0]

and (3.8) with integration in a subinterval-by-subinterval fashion. The conservation for the fully

discrete ELDG scheme can be proved in a similar fashion.

Remark 3.3. To maintain the mass-conservative property, the choice of eigenvectors R(x) is not

necessarily exact for ELDG scheme, as long as R(x) and R−1(x) are a consistent pair throughout

the domain. We can also choose an approximation of the exact eigenvector if it is not easy to

obtain.

3.2 2D linear hyperbolic system

The solution for high-dimensional hyperbolic systems is given by means of a characteristic cone,

rather than individual characteristic lines [16]. Numerically, characteristic Galerkin [26] or evo-

lution Galerkin [2, 18, 19] methods have been proposed and developed to solve high dimensional

hyperbolic system. This method is constructed by taking into account information propagated in

all bicharacteristic directions and involving integrals around the characteristic cone. However, the

awkward integrals over the mantle, involving intermediate times, limit both the accuracy and the

stability of the resulting schemes. Thus the finite volume evolution Galerkin (FVEG) schemes are

introduced, which is in a predictor-corrector plus finite volume framework to get higher accuracy.

12



FVEG method has been developed in [24] and widely applied in [17, 24, 20], and the stability and

accuracy have been investigated in [21, 24, 23, 22]. Even though the FVEG method can achieve

high-order accuracy and stability with extra large step, the algorithm implementation is still very

complex for high-dimensional problems. In this paper, we use the dimensional splitting method for

higher dimensional problem.

Consider a first order 2D linear hyperbolic system

Ut + (A(x, y)U)x + (B(x, y)U)y = 0, (x, y) ∈ Ω. (3.23)

We assume that the computational domain Ω is rectangular, and it can be partitioned into rect-

angular meshes with each computational cell Ωij = [xi− 1
2
, xi+ 1

2
] × [yj− 1

2
, yj+ 1

2
], where we use the

piecewise Qk tensor-product polynomial spaces. Then we extend ELDG algorithm to 2D problems

via dimensional splitting [27].

Figure 3.4: Illustration of the 2D ELDG scheme via Strang splitting. k = 3.

1. We first locate (k + 1)2 tensor-product Gaussian nodes on cell Ωij : (xi,p, yj,q), p, q = 0, ..., k.

For example, see Figure 3.4 (left) for the case of k = 3.

2. Then, the equation (3.23) is split into two 1D hyperbolic problems based on the quadrature

nodes in both x− and y− directions:

Ut + (A(x, y)U)x = 0, (3.24)

Ut + (B(x, y)U)y = 0. (3.25)

Based on a 1D ELDG formulation, the split equations (3.24) and (3.25) are evolved via Strang

splitting over a time step ∆t as follows.
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• Evolve 1D equation (3.24) at different yj,q points for a half time-step ∆t/2, see Figure

3.4 (middle). For each yj,q, the (k + 1) point values are mapped to a P k polynomial

per cell, then the 1D system (3.24) is evolved by the proposed ELDG scheme. Finally,

we can map the evolved P k polynomial back to the (k + 1) point values to update the

solution.

• Evolve 1D system (3.25) at different xi,p points for a full time-step ∆t as above, see

Figure 3.4 (right).

• Evolve 1D system (3.24) at different yj,q points for another half time-step ∆t/2.

The splitting 2D ELDG formulation maintains high order accuracy in space, extra large time

stepping size with stability and conservation; and has a second order splitting error.

4 Numerical results

In this section, we show numerical results of the proposed scheme for several linear strict hyperbolic

systems including wave equation, Maxwell equation and linearized shallow water equation. We set

the time stepping size as ∆t = CFL
a ∆x for 1D and ∆t = CFL

a
∆x

+ b
∆y

for 2D, where a and b are maximum

eigenvalues of coefficient matrixes in x- and y-directions respectively. We use the classical Runge-

Kutta fourth order (RK4) method [14] for time discretization. We study the following aspects:

the spatial order of convergence by using small enough time stepping sizes, the spatial super-

convergence of the post-processed solutions [1, 7] produced by convolving the ELDG solution with

a suitable kernel consisting of B-splines for the purpose of improving spatial convergence rate, the

temporal order of convergence and numerical stability under a large time stepping size by varying

CFL for a fixed spatial mesh.

4.1 1D wave equations

In this part, we consider the 1D wave equation:

utt = (a2(x)ux)x + f(x, t). (4.1)

For simplicity, we assume periodic boundary conditions, and the velocity field a(x) is a continuous

non-zero and periodic function of space.
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Defining u1 = ut and u2 = ux, we can rewrite (4.1) as a linear system (3.1) with

U =

ï
u1

u2

ò
, A(x) =

ï
0 −a2(x)
−1 0

ò
, F (x, t) =

ï
f(x, t)

0

ò
.

