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Abstract: Numerous researches have been done on the SheX/iarart based
on the average run lengtil® L) metric. Since the shape of the run lengii()
distribution changes with the mean shift size, the medianlength (M RL) is
argued to be a better criterion for evaluating the perfoiceanf the Shewhart
X chart. Moreover, when the process parameters are unkndwerPhase Il
properties of the Shewhai¥ chart are conditioned on the parameter estimates
arising from different practitioners in Phase I. This vhiiidly among the estimated
process parameters is usually called as the betweentjmaets variability. In
order to investigate this variability in the conditiondd RL values, both the
averageM RL (AM RL) and the standard deviation 8/ RL (SDM RL) will
be used together in our article. The performance analys#iseaf/ RL based
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ShewhartX chart are provided. To prevent too many lower in-conftdéR L
values than the desired one, an appropriate bootstrapagpi®adopted to adjust
the control limits, and to further balance the in- and outotrol A/ RL values
of the ShewharX chart.

Keywords: ShewhartX chart; median run length; estimated parameters; average
median run length; Standard deviation of median run length.
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1 Introduction

Control charts are one of the most common used tools in Stali®rocess Control (SPC).
When monitoring the mean of a quality characteristic, suglaalimension, weight or
volume, the ShewhatX chart is usually used to detect assignable cause(s) in #ildyqu
characteristic. This chart is especially useful to monigdatively large shifts in the process
mean (see Montgomery (2009)).

In practice, there are generally two phases (Phases | and the implementation
of control charts. In Phase I, an in-control reference sathsfervations is collected by
practitioners to estimate the unknown process paramatdrish are then used to set
the control limits of a Phase Il control chart. In Phase Imp&es from the process are
prospectively collected, and are plotted on the controlrtcha detecting assignable
cause(s) in the process. A Phase Il control chart's perfocmas usually evaluated by
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assuming known process parameters but, in practice, theegsgparameters are often
unknown and are estimated from an in-control reference fsebgervations. Under this
case, a inherent variability in these estimated procesampeters is encountered because
different practitioners will use different Phase | samgtadifferent Phase | observations).
Thus the control chart's performance will vary among ptamters. This leads to the
between-practitioners variabilitgffect in the properties of control charts (see Saleh,
Mahmoud, Keefe and Woodall (2015)).

Control charts’ performance are usually assessed throagbus properties of the run
length (RL) distribution, whereRL is defined as the number of chart statistics plotted
until the chart signals. One of the most commonly used nwtii@a Phase Il chart is the
average run lengthARL), which is defined as the average number of plotted staistic
until the chart signals. As pointed out in Montgomery (20@8¢ shape of the run length
distribution changes for different mean shift sizes, irenf highly right skewed when
the process is in-control to nearly symmetric when the s is large. Therefore, the
interpretation only based on th&€RL corresponding to a highly skewed distribution is
certainly different from a nearly symmetric distributidior example, the Shewhaxt chart
is usually designed to have an in-contrbRL, = 370 by choosing suitable parameters.
Using the same parameters, the in-conttdR L, is 257, which means 50% of all the
RLs are less than 257. As a comparison, about 63% of all the ngtHs are less than
370. In recent years, the use of thé& L only as a measure of control charts’ performance
has been criticized in some researches, see Jones et al),(J@@sen et al. (2006) and
Chakraborti (2007), to name a few. They all pointed out thatihterpretation based on
the ARL is sometimes misleading as the shape of the run lengthlisitn changes with
the magnitude of the mean shift. On the other hand,Mh&L does not have the same
interpretation problem and, because of its meaningfulrmégation, Gan (1993), Gan
(1994), Khoo et al. (2011), Khoo et al. (2012), Teoh, Chonlge& Castagliola and Yeong
(2016), Lee and Khoo (2017) and Tang et al. (2018) have dame sesearches on the area
of M RL based control charts with known parameters. As stated abd?ease Il control
chart's properties need to be investigated with the propasameters estimated from a
Phase | dataset. Considering this issue, when the procemsi@i@rs are estimated, some
researches have been conducted onMhRL based control charts: readers may refer to
Chakraborti (2007), Teoh et al. (2015), Teoh, Khoo, Cagikghnd Lee (2016) and You
et al. (2016). All these researches focused on the margial. performance of control
charts with estimated parameters. Therefore, this arsiegests thé/ RL as a design
measure of the Shewhakt chart. A detailed motivation of the use of thé R L instead of
the ARL in the design of the Shewhakt chart can be found in Khoo (2004), Chakraborti
(2007) and Teoh, Khoo, Castagliola and Lee (2016).

