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Abstract: Numerous researches have been done on the ShewhartX̄ chart based
on the average run length (ARL) metric. Since the shape of the run length (RL)
distribution changes with the mean shift size, the median run length (MRL) is
argued to be a better criterion for evaluating the performance of the Shewhart
X̄ chart. Moreover, when the process parameters are unknown, the Phase II
properties of the Shewhart̄X chart are conditioned on the parameter estimates
arising from different practitioners in Phase I. This variability among the estimated
process parameters is usually called as the between-practitioners variability. In
order to investigate this variability in the conditionalMRL values, both the
averageMRL (AMRL) and the standard deviation ofMRL (SDMRL) will
be used together in our article. The performance analyses oftheMRL based
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ShewhartX̄ chart are provided. To prevent too many lower in-controlMRL

values than the desired one, an appropriate bootstrap approach is adopted to adjust
the control limits, and to further balance the in- and out-of-controlMRL values
of the Shewhart̄X chart.

Keywords: ShewhartX̄ chart; median run length; estimated parameters; average
median run length; Standard deviation of median run length.
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1 Introduction

Control charts are one of the most common used tools in Statistical Process Control (SPC).
When monitoring the mean of a quality characteristic, such as a dimension, weight or
volume, the Shewhart̄X chart is usually used to detect assignable cause(s) in the quality
characteristic. This chart is especially useful to monitorrelatively large shifts in the process
mean (see Montgomery (2009)).

In practice, there are generally two phases (Phases I and II)in the implementation
of control charts. In Phase I, an in-control reference set ofobservations is collected by
practitioners to estimate the unknown process parameters,which are then used to set
the control limits of a Phase II control chart. In Phase II, samples from the process are
prospectively collected, and are plotted on the control chart for detecting assignable
cause(s) in the process. A Phase II control chart’s performance is usually evaluated by
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assuming known process parameters but, in practice, the process parameters are often
unknown and are estimated from an in-control reference set of observations. Under this
case, a inherent variability in these estimated process parameters is encountered because
different practitioners will use different Phase I samples(or different Phase I observations).
Thus the control chart’s performance will vary among practitioners. This leads to the
between-practitioners variabilityeffect in the properties of control charts (see Saleh,
Mahmoud, Keefe and Woodall (2015)).

Control charts’ performance are usually assessed through various properties of the run
length (RL) distribution, whereRL is defined as the number of chart statistics plotted
until the chart signals. One of the most commonly used metrics of a Phase II chart is the
average run length (ARL), which is defined as the average number of plotted statistics
until the chart signals. As pointed out in Montgomery (2009), the shape of the run length
distribution changes for different mean shift sizes, i.e. from highly right skewed when
the process is in-control to nearly symmetric when the shiftsize is large. Therefore, the
interpretation only based on theARL corresponding to a highly skewed distribution is
certainly different from a nearly symmetric distribution.For example, the Shewhart̄X chart
is usually designed to have an in-controlARL0 = 370 by choosing suitable parameters.
Using the same parameters, the in-controlMRL0 is 257, which means 50% of all the
RLs are less than 257. As a comparison, about 63% of all the run lengths are less than
370. In recent years, the use of theARL only as a measure of control charts’ performance
has been criticized in some researches, see Jones et al. (2004), Jensen et al. (2006) and
Chakraborti (2007), to name a few. They all pointed out that the interpretation based on
theARL is sometimes misleading as the shape of the run length distribution changes with
the magnitude of the mean shift. On the other hand, theMRL does not have the same
interpretation problem and, because of its meaningful interpretation, Gan (1993), Gan
(1994), Khoo et al. (2011), Khoo et al. (2012), Teoh, Chong, Khoo, Castagliola and Yeong
(2016), Lee and Khoo (2017) and Tang et al. (2018) have done some researches on the area
of MRL based control charts with known parameters. As stated above, a Phase II control
chart’s properties need to be investigated with the processparameters estimated from a
Phase I dataset. Considering this issue, when the process parameters are estimated, some
researches have been conducted on theMRL based control charts: readers may refer to
Chakraborti (2007), Teoh et al. (2015), Teoh, Khoo, Castagliola and Lee (2016) and You
et al. (2016). All these researches focused on the marginalMRL performance of control
charts with estimated parameters. Therefore, this articlesuggests theMRL as a design
measure of the Shewhart̄X chart. A detailed motivation of the use of theMRL instead of
theARL in the design of the Shewhart̄X chart can be found in Khoo (2004), Chakraborti
(2007) and Teoh, Khoo, Castagliola and Lee (2016).

When the process parameters are estimated, the between-practitioners variability
generates a inherent variability in the in-controlARL values. Using just theARL averaged
over the distribution of the parameter estimates does not give a complete picture of the
performance of control charts. In addition to this, much researches recommended the
standard deviation of theARL (SDARL) as a new metric, to measure the between-
practitioners variability in control charts, see Saleh, Mahmoud, Keefe and Woodall (2015),
Saleh, Mahmoud, Jones-Farmer, Zwetsloot and Woodall (2015), Faraz et al. (2015), Hu
and Castagliola (2017), Keefe et al. (2015), Aly et al. (2015), Aly et al. (2016), Geodhart,
da Silvab, Schoonhoven, Epprecht, Chakraborti, Does and Veiga (2017) and Geodhart,
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Schoonhoven and Does (2017). These authors use theSDARL metric together with
AARL metric to make recommendations for the amount of Phase I samples. Using the
MRL as a measure, and considering thebetween-practitioners variabilityeffect in the
MRL values of the Shewhart̄X chart, theMRL averaged over the distribution of the
parameter estimates (AMRL) will also not give a complete picture of the performance of
the Shewhart̄X chart with unknown parameters. This is similar to theARL based Shewhart
X̄ chart with unknown parameters (Saleh, Mahmoud, Keefe and Woodall (2015)). To
measure this variability, the standard deviation of theMRL (SDMRL) will be used as
an alternative to evaluate the performance of the ShewhartX̄ chart. Thus, theMRL based
ShewhartX̄ chart with unknown process parameters will be investigatedin this article by
using both theAMRL andSDMRL.

The rest of this article is organized as follows: First, in Section 2, we introduce the
run length properties of the ShewhartX̄ chart, where the properties for the known and
unknown process parameters cases are provided in Sections 2.1 and 2.2, respectively.
We then introduce in Section 3 a brief background of theMRL based Shewhart̄X
chart. Based on the average, the standard deviation, and several percentiles of theMRL
distribution, we investigate in Section 4 theMRL performance of the Shewhart̄X
chart with estimated parameters. In Section 5, the adjustments of control limits, and
the corresponding performance of the ShewhartX̄ chart are discussed. In Section 6, an
example is given to illustrate the use of theMRL based Shewhart̄X chart. Finally, some
conclusions and recommendations are made in Section 7.

2 The run length properties of the Shewhart X̄ chart

2.1 The Shewhart̄X chart with known parameters

Suppose that the quality characteristicY is a normal random variable,Y ∼ N(µ0 +
δσ0, σ0), whereµ0 andσ0 are the in-control mean and standard deviation, respectively,
and δ is the magnitude of the standardized mean shift. The processis considered to
be in-control whenδ = 0. Otherwise (δ 6= 0), the process is out-of-control. A Phase
II sample {Yi,1, Yi,2, . . . , Yi,n} of size n are then collected successively at sampling
time i, and the sample mean̄Yi =

1
n

∑n

j=1 Yi,j is used for process monitoring, where
Ȳi ∼ N(µ0 + δσ0, σ0/

√
n).