We also have the corresponding notations for the eigen-decomposition of A(x):

• eigenvalue: λ(1)(x), λ(2)(x), where λ(1)(x) = a(x), λ(2)(x) = −a(x) for the 1D wave equa-

tion.

• A(x) = R(x)ΛR−1(x), where Λ(x) = diag(λ(1)(x), λ(2)(x)),

R(x) =

ï
r11(x) r12(x)
r21(x) r22(x)

ò
=

ï
−a(x) a(x)

1 1

ò
(4.2)

contains the right eigenvectors, and

R−1(x) =

l(1)
j

T

l
(2)
j

T

 =

ñ −1
2a(x)

1
2

1
2a(x)

1
2

ô
. (4.3)

contains the left eigenvectors.

Corresponding to (6.1) and (6.2) related to non-conservative EL DG scheme, we also have the

approximating constant eigen-decomposition

Rj =

ñ
r11
j r12

j

r21
j r22

j

ô
=

ï
−aj aj

1 1

ò
(4.4)

and

R−1
j =

l(1)
j

T

l
(2)
j

T

 =

ñ −1
2aj

1
2

1
2aj

1
2

ô
. (4.5)

Example 4.1. (1D wave equation with constant coefficient.) We consider the 1D wave equation

eq. (4.1) with constant coefficient a(x) = 1 and the source term f(x, t) = 0. The initial data is

u(x, 0) = sin(x), x ∈ [0, 2π] with periodic boundary condition. The exact solution is u(x, t) =

sin(x + t). For the constant coefficient problem, if using exact characteristic velocity fields for

space-time partition and exact eigenvectors, the proposed EL DG method is the same as SL DG,

then it is unconditionally stable. Here we perturb the characteristic velocity ν
(1)

j+ 1
2

in (3.5) at cell

boundaries and/or a(x) in (4.2) and (4.3) related to approximating eigenvectors to get ELDG,

ELDG1, ELDG2 and ELDG3 schemes respectively. Similarly we implement the non-conservative
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setting ELDG ELDG1 ELDG2 ELDG3

ν
(1)

j+ 1
2

in (3.5), ν
(2)

j+ 1
2

= −ν(1)

j+ 1
2

1 1 + sin(xj)∆x 1 1 + sin(xj)∆x

a(x) in (4.2) and (4.3) 1 1 1 + sin(x)∆x 1 + sin(x)∆x

setting NMC ELDG NMC ELDG1 NMC ELDG2 NMC ELDG3

ν
(1)

j+ 1
2

in (3.5), ν
(2)

j+ 1
2

= −ν(1)

j+ 1
2

1 1 + sin(xj)∆x 1 1 + sin(xj)∆x

aj in (4.4) and (4.5) 1 1 1 + sin(xj)∆x 1 + sin(xj)∆x

Table 4.3: The numerical parameters of ELDG, ELDG1, ELDG2, ELDG3 methods and NMC
ELDG, NMC ELDG1, NMC ELDG2, NMC ELDG3 methods for utt = uxx.

ELDG methods denoted as NMC ELDG, NMC ELDG1, NMC ELDG2 and NMC ELDG3. Related

parameters of these ELDG methods are given in Table 4.3.

Table 4.4 and 4.5 report spatial accuracies of the ELDG, ELDG1, ELDG2 and ELDG3 methods

for this example under the same time stepping size without and with post-processing technique

[1, 7]. We can observe the optimal convergence rate k+ 1 and 2k+ 1. We vary time stepping sizes,

with fixed well-resolved spatial meshes, and plot error vs. CFL in Figure 4.5 and 4.6 for ELDG,

ELDG1, ELDG2 and ELDG3 schemes without and with post-processed technique respectively, after

a long time T = 100. The plots from post-processed ELDG schemes better show the fourth order

temporal convergence. ELDG2 and ELDG3 perform comparably; they have a more restricted

time step constraint than ELDG1. It indicates that, stability is affected by approximations of

characteristic via the space-time partition and approximation of eigenvectors. We also note that,

in both Figure 4.5 and 4.6, the CFL allowed with stability is much larger than that of the RK

DG method which is 1
2k+1 . Further, we verify the conservative property of the ELDG schemes

are around machine precision and the non-conservative property of the NMC ELDG schemes is

presented in Figure 4.7.