When the process parameters are estimated, the betweditipmars variability
generates a inherent variability in the in-contddR L values. Using just thd R L averaged
over the distribution of the parameter estimates does wet gicomplete picture of the
performance of control charts. In addition to this, mucheegshes recommended the
standard deviation of thel RL (SDARL) as a new metric, to measure the between-
practitioners variability in control charts, see Salehiteud, Keefe and Woodall (2015),
Saleh, Mahmoud, Jones-Farmer, Zwetsloot and Woodall (2@-Hsaz et al. (2015), Hu
and Castagliola (2017), Keefe et al. (2015), Aly et al. (202dy et al. (2016), Geodhart,
da Silvab, Schoonhoven, Epprecht, Chakraborti, Does aimgh\R017) and Geodhart,
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Schoonhoven and Does (2017). These authors us&hd RL metric together with
AARL metric to make recommendations for the amount of Phase |lsamigsing the
MRL as a measure, and considering tetween-practitioners variabilitgffect in the
M RL values of the ShewhaX' chart, theM RL averaged over the distribution of the
parameter estimatesl(// RL) will also not give a complete picture of the performance of
the Shewhark chart with unknown parameters. This is similar to thR L based Shewhart
X chart with unknown parameters (Saleh, Mahmoud, Keefe anddélb (2015)). To
measure this variability, the standard deviation of ML (SDM RL) will be used as
an alternative to evaluate the performance of the Shewhatiart. Thus, thé/RL based
ShewhartX chart with unknown process parameters will be investigateklis article by
using both theAM RL andSDMRL.

The rest of this article is organized as follows: First, irct8m 2, we introduce the
run length properties of the Shewha¥t chart, where the properties for the known and
unknown process parameters cases are provided in Sectibrend 2.2, respectively.
We then introduce in Section 3 a brief background of &R based Shewhark
chart. Based on the average, the standard deviation, aedas@ercentiles of thé/ RL
distribution, we investigate in Section 4 the RL performance of the Shewha
chart with estimated parameters. In Section 5, the adjugsnef control limits, and
the corresponding performance of the Shewharthart are discussed. In Section 6, an
example is given to illustrate the use of theRL based ShewhaX' chart. Finally, some
conclusions and recommendations are made in Section 7.

2 Therun length properties of the Shewhart X chart

2.1 The ShewharX chart with known parameters

Suppose that the quality characteristicis a normal random variablé] ~ N (uo +
dog, 00), Whereuy ando, are the in-control mean and standard deviation, respégtive
and ¢ is the magnitude of the standardized mean shift. The prosessnsidered to
be in-control whens = 0. Otherwise § # 0), the process is out-of-control. A Phase
Il sample{Y;1,Y;2,...,Y;,} of sizen are then collected successively at sampling
time 4, and the sample meayj = %2?21 Y; ; is used for process monitoring, where

Y; ~ N(po + 00, 00//n).