For the Shewhart̄X chart, an out-of-control signal is obtained when a sample meanȲi

fall above the upper control limit (UCL) or below the lower control limit (LCL), where

UCL = µ0 +Kσ0

LCL = µ0 −Kσ0

whereK is a constant that determines the distance, in terms of standard deviation units,
of the control limits from the centre line of the control chart and, it is selected in order to
obtain a certain in-control performance.
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When the parametersµ0 andσ0 are known, the control limitsUCL andLCL are
constants, and the probability that a sample meanȲi falls inside the control limits is,

p = P (LCL ≤ Yi ≤ UCL)

= FN (K
√
n− δ

√
n)− FN (−K

√
n− δ

√
n)

where FN (·) is the cumulative distribution function (c.d.f.) of the standard normal
distribution. Since the run length(RL) of the ShewhartX̄ chart follows a geometric
distribution(Montgomery, 2009), the probability distribution function (p.d.f.)fRL(ℓ) and
c.d.f.FRL(ℓ) of theRL are defined forℓ = {1, 2, 3, . . .} as follows:

fRL(ℓ) = P (RL = ℓ) = pℓ−1(1 − p) (1)

FRL(ℓ) = P (RL ≤ ℓ) = 1− pℓ (2)

Moreover, the 100ξ (0 < ξ < 1) percentage pointRLξ of the run length distribution is
determined as follows (Gan (1994)):

FRL(RLξ − 1) ≤ ξ and FRL(RLξ) > ξ. (3)

For the geometric distribution in (2), by solvingFRL(RLξ − 1) = 1− pRLξ−1 ≤ ξ and
FRL(RLξ) = 1− pRLξ > ξ, we can get

ln(1 − ξ)

ln(p)
< RLξ ≤

ln(1 − ξ)

ln(p)
+ 1 (4)

Since theRLξ of a control chart is an integer, we can further obtained that

RLξ =

{
⌈ ln(1−ξ)

ln(p) ⌉, if ln(1−ξ)
ln(p) is not an integer

ln(1−ξ)
ln(p) + 1, if ln(1−ξ)

ln(p) is an integer
(5)

where⌈·⌉ is the rounding up operator. Using these equations enable the computation of
any percentage point of the run length distribution. In particular, if we setξ = 0.5, we can
obtain theMRL of the Shewhart̄X chart.

2.2 The Shewhart̄X chart with unknown process parameters

Suppose that{Xi,1, . . . , Xi,n}, i = 1, 2, . . . ,m arem in-control samples, each with size
n, from Phase I. Let us assumeX is a normal random variable, i.e.Xi,j ∼ N(µ0, σ0), the
estimatorŝµ0 andσ̂0 used forµ0 andσ0 are respectively (see Jensen et al. (2006)):

µ̂0 =
1

m

m∑

i=1

X̄i, (6)

σ̂0 =

√√√√ 1

m(n− 1)

m∑

i=1

n∑

j=1

(Xi,j − X̄i)2, (7)
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with X̄i =
1
n

∑n

j=1 Xi,j . The control limits of the Shewhart̄X chart become

ÛCL = µ̂0 +Kσ̂0, (8)

L̂CL = µ̂0 −Kσ̂0. (9)

For fixed values of̂µ0 andσ̂0, the conditional probabilitŷp of a sample falling inside the
control limits of the Shewhart̄X chart isp̂ = P (L̂CL ≤ Ȳi ≤ ÛCL|µ̂0, σ̂0). Therefore,
by doing some simple mathematical manipulations, we can obtain the following results,

p̂ = FN

(
(µ̂0 +Kσ̂0 − µ0 − δσ0)

√
n

σ0

)
− FN

(
(µ̂0 −Kσ̂0 − µ0 − δσ0)

√
n

σ0

)
.(10)

For fixed values of̂µ0 andσ̂0, the conditional probability mass function (p.m.f.)f̂RL(ℓ)
and c.d.f.F̂RL(ℓ) of theRL for the ShewhartX̄ chart are presented in (1) and (2) by

replacingp in (1) with p̂ in (10). Similarly, the conditionalMRL (M̂RL) of the Shewhart
X̄ chart with estimated parameters can be computed using (3) bysettingξ = 0.5 and
replacingp with the corresponding estimatêp.

If we define the random variablesU = (µ̂0 − µ0)
√
n

σ0

andV = σ̂0

σ0

√
n, the conditional

probabilityp̂ simplifies to,

p̂ = FN

(
U +K × V − δ

√
n
)
− FN

(
U −K × V − δ

√
n
)
. (11)

Concerning the distributions of the random variablesU andV , they are respectively given
as follows (see Zhang et al. (2011)):

fU (u|m) = fN

(
u

∣∣∣∣0,
1√
m

)
, (12)

fV (v|m,n) = 2vfγ

(
v2

∣∣∣∣
m(n− 1)

2
,

2n

m(n− 1)

)
, (13)

wherefN (·) is the p.d.f. of a normal distribution with mean 0 and standard deviation 1√
m

and,fγ(·) is the p.d.f. of the gamma distribution with parametersm(n−1)
2 and 2n

m(n−1) .

SinceU andV are independent random variables, then the unconditionalRLdistribution
is the conditionalfRL(ℓ) andFRL(ℓ) in (1) and (2) integrated over the the distributions of
U andV , which are obtained as follows:

fRL(ℓ) =

∫ +∞

−∞

∫ +∞

0

p̂ℓ−1(1− p̂)fU (u|m)fV (v|m,n)dvdu, (14)

FRL(ℓ) =

∫ +∞

−∞

∫ +∞

0

(1− p̂ℓ)fU (u|m)fV (v|m,n)dvdu, (15)
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Moreover, the unconditionalMRL, denoted asAMRL, and the standard deviation of
MRL, denoted asSDMRL, of the Shewhart̄X chart with estimated parameters can be
obtained as follows:

AMRL = E(M̂RL) =

∫ +∞

−∞

∫ +∞

0

M̂RL× fU (u|m)fV (v|m,n)dvdu, (16)

SDMRL =

√
E(M̂RL

2
)− (E(M̂RL))2, (17)

where

E(M̂RL
2
) =

∫ +∞

−∞

∫ +∞

0

M̂RL
2
× fU (u|m)fV (v|m,n)dvdu. (18)

In order to measure the average and variability of the conditional M̂RL performance
of the ShewhartX̄ chart with unknown process parameters, theAMRL, SDMRL and
some percentiles of̂MRL can also be obtained using Monte Carlo simulations.

3 Brief background of the interpretation of the MRL based Shewhart X̄
chart

A traditional measure of a control chart’s property is theARL. However, the in-controlRL
distribution of the Shewhart̄X chart is highly right-skewed, the mean of theRL is greater
than its median, and thus it is usually not a fair representation of a “typical” or the “center”
measure of theRL. For this reason, some other percentiles of theRL distribution may
provide important information about the distribution and,consequently about the control
chart’s properties. For example, Khoo (2004) and Chakraborti (2007) pointed out that
using theMRL to design a chart leads to a more accurate picture of a chart’sperformance,
especially for highly skewedRL distribution. AnMRL of τ indicates that 50% of all of
theRLs are less thanτ .