Mesh L1 error Order L1 error Order L1 error Order L1 error Order

P 1 ELDG P 1 ELDG1 P 1 ELDG2 P 1 ELDG3

20 2.54E-03 – 2.42E-03 – 2.55E-03 – 2.49E-03 –
40 6.18E-04 2.03 5.97E-04 2.02 6.18E-04 2.04 5.99E-04 2.06
80 1.58E-04 1.96 1.55E-04 1.94 1.58E-04 1.96 1.55E-04 1.95
160 3.66E-05 2.11 3.62E-05 2.10 3.66E-05 2.11 3.62E-05 2.10

P 2 ELDG P 2 ELDG1 P 2 ELDG2 P 2 ELDG3

20 5.92E-05 – 6.91E-05 – 6.01E-05 – 7.02E-05 –
40 7.48E-06 – 7.83E-06 3.14 7.49E-06 3.00 7.81E-06 3.17
80 9.17E-07 3.03 9.29E-07 3.08 9.17E-07 3.03 9.29E-07 3.07
160 1.17E-07 2.97 1.18E-07 2.98 1.17E-07 2.97 1.18E-07 2.98

Table 4.4: 1D wave equation with constant coefficient. utt = uxx with initial condition u(x, 0) =
sin(x) at T = 1. We use CFL = 0.3 and CFL = 0.18 with RK4 time discretization for all P 1 and
P 2 respectively. The error for only u1 = ut was shown in this table.
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Mesh L1 error Order L1 error Order L1 error Order L1 error Order

P 1 ELDG P 1 ELDG1 P 1 ELDG2 P 1 ELDG3

20 2.26E-04 – 2.49E-04 – 2.38E-04 – 2.39E-04 –
40 2.36E-05 3.26 2.40E-05 3.38 2.40E-05 3.31 2.35E-05 3.35
80 2.66E-06 3.15 2.64E-06 3.18 2.67E-06 3.16 2.62E-06 3.16
160 3.15E-07 3.08 3.11E-07 3.08 3.15E-07 3.09 3.11E-07 3.08

P 2 ELDG P 2 ELDG1 P 2 ELDG2 P 2 ELDG3

20 2.15E-06 – 2.27E-06 – 2.19E-06 – 2.28E-06 –
40 3.63E-08 5.89 3.86E-08 5.87 3.67E-08 5.90 3.89E-08 5.87
80 6.40E-10 5.83 6.79E-10 5.83 6.46E-10 5.83 6.84E-10 5.83
160 1.27E-11 5.66 1.33E-11 5.68 1.28E-11 5.66 1.34E-11 5.68

Table 4.5: 1D wave equation with constant coefficient. utt = uxx with initial condition u(x, 0) =
sin(x) at T = 1. We use CFL = 0.3 and CFL = 0.18 with RK4 time discretization and post-
processed technique for all P 1 and P 2 respectively. The error with post-processed technique for
only u1 = ut was shown in this table.

Figure 4.5: The L∞ error versus CFL of ELDG methods, ELDG1, ELDG2 and ELDG3 methods
for 1D wave equation with constant coefficient: utt = uxx with initial condition u(x, 0) = sin(x). A
long time simulation is performed with T = 100 and mesh size N = 160.

Figure 4.6: The L∞ error versus CFL of ELDG methods, ELDG1, ELDG2 and ELDG3 methods
with post-processed technique for 1D wave equation with constant coefficient: utt = uxx with
initial condition u(x, 0) = sin(x). A long time simulation is performed with T = 100 and mesh size
N = 160.
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Figure 4.7: The error of mass versus time of ELDG2, ELDG3, NMC ELDG2 and NMC ELDG3
methods for 1D wave equation with constant coefficient: utt = uxx with initial condition u(x, 0) =
sin(x). A long time simulation T = 100 is performed with meshes N = 160, CFL = 0.1 and RK4
time discretization.

Example 4.2. Then, we test the ELDG schemes for eq. (4.1) with a Gaussian initial condition

u1 = exp

Å
− x2

0.005

ã
, u2 = 0.

The computational domain is [−1, 1] with the periodic boundary conditions. The exact solutions

u1 = 0.5
[
exp

(
− (x+t)2

0.005

)
+ exp

(
− (x−t)2

0.005

)]
and u2 = 0.5

[
exp

(
− (x+t)2

0.005

)
− exp

(
− (x−t)2

0.005

)]
are the

superposition of two Gaussian functions with a periodic extensions. We plot u1 ELDG3 with P 1

and P 2 numerical solutions at time T = 50.5 for this system in Figure 4.8. We can observed that

there is no significant phase difference with a long time simulation, meanwhile the dissipation can

be improved by the mesh refinement and higher order spatial approximation.

Figure 4.8: Plots of the exact and numerical solutions u1 at time T = 50.5 of ELDG3 scheme for
solving utt = uxx with Gaussian function initial condition. The mesh size of N = 80 and N = 320
are used. Left: k = 1 ELDG3 with CFL = 1.5. Right: k = 2 ELDG3 with CFL = 0.9.

Example 4.3. Next, we test the ELDG schemes for eq. (4.1) on [0, 2π] with the periodic boundary
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conditions and the following discontinuous initial condition

u1
0(x) =

1, if 0.95π ≤ x ≤ 1.05π,

0.5, otherwise,

u2
0(x) = 1.