For the ShewharX chart, an out-of-control signal is obtained when a samplarme
fall above the upper control limit{C L) or below the lower control limit{C L), where

UCL:/LO'FKO'Q
LCL:/L()—KO'Q

where K is a constant that determines the distance, in terms of atdrdviation units,
of the control limits from the centre line of the control chand, it is selected in order to
obtain a certain in-control performance.
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When the parameteys, and o, are known, the control limité/ CL and LC'L are
constants, and the probability that a sample m€dalls inside the control limits is,
p=P(LCL<Y; <UCL)
= Fy(K Vi —6v/n) — F(~K i —6v/n)
where Fiy(-) is the cumulative distribution function (c.d.f.) of the stard normal
distribution. Since the run lengthRL) of the ShewhartX chart follows a geometric

distribution(Montgomery, 2009), the probability disuiion function (p.d.f.)fr.(¢) and
c.d.f. Frr(¢) of the RL are defined fof = {1, 2,3, ...} as follows:

fro() = P(RL=10) =p~'(1—p) 1)
Frr(f) = P(RL<()=1-p" (2)

Moreover, the 109 (0 < £ < 1) percentage poinRL, of the run length distribution is
determined as follows (Gan (1994)):

FRL(RLg — 1) < f and FRL(RLg) > f (3)

For the geometric distribution in (2), by solvinger, (RLe — 1) = 1 — pftle=t < ¢ and
Fri(RL¢) =1 — pfle > ¢ we can get

In(1 —¢)
In(p)

Since theR L, of a control chart is an integer, we can further obtained that

In(1—¢)

< RL¢ <
*= Tn(p)

+1 4

In(p) |nl(g)£) (5)

In(1-¢) e In( . .
n(p) +1, if nG) IS an integer

RIL {f'n(lm, if "U-%) s not an integer
&' =

where[-] is the rounding up operator. Using these equations enabledmputation of
any percentage point of the run length distribution. Inipatfar, if we set¢ = 0.5, we can
obtain theM RL of the ShewharX chart.

2.2 The ShewharX chart with unknown process parameters
Suppose thaf{X; 1,..., X, ,}, ¢ = 1,2,...,m arem in-control samples, each with size

n, from Phase |. Let us assum&is a normal random variable, i.&; ; ~ N (o, 00), the
estimatorgiy anddg used forug ando are respectively (see Jensen et al. (2006)):

fo=--> "X ©)

o= S - g

i=1 j=1
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with X; = 1 3", X; ;. The control limits of the Shewhai chart become

UCL = fio + Koo, (8)
LCL = jip — K. (9)

For fixed values of.y andag, the conditional probability of a sample falling inside the
control limits of the Shewhark chart isp = P(LCL < Y; < UCL|jiy,00). Therefore,
by doing some simple mathematical manipulations, we caaiokiie following results,

0o

p=Fn ((/lo + Ko — o — 500)\/ﬁ) - Fn ((/lo — K& — po — 500)\({—?)10)

For fixed values ofiy ands,, the conditional probability mass function (p.m,f3. (0)
and c.d.f.FRL(Z) of the RL for the ShewhartX chart are presented in (1) and (2) by
replacingp in (1) with  in (10). Similarly, the conditional/ RL (M RL) of the Shewhart
X chart with estimated parameters can be computed using (3eting ¢ = 0.5 and
replacingp with the corresponding estimage

If we define the random variablé&s = (i — uo)\;—f andV = g—z\/ﬁ the conditional
probabilityp simplifies to,

p=Fn(U+KxV—-56/n)—Fy(U—-KxV—6/n). (11)

Concerning the distributions of the random varialileandV’, they are respectively given
as follows (see Zhang et al. (2011)):

1
B 5 |m(n—1) 2n
fv(vm,n) =2vf, (U 5 =1’ (13)
wherefy (-) is the p.d.f. of a normal distribution with mean 0 and staddinviationﬁ

and, f,(-) is the p.d.f. of the gamma distribution with paramet&f&-1 and _2»

(n=1)"

Sincell andV are independentrandom variables, then the unconditi®halistribution
is the conditionalf ., (¢) andFry,(¢) in (1) and (2) integrated over the the distributions of
U andV, which are obtained as follows:

+oo +oo
fro(l) = /_ /0 P11 = B) fu (ulm) fy (v}m, m)dvdu, (14)