In order to draw attention to the usage of theMRL based Shewhart̄X chart, some
percentiles of theRL and theARLs are presented in Table 1, for different values ofK and
δ whenn = 5. From Table 1, we can note that the difference between theARL andMRL
(50% percentile ofRL) is large when the process is in-control (δ = 0). This difference
decreases whenδ increases. For example, whenK = 1.2553 andδ = 0, theMRL and
ARL values of the Shewhart̄X chart are 139 and 200, respectively. While forδ = 1, the
MRL andARL are 3 and 3.52, respectively. This fact shows that the shape of the RL
changes with the mean shift sizeδ. Since theRL distribution is highly skewed, especially
whenδ is small, a typical measure of theRL distribution is theMRL. The information
from the usage ofMRL acts as a good practical guidance to practitioners in studying the
property of the Shewhart̄X chart. For more discussion about this topic, readers may refer
to Khoo (2004), Chakraborti (2007), Teoh, Chong, Khoo, Castagliola and Yeong (2016),
Teoh, Khoo, Castagliola and Lee (2016) and Teoh et al. (2015).

(Please Insert Table 1 Here)
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4 The MRL performance of the Shewhart X̄ chart with unknown process
parameters

TheMRL based control charts with unknown process parameters are mostly evaluated
based on the 50% percentile of the unconditional c.d.f.FRL(ℓ) of the RL as in (15)
(Teoh et al. (2015), You et al. (2016) and Teoh, Khoo, Castagliola and Lee (2016)). The
50% percentile obtained from (15) doesn’t reflect the between-practitioners variability in
control charts and, unfortunately, it doesn’t account for the variability in theMRL values.
For a larger number of the ShewhartX̄ chart, the correspondingMRL values can be
widely dispersed and thus, a practitioner can’t be sure of his/her specific chart’sMRL
performance.

The conditional in-controlMRLproperties of theShewhart̄Xchart are first investigated
by considering different values ofm varying from 20 to 500 and the desired in-control
MRL ∈ {69, 139, 257, 347} (denoted asMRL0) whenn = 5. Based on105 simulated
ShewhartX̄ chart, the correspondingAMRL, SDMRL and several percentiles of these
in-controlMRL values are presented in Table 2. The value of parameterK is selected to
produce the desiredMRL0. From Table 2, we may note a large variation in the in-control
MRL values, especially for small values ofm. For example, whenMRL0 = 257 in
Table 2, 5% of the in-controlMRL values are smaller than 106 and, 5% of the in-control
MRL values are larger than 543 and theSDARL = 148.41 if we usem = 50 Phase I
samples to estimate the process parameters. TheSDMRL value is too large compared
to the desiredMRL0 = 257. This fact is generally not acceptable in practice, because
the specific practitioner may has her/his ownX̄ chart’sMRL value far away from the
desiredMRL0. For other values of the desiredMRL0, a similar trend in the variation also
appears in the in-controlMRL values. In order to display this variation in the in-control
MRL values more clearly, the histograms of the in-controlMRL values based on105

simulated Shewhart̄X charts are also presented in Figure 1 for different number ofPhase
I samplesm ∈ {50, 100, 200, 400} whenMRL0 = 257 andn = 5. A large variation of
nearlySDMRL = 45.35 can also be noted from Figure 1 (d) even withm = 400 Phase I
samples.

Moreover, from Table 2, it can also be noted that with the increase in the amount
m of Phase I samples, the lower percentiles increases and, theupper percentiles and the
SDMRL values decrease, thus illustrating that the variability inthe in-controlMRL
distribution decreases. For example, whenMRL0 = 257 andn = 5, if we increases the
numberm of Phase I samples from 20 to 500, the 10% percentiles increases from 78 up to
209, the 90% percentiles decreases from 588 up to 310, and theSDMRL value decreases
from 312.65 up to 40.51.

(Please Insert Table 2 Here)
(Please Insert Figure 1 Here)

The results presented in Table 2 show a large variation in thein-controlMRLproperties
of the Shewhart̄X chart, especially with a small number of Phase I samples. This variation
is the so-called between-practitioners variability. Considering this variability, numerous
researches have been done on the conditional properties of different type control charts,
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for example, to name a few, Faraz et al. (2015), Geodhart, Schoonhoven and Does (2017);
Saleh, Mahmoud, Keefe and Woodall (2015), Geodhart, da Silvab, Schoonhoven,Epprecht,
Chakraborti, Does and Veiga (2017) and Hu and Castagliola (2017) all focused on the
Shewhart type chart, Saleh et al. (2016) focused on the CUSUMtype chart and, Saleh,
Mahmoud, Jones-Farmer, Zwetsloot and Woodall (2015) and Huet al. (2018) focused on
the EWMA type chart. These researches were all focused on theARL based control charts
with unknown process parameters, and they also recommendedthe usage of theSDARL
to account for the between-practitioners variability. FortheMRL based Shewhart̄X chart,
considering this variability, a direct measure to evaluateits conditional properties would
be theSDMRL.

In order to measure the variation in the in-controlMRL values, we also focused
on theAMRL andSDMRL values of the Shewhart̄X chart with unknown process
parameters. Some researchers considered aSDARL value about 10% of the desired
ARL0 as small enough (see Zhang et al. (2014) and Saleh, Mahmoud, Jones-Farmer,
Zwetsloot and Woodall (2015)). Similar to these researcheson theARL based control
charts, we considerSDMRL values about 10% of the desiredMRL0 as being small
enough in this article. Under this case, the conditionalMRL performance of the specific
ShewhartX̄ chart would be close to the desiredMRL0. Now, the question is “How about
the number of Phase I samples for the ShewhartX̄ chart to have anSDMRL value about
10% of the desiredMRL0?” To answer this question, Tables 3 to 6 present theAMRL
andSDMRL values for different combinations ofm ranging from 20 to 5000, and the
desiredMRL0 ∈ {69, 139, 257, 347} whenn ∈ {3, 5, 7, 9}. The SDMRL values that
are about 10% of the desiredMRL0 are bolded in each table. The last row (m = ∞)
corresponds to the cases for which the process parameters are known. The desiredMRL0

values are chosen so that the corresponding ShewhartX̄ chart haveARL0 values equal
to ARL0 ∈ {100, 200, 370.4, 500}, respectively. TheseARL0 values are usually used to
evaluate the properties of differentARL based control charts.

From Table 3, if one only considers theAMRL values to determine the required
number of Phase I samples, we may note that aboutm ≃ 100 Phase I samples are
needed to have an in-control relative difference between the AMRL and the desired
MRL0 smaller than 5% whenMRL0 = 69 and n = 3. The relative difference is
defined as∆ = (|AMRL−MRL0|)/MRL0 × 100%, and in the case studied here
∆ = (71.84− 69)/69× 100% = 4.12%. We consider the relative difference smaller than
5% is sufficiently enough. Under this case, the averageMRL properties of the Shewhart
X̄ chart is similar to the desiredMRL0. Althoughm ≃ 100 Phase I samples provide an
AMRL value close to the desiredMRL0, theSDMRL = 28.65 is still large compared
with the desiredMRL0 = 69. Considering the variability in the in-controlMRL values,
aboutm ≃ 1500Phase I samples are needed for the ShewhartX̄ chart to have an in-control
SDMRL to be about 10%, i.e. 69×10%=6.9, of the desiredMRL0 (see the bolded entry
in column 3). We may see that the recommendedm ≃ 100 Phase I samples based on the
relative difference betweenAMRL andMRL0 is far smaller than 1500. Practitioners
should realize the importance of taking into account bothAMRL andSDMRL when
choosing the numberm of Phase I samples.

