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Abstract

The usual practice in Statistical Process Monitoring techniques assumes that the data distri-
bution is known and the related parameters are accurately estimated. In practice, the underlying
distribution and its parameters are rarely known, and control charts need to be constructed with
parameters being estimated. Such issues have recently received an increasing attention in eval-
uating the properties of both parametric and nonparametric charts. However, the same study
is seldom conducted for the control charts based on the data-driven tools. In this paper, we
investigated the in-control performance of a nonparametric control chart based on the Support
Vector Data Description (SVDD) theory. More specifically, we discuss the conditional effect of
the training Phase-I samples on the Phase-II efficiency when different distributions are consid-
ered. Simulation results show that the conditional performance of the SVDD-based chart can
be strongly affected by the Phase-I samples. It this situation, adjusted control limits with a
specific number of available training sample is suggested.

Keywords: Support Vector Data Description; Control Chart; Phase-I; Phase-II; Conditional
Performance

1 Introduction
Control charts as Statistical Process Monitoring (SPM) schemes play a crucial role in a variety of
manufacturing and service fields, like, for example, in monitoring the non-conforming items in the
production industry, the diseases outbreak in public-health surveillance, or the climate changes in
meteorology. Some of these areas have drawn significant attention of many researchers, see Woodall
(2006), Chen et al. (2015), Tanveer et al. (2019). In all of these situations, at least two essential
characteristics are primarily recorded and the use of univariate control charts to monitor these quality
characteristics separately is known to be misleading. Therefore, various multivariate schemes have
been proposed for the simultaneous monitoring of correlated variables. The most frequently used
multivariate charts, such as the Hotelling T 2 chart, the Multivariate Cumulative Sum (MCUSUM)
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chart and the Multivariate Exponentially Weighted Moving Average (MEWMA) chart, are generally
confined to the monitoring of the mean vector of multivariate normal processes.

However, in many applications, when the multivariate normality assumption is often questionable
or the actual distribution is unknown, these parametric schemes may potentially be (highly) affected.
For univariate processes, several studies have shown that a departure from normality severely dete-
riorates the monitoring properties of schemes based on the normal theory, see Graham et al. (2017),
Asghari et al. (2018), Castagliola et al. (2018), Tang et al. (2019), Alevizakos et al. (2020). This
situation is exacerbated for multivariate processes as the multivariate normality is even more uncom-
mon than the univariate one. Therefore, in recent years, a host of nonparametric multivariate SPM
schemes have emerged as attractive alternatives to multivariate parametric ones. For example, Zou
and Tsung (2011) developed a multivariate EWMA scheme for monitoring process location by using
a sign test as the statistic. Zou et al. (2012) further considered using the spatial ranks statistic, and
they proposed a multivariate self-starting rank-based EWMA chart for monitoring process location.
Holland and Hawkins (2014) developed a nonparametric scheme using an approximately distribution-
free multivariate Wilcoxon-Mann-Whitney test. Mahmoud and Maravelakis (2013) and Dovoedo and
Chakraborti (2016) investigated the effect of parameter estimation on the conditional performance
of the multivariate CUSUM and EWMA charts, respectively. Huwang et al. (2019) studied the prop-
erties of the nonparametric EWMA chart for monitoring the shape matrix of a multivariate process.
Readers are recommended to refer to Qiu (2018), Chakraborti and Graham (2019) for an extensive
review of the literature on nonparametric charts. However, it is essential to note that, a significant
part of the nonparametric schemes mention above still have some crucial prerequisites in describing
the data, see Ning and Tsung (2013), Singh and Prasher (2019). For example, the continuity for
the process variables is a common prerequisite in most of the nonparametric schemes focusing on
the signs or the signed-ranks of the observations. Unfortunately, many processes do not meet such a
prerequisite, and it is therefore highly desirable to propose SPM schemes for monitoring mixed-type
data process (with both categorical and continuous variables) with different marginal distributions,
see Ning and Tsung (2013).

As a boundary-based scheme, the Support Vector Data Description (SVDD) method only checks
the distance between the new observations and the optimal boundary generated by the so called
support vectors. Thus, SVDD-based control charts can generate an adaptable in-control region re-
gardless of how the target data are distributed. Such flexibility makes it a highly active topic in
modern nonparametric developments. Sun and Tsung (2003) first created a kernel distance-based
chart (denoted as the K chart). Then, Kumar et al. (2006) further explored the over-fitting issues of
the K chart in the presence of outliers. Sukchotrat et al. (2009) developed a robust parameter design
strategy for a SVDD-based chart, whose control limits are established depending on the estimated
percentile of the kernel distance. Gani et al. (2011) evaluated the performance of the K chart in a
real industrial application, and the results showed that this K chart is more sensitive than the T 2

chart for detecting small shifts in the mean vector. Finally, Ning and Tsung (2013) investigated three
design approaches for the parameter selection for a SVDD-based chart.