(4.6)

The exact solutions u1 and u2 are discontinuous piecewise constants with moving discontinuities.

It is a challenging test for controlling oscillations around discontinuities. We adopt a simple TVD

limiter on background mesh at each RK stages with M = 0 in [8] for all schemes. As shown in

Figure 4.5, the CFL constraint with stability is slightly less than 1 for ELDG3 scheme. We plot

the numerical solutions u1 of ELDG3 scheme with P 1 and P 2, CFL = 0.9 in Figure 4.9. It is found

that oscillations are well controlled with the TVD limiter and ELDG method performs well for

large time stepping size. Moreover, we track the conservation of ELDG methods VS NMC ELDG

methods for eq. (4.1) and present results in Figure 4.10. It shows that the ELDG schemes maintain

the conservation at the level of machine error, while the NMC ELDG schemes do not.

Figure 4.9: Plots of the numerical solutions u1 of ELDG3 scheme with TVD limiter for solving
utt = uxx with step function initial condition. The final integration time T is 2.85. The mesh of
160 is used. Left: k = 1 ELDG3+TVDlimiter with CFL = 1.5. Right: k = 2 ELDG3+TVDlimiter
with CFL = 0.9.

Example 4.4. (1D wave equation with variable coefficient and source term.) We consider the 1D

wave equation eq. (4.1) with variable coefficient a(x) = 2+sin(x) and exact solution u(x, t) = sin(x−

2t) is periodic on [0, 2π]. The source term is f(x, t) = −4 sin(x−2t)+sin(x−2t)(2+sin(x))2−2(2+

sin(x)) cos(x) cos(x−2t). For computation, we choose mesh velocity ν
(1)

j+ 1
2

= a(xj+ 1
2
), ν

(2)

j+ 1
2

= −ν(1)

j+ 1
2

and exact eigenvectors with a(x) = 2 + sin(x) in (4.2) and (4.3).

The expected optimal spatial accuracies of the ELDG methods without and with post-processing

technique are shown in Table 4.6 and Table 4.7 respectively. In Figure 4.11 and 4.12, we plot the
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Figure 4.10: The error of mass versus time of ELDG2, ELDG3, NMC ELDG2 and NMC ELDG3
methods with TVD limiter for 1D wave equation with constant coefficient: utt = uxx with initial
condition step function. T = 2.85, N = 160, CFL = 0.9 and RK4 time discretization are performed
for the simulation.

Mesh L1 error Order L2 error Order L∞ error Order

P 1

20 5.20E-03 – 6.70E-03 – 2.39E-02 –
40 1.32E-03 1.98 1.74E-03 1.94 6.54E-03 1.87
80 3.28E-04 2.00 4.40E-04 1.99 1.68E-03 1.96
160 8.11E-05 2.02 1.09E-04 2.01 4.16E-04 2.01

P 2

20 1.16E-04 – 1.61E-04 – 5.48E-04 –
40 1.48E-05 2.97 2.01E-05 3.00 6.70E-05 3.03
80 1.88E-06 2.98 2.46E-06 3.03 7.84E-06 3.10
160 2.31E-07 3.02 3.13E-07 2.98 1.04E-06 2.91

Table 4.6: 1D wave equation with variable coefficient and source term. utt = (a2(x)ux)x + f(x, t)
with initial condition u(x, 0) = cos(x). T = 1. We use CFL = 0.1 for P 1 and P 2 with RK4 time
discretization. The error for only u1 = ut was shown in this table.

Mesh L1 error Order L2 error Order L∞ error Order

P 1

20 9.10E-04 – 1.07E-03 – 1.91E-03 –
40 1.07E-04 3.09 1.26E-04 3.09 2.26E-04 3.08
80 1.29E-05 3.05 1.53E-05 3.05 2.75E-05 3.04
160 1.58E-06 3.02 1.88E-06 3.02 3.39E-06 3.02

P 2

20 5.34E-06 – 6.39E-06 – 1.56E-05 –
40 8.95E-08 5.90 1.03E-07 5.96 2.82E-07 5.79
80 1.73E-09 5.69 1.94E-09 5.73 3.32E-09 6.41
160 6.62E-11 4.71 7.59E-11 4.67 1.46E-10 4.51

Table 4.7: 1D wave equation with variable coefficient and source term. utt = (a2(x)ux)x + f(x, t)
with initial condition u(x, 0) = cos(x). T = 1. We use CFL = 0.1 for P 1 and P 2 with post-
processed technique and RK4. The error for only u1 = ut was shown in this table.

L∞ error versus CFL of EL DG methods without and with post-processing technique respectively.