Moreover, with the increase inMRL0, much more Phase I samples are needed to have
a SDMRL value about 10% of the desiredMRL0. For example, whenMRL0 = 347,
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the number of Phase I samples increases up tom ≃ 2800 to have aSDMRL = 34.34
(see Table 3). For smaller sample sizes, liken ∈ {3, 5}, the relative difference∆ increases
with an increase in the desired value ofMRL0 for fixed value ofm. For example, in
Table 3, whenm = 30, the relative difference∆ for MRL0 = 69 andMRL0 = 139
are (79.28− 69)/69× 100% = 14.89% and (171.33− 139)/139× 100% = 23.25%,
respectively. Moreover, in Table 6, even whenn = 9, we may note thatm ≃ 20 Phase I
samples is large enough for the ShewhartX̄ chart to have a∆ smaller than 5%, but at
least aboutm ≃ 400 Phase I samples to have aSDMRL value about 10% of the desired
MRL0 = 69 (see the bolded entry in column 3). Through the results presented in Tables 3
to 6, more thanm ≃ 400 Phase I samples are needed to get a relatively small variability in
the in-controlMRL values of the Shewhart̄X chart.

Furthermore, considering the variability in the in-control MRL values, it can also
be noted that, in order to estimate the process parameters accurately, the overall number
of observations (m× n) required for the casen = 3 is larger than that the one required
for the casen = 9. For example, the Shewhart̄X chart requires about 4500 observations
(m = 1500 samples each with sizen = 3) to get aSDMRL value to be about 10% of the
desiredMRL0 = 69 (see Table 3). While it requires about 3600 observations (m = 400
samples each with sizen = 9) to get aSDMRL value to be about 10% of the desired
MRL0 = 69 (see Table 6). This result is similar to theARL based Shewhart̄X chart
presented in Saleh, Mahmoud, Keefe and Woodall (2015).

(Please Insert Tables 3 to 6 Here)

Based on the results presented above, at leastm ≃ 400 samples are needed for the
ShewhartX̄ chart to obtain a smaller in-controlSDMRL value. However, this large
number of Phase I samples is sometimes hard to collect and toocostly in practice. With a
realistic amount of Phase I samples, a significant variationexists in the estimated process
parameters. Thus, the practitioner has no confidence that the in-controlMRL value of
its specific Shewhart̄X chart will be close to the desiredMRL0. For this reason, in the
following section, a bootstrap approach will be adopted to re-design theMRL based
ShewhartX̄ chart with unknown process parameters.

5 Adjustments of the control limits of the MRL based Shewhart X̄ chart

To avoid too many in-controlMRL values smaller than the desiredMRL0, one would
have to adjust the control limits parameterK to account for the difference between the
estimated and true process parameters. During the last few years, thebootstrap approach
used in Gandy and Kvaloy (2013) became very popular, which can be adopted to guarantee
the conditional in-controlMRL values larger than the desiredMRL0 with a certain high
probabilityα∗. Compared to the unadjusted parameter cases, where manyMRL values are
below the desiredMRL0, the bootstrap approach are expected to guarantee that thiswould
happen only in100(1− α∗)% of all the Shewhart̄X charts. In the literature, the designs of
control charts for a guaranteed conditional performance have only been discussed by some
researchers for theARL based charts (see Saleh, Mahmoud, Jones-Farmer, Zwetslootand
Woodall (2015); Saleh et al. (2016), Faraz et al. (2015), Hu and Castagliola (2017),Aly et al.
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(2015), Zhao and Driscoll (2016)). Therefore, the bootstrap approach is used in this article
to re-design the parameters of theMRL based Shewhart̄X chart with unknown process
parameters. The steps for the control limit adjustment based on the bootstrap method are
enumerated below:

(1) Generate a Phase I data setXi,j composed of i = 1, 2, . . . ,m samples
{Xi,1, Xi,2, . . . , Xi,n} of sizen from the (assumed) true in-control distributionP =
P (µ0, σ0) of Xi,j , and compute the estimated parametersµ̂0 andσ̂0 as in (6) and (7).

(2) Compute the quantityK(P̂ , θ̂) that produces a desired in-controlMRL0, whereP̂ =

P (µ̂0, σ̂0) is the estimated in-control distribution and,θ̂ = (µ̂0, σ̂0) represents the
estimated process parameters used to set control limits.

(3) GenerateB samples from the distribution̂P = P (µ̂0, σ̂0) and, compute these estimated
process parameterŝθ∗i = (µ̂∗

i , σ̂
∗
i ), i = 1, 2, . . . , B.

(4) Compute the quantitiesK(P̂ ∗
i , θ̂

∗
i )andK(P̂ , θ̂∗i ), i = 1, 2, . . . , B to produce the desired

in-control MRL0, where P̂ ∗
i = (µ̂∗

i , σ̂
∗
i ), i = 1, 2, . . . , B and P̂ are the in-control

distributions and,̂θ∗i , i = 1, 2, . . . , B are used to set the control limits, respectively.

(5) Obtain the 100α∗% percentileK∗
α∗ of the bootstrap distribution ofK(P̂ ∗, θ̂∗)−

K(P̂ , θ̂∗) and takeK(P̂ , θ̂)−K∗
α∗ as the adjusted control limit for the ShewhartX̄

chart.

Following these bootstrap steps, it is expected that100α∗% of the in-controlMRL
values will be larger than the desiredMRL0 value. In our simulations, we assume that
the true in-control distributionP is a standard normalN(0, 1) distribution and the desired
in-controlMRL0 is set to be 257.m = 50 Phase I samples each with sizen = 5 are
considered as realistic and are used in simulations to estimate the process parameters. The
specified probability that the conditional in-controlMRL values are larger than the desired
MRL0 is set as 90%, i.e.α∗ = 0.9, andB = 1000 bootstrap samples are generated from
P̂ to construct the adjusted control limits. By applying the bootstrap method, we adjust the
control limit parameterK to guarantee the conditional in-controlMRL performance for
the Shewhart̄X chart to be larger than the desiredMRL0 = 257 with a high probability
α∗ = 0.9.

In the bootstrap approach, we need to compute different parametersK from different
settings of the Shewhart̄X chart:K(P̂ , θ̂), K(P̂ ∗

i , θ̂
∗
i ), i = 1, 2, . . . , B andK(P̂ , θ̂∗i ),

i = 1, 2, . . . , B. SinceMRL is an integer, it is possible to have more than one value ofK for
the desiredMRL0. All possible values ofK satisfyingMRL0 are found and without loss
of generality, the smallest one is used here. The computations are summarised as follows:

• For the quantityK = K(P̂ , θ̂), since the in-control distribution̂P is defined with the
estimated parametersθ̂ = (µ̂0, σ̂0), and the estimated parametersθ̂ = (µ̂0, σ̂0) are also
used to set the control limits, the computation ofK = K(P̂ , θ̂) is similar to the case
of computation ofK(P, θ), whereK(P, θ) is the parameter that produces the desired
MRL0 for the Shewhart̄X chart withknownprocess parameters.

• Similar to the computation of quantityK = K(P̂ , θ̂), the quantitiesK(P̂ ∗
i , θ̂

∗
i ), i =

1, 2, . . . , B are all equal toK = K(P̂ , θ̂).
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• For the quantitiesK(P̂ , θ̂∗i ), the estimated parametersθ̂ = (µ̂0, σ̂0) in the in-control
distributionP̂ = N(µ̂0, σ̂0) are different from the oneŝθ∗i = (µ̂∗

i , σ̂
∗
i ), i = 1, 2, . . . , B

used in the set of the ShewhartX̄ charts. In this case, a binary search algorithm is used
to compute the valueK that satisfies the desiredMRL0.