Both parametric and nonparametric SPM schemes are implemented in two stages: 1) in Phase-I,
some preliminary analysis based on a training data set are performed, and in-control parameters are
estimated, 2) in Phase-II, the in-control parameters obtained during the Phase-I are used to establish
appropriate control limits for the monitoring of new incoming data. It is important to note that dif-
ferent Phase-I datasets (reference sample) will result in different parameter estimates. Consequently,
the control limits and the chart’s performance will vary across practitioners. An extensive amount
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of researches has been done on parametric charts with estimated parameters, and most of which
are about the monitoring of the mean, e.g. Saleh et al. (2015), Hu et al. (2018), the variance, e.g.
Castagliola and Maravelakis (2011), Diko et al. (2017) and the median, e.g. Cheng et al. (2018),
Tang et al. (2019). All of them have indicated that the use of estimated parameters seriously affects
the in-control properties of the parametric control charts. Although many conditional designs of
parametric control charts have been reported in other journals, relatively little attention has been
devoted to the design of multivariate nonparametric control charts when the process parameters
are unknown with few exceptions like Dovoedo and Chakraborti (2016). In the work of Dovoedo
and Chakraborti (2016), they investigated the in-control performance of the MSEWMA sign chart
in the unknown parameter case, and they found that an extremely large reference sample is needed
to estimate parameters so that the chart can have identical performance as the known parameter case.

Clearly, the conditional performance topic has emerged as an important research area in the
SPM literature. But, to the best of our knowledge, similar investigations have not been conducted
for control charts based on the SVDD theory. The current research addresses this issue and it makes
contributions in three aspects: (i) it investigates the impact of the chart’s parameters on the detect-
ing performance of the SVDD-based chart under various types of distributions, (ii) it evaluates how
the number of Phase-I samples affects the Phase-II performance, and (iii) it proposes two percentile
bootstrap-based methods to adjust the control limits.

The rest of this paper is organized as follows: In Section 2, the standard SVDD algorithm is
presented. Section 3 introduces the corresponding SVDD-based control chart. The design of its
parameters is also discussed, along with an illustrative example. In Section 4, we highlight the
importance of considering the conditional performance when assessing the SVDD-based chart and
two bootstrap methods are suggested to adjust the control limits in Section 5. Section 6 compares the
conditional in-control (IC) and out-of-control (OOC) performance of the Hotelling T 2 and the SVDD-
based charts. An real-life example is provided to show the SVDD-based chart’s implementation in
Section 7 and, finally, conclusions and future research directions complete the paper in Section 8.

2 The SVDD Algorithm
Assume that a Phase-I data set of size N contains a sequence of p-variate IC observations xi =
[xi1, xi2, . . . , xip]

ᵀ, for i = 1, 2, . . . , N . The goal of the SVDD algorithm is to find an optimal hyper-
sphere with a minimum volume while capturing all possible training data. Let O be the center of
the hyper-sphere and R be its radius. These quantities can be obtained by solving the following
constrained optimization problem

Min R2 + C

N∑
i=1

ξi, (1)

s.t. ‖xi −O‖2 ≤ R2 + ξi, (2)
ξi ≥ 0, i = 1, 2, . . . , N, (3)

where ‖ · ‖ represents the Euclidean distance, ξi, i = 1, 2, . . . , N, are the so called slack variables and
C > 0 is the penalty coefficient that controls the trade-off between the volume of the hyper-sphere
and the misclassification errors.
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For the optimization problem in (1), a Lagrangian function can be constructed as follows:

L = R2 + C
N∑
i=1

ξi −
N∑
i=1

ηi(R
2 + ξi − ‖xi −O‖2)−

N∑
i=1

νiξi, (4)

where ηi ≥ 0 and νi ≥ 0 are the Lagrange multipliers. Setting the partial derivatives of L with
respect to R, O and ξi and equating them with zero, the following constraints are obtained:

N∑
i=1

ηi = 1, O =
N∑
i=1

ηixi, C − ηi − νi = 0, i = 1, 2, . . . , N. (5)

When substituting these constraints into (4), the optimization problem could be further simplified
to

Max L =
N∑
i=1

ηi(xi · xi)−
N∑

i=1,j=1

ηiηj(xi · xj), (6)

s.t.
N∑
i=1

ηi = 1, 0 ≤ ηi ≤ C. (7)

Solving this Quadratic Programming (QP) allows to obtain the optimal solution for the set η =
{η1, η2, . . . , ηN}. Only the data points xSV corresponding to non-zero ηi are needed in the description
of the boundary, recorded as the Support Vector (SVs). We can find that, in (5), the center of the
sphere O is expressed as a linear combination of the observations xi with weights ηi, i = 1, . . . , N ,
and the squared-Euclidean distance (referred to as “distance” in the following) between xSV and the
center O is the square of the radius