+oo +oo
Fru(0) = [ /0 (1= %) fu (ulm) fy (v]m, m)dvdu, (15)
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Moreover, the unconditional/ RL, denoted §54MRL, and the standard deviation of
MRL, denoted as$$ DM RL, of the ShewharX chart with estimated parameters can be
obtained as follows:

AMRL = E(MRL) = / MRL x fy(ulm)fy(vim,n)dvdu, (16)

—oco JO

J—) —
SDMRL =\ E(IRL’) — (E(3RL))?, 17)
where

2 oo pfoe o

E(MRL ):/ MRL x fu(ulm)fv(vlm,n)dvdu. (18)
—oco JO

In order to measure the average and variability of the ctondit M RL performance
of the ShewhartX chart with unknown process parameters, the/ RL, SDM RL and

some percentiles g/ RL can also be obtained using Monte Carlo simulations.

3 Brief background of the interpretation of the M RL based Shewhart X
chart

A traditional measure of a control chart’s property is thR L. However, the in-contrakR L
distribution of the ShewhaX chart is highly right-skewed, the mean of tRé is greater
than its median, and thus it is usually not a fair represemtatf a “typical” or the “center”
measure of thé? L. For this reason, some other percentiles of i distribution may
provide important information about the distribution andnsequently about the control
chart’'s properties. For example, Khoo (2004) and Chakitalfp®07) pointed out that
using theM RL to design a chart leads to a more accurate picture of a cparfsrmance,
especially for highly skewe® L distribution. AnM RL of 7 indicates that 50% of all of
the RLs are less than.

In order to draw attention to the usage of theRL based ShewharX chart, some
percentiles of thé? L and theA R Ls are presented in Table 1, for different valuegodénd
0 whenn = 5. From Table 1, we can note that the difference betweenltRé and M RL
(50% percentile ofRL) is large when the process is in-contrél=¢ 0). This difference
decreases whef increases. For example, whéa = 1.2553 andé = 0, the M RL and
ARL values of the Shewha’X chart are 139 and 200, respectively. While o 1, the
MRL and ARL are 3 and 3.52, respectively. This fact shows that the shafieed? L
changes with the mean shift sizeSince theR L distribution is highly skewed, especially
whend is small, a typical measure of theL distribution is theM RL. The information
from the usage oM RL acts as a good practical guidance to practitioners in stgdyie
property of the ShewhaiX chart. For more discussion about this topic, readers may ref
to Khoo (2004), Chakraborti (2007), Teoh, Chong, Khoo, &gl&la and Yeong (2016),
Teoh, Khoo, Castagliola and Lee (2016) and Teoh et al. (2015)

(Please Insert Table 1 Here)
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4 The M RL performance of the Shewhart X chart with unknown process
parameters

The M RL based control charts with unknown process parameters asdynmevaluated
based on the 50% percentile of the unconditional c.Bf. (¢) of the RL as in (15)
(Teoh et al. (2015), You et al. (2016) and Teoh, Khoo, Casileghnd Lee (2016)). The
50% percentile obtained from (15) doesn’t reflect the betwemactitioners variability in
control charts and, unfortunately, it doesn’t account figrariability in theM RL values.
For a larger number of the ShewhaXt chart, the correspondingy/ RL values can be
widely dispersed and thus, a practitioner can’t be sure sfhbr specific chart'd/ RL
performance.

The conditional in-contral/ R L properties of the Shewhaktchart are firstinvestigated
by considering different values of, varying from 20 to 500 and the desired in-control
MRL € {69,139,257,347} (denoted as\/ RLy) whenn = 5. Based onl0° simulated
ShewhartX chart, the correspondingM RL, SDM RL and several percentiles of these
in-control M RL values are presented in Table 2. The value of paranfétisrselected to
produce the desiretl/ RL,. From Table 2, we may note a large variation in the in-control
M RL values, especially for small values of. For example, when/ RLy = 257 in
Table 2, 5% of the in-contral/ RL values are smaller than 106 and, 5% of the in-control
M RL values are larger than 543 and ti® ARL = 148.41 if we usem = 50 Phase |
samples to estimate the process parameters.STh&/ RL value is too large compared
to the desiredV/ RLy = 257. This fact is generally not acceptable in practice, because
the specific practitioner may has her/his ownchart's M RL value far away from the
desiredM R L. For other values of the desirdd R L, a similar trend in the variation also
appears in the in-contrdlf RL values. In order to display this variation in the in-control
M RL values more clearly, the histograms of the in-confvbR L values based om0>
simulated ShewharX charts are also presented in Figure 1 for different numb&haise
| samplesm € {50,100, 200,400} when M RLy = 257 andn = 5. A large variation of
nearlySDM RL = 45.35 can also be noted from Figure 1 (d) even with= 400 Phase |
samples.