Because the value ofK(P̂ , θ̂) is equal toK(P̂ ∗
i , θ̂

∗
i ), the adjusted control limit can be

simplified to get100α∗% percentile ofK(P̂ , θ̂∗i ), i = 1, 2, · · · , B. Once the (adjusted)
control limits are determined, the conditional in- and out-of-controlMRLs of the Shewhart
X̄ chart can be calculated using the method introduced in Section 2.2.

Figures 2 and 3 show the boxplots of the in- and out-of-control MRL distributions of
the Shewhart̄X charts with the adjusted and unadjusted limits. If the limits are computed
using the bootstrap adjustment approach, they are denoted as “Adjusted Limits”. Otherwise,
they are denoted as “Unadjusted Limits”. The boxplots are constructed from 1000MRL
values.

(Please Insert Figures 2 to 3 Here)

From Figure 2, we may note that many in-controlMRL values in the “Adjusted
Limits” cases are larger than in the “Unadjusted Limits” cases. This is the result of the
adjustment of the parameterK, which widen the distance of the control limits from the
center line of the Shewhart̄X chart. Actually, as expected, the “Adjusted Limits” guarantee
about 90% of the Shewhart̄X charts have in-controlMRL values larger than the desired
MRL0 = 257. While for the “Unadjusted Limits” case, about 90% of the Shewhart X̄
charts have in-controlMRL values larger than 126, which means many of the “Unadjusted
Limits” ShewhartX̄ charts have a higher false alarm rate than the ones with the “Adjusted
Limits”.

In practice, control charts with only large in-controlMRLperformances are not enough
for implementation, because we are also interested in the detection ability of control charts.
Thus, the out-of-controlMRL values of the Shewhart̄X charts with the “Adjusted Limits”
and “Unadjusted Limits” are presented in Figure 3 forδ ∈ {0.3, 0.5, 0.7, 1.0}, respectively.
It can be noted that for smaller shift size, the out-of-control MRL values of the Shewhart
X̄ charts with “Adjusted Limits” are obviously larger than theones of the Shewhart̄X
charts with “Unadjusted Limits”. For example, in Figure 3 (a), whenδ = 0.3, the median
of theMRL values for the Shewhart̄X charts with “Adjusted Limits” and “Unadjusted
Limits” are about 131 and 69, respectively. For moderate to large shift sizes, the Shewhart
X̄ charts with the “Adjusted Limits” only causes a small loss inthe out-of-controlMRL
performance compared with using the “Unadjusted Limits”. For example, in Figure 3 (c),
whenδ = 0.7, the median of the out-of-controlMRLs of the Shewhart̄X charts are about
14.5 and 9.0 for the “Adjusted Limits” and “Unadjusted Limits” cases, respectively. This
small loss in the out-of-controlMRL performances is generally acceptable compared
with the gain in the in-controlMRL performances. For these moderate to large shift sizes,
the bootstrap approach can give a good balance between the in- and out-of-controlMRL
performance for the Shewhart̄X charts with estimated parameters. Moreover, it can also
be seen from Figures 2 and 3 that theMRL distributions of the Shewhart̄X charts with
the “Adjusted Limits” are loosen compared to the “Unadjusted Limits” cases.
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When repeating Step (1) in the bootstrap approach, the estimated parameterŝµ0 andσ̂0

would be different from each other, which means that the “Adjusted Limits” will not be the
same each time. Based on many simulations, the results only show a small difference in
these adjusted limits. In order to provide practitioners with more guidance on the adjusted
limits of theMRL based Shewhart̄X chart, Table 7 presents the average adjusted limits
K̄, which guarantees about 90% of the in-controlMRL values larger than the desired
MRL0. TheK̄ values are based on 1000 runs of the bootstrap approach form ≤ 100, and
100 runs for otherm values larger than 100. The practitioners can refer to this table for
the adjusted control limits, or they can either follow Steps(1)-(4) for obtaining the final
adjusted limits for theMRL based Shewhart̄X chart.

(Please Insert Table 7 Here)

Since both in- and out-of-controlMRLperformances of control charts are concerned by
practitioners and the bootstrap approach only guarantees the in-controlMRL performance,
we should not ignore the out-of-controlMRL performance of the Shewhart̄X chart, If the
detection ability of control chart is deemed to be insufficient, two alternative options are
possibly adopted:

• Increase the amount of Phase I observations (increasem orn).

• Be more lenient on the desired in-controlMRL0.

For the first option, using more observations to estimate theprocess parameters
θ̂ = (µ̂0, σ̂0) would be more accurate and cause less uncertainty to accountfor in the
unknown process parameters. So the adjustment of the control limit K will be smaller,
which will result in smaller increase in the in- and out-of-controlMRL values compared
to the cases with a large adjustment ofK. However, only a limited number of Phase I
observations may be available in practice. Under this case,the second option has to be
adopted. The practitioners could choose a less smallerMRL0 than the predetermined
desired one, or use a smaller value ofα∗, which guarantees a smaller probability to have
MRL values above the desired in-controlMRL0.

6 An illustrative example

In this section, we illustrate the proposedMRL based Shewhart̄X chart with unknown
parameters by applying it to a production process of 500ml milk bottles. Similar to
Castagliola et al. (2016), we are interested in the weightY of each bottle. The in-control data
are generated from a normal distribution with mean 500 and standard deviation 1. The Phase
I data set consists ofm = 20 samples, each of sizen = 5 (see Table 8). From these Phase
I samples, we can obtain the estimated process parametersµ̂0=500.1349 and̂σ0=0.8241.
Considering the between-practitioners variability, we can get the adjusted parametersK̄ =
1.533of the Shewhart̄X chart from Table 7. Then, the control limits of the Phase II Shewhart
X̄ chart are set as follows:

UCL = 500.1349+ 1.533× 0.8241 = 501.34

LCL = 500.1349− 1.533× 0.8241 = 498.87
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The Phase II data set consisting ofm = 20 samples, each of sizen = 5, is shown Table
9. These samples are also presented in Figure 4 (a). The first 10 samples are supposed to
be in-control, while the following 10 samples come from an out-of-control process. All the
mean values̄Yi of these Phase II samples are presented in the last column of Table 9, and
the corresponding Shewhart̄X chart is shown in Figure 4 (b). From Figure 4 (b), we may
note the mean value of samples #11, #15 and #20 (in bold in Table 9) are below the low
control limit LCL, which indicates a possible assignable cause in the process.

(Please Insert Tables 8 and 9 Here)
(Please Insert Figure 4 Here)

7 Conclusions and recommendations

Since the shape of the run length distribution for the Shewhart X̄ chart is highly skewed,
a performance measure, such as theARL, does not give a complete understanding of the
chart’s performance. Thus, theMRL is used to evaluate the properties of ShewhartX̄
chart. Furthermore, the process parameters are often unknown, and need to be estimated
from Phase I samples. Different practitioners will use different Phase I samples to estimate
the process parameters, thus causing the between-practitioners variability in control charts’
performance.Considering this variability, theMRLbased Shewhart̄X chart with unknown
process parameters is investigated in this article.