R2 = ‖xSV −O‖2 = (xSV · xSV )− 2
N∑
i=1

ηi(xSV · xi) +
N∑

i=1,j=1

ηiηj(xi · xj). (8)

A point z to be classified is declared to belong to the target category when the distance-function
df(z) is less than or equal to R2, i.e.

df(z) = (z · z)− 2
N∑
i=1

ηi(z · xi) +
N∑

i=1,j=1

ηiηj(xi · xj) ≤ R2. (9)

When the process data are linear inseparable, the kernel function method is applied to map the
data into a high-dimensional feature space, so that the nonlinear problem in a low-dimensional space
is transformed into the linear problem in a high-dimensional space. Replacing the inner product
(xi ·xj) with a kernel function K(xi,xj) will lead to a more flexible decision boundary, and (8) and
(9) become

R2 = K(xSV ,xSV )− 2
N∑
i=1

ηiK(xSV ,xi) +
N∑

i=1,j=1

ηiηjK(xi,xj), (10)

df(z) = K(z, z)− 2
N∑
i=1

ηiK(z,xi) +
N∑

i=1,j=1

ηiηjK(xi,xj). (11)

For more details about the use of kernel functions, the interested reader can refer to Tax et al. (2004).
In the following, a Gaussian kernel function K(xi,xj) = exp(−‖xi−xj‖2

s2
) is considered, where s > 0

is the kernel window width.
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3 The SVDD-based control chart
Sun and Tsung (2003), among others, considered a SVDD-based control chart by plotting df(z) as
the monitoring statistics. They selected the parameters C and s to adjust the fraction of SVs to
make it as close as possible to the Type-I error α, and subsequently, they set the R2 as the control
limit. However, their simulation results showed that this design can hardly achieve a satisfactory
performance due to the limited parameter selection flexibility. In this paper, a separated threshold
value h is set as the control limit and, if a point z, satisfies df(z) > h, then it is considered as being
OOC.

Therefore, in the design of the SVDD-based control chart (if a Gaussian kernel function is con-
sidered), there are three major parameters to be set: the window width s; the penalty coefficient C;
and the control limit h. Note that, the first two parameters, s and C, are internal parameters of the
support vector methodology, while h is a counterpart of the Type-I error α. One may think that
the addition of the parameter h will complicate the optimization. But as we will use the (1 − α)th
quantile of the distance (instead of the R2) of all training points to estimate the control limit h,
there will be no additional optimization calculation concerning this parameter. Furthermore, this
estimation of the control limit h also enhances the SVDD-based chart’s robustness for the choice of
different C values (this issue will be explained later).

For SVDD-based control charts, there is still no systematic method nor guideline for choosing
the parameters, s and C, efficiently. The problem is that there is no knowledge about the classifi-
cation error (i.e. no label for points incorrectly classified) to constructs a standard. Here, in order
to better understand their effect, we intuitively select the appropriate parameters by describing the
compactness and shape of the boundary for a two-dimensional data set. We generate a bivariate
gamma-shape data set using the SAT model available in Cheng et al. (2017), see also equation (13).
The first NI = 200 samples are drawn from an IC process, representing the training/reference Phase-I
data, and the remaining NII = 200 samples represent the testing Phase-II data.

In Phase-I, Figure 1 compares the control boundaries of the SVDD obtained for several values
s ∈ {1, 2, 4, 8, 16, 32} when C = 0.8. We use “+” to represent the training samples, “•” to represent
the SVs, and a solid line representing the data description boundary. It can be seen that s not only
affects the radius, but it also affects the original shape of the boundary. A smaller value of s will
make the description of the data more specific, it allows to obtain a closer description result, but
this more flexible description boundary requires more SVs, for example, in Figure 1(a) when s = 1,
almost all points are SVs. While, a larger value of s will make the shape of the boundary smoother,
for example, in Figure 1(f) when s = 32, only two support vectors are required to completely de-
termine the data description, but at the same time, we have to admit that this kind of boundaries
is not representative and compact enough for describing the sample data distribution. The penalty
coefficient, C, on the other hand, controls the number of points that fall outside the boundary. A
larger value of C reduces the number of Phase-I points outside the boundary. As it appears in Figure
2, when C decreases, the number of SVs increases.

(Please insert Figures 1 and 2 here)

It is important to note that finding the optimal values of C and s using the reference sample
without further information about the incorrect classifications is a difficult challenge. It is impossible
to use the analytical method of minimizing the classification error rate. One can, however, get some
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insights by visualizing the scatterplot for two or three-dimensional data. Therefore, this work use
a two-dimensional data set as example. At first, we seek to find the appropriate values of s and C
values to get a suitable boundary that can describe the Phase-I data the best as possible. After that,
the value of h is estimated to set the Type-I error value at α. A detailed procedure is summarized
as follows:

1. Concerning parameter s, it is found that a relatively large value of s makes the enveloping
curve of the data more spherical and insensitive to the data shift, leading to more false alarms.
Therefore, a smaller value of the parameter s should be recommended to obtain a boundary
having a compact shape. For example, in the light of Figure 1, s ∈ [4, 8] may be recommended.