The following observations are made: (1) The high order accuracy of the RK method reduce the
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Figure 4.11: The L∞ error versus CFL of ELDG method for utt = (a2(x)ux)x + f(x, t) with initial
condition u(x, 0) = cos(x). T = 1. ∆t = CFL∆x.

Figure 4.12: The L∞ error versus CFL of ELDG method with post-processed technique for utt =
(a2(x)ux)x + f(x, t) with initial condition u(x, 0) = cos(x). T = 1. ∆t = CFL∆x.

error magnitude when large time stepping size is used; (2) The ELDG methods with RK4 time

discretization perform well around and before CFL = 1, which is well above the stability constraint

of the RK DG method 1/(2k + 1) for P k approximations. (3) After CFL = 1 and before stability

constraint of the method, the temporal convergence order is observed to be consistent with the

order of RK discretization; (4) The EL DG methods with post-processing technique have smaller

error magnitute than those without post-processing.

4.2 2D wave equations

Example 4.5. (Two-dimensional linear system with constant coefficient matrices.) The second

order wave equation utt = uxx + uyy can be written as the following first order linear hyperbolic
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system: 

Ç
u

v

å
t

+

Ç
−1 0

0 1

åÇ
u

v

å
x

+

Ç
0 −1

−1 0

åÇ
u

v

å
y

=

Ç
0

0

å
,

u(x, y, 0) = 1
2
√

2
sin(x+ y)− 1

2
√

2
cos(x+ y),

v(x, y, 0) =
√

2−1
2
√

2
sin(x+ y) +

√
2+1

2
√

2
cos(x+ y)

(4.7)

with period boundary conditions in both x and y directions. The exact solution is{
u(x, y, t) = 1

2
√

2
sin(x+ y +

√
2t)− 1

2
√

2
cos(x+ y −

√
2t),

v(x, y, t) =
√

2−1
2
√

2
sin(x+ y +

√
2t) +

√
2+1

2
√

2
cos(x+ y −

√
2t).

(4.8)

We notice that the two matrices in equation (4.7) don’t commute, thus the linear system can not

be reduced to 2-D scalar problems. We test accuracy for Qk ELDG methods with RK4 and 4th

splitting method [4] at T = 1 for k = 1, 2 with CFL = 0.1 in Table 4.8. As expected, the (k+ 1)th

order convergence is observed for these methods. We plot the L∞ error versus CFL of ELDG

methods with Q1 (left) and Q2 (right) polynomial spaces for this case with Strang splitting and 4th

order splitting in Figure 4.13, which shows that second and forth order splitting errors are dominant

when time-stepping sizes are large enough. The CFL constraint with stability for ELDG method

is larger than that for general RK DG method when high order time discretization is applied.

Mesh L1 error Order L2 error Order L∞ error Order

Q1

202 8.03E-04 – 9.47E-04 – 1.85E-03 –
402 2.16E-04 1.89 2.50E-04 1.92 4.56E-04 2.02
802 5.57E-05 1.96 6.40E-05 1.97 1.13E-04 2.02
1602 1.43E-05 1.96 1.64E-05 1.97 2.84E-05 1.99

Q2

202 1.70E-04 – 1.90E-04 – 3.12E-04 –
402 2.21E-05 2.95 2.47E-05 2.94 4.14E-05 2.91
802 2.75E-06 3.00 3.08E-06 3.00 5.21E-06 2.99
1602 3.38E-07 3.02 3.80E-07 3.02 6.45E-07 3.01

Table 4.8: Two-dimensional linear system with constant coefficient matrices. Qk EL DG methods
(k = 1, 2) with RK4 and 4th splitting time discretization methods for (4.7) with the smooth initial
condition at T = 1. CFL = 0.1.

Example 4.6. (Two-dimensional linear system with variable coefficient matrices.) The second

order wave equation utt = (a2(x, y)ux)x + (b2(x, y)uy)y can be written as the following first order

linear hyperbolic system by taking u1 = ut, u2 = ux, u3 = uy:
Ö
u1

u2

u3

è
t

+


Ö

0 −(a(x, y))2 0

−1 0 0

0 0 0

èÖ
u1

u2

u3

è
x

+


Ö

0 0 −(b(x, y))2)

0 0 0

−1 0 0

èÖ
u1

u2

u3

è
y

=

Ö
0

0

0

è
.

(4.9)

22



Figure 4.13: The L∞ error versus CFL of ELDG method with Strang splitting and 4th splitting,
RK4 time discretization for (4.7) at T = 1.

Next we consider the system (4.9) with the initial condition
u1(x, y, 0) = 2 cos(x+ y),

u2(x, y, 0) = cos(x+ y),

u3(x, y, 0) = cos(x+ y),

(4.10)

where a(x, y) = 1+0.5 sin(x+y), b(x, y) =
√

(4− (1 + 0.5 sin(x+ y))2) and the boundary condition

is periodic in both x and y directions. The exact solution is
u1(x, y, t) = 2 cos(x+ y + 2t),

u2(x, y, t) = cos(x+ y + 2t),

u3(x, y, t) = cos(x+ y + 2t).