Several tables are presented for the practitioners to assess the between-practitioners
variability of theMRL based Shewhart̄X chart, for different amount of Phase I samples.
The results show that at leastm ≃ 400 Phase I samples are needed to reduce the between-
practitioners variability in theMRLbased Shewhart̄X chart up to an acceptable level. Since
taking a large amount of Phase I samples is impractical in practice, a bootstrap approach is
adopted to adjust the control limits of theMRL based Shewhart̄X chart. The simulations
results show that, for moderate to larger shift sizes, the adjusted control limits can give a
good balance between the in- and out-of-controlMRL performances. For different number
of Phase I samples, sample sizes, and the desiredMRL0, the average adjusted control limits
are given as a reference for the practitioners. As this work is conducted for the ShewhartX̄
chart, future research works can be conducted for EWMA or CUSUM type charts.
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Table 1 Percentiles and theARLs of the Shewhart̄X Chart for different values ofδ andK when
n = 5

Percentiles of theRL distribution
δ ARL 5th 10th 20th 30th 40th 50th 60th 70th 80th 90th 95th

K = 1.1519

0.0 100.00 6 11 23 36 51 69 92 120 161 230 299
0.2 55.88 3 6 13 20 29 39 51 67 90 128 166
0.5 13.78 1 2 3 5 7 10 13 16 22 31 40
0.8 4.64 1 1 1 2 3 3 4 5 7 10 13
1.0 2.72 1 1 1 1 2 2 3 3 4 6 7
1.5 1.28 1 1 1 1 1 1 1 1 2 2 2
2.0 1.03 1 1 1 1 1 1 1 1 1 1 1

K = 1.2553

0.0 200.00 11 22 45 72 102 139 183 241 322 460 598
0.2 102.98 6 11 23 37 53 72 94 124 165 236 308
0.5 21.90 2 3 5 8 11 15 20 26 35 50 65
0.8 6.48 1 1 2 3 4 5 6 8 10 14 18
1.0 3.52 1 1 1 2 2 3 3 4 5 7 9
1.5 1.41 1 1 1 1 1 1 1 1 2 2 3
2.0 1.05 1 1 1 1 1 1 1 1 1 1 1

K = 1.3416

0.0 370.40 19 39 83 132 189 257 339 446 596 852 1109
0.2 177.73 10 19 40 64 91 123 163 214 286 409 531
0.5 33.40 2 4 8 12 17 23 31 40 53 76 99
0.8 8.86 1 1 2 3 5 6 8 11 14 20 26
1.0 4.50 1 1 1 2 3 3 4 5 7 10 12
1.5 1.57 1 1 1 1 1 1 1 2 2 3 3
2.0 1.08 1 1 1 1 1 1 1 1 1 1 2

K = 1.3820

0.0 500.00 26 53 112 179 256 347 458 602 804 1151 1497
0.2 231.99 12 25 52 83 119 161 213 279 373 534 694
0.5 41.14 3 5 10 15 21 29 38 49 66 94 122
0.8 10.36 1 2 3 4 6 7 10 12 16 23 30
1.0 5.09 1 1 2 2 3 4 5 6 8 11 14
1.5 1.66 1 1 1 1 1 1 1 2 2 3 4
2.0 1.09 1 1 1 1 1 1 1 1 1 1 2
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Table 2 The distribution of the in-controlMRL of the Shewhart̄X chart for different values ofm
and the desiredMRL0 whenn = 5

m 5th 10th 20th 30th 40th 50th 60th 70th 80th 90th 95thAMRL SDMRL
MRL0 = 69 (K = 1.1519)

20 23 28 36 42 50 58 67 79 97 129 165 71.32 51.55
30 29 34 41 48 54 61 69 79 93 117 142 70.46 39.04
50 35 40 47 53 58 64 71 78 89 106 122 69.74 28.23
80 41 46 52 57 61 66 71 77 85 97 109 69.36 21.40
100 44 48 53 58 62 67 71 77 83 94 104 69.36 19.01
200 50 54 58 62 65 68 71 75 80 87 93 69.37 13.12
300 53 56 60 63 66 69 71 74 78 84 88 69.44 10.74
400 56 58 62 64 66 69 71 74 77 82 86 69.40 9.20
500 57 59 62 65 67 69 71 73 76 80 84 69.46 8.24

MRL0 = 139 (K = 1.2553)

20 38 48 64 78 94 112 135 164 207 288 382 149.90 133.84
30 50 60 75 89 104 120 139 162 197 257 322 144.80 96.40
50 63 74 88 101 113 127 141 160 185 227 270 141.48 68.22
80 75 85 98 109 120 131 143 157 176 207 236 139.89 51.22
100 81 90 102 113 122 132 143 156 173 199 224 139.72 45.38
200 95 103 113 121 128 135 143 152 163 180 195 139.05 31.00
300 102 109 118 124 130 136 143 150 159 172 184 138.95 25.11
400 107 113 121 127 132 137 143 149 156 167 177 139.00 21.68
500 110 115 122 128 133 137 142 148 154 164 173 138.83 19.32

MRL0 = 257 (K = 1.3416)

20 61 78 107 135 166 202 248 309 403 588 810 292.41 312.65
30 80 99 129 156 185 218 257 307 379 515 666 277.32 222.23
50 106 125 154 179 204 231 263 302 355 446 543 266.18 148.41
80 129 147 173 196 218 240 265 296 336 404 468 262.16 110.70
100 139 157 182 203 223 243 266 292 327 385 442 260.62 96.54
200 168 183 203 220 234 250 266 284 308 345 379 258.37 65.70
300 182 196 213 227 239 252 265 280 299 327 353 257.79 52.78
400 191 203 219 231 242 253 264 277 293 317 338 257.34 45.35
500 197 209 223 234 244 254 264 276 290 310 329 257.39 40.51

MRL0 = 347 (K = 1.3820)

20 75 98 137 176 220 270 334 422 558 839 1173 407.27 473.54
30 101 126 167 205 246 291 345 417 523 723 950 379.67 320.52
50 136 162 202 237 272 310 355 411 489 623 771 363.94 217.64
80 167 194 230 262 292 324 360 403 461 559 658 356.86 159.90
100 181 206 240 270 298 327 359 398 449 531 615 353.15 139.07
200 221 242 271 294 315 337 360 387 421 474 523 349.78 94.07
300 242 260 284 304 322 340 359 380 408 448 485 348.52 75.45
400 253 270 293 310 326 342 358 376 399 434 466 348.21 65.36
500 262 278 299 315 329 343 357 373 394 424 451 347.83 58.01
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Table 3 In-ControlAMRL andSDMRL for different combinations of the desiredMRL0 and
m whenn = 3