2. Concerning parameter C, it can be seen that, as its value increases, the number of SVs tends
to decrease, which is consistent with previous studies. Moreover, the (1− α)th quantile of the
distance of all training points NI can provide a robust estimation of the control limit for a fixed
α value regardless of the value of C.

3. Compute the distance of all training points D1 = df(x1), D2 = df(x2), . . . , DN = df(xNI
).

Given a Type-I error α and the ordered D values D(1) < D(2) < · · · < D(NI), the (1 − α)th
percentile of the ordered D values for all training NI points is used to estimate the control
limit h = D(dNI ·(1−α)e), where d. . .e denotes the rounded-up integer.

Through the above steps, for the Phase-II testing samples of size NII = 200, Figure 3 draws the
R2 (using eq. (10)) and the control limit h values for different values of C when α = 0.05 and s = 4.
It can be seen that by taking different values of C ∈ {0.2, 0.6, 1.0}, the R2 value is changing, while
the value of h based on the quantile of the distance remains stable. This reduces the sensitivity of the
control limit concerning the choice of C. So we suggest C = 1 in this paper, and thus the inequality
constraint 0 ≤ ηi ≤ C in (7) can be relaxed. Therefore, we actually have only a single parameter s
to search for with less optimisation complexity.

(Please insert Figure 3 here)

4 Conditional performance
It needs to be emphasised that although the SVDD-based chart pays little attention to how data
are distributed, its performance strongly relies on the Phase-I training data set. Kumar et al. (2006)
had considered the over-fitting problem with outliers existing in the Phase-I data set. In this paper,
we will no further analyse this issue, but we will investigate the Phase-II performance of the SVDD-
based chart when estimating the control limit h conditional on the training Phase-I samples.

The Average Run Length (ARL) is the most commonly used index to evaluate the performance of
both parametric and nonparametric charts. The same ARL0 = 1/α value is taken when the process
is IC, and when the process is OOC, the smaller the ARL1 = 1/(1− β) value, the better the perfor-
mance of control charts, where β is the Type-II error. However, as emphasized in Ning and Tsung
(2013), it is impossible to set a too large value for ARL0 (the in-control ARL) unless the number
of Phase-I samples is very large. For example, if one wants to set ARL0 = 100 then at least 1500
training samples are required! In addition, the SVDD algorithm also requires a high computational
effort during the training stage. For example, it takes about 2.25 hours to train a procedure with
just 3000 bivariate normal observations using Matlab on a Intel Core i7 CPU. Therefore, considering
the speed of calculation and the ease of implementation, we have decided to only investigate the case
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of ARL0 = 100, as it is often used in SVDD-based charting literature literature (e.g. Kumar et al.
(2006), Sukchotrat et al. (2009), Ning and Tsung (2013)).

In this paper, two bivariate models considering the dependence between variables are investigated:

• A symmetric one based on the bivariate normal BN(aX , bX , aY , bY , ρ) distribution with proba-
bility density function defined as:

fBN(x, y|aX , bX , aY , bY , ρ) =
(

2πbXbY
√

1− ρ2
)−1

exp

[
− 1

2(1− ρ2)

(
(y − aX)2

b2Y
− 2ρ(y − aX)(x− aY )

bXbY
+

(x− aY )2

b2X

)]
,

(12)

where aX and bX > 0 (aY and bY > 0) are the mean and standard deviation parameters of X
and Y , respectively, and ρ ∈ (0, 1) is the correlation coefficient.

• An asymmetric one based on the bivariate gamma SAT(aX , bX , aY , bY , ρ) distribution with
probability density function defined for x > 0, y > 0 as:

fSAT(x, y > 0|aX , bX , aY , bY , ρ) =

(
x
bX

)aX−1 (
y
bY

)aY −1
exp

(
−

(
x

bX

)
+
(

y
bY

)
1−ρ
√
aY /aX

)
(

1− ρ
√
aY /aX

)aX
Γ(aX) Γ(aY − aX)

∞∑
j=0

∞∑
k=0

(
ρ
√
aY /aX

)j+k
Γ(aY − aX + k)(

1− ρ
√
aY /aX

)2j+k
Γ(aY + j + k) j! k!

(
x

bX

)j (
y

bY

)j+k
,

(13)

where aX > 0 and bX > 0 (aY ≥ aX and bY > 0) are the corresponding shape and scale
parameters of Y and X, respectively, Γ(·) is the gamma function, and ρ ∈ (0, 1) is a parameter
that quantifies the correlation.