Moreover, from Table 2, it can also be noted that with the@ase in the amount
m of Phase | samples, the lower percentiles increases andptier percentiles and the
SDM RL values decrease, thus illustrating that the variabilitythia in-controlM RL
distribution decreases. For example, wheR L, = 257 andn = 5, if we increases the
numberm of Phase | samples from 20 to 500, the 10% percentiles inesdesm 78 up to
209, the 90% percentiles decreases from 588 up to 310, arfti¥i¢ R L value decreases
from 312.65 up to 40.51.

(Please Insert Table 2 Here)
(Please Insert Figure 1 Here)

The results presented in Table 2 show a large variation iimtbentrol M R L properties
of the Shewhark chart, especially with a small number of Phase | samples. iiation
is the so-called between-practitioners variability. Gdegng this variability, numerous
researches have been done on the conditional propertiéffetdt type control charts,
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for example, to name a few, Faraz et al. (2015), Geodharg@tioven and Does (2017);
Saleh, Mahmoud, Keefe and Woodall (2015), Geodhart, dalgischoonhoven, Epprecht,
Chakraborti, Does and Veiga (2017) and Hu and CastagliddaqRall focused on the
Shewhart type chart, Saleh et al. (2016) focused on the CU8Jgel chart and, Saleh,
Mahmoud, Jones-Farmer, Zwetsloot and Woodall (2015) andtH (2018) focused on
the EWMA type chart. These researches were all focused oA R¥ebased control charts
with unknown process parameters, and they also recomméneedage of th€ DARL

to account for the between-practitioners variability. far)M R L based Shewhai chart,
considering this variability, a direct measure to evalutte&onditional properties would
be theSDM RL.

In order to measure the variation in the in-contddlRL values, we also focused
on the AMRL and SDM RL values of the ShewharX chart with unknown process
parameters. Some researchers consideréal RL value about 10% of the desired
ARLq as small enough (see Zhang et al. (2014) and Saleh, Mahmonds-Farmer,
Zwetsloot and Woodall (2015)). Similar to these researdrethe ARL based control
charts, we consides DM RL values about 10% of the desirédd RL, as being small
enough in this article. Under this case, the conditiawak L performance of the specific
ShewhartX chart would be close to the desirddR L,. Now, the question is “How about
the number of Phase | samples for the Shewhachart to have ai$ DM RL value about
10% of the desired/ RLy?" To answer this question, Tables 3 to 6 presentAfi¢ RL
andSDM RL values for different combinations ef. ranging from 20 to 5000, and the
desiredM RL, € {69,139,257,347} whenn € {3,5,7,9}. The SDM RL values that
are about 10% of the desiredd RL, are bolded in each table. The last rom & o)
corresponds to the cases for which the process parametdte@mn. The desired! RLg
values are chosen so that the corresponding Shewhattart haveARL, values equal
to ARL, € {100, 200, 370.4, 500}, respectively. Thesd R values are usually used to
evaluate the properties of differeAt? L based control charts.