(4.11)

We report the spatial accuracy of Qk ELDG methods in Table 4.9. The expected optimal conver-

gence is observed. We plot the L∞ error versus CFL of ELDG methods in Figure 4.14. The ELDG

methods perform as well as that for the linear system with constant coefficient matrices, and the

CFL allowed with stability is much larger than that of the RK DG method.

4.3 2D Maxwell equations

Example 4.7. Consider the 2D Maxwell equations:
∂Hx
∂t + ∂Ez

∂y = 0,
∂Hy

∂t −
∂Ez
∂x = 0,

∂Ez
∂t −

∂Hy

∂x + ∂Hx
∂y = 0,

(4.12)

which is a linear hyporbolic system and can be written as

Ut +AUx +BUy = 0, (4.13)
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Mesh L1 error Order L2 error Order L∞ error Order

Q1

202 1.89E-03 – 2.46E-03 – 5.29E-03 –
402 4.58E-04 2.05 6.01E-04 2.03 1.26E-03 2.07
802 1.13E-04 2.02 1.50E-04 2.00 3.10E-04 2.02
1602 2.81E-05 2.01 3.73E-05 2.01 7.67E-05 2.01

Q2

202 2.95E-04 – 3.66E-04 – 8.43E-04 –
402 4.06E-05 2.86 4.91E-05 2.90 1.01E-04 3.07
802 5.15E-06 2.98 6.20E-06 2.99 1.30E-05 2.95
1602 6.49E-07 2.99 7.80E-07 2.99 1.63E-06 2.99

Table 4.9: Two-dimensional linear system with variable matrices. Qk ELDG methods (k = 1, 2)
with RK4 and 4th splitting time discretization methods for (4.9) with the smooth initial condition
at T = 0.1, CFL = 0.1.

Figure 4.14: The L∞ error versus CFL of ELDG method with Strang splitting and 4th splitting,
RK4 time discretization for (4.9). T = 1, mesh size 402.

where

U =

u1

u2

u3

 =

EzHx

Hy

 , A =

 0 0 −1
0 0 0
−1 0 0

 , B =

0 1 0
1 0 0
0 0 0

 .
We take the computational domain [−1, 1]× [−1, 1] with periodic boundary condition and the

Gaussian function initial condition:
u1(x, y, 0) = exp(−x2+y2

0.005 ),

u2(x, y, 0) = 0,

u3(x, y, 0) = 0.

(4.14)

For this example, we show the numerical ELDG Q2 solution u1 at times T = 0.5, 1, 1.5, 2 in Figure

4.15.
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Figure 4.15: Plots of the ELDG numerical solutions u1 = Ez and their contour plots at T =
0.5, 1, 1.5, 2 for 2D Maxwell equation (4.13) with Gaussian function initial condition. The mesh of
80× 80 is used with 4th splitting method and RK4 time discretization, CFL = 1.
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4.4 2D linearized shallow water equations

In this part, we consider the following linearized shallow water system which is a derivation from

oceanic shallow water model [11]: Consider the 2D Maxwell equations:

∂

∂t

 φ
Φu
Φv

+
∂

∂x

Φu
Φφ
0

+
∂

∂y

Φv
0

Φφ

 =

 0
fΦv − rΦu+ τx

ρ

−fΦu− rΦv +
τy
ρ

 , (4.15)

where φ is the geopotential height, Φ > 0 is a constant mean flow geopotential height, (u, v) is the

perturbed velocity, γ ≥ 0 is the bottom friction, (τx, τy) is the wind stress, ρ is the water density,

and f = f0 + β(y − ym) is the Coriolis parameter, where f0, β, ym are constants. The linearized

shallow water equations is a linear hyporbolic system

Ut +AUx +BUy = F in Ω, (4.16)

where

U =

 φ
Φu
Φv

 , A =

0 1 0
Φ 0 0
0 0 0

 , B =

0 0 1
0 0 0
Φ 0 0

 , F =

 0
fΦv − γΦu+ τx

ρ

−fΦu− γΦv +
τy
ρ

 .
Example 4.8. We take Φ = 1, f = 0, γ = 0, and (τx, τy) = 0, which implies F = 0. The

computational domain Ω is taken as [−1, 1] × [−1, 1] with periodic boundary condition and the

discontinuous initial condition: 
φ(x, y, 0) =

®
1, if y ≥ x,
0.5, otherwise,

u(x, y, 0) = 1,

v(x, y, 0) = 1.

(4.17)

For this example, we also use TVD limiter and show the numerical ELDG Q2 solution (φ, u, v) at

times T = 0.5 in Figure 4.16. Here we use CFL = 1, and we can clearly observed the good results

with this extra lager time step.