In order to have an overview of the conditional IC performances of the SVDD-based chart, Table 1
presents the percentiles of the IC ARL0 values based on several numbers of Phase-I training samples
NI ∈ {50, 200, 500, 1000, 2000, 3000}. The targeted IC ARL0 value is set to 100 (i.e. α = 0.01).
According to the explanations provided in Section 3, a value of s = 8 is suggested for the SVDD-
based chart. We suggest the following steps for obtaining the IC ARL0’s:

1. Generate NI training observations x1,x2, · · · ,xNI
from IC processes and compute the distance

of all training points D1 = df(x1), D2 = df(x2), . . . , DN = df(xNI
). Given a Type-I error α,

the control limit h = D(dNI ·(1−α)e) is estimated as in Section 3.

2. Generate NII = 5000 Phase-II IC testing observations z1, z2, · · · , zNII
, and then compute the

statistics df(zi), i = 1, 2, . . . , NII . Record the run length RL = i if a first signal is observed
df(zi) > h. If no OOC signal is raised, i.e. i > NII then the value RL = NII = 5000 will be
recorded.

3. Repeat step 2 (104 times), and then average the run lengths IC ARL0.

4. Repeat steps 1-3 (104 times) in order to obtain the IC ARL0 empirical distribution.
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Observations in Table 1 show that the ARL0 values of the SVDD-based chart vary a lot as the
number of Phase-I samples changes. When a too small value of NI is selected (e.g., 50, 200), the
ARL0 of the SVDD-based charts may not reach the target value. For example, if we use a training
sample size NI = 50 for the BN(10, 1, 10, 2, 0.5) distribution, 95% of the practitioners would have an
ARL0 value less than 46.2. This is far too less from the target value of 100. This happens because the
SVDD method is completely data-driven and a small Phase-I sample size cannot describe the data
distribution well. In this case, no matter the value of the target ARL0, the attained ARL0 is always
less. The same conclusion can also be found in Ning and Tsung (2013). As NI increases up to 500 or
1000, the 50th quantile of ARL0 values, i.e. the median of ARL0 (MARL0), gets closer to 100. Still,
in more than 50% cases, the attained ARL0 value will be below the target one, and these charts are
also associated with a large variation in the ARL0 distribution. The standard deviations of the ARL0

(SDARL0) are recorded in the last columns. A smaller SDARL0 will provide more confidence to the
practitioners about the charts’ actual IC performance. For example, if we have NI = 2000 and 3000
for the BN(10, 1, 10, 2, 0.5) distribution, the SDARL0 values decrease to 21.6 and 16.8 , respectively.
As suggested in Zhang et al. (2014), a SDARL0 within 10% of the of ARL0 may be reasonable.
Therefore, only a larger number of Phase-I samples may guarantee that individual practitioners can
obtain an ARL0 value close to the target value.

(Please insert Table 1 here)

5 Adjusting the control limits
The SVDD-based chart can detect shifts without knowing the underlying distribution, but it requires
many training samples to ensure a reasonable IC robustness for different Phase-I data sets. In the
design of parametric control charts with estimated parameters, Saleh et al. (2015), Hu et al. (2018),
Tang et al. (2019), among others, suggested the use of bootstrap-type algorithms to adjust the con-
trol limits to guarantee that the conditional probability of the ARL0 value to exceed the expected
value will be close to a pre-specified constant, say (1 − ε)100% (e.g. ε = 0.1). In this paper, two
bootstrap methods using the Phase-I data are discussed to overcome the problem of low attained
ARL0 due to the “between-practitioners variability”.

The bootstrap approach helps in constructing nonparametric confidence intervals for the control
limit by re-sampling the Phase-I data. Both bootstrap percentile and bootstrap percentile-t method-
ologies are used in this paper. Of course, other types of bootstrap methods, like the bootstrap BCa
method or the additively corrected bootstrap-t, can also be applied to solve this problem, see Davi-
son and Hinkley (1997) or Polansky (2000). We studied their performance and observed that as the
number of Phase-I samples increases, all these methods provide nearly the same results. They only
differ when NI ≤ 500. Therefore, for brevity, we only include in this paper two typical types of
bootstrap methods. A more explicit description of the two bootstrap procedures used in this paper
are given below:

Bootstrap Percentile

1. Generate l = 1, 2, . . . , B bootstrap samples xl1,xl2, . . . ,xlNI
of sizeNI from the Phase-I data set

and compute the corresponding distance of all points Dl1 = df(xl1), Dl2 = df(xl2), . . . , DlNI
=

df(xlNI
) as a sequence of statistics from the lth bootstrap sample.