MRL0 = 69 MRL0 = 139 MRL0 = 257 MRL0 = 347
(K = 1.4872) (K = 1.6206) (K = 1.7321) (K = 1.7841)

m AMRL SDMRL AMRL SDMRL AMRL SDMRL AMRL SDMRL
20 86.40 111.20 196.53 351.51 419.67 1025.60 613.31 1759.23
30 79.28 70.03 171.33 194.41 345.72 489.98 489.30 774.40
50 74.71 45.49 155.87 116.53 302.55 268.56 419.14 403.75
70 72.97 35.92 150.25 89.33 287.49 199.58 395.05 294.80
100 71.84 28.65 146.52 69.82 277.25 152.65 378.74 222.87
150 70.98 22.54 143.76 54.23 269.93 116.71 367.24 168.94
200 70.62 19.21 142.45 45.81 266.48 97.91 361.81 141.17
250 70.35 17.01 141.66 40.39 264.51 85.97 358.60 123.64
300 70.18 15.41 141.17 36.53 263.13 77.49 356.59 111.29
400 70.00 13.26 140.52 31.25 261.55 66.12 354.01 94.73
500 69.90 11.76 140.15 27.78 260.59 58.59 352.47 83.91
600 69.86 10.72 139.96 25.22 259.97 53.16 351.56 76.07
700 69.75 9.91 139.79 23.26 259.51 49.00 350.85 70.08
1000 69.71 8.27 139.47 19.35 258.74 40.70 349.62 58.15
1100 69.71 7.90 139.41 18.47 258.55 38.72 349.33 55.36
1300 69.59 7.24 139.31 16.93 258.30 35.56 348.94 50.77
1500 69.63 6.72 139.24 15.76 258.11 33.03 348.59 47.18
2000 69.56 5.81 139.10 13.60 257.85 28.53 348.16 40.74
2500 69.57 5.16 139.07 12.15 257.65 25.47 347.79 36.36
2600 69.54 5.10 139.09 11.96 257.62 24.99 347.85 35.64
2700 69.50 5.02 139.00 11.65 257.55 24.49 347.81 34.95
2800 69.49 4.97 139.01 11.48 257.52 24.07 347.7634.34
3000 69.47 4.84 139.02 11.09 257.53 23.22 347.66 33.17
5000 69.50 3.67 138.93 8.56 257.26 17.94 347.25 25.59
∞ 69.00 0.00 139.00 0.00 257.00 0.00 347.00 0.00
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Table 4 In-ControlAMRL andSDMRL for different combinations of the desiredMRL0 and
m whenn = 5

MRL0 = 69 MRL0 = 139 MRL0 = 257 MRL0 = 347
(K = 1.1519) (K = 1.2553) (K = 1.3416) (K = 1.3820)

m AMRL SDMRL AMRL SDMRL AMRL SDMRL AMRL SDMRL
20 71.52 51.65 149.90 134.83 292.86 318.13 407.45 484.77
30 70.25 38.62 144.53 96.50 276.50 217.01 380.33 321.87
50 69.62 28.09 141.38 68.15 266.55 148.31 363.43 216.10
70 69.44 23.18 140.27 55.55 262.99 119.36 357.47 172.77
100 69.41 19.03 139.67 45.26 260.73 96.44 353.56 138.97
150 69.36 15.29 139.30 36.25 259.24 76.76 350.96 110.15
200 69.41 13.21 139.10 31.06 258.50 65.60 349.74 94.03
250 69.43 11.71 139.02 27.64 258.16 58.22 349.08 83.36
300 69.42 10.69 138.97 25.14 257.93 52.91 348.61 75.69
400 69.46 9.20 138.94 21.69 257.61 45.52 348.10 65.10
500 69.46 8.25 138.90 19.30 257.46 40.59 347.82 57.99
600 69.42 7.49 138.88 17.60 257.36 36.94 347.64 52.78
700 69.45 6.94 138.80 16.25 257.23 34.14 347.46 48.78
1000 69.43 5.81 138.83 13.61 257.23 28.50 347.26 40.67
1100 69.44 5.56 138.79 12.96 257.14 27.16 347.25 38.71
1300 69.45 5.08 138.84 11.93 257.13 24.94 347.11 35.58
1500 69.39 4.81 138.79 11.08 257.07 23.20 347.0533.11
2000 69.46 4.04 138.79 9.63 257.05 20.09 346.98 28.62
2500 69.45 3.68 138.81 8.56 257.02 17.93 346.91 25.58
3000 69.46 3.38 138.79 7.80 256.99 16.38 346.90 23.35
5000 69.46 2.62 138.78 6.07 256.91 12.63 346.86 18.07
∞ 69.00 0.00 139.00 0.00 257.00 0.00 347.00 0.00
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Table 5 In-ControlAMRL andSDMRL for different combinations of the desiredMRL0 and
m whenn = 7

MRL0 = 69 MRL0 = 139 MRL0 = 257 MRL0 = 347
(K = 0.9736) (K = 1.0610) (K = 1.1339) (K = 1.1680)

m AMRL SDMRL AMRL SDMRL AMRL SDMRL AMRL SDMRL
20 67.49 37.85 138.09 93.97 263.08 210.21 361.07 311.08
30 67.62 29.55 136.99 71.64 258.07 156.06 351.78 227.57
50 68.06 22.15 137.01 52.83 255.88 112.99 347.17 163.14
70 68.35 18.45 137.27 43.79 255.51 93.00 346.06 133.72
100 68.62 15.31 137.48 36.13 255.57 76.31 345.73 109.44
150 68.85 12.39 137.89 29.17 255.75 61.41 345.69 87.88
200 68.99 10.68 138.04 25.08 255.95 52.78 345.83 75.48
250 69.11 9.52 138.16 22.36 256.10 46.97 345.98 67.16
300 69.16 8.69 138.32 20.39 256.21 42.78 346.04 61.13
400 69.21 7.49 138.37 17.61 256.37 36.91 346.19 52.72
500 69.26 6.71 138.47 15.73 256.47 32.93 346.28 47.01
600 69.31 6.14 138.52 14.33 256.52 30.03 346.37 42.87
700 69.33 5.67 138.52 13.26 256.55 27.76 346.37 39.64
800 69.36 5.25 138.54 12.38 256.59 25.97 346.43 37.04
900 69.34 5.00 138.59 11.66 256.64 24.45 346.49 34.91
1000 69.31 4.80 138.59 11.07 256.66 23.21 346.5333.09
1100 69.40 4.54 138.64 10.57 256.63 22.14 346.51 31.52
1300 69.45 4.16 138.65 9.74 256.74 20.31 346.49 29.01
1500 69.37 3.83 138.70 9.01 256.72 18.92 346.58 26.99
2000 69.43 3.38 138.68 7.81 256.78 16.38 346.57 23.34
2500 69.41 3.01 138.74 6.99 256.81 14.62 346.61 20.87
3000 69.42 2.72 138.69 6.39 256.82 13.34 346.67 19.03
5000 69.35 2.04 138.74 4.99 256.84 10.32 346.65 14.75
∞ 69.00 0.00 139.00 0.00 257.00 0.00 347.00 0.00
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Table 6 In-ControlAMRL andSDMRL for different combinations of the desiredMRL0 and
m whenn = 9