Example 4.9. We also consider the linear Kelvin wave by taking Φ = 1, f0 = ym = 0, β = 1, γ = 0,

and (τx, τy) = 0, which implies F = [0, yv,−yu]T . The computational domain Ω is chosen as

[−10, 10]× [−5, 5] with periodic boundary condition. We consider the following exact solution:
φ = 1 + exp(−y2

2 ) exp(− (x+5−t)2

2 ),

u = exp(−y2

2 ) exp(− (x+5−t)2

2 ),

v = 0.

(4.18)
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Figure 4.16: Plots of the ELDG Q2 numerical solutions (φ, u, v) (from top to bottom) and their
contour plots at T = 0.5 for 2D linearized shallow water equation (4.15) with Gaussian function
initial condition. The mesh of 80×80 is used with 4th splitting method and RK4 time discretization,
CFL = 1.

5 Conclusion

In this paper, we have developed a conservative Eulerian-Lagrangian discontinuous Galerkin (EL

DG) method for linear hyperbolic systems. The new framework track the information of each char-

acteristic family by the corresponding characteristic region, and combine in a conservative fashion.

The method inherits advantages in stability under large time stepping sizes, and in conservation,

compactness and high order accuracy. These advantages are numerically verified by extensive
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numerical tests for 1D and 2D linear wave equations. Future works include further theoretic devel-

opment and application of ELDG methods for nonlinear hyperbolic problems.

6 Appendix

6.1 Non-conservative EL DG scheme

In this part, we formulate the scheme by a localized characteristic field. In particular, a piecewise

constant aj approximating a(x) in (3.3) is defined on Ij , and the corresponding

Rj
.
=
î
r

(1)
j | r

(2)
j

ó
=

ñ
r11
j r12

j

r21
j r22

j

ô
(6.1)

and

R−1
j

.
=

l(1)
j

T

l
(2)
j

T

 (6.2)

Define l
(1)
j

T
is locally defined on Ω

(1)
j approximating l(1)T (x). For simplicity, we only present the

first order EL DG scheme. Take the vector product of l
(1)
j

T
from left with (3.1), we have a scalar

equation

l
(1)
j

T
(Ut + (A(x)U)x) = l

(1)
j

T
F (x, t). (6.3)

Next, integrating over the space-time interval Ĩ
(1)
j (t), then we have

d

dt

∫
Ĩ

(1)
j (t)

(l
(1)
j

T
U)dx+ l

(1)
j

T
(A(x)U − ν(1)

j+ 1
2

U)|
x̃

(1)

j+ 1
2

(t)
− l(1)

j

T
(A(x)U − ν(1)

j− 1
2

U)|
x̃

(1)

j− 1
2

(t)

=

∫
Ĩ

(1)
j (t)

l
(1)
j

T
F (x, t)dx.

(6.4)

The first order EL DG discretization of eq. (6.4) is to find l
(1)
j Uh(x, t) ∈ P 0(Ĩ

(1)
j (t)), so that

d

dt

∫
Ĩ

(1)
j (t)

l
(1)
j

T
Uhdx = −

ñ
l
(1)
j

T ¤�
(A(x)Uh − ν

(1)

j+ 1
2

Uh)|j+ 1
2

ô
+

ñ
l
(1)
j

T ¤�
(A(x)Uh − ν

(1)

j− 1
2

Uh)|j− 1
2

ô
+

∫
Ĩ

(1)
j (t)

l
(1)
j

T
F (x, t)dx

.
= L1(Uh(t), t, Ĩ

(1)
j (t)).

(6.5)

Here
¤�

(A(x)Uh − ν
(1)

j+ 1
2

Uh) at a cell boundary can be taken as a monotone flux, e.g. the Lax-Friedrichs

flux¤�
(AU − ν(1)

j+ 1
2

U)
j+ 1

2

=
1

2

(
A(x+

j+ 1
2

)U+
j+ 1

2

− ν(1)

j+ 1
2

U+
j+ 1

2

+A(x−
j+ 1

2

)U−
j+ 1

2

− ν(1)

j+ 1
2

U−
j+ 1

2

− α1,2(U+
j+ 1

2

− U−
j+ 1

2

)
)
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where α1,2 = max{|λ(1)(xj+ 1
2
)−ν(1)

j+ 1
2

|, |λ(2)(xj+ 1
2
)−ν(2)

j+ 1
2

|}. Similarly, we can easily update l
(2)
j

T
Uh

related to λ(2) in the following:

d

dt

∫
Ĩ

(2)
j (t)

l
(2)
j

T
Uhdx = −

ñ
l
(2)
j

T ¤�
(A(x)Uh − ν

(2)