2. For each bootstrap sample l, compute the (1−α) percentile D∗l(dNI ·(1−α)e) of the ordered values
D∗l(1) < D∗l(2) < · · · < D∗l(NI)

, which represents the estimated control limit ĥ∗l .
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3. Obtain the (1 − ε) percentile of the bootstrap distribution ĥ∗l , l = 1, 2, . . . , B as the adjusted
control limit h = ĥ∗(dB·(1−ε)e).

Bootstrap Percentile-t

1. For original data set x1,x2, . . . ,xNI
, compute the (1−α) percentile D(dNI ·(1−α)e) of the Phase-I

observations as an estimated value of the control limit ĥ.

2. Generate l = 1, 2, . . . , B bootstrap samples of size NI from the Phase-I data set, and compute
the corresponding ĥ∗l = D∗l(dNI ·(1−α)e) and Sĥ∗l , where Sĥ∗l is an estimate of the standard error
of ĥ∗l based on the sample l. The calculation of Sĥ∗l (and Sĥ) can also be based on a bootstrap
estimate.

3. For each bootstrap sample, compute the t̂∗l = (ĥ∗l − ĥ)/Sĥ∗l
, l = 1, 2, . . . , B.

4. Obtain the ε percentile of the bootstrap distribution t̂∗l , l = 1, 2, . . . , B, and compute the
adjusted control limit h = ĥ− t̂∗(dB·εe) · Sĥ.

Figures 4 and 5 display the box plots of the IC ARL0 distributions for the SVDD-based charts
for different Phase-I sample sizes, when B = 1000, α = 0.01 and ε = 0.1. For brevity, we consider
NI ∈ {500, 1000, 1500, 2000}. The values calculated via the two types of bootstrap adjustments are
referred as to ’Adjusted-p’ and ’Adjusted-t’, respectively. Otherwise, they are referred as to ’Unad-
justed’.

For example, Figure 4 shows that for the BN(10, 1, 10, 2, 0.5) observations, when NI = 500, more
than 50% of the SVDD-based charts with unadjusted control limits would have an IC ARL0 below
100. On the other hand, as expected, the results with adjusted limits, have a higher level of MARL0,
but this is also not enough to ensure a reasonable variation in the ARL0 values. Comparatively,
the bootstrap percentile-t method is more appropriate than the bootstrap percentile method in this
case. When NI increases up to 1000, the ’Adjusted’ cases result in more than 75% of the SVDD-
based charts having an ARL0 of 100 or more. Moreover, it can be seen that increasing the Phase-I
training sample size NI reduces the variation in SDARL0 in Phase-II. At the same time, we observe
that, the bootstrap percentile method has a slightly smaller SDARL0 value than the value of the
bootstrap percentile-t method when 1000 ≤ NI ≤ 2000. Therefore, the bootstrap percentile method
provides a better conditional performance when the number of Phase-I samples is larger. Figure 5
exhibits similar trends as for Figure 4 but for the SAT(4, 2.5, 100, 0.1, 0.5) distribution in place of the
BN(10, 1, 10, 2, 0.5) distribution.

From these results, clearly, the SVDD-based chart will require more Phase-I sample observations
than parametric charts with estimated parameters. But we need to emphasize that, for the parametric
charts, when the distributional assumptions are violated, it leads to unsatisfactory IC performances
and also the control limit adjustments based on the parametric bootstrap method are no longer
appropriate. Therefore, the SVDD-based chart could be an excellent practical alternative in such
situations since it is completely data-driven.

(Please insert Figures 4 and 5 here)
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6 Performance comparison
In this Section, a study is conducted to compare the conditional performance between the SVDD-
based chart and and the Hotelling T 2 chart. It is important to note that the aim of this section
is not to show the superiority of the SVDD-based chart over conventional charts but to complete
the comparative works in the case of estimated parameters conditional on the Phase I sample.
As mentioned in Sun and Tsung (2003), the relationship between the conventional charts and the
SVDD-based chart is not ’one replaces the other’ or ’one is better than the other’, but it is rather ’one
complements the other’. The comparisons of these charts are are readily available when assuming
that the true process parameters are known.

6.1 Evaluation of IC robustness

The same data distributions considered in the previous Section are used to compare the performance
of all charts, and the IC mean vector µ0 and the IC covariance matrix Σ0 are listed below,

• for the bivariate normal BN(10, 1, 10, 2, 0.5):

µ0 =

[
µX
µY

]
=

[
10
10

]
Σ0 =

[
σ2
X ρσXσY

ρσXσY σ2
Y

]
=

[
1 1
1 4

]
,

• for the bivariate gamma SAT(4, 2.5, 100, 0.1, 0.5):

µ0 =

[
µX
µY

]
=

[
10
10

]
Σ0 =

[
σ2
X ρσXσY

ρσXσY σ2
Y

]
=

[
25 2.5
2.5 1

]
.