From Table 3, if one only considers th&M RL values to determine the required
number of Phase | samples, we may note that about 100 Phase | samples are
needed to have an in-control relative difference betweenAh/ R and the desired
MRLy smaller than 5% whenV/RL, =69 and n = 3. The relative difference is
defined asA = (JAMRL — MRLy|)/MRLq x 100%, and in the case studied here
A = (71.84 — 69)/69 x 100% = 4.12%. We consider the relative difference smaller than
5% is sufficiently enough. Under this case, the aver@fRL properties of the Shewhart
X chart is similar to the desiredl/ RL. Althoughm ~ 100 Phase | samples provide an
AM RL value close to the desired RLy, the SDM RL = 28.65 is still large compared
with the desiredV/ RL, = 69. Considering the variability in the in-contrdf R L values,
aboutm ~ 1500 Phase | samples are needed for the Shewhattart to have an in-control
SDMRL to be about 10%, i.e. 6910%=6.9, of the desiretl/ R L (see the bolded entry
in column 3). We may see that the recommended 100 Phase | samples based on the
relative difference betweed M RL and M RL, is far smaller than 1500. Practitioners
should realize the importance of taking into account héif R and.SDM RL when
choosing the number of Phase | samples.

Moreover, with the increase i RL,, much more Phase | samples are needed to have
a SDM RL value about 10% of the desiréd RL,. For example, whed/ RLy = 347,
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the number of Phase | samples increases um te 2800 to have aSDM RL = 34.34
(see Table 3). For smaller sample sizes, fike {3, 5}, the relative differencé increases
with an increase in the desired value &fR L, for fixed value ofm. For example, in
Table 3, whenm = 30, the relative difference\ for M RLy = 69 and M RLy = 139
are (79.28 —69)/69 x 100% = 14.89% and (171.33 — 139)/139 x 100% = 23.25%,
respectively. Moreover, in Table 6, even whenr= 9, we may note thatn ~ 20 Phase |
samples is large enough for the Shewh&rchart to have a\ smaller than 5%, but at
least abouin ~ 400 Phase | samples to haveSa M RL value about 10% of the desired
M RLg = 69 (see the bolded entry in column 3). Through the results ptedan Tables 3
to 6, more thamn ~ 400 Phase | samples are needed to get a relatively small vatyahil
the in-controlM RL values of the Shewhai¥ chart.

Furthermore, considering the variability in the in-comtdd RL values, it can also
be noted that, in order to estimate the process parameteusadely, the overall number
of observationsi. x n) required for the case = 3 is larger than that the one required
for the casen = 9. For example, the Shewhakt chart requires about 4500 observations
(m = 1500 samples each with size= 3) to getaSDM RL value to be about 10% of the
desiredM RLy = 69 (see Table 3). While it requires about 3600 observatians=(400
samples each with size = 9) to get aSDM RL value to be about 10% of the desired
MRLy = 69 (see Table 6). This result is similar to theRL based ShewhatX chart
presented in Saleh, Mahmoud, Keefe and Woodall (2015).

(Please Insert Tables 3 to 6 Here)

Based on the results presented above, at least 400 samples are needed for the
ShewhartX chart to obtain a smaller in-contrdlDM RL value. However, this large
number of Phase | samples is sometimes hard to collect anzbgily in practice. With a
realistic amount of Phase | samples, a significant variagdsts in the estimated process
parameters. Thus, the practitioner has no confidence thantbontrol M RL value of
its specific Shewhark chart will be close to the desiretd RL,. For this reason, in the
following section, a bootstrap approach will be adoptedeaesign theM RL based
ShewhartX chart with unknown process parameters.

5 Adjustments of the control limits of the M RL based Shewhart X chart

To avoid too many in-controM RL values smaller than the desirdd R L, one would
have to adjust the control limits paramet€rto account for the difference between the
estimated and true process parameters. During the lastdavs ythébootstrap approach
used in Gandy and Kvaloy (2013) became very popular, whiotbesadopted to guarantee
the conditional in-controM R L values larger than the desirdd R L, with a certain high
probabilityax. Compared to the unadjusted parameter cases, wheremM&iyvalues are
below the desired/ R L, the bootstrap approach are expected to guarantee thaidhid
happen only in00(1 — ax)% of all the Shewhark charts. In the literature, the designs of
control charts for a guaranteed conditional performanwge baly been discussed by some
researchers for thd RL based charts (see Saleh, Mahmoud, Jones-Farmer, Zwetakbot
Woodall (2015); Saleh etal. (2016), Faraz et al. (2015), htl@astagliola (2017), Aly et al.
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(2015), Zhao and Driscoll (2016)). Therefore, the boopsaipproach is used in this article
to re-design the parameters of theR L based ShewharX chart with unknown process
parameters. The steps for the control limit adjustmentdbasethe bootstrap method are
enumerated below:

(1) Generate a Phase | data seéf;; composed ofi=1,2,...,m samples
{Xi1,Xi2,...,Xin} of sizen from the (assumed) true in-control distributiéh=
P(p0,00) of X; ;, and compute the estimated paramegfgranda, as in (6) and (7).

(2) Compute the quantitK(P, é) that produces a desired in-contfdlRL,, whereP =
P(fi0,60) is the estimated in-control distribution anfl= (fi0,50) represents the
estimated process parameters used to set control limits.

(3) Generaté? samples from the distributioft = P(fio, 60) and, compute these estimated
process parametef$ = (4f,67),i=1,2,...,B.

(4) Compute the quantitigs (P}, é;‘) andK (P, éj),i =1,2,..., Btoproducethedesired
in-control M RLy, where P = (if,6F), i =1,2,...,B and P are the in-control
distributions andd}, i = 1,2, ..., B are used to set the control limits, respectively.

(5) Obtain the 108*% percentile K*. of the bootstrap distribution of< (P*,6*) —
K(P,6*) and takeK (P,0) — K*. as the adjusted control limit for the Shewhat
chart.

Following these bootstrap steps, it is expected t@i+% of the in-controlM RL
values will be larger than the desirdd RL, value. In our simulations, we assume that
the true in-control distributio® is a standard norma¥ (0, 1) distribution and the desired
in-control M RLy is set to be 257m = 50 Phase | samples each with size= 5 are
considered as realistic and are used in simulations to atithe process parameters. The
specified probability that the conditional in-contdlR L values are larger than the desired
MRLg is set as 90%, i.ex* = 0.9, and B = 1000 bootstrap samples are generated from
P to construct the adjusted control limits. By applying thetstrap method, we adjust the
control limit parameters to guarantee the conditional in-conttd R L performance for
the ShewharfX chart to be larger than the desirgfiRL, = 257 with a high probability
a* =0.9.

In the bootstrap approach, we need to compute differentpetersk from different
settings of the ShewhaX chart: K (P,0), K(P7,67),i=1,2,...,B and K(P,6?),
1=1,2,...,B.SinceM RLis aninteger, itis possible to have more than one value€ fafr
the desired\/ RLy. All possible values of{ satisfyingM R L are found and without loss

of generality, the smallest one is used here. The computatice summarised as follows:

« For the quantity = K (P, §), since the in-control distributiof is defined with the
estimated parametefis= (jio, &), and the estimated parametérs (fio, 5¢) are also
used to set the control limits, the computationf6f= K (P, 0) is similar to the case
of computation ofK (P, 0), whereK (P, 0) is the parameter that produces the desired
M RL for the ShewharX chart withknownprocess parameters.

« Similar to the computation of quantiti’ = K (P, §), the quantities (P;*, 0%), i =
1,2,...,Bareall equal tos = K (P, ).
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« For the quantities< (P, 6*), the estimated parametets= (jio, 5¢) in the in-control
distributionP = N (jio, 6¢) are differentfromthe onés = (i*,6%),i =1,2,..., B
used in the set of the Shewhaftcharts. In this case, a binary search algorithm is used
to compute the valu& that satisfies the desiréd R L.

Because the value df (P, §) is equal toK (P, d;), the adjusted control limit can be
simplified to get100a*% percentile of K (P, é;‘), 1=1,2,---, B. Once the (adjusted)
control limits are determined, the conditional in- and ot#zontrol M R Ls of the Shewhart
X chart can be calculated