j+ 1
2

Uh)|j+ 1
2

ô
+

ñ
l
(2)
j

T ¤�
(A(x)Uh − ν

(2)

j− 1
2

Uh)|j− 1
2

ô
+

∫
Ĩ

(2)
j (t)

l
(2)
j

T
F (x, t)dx

.
= L2(Uh(t), t, Ĩ

(2)
j (t)),

(6.6)

where l
(2)
j

T
is a constant vector, locally defined on Ĩ

(2)
j (t) approximating l(2)T (x). A simple first

order EL DG scheme is composed by two evolution equations (6.5) and (6.6). That is, we can

update u1
h by (6.5), (6.6) and u1

h = (r11
j l

(1)
j

T
+ r12

j l
(2)
j

T
)Uh:∫

Ij

u1,n+1
h dx =

∫
Ij

r11
j l

(1)
j

T
Un+1
h dx+

∫
Ij

r12
j l

(2)
j

T
Un+1
h dx

= r11
j

∫
I
∗,(1)
j

l
(1)
j

T
Unh dx+ r11

j

∫ tn+1

tn
L1(U

(1)
h (t), t, Ĩ

(1)
j (t))dt

+ r12
j

∫
I
∗,(2)
j

l
(2)
j

T
Unh dx+ r12

j

∫ tn+1

tn
L2(U

(2)
h (t), t, Ĩ

(2)
j (t))dt,

(6.7)

where Unh and Un+1
h are defined on the background mesh Ij , U

(1)
h (t) and U

(2)
h (t) are defined on the

space-time dynamic meshes Ĩ
(1)
j (t) and Ĩ

(2)
j (t) respectively. Similarly, we can update u2

h.

We apply forward-Euler method for time discretization with above EL DG scheme (6.7):∫
Ij

u1,n+1dx

= r11
j

∫
I
∗,(1)
j

l
(1)
j

T
Undx−∆t r11

j l
(1)
j

T
ñ ¤�

(A(x)Un − ν(1)

j+ 1
2

Un)|
x
?,(1)

j+ 1
2

− ¤�
(A(x)U − ν(1)

j− 1
2

U)|
x
?,(1)

j− 1
2

ô
+ r12

j

∫
I
∗,(2)
j

l
(2)
j

T
Undx−∆t r12

j l
(2)
j

T
ñ ¤�

(A(x)Un − ν(2)

j+ 1
2

Un)|
x
?,(2)

j+ 1
2

− ¤�
(A(x)U − ν(2)

j− 1
2

U)|
x
?,(2)

j− 1
2

ô
.

(6.8)

Remark 6.1. The above EL DG scheme is not conservative for two reasons:

(1) Flux terms can’t cancel each other as r11
j l

(1)
j

T
and r12

j l
(2)
j

T
are discontinuous across cell bound-

ary of Ω
(1)
j ,Ω

(2)
j .

(2)
∑

j r
11
j

∫
I
∗,(1)
j

l
(1)
j

T
Undx + r12

j

∫
I
∗,(2)
j

l
(1)
j

T
Undx 6=

∑
j

∫
Ij
Undx because of the inconsistency in

characteristic transformations between neighboring cells among r11
j l

(1)
j

T
and r12

j l
(2)
j

T
.

6.2 The notation of test function

We give some notations which is used in the implementation of the fully discrete EL DG scheme

with RK time discretization. For convenience, we only give the definitions related to Ω
(1)
j below
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because we can similarly get the definitions related to Ω
(2)
j . As scalar case, we take test function

ψ(1)(x, t) as ψ
(1)
j,m(x, t) = Ψj,m(x − α(1)(t − tn+1)) in the adjoint problem which is a set of basis of

P k(Ĩ
(1)
j (t)), where Ĩ

(1)
j (t) is donated by a domain related λ(1) as Ĩj(t) in scalar problem. Here, we

also take Ψj,m as orthogonal basis on Ij , and let

u
1,(1)
h (x, t) =

k∑
l=0

û
1,(1);(l)
j (t)ψ

(1)
j,l (x, t), on Ĩ

(1)
j (t), (6.9)

where û1,(1);(l) are coefficients for the basis. Let Û
1,(1)
j (t) = (û

1,(1);(0)
j (t), · · · , û1,(1);(k)

j (t))T be the

coefficient vector of size (k + 1)× 1. Then we have[∫
Ĩ

(1)
j (t)

u
1,(1)
h (x, t)ψ

(1)
j,0 (x, t)dx, ...,

∫
Ĩ

(1)
j (t)

u
1,(1)
h (x, t)ψ

(1)
j,k (x, t)dx

]T
= Û

1,(1)
j (t), ∀t ∈ [tn, tn+1].

Û
2,(1)
j (t) can be similarly defined. Similar definition can be made to Ω

(2)
j and ψ(2)(x, t) for the

second characteristics family.
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