Our task is to test the hypotheses {H0 : µ = µ0 versus H1 : µ 6= µ0}. Here, for each distribution,
we generate a data set consisting of NI = 2000 IC Phase-I training observations. The control limits
of all parametric charts are designed with ARL0 = 100 (α = 0.01) when the underlying distributions,
as well as the parameters, are known, and we also adjust their control limits so that they produce
a conditional IC ARL0 that exceeds the targeted value with a certain probability with (1− ε)100%
(e.g. ε = 0.1). All results have been estimated via Monte Carlo simulation (104 runs).

Figure 6 presents a comparison of the box plots of the ARL0 values for both specified distribu-
tions. As expected, the Hotelling T 2 chart has a good IC performance when the actual distribution is
the bivariate normal one. On the other hand, under the bivariate gamma distribution, the Hotelling
T 2 chart designed for the normal distribution is highly sensitive to normality violations, as the ARL0

values are much smaller than the designed one. Human et al. (2011) mentioned that the IC robustness
is the key to the proper design and implementation of any control charts. If charts are not IC robust,
their shift detection capability in the OOC situation is almost meaningless. Clearly, in this example,
the parametric charts’ IC properties are greatly affected by a change in the underlying distribution
and parameter estimation. So it should be considered with caution for quality practitioners to use
parametric charts in such situations.

On the other hand, the SVDD-based chart has a stable IC performance for both distributions
under consideration. However, it is also important to note that the unadjusted control limit can
hardly guarantee the IC performance of the SVDD-based chart. The median ARL0 is very close to
the desired 100 whenNI = 2000, but there is a wide “between-practitioners variability” in the attained
ARL0. In this case, more than 50% of the charts have an IC ARL0 value below 100. Therefore, we
suggest adjusting the control limit based on the nonparametric bootstrap method proposed in Section
4 to guarantee a minimum IC performance with a prespecified probability.

(Please insert Figure 6 here)
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6.2 Performance in signal detection

When the process is OOC, we are interested in detecting shifts in the process mean µ1 = µ0 + δ
from the nominal value, assuming that the IC covariance matrix does not change. Here, for each
distribution defined in Section 4, a one standard-deviation shift of size δ = [σX , σY ]ᵀ in the process
mean has occurred, which means that the OOC mean value is µ1 = [11, 12]ᵀ for the bivariate normal
distribution, and is µ1 = [15, 11]ᵀ for the bivariate gamma distribution.

The control limits of the Hotelling T 2 chart are redesigned so that it produces the same IC ARL0

performance for a fair comparison of the OOC properties. From Figure 7, as it can be observed, the
SVDD-based chart has a similar MARL1 performance as the Hotelling T 2 chart when the underlying
process follows the bivariate normal distribution. It is also noted that the SVDD-based chart has
a slightly larger SDARL0 value. For the bivariate gamma distribution, the Hotelling T 2 chart has
more larger ARL1 values, while the SVDD-based chart provides a better ARL1 performance than its
parametric counterparts.

It can be concluded that the Hotelling T 2 chart, which is designed for the multivariate normal
distribution, could potentially be (highly) affected when the distributional assumption is violated.
Although bootstrapping the Phase I sample may be performed in a nonparametric way, it requires
some distributional assumption in order to guarantee the IC performance for small Phase-I samples.
On the other hand, the SVDD-based chart could be an good choice since it has an acceptable IC
robustness and a comparable shift detection capability.

(Please insert Figure 7 here)

7 An illustrative example
The real data set used in this section is freely accessible at the UC Irvine Machine Learning Repos-
itory (http://archive.ics.uci.edu/ml/datasets/SECOM) and it comprises 1567 observations (some-
times missing) on 591 variables collected from sensors of a complex modern semi-conductor man-
ufacturing process. In the following illustrative example we will only focus on variables #31 and
#32 for which 1463 IC observations are available. Figure 8(a) presents the scatter-plot for the 1463
observations of variables #31 and #32. In order to test the bivariate normality for these vari-
ables, we simply performed a Jarque-Bera test and the results clearly showed that their respective
marginal distributions cannot be approximated with a normal distribution. This led us to conclude
that the bivariate normality cannot be assumed for variables #31 and #32 and we could expect that
the SVDD-based chart would be more robust than the Hotelling T 2 chart for monitoring this process.

To illustrate the use of the SVDD-based chart, we used the first 1200 samples as Phase-I training
data, and then monitored the remaining 263 samples for evaluating the conditional performance. As
discussed in Section 3, since C = 1 is fixed, the only parameter to be determined is s. The choice of
s influences how well the boundary fits the data distribution. Thus, observing Figure 8(a), a value
of s = 8 is suggested. Because the SVDD model is established from a small reference sample, a
more proper procedure is to use an adjusted control limit based on the bootstrap percentile method
described in Section 4. When the desired Type-I error α = 0.01 (ARL0 = 100) and ε = 0.1 values are
fixed, for each bootstrap sample l = 1, 2, . . . , 1000, the (1−α) percentile df ∗l(dN ·(1−α)e)(x) is computed
as the estimated control limit ĥ∗l . Then finally, the (1 − ε) percentile of the bootstrap distribution
ĥ∗l , l = 1, 2, . . . , B is obtained as the adjusted control limit h = ĥ∗(dB·(1−ε)e) = 0.53. The Phase-II data
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of the statistic df(z), together with the adjusted control limit h, are also plotted in Figure 8(b). We
can see that the SVDD-based chart detect an OOC situation at the 186 time points.