MRL0 = 69 MRL0 = 139 MRL0 = 257 MRL0 = 347
(K = 0.8586) (K = 0.9357) (K = 1) (K = 1.0301)

m AMRL SDMRL AMRL SDMRL AMRL SDMRL AMRL SDMRL
20 65.61 31.39 132.69 76.13 249.88 166.30 340.75 242.86
30 66.38 24.98 133.54 59.70 249.54 128.08 338.72 185.23
50 67.35 18.95 134.89 44.85 250.78 95.14 339.49 136.69
70 67.82 15.91 135.66 37.44 251.88 79.07 340.64 113.30
100 68.21 13.21 136.46 31.01 253.03 65.28 341.88 93.43
150 68.65 10.71 137.13 25.11 254.11 52.75 343.17 75.44
200 68.83 9.23 137.51 21.67 254.73 45.48 343.95 64.96
250 68.97 8.28 137.73 19.32 255.11 40.54 344.47 57.87
300 69.04 7.52 137.92 17.61 255.38 36.92 344.76 52.72
400 69.12 6.49 138.10 15.20 255.75 31.92 345.25 45.48
500 69.19 5.81 138.21 13.58 255.95 28.48 345.56 40.63
600 69.25 5.26 138.34 12.40 256.15 25.97 345.72 37.07
700 69.25 4.94 138.40 11.47 256.21 24.03 345.8334.29
1000 69.34 4.05 138.48 9.61 256.44 20.12 346.06 28.61
1100 69.32 3.86 138.56 9.12 256.45 19.14 346.12 27.28
1300 69.36 3.61 138.59 8.41 256.49 17.59 346.19 25.09
1500 69.37 3.36 138.60 7.82 256.59 16.40 346.31 23.35
2000 69.41 2.92 138.62 6.77 256.64 14.19 346.40 20.20
2500 69.42 2.61 138.68 6.08 256.68 12.64 346.51 18.05
3000 69.39 2.39 138.68 5.52 256.72 11.57 346.55 16.52
5000 69.42 1.85 138.87 4.32 256.84 8.92 346.68 12.79
∞ 69.00 0.00 139.00 0.00 257.00 0.00 347.00 0.00
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(a) (b)

(c) (d)
Figure 1 Histograms of the in-controlMRL for n = 5 and (a)m = 50, (b)m = 100, (c)

m = 200, (d)m = 400. (The red line corresponds to theMRL0 = 257 on the
horizontal axis)
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Figure 2 The boxplots of the in-controlMRL for the Shewhart̄X chart with the adjusted and
unadjusted limits.
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Table 7 The average adjusted control limits̄K for the Shewhart̄X chart

n = 3 n = 5
m MRL0 = 69 MRL0 = 139 MRL0 = 257 MRL0 = 347 MRL0 = 69 MRL0 = 139 MRL0 = 257 MRL0 = 347

20 1.793 1.954 2.074 2.150 1.321 1.434 1.533 1.581
30 1.721 1.871 2.003 2.063 1.279 1.395 1.490 1.539
50 1.651 1.801 1.924 1.988 1.243 1.358 1.449 1.496
80 1.614 1.761 1.882 1.938 1.221 1.333 1.421 1.468
100 1.593 1.742 1.863 1.915 1.213 1.323 1.415 1.455
130 1.580 1.724 1.846 1.898 1.202 1.312 1.403 1.446
150 1.573 1.717 1.835 1.889 1.199 1.310 1.399 1.442
200 1.559 1.702 1.819 1.876 1.191 1.300 1.390 1.433
250 1.553 1.694 1.810 1.863 1.187 1.295 1.384 1.427
300 1.546 1.686 1.803 1.858 1.184 1.292 1.380 1.423
350 1.541 1.680 1.796 1.852 1.180 1.289 1.377 1.419
400 1.537 1.679 1.791 1.845 1.178 1.287 1.375 1.415

n = 7 n = 9
m MRL0 = 69 MRL0 = 139 MRL0 = 257 MRL0 = 347 MRL0 = 69 MRL0 = 139 MRL0 = 257 MRL0 = 347

20 1.090 1.190 1.272 1.310 0.954 1.042 1.107 1.144
30 1.062 1.161 1.240 1.279 0.929 1.014 1.086 1.114
50 1.038 1.133 1.210 1.249 0.909 0.992 1.061 1.093
80 1.022 1.115 1.191 1.228 0.896 0.977 1.045 1.077
100 1.016 1.108 1.186 1.221 0.890 0.972 1.039 1.071
130 1.009 1.102 1.178 1.212 0.886 0.967 1.033 1.065
150 1.006 1.098 1.174 1.209 0.883 0.965 1.031 1.061
200 1.001 1.094 1.168 1.203 0.880 0.960 1.027 1.057
250 0.997 1.088 1.164 1.198 0.877 0.958 1.022 1.054
300 0.995 1.086 1.161 1.196 0.875 0.955 1.020 1.051
350 0.993 1.083 1.159 1.193 0.873 0.953 1.019 1.050
400 0.991 1.082 1.157 1.192 0.872 0.952 1.018 1.049
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Table 8 Phase I Data used to estimate the process parameters

Phase I data(Xi,j) X̄i S2
i

1 500.60 500.44 500.07 499.01 498.81 499.79 0.68
2 500.76 501.76 501.34 500.47 501.88 501.24 0.38
3 499.07 499.95 500.15 500.14 498.95 499.65 0.35
4 499.39 499.55 500.06 500.41 500.79 500.04 0.34
5 500.55 500.88 501.55 502.17 500.96 501.22 0.41
6 499.96 500.97 499.31 501.18 501.59 500.60 0.88
7 500.45 498.82 499.73 501.19 499.78 499.99 0.79
8 500.82 500.37 499.71 499.44 500.87 500.24 0.42
9 500.28 499.30 497.19 497.66 499.30 498.75 1.64
10 499.83 498.41 501.54 501.10 499.86 500.15 1.51
11 500.08 499.13 500.45 499.18 498.99 499.57 0.43
12 500.88 499.89 501.18 500.83 500.72 500.70 0.24
13 499.98 499.03 499.79 499.25 500.52 499.71 0.35
14 500.03 499.97 500.21 499.46 499.26 499.79 0.16
15 499.59 499.20 501.28 500.52 500.30 500.18 0.67
16 500.45 501.96 498.84 501.19 499.43 500.38 1.61
17 499.13 500.82 500.88 499.50 498.91 499.85 0.88
18 500.42 499.83 498.59 500.52 500.54 499.98 0.69
19 500.77 499.86 500.33 500.56 500.64 500.43 0.13
20 499.14 499.75 500.57 501.70 501.05 500.44 1.03

Table 9 Phase II data to be monitored using the ShewhartX̄ chart

Phase II data(Yi,j) Ȳi

1 498.98 500.12 498.98 499.34 499.68 499.42
2 500.90 499.97 500.74 502.11 499.68 500.68
3 499.97 499.70 499.06 499.61 498.49 499.37
4 500.47 500.34 500.70 499.69 499.27 500.10
5 500.29 500.52 500.32 498.00 499.13 499.65
6 499.21 501.02 500.21 499.51 498.33 499.65
7 500.76 500.29 498.16 499.53 499.75 499.70
8 500.60 498.74 500.05 498.92 500.41 499.75
9 498.46 501.95 500.05 501.28 502.52 500.85
10 497.87 498.63 500.98 500.81 500.82 499.82
11 498.14 498.25 498.02 499.45 499.54 498.68
12 500.09 499.68 499.05 499.76 499.11 499.54
13 499.41 500.85 498.63 497.79 499.31 499.20
14 499.03 499.30 499.93 499.17 499.12 499.31
15 498.28 498.71 498.86 497.56 500.58 498.80
16 500.20 499.37 500.69 499.45 498.14 499.57
17 497.36 501.54 498.96 500.57 498.77 499.44
18 497.84 499.41 499.84 500.78 497.71 499.12
19 499.90 497.71 498.97 500.56 500.59 499.55
20 497.92 500.21 499.23 498.29 498.39 498.81
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Figure 3 The boxplots of the out-of-controlMRL for the Shewhart̄X chart with the adjusted and

unadjusted limits, for (a)δ = 0.3, (b) δ = 0.5, (c) δ = 0.7, (d) δ = 1.0
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Figure 4 ShewhartX̄ chart corresponding to the Phase II data in Table 9