(Please insert Figure 8 here)

8 Concluding remarks
For a long time, the important effect of different Phase-I data on nonparametric-type control charts
has been neglected. In this paper, we evaluated the conditional effect of the Phase-I samples on
the Phase-II efficiency of a nonparametric chart based on the SVDD theory. The results indicated
that many Phase-I samples are necessary to guarantee a high probability of the IC performance to
be close to the desired target. Moreover, to take the “between-practitioners variability” into con-
sideration, two bootstrap-based approaches have been proposed to estimate the control limit in this
study. Although the SVDD-based chart usually needs somewhat more Phase-I samples, they prevent
performance deterioration when the underlying distributional assumption is violated. Comparative
results enable us to conclude that the SVDD-based chart is a good alternative when the distribution
is unknown.

We encourage for more future researches on the optimal data-dependent choice of C and s.
Finally, it may be worth applying cluster analysis on the Phase-I data to partition the IC data
into few clusters and to identify support vector-based region for individual clusters and consider the
combined region as an in-control one. However, determining the optimal number of clusters and the
corresponding combining strategies would be more complex and it is left for future researches.
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Table 1: Percentiles of the IC ARL0 values based on several numbers of training Phase-I samples

F NI 5th 10th 25th 50th 75th 90th 95th AARL SDARL

BN

50 9.7 11.5 15.5 21.6 29.9 39.4 46.2 24.2 12.6
200 30.4 34.7 42.6 54.3 71.4 95.2 111.1 60.6 27.5
500 51.8 58.5 72.2 90.9 120.5 153.8 185.2 99.4 45.9
1000 60.2 64.9 75.8 91.7 116.4 137.0 155.0 99.5 30.8
2000 71.9 76.9 87.0 99.0 114.9 129.8 140.8 100.9 21.6
3000 77.5 81.3 89.3 100.1 112.4 123.5 129.9 101.0 17.0

SAT

50 7.2 7.9 9.0 12.8 16.8 22.5 26.8 14.3 6.8
200 21.4 24.1 31.2 38.9 51.3 67.8 86.2 44.2 22.1
500 45.7 49.8 61.5 82.6 107.5 140.8 161.3 89.5 37.6
1000 59.2 65.4 78.1 92.2 121.9 151.5 166.7 98.9 36.4
2000 70.4 76.0 87.0 100.5 119.0 138.9 153.8 100.4 26.1
3000 72.5 76.9 89.0 100.6 104.2 116.3 123.5 100.3 16.7
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Figure 1: Control boundaries of the SVDD obtained for different values of s when C = 0.8 and
N = 200.
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Figure 2: Control boundaries of the SVDD obtained for different values of C when s = 4 and
N = 200.
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(a) The R2 value for C = 0.2
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(b) The h value for C = 0.2
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(c) The R2 value C = 0.6
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(d) The h value for C = 0.6
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(e) The R2 value for C = 1.0
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(f) The h value for C = 1.0

Figure 3: The R2 and the control limit h values of the SVDD obtained for different values of C
when s = 4, α = 0.05 and N = 200.
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Figure 4: The box plots of the IC ARL0 with the unadjusted and adjusted limits for the
BN(10, 1, 10, 2, 0.5) distribution when s = 8, B = 1000 and α = 0.01.
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Figure 5: The box plots of the IC ARL0 with the unadjusted and adjusted limits for the
SAT(4, 2.5, 100, 0.1, 0.5) distribution when s = 8, B = 1000 and α = 0.01.

20



Unadjuested Adjusted Unadjusted Adjusted-p Adjusted-t
0

50

100

150

200

250

300

A
R

L 0

T2 SVDD

(a) FBN(T,X|10, 1, 10, 2, 0.5)

Unadjuested Adjusted Unadjusted Adjusted-p Adjusted-t
0

50

100

150

200

250

300

A
R

L 0

T2 SVDD

(b) FSAT(T,X|4, 2.5, 100, 0.1, 0.5)

Figure 6: Conditional in-control ARL0 distribution of the Hotelling T 2 chart and the SVDD-based
chart.
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Figure 7: Conditional out-of-control ARL1 distribution of the Hotelling T 2 chart and the SVDD-
based chart.
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Figure 8: The SVDD-based chart applied to the morning of a semi-conductor manufacturing process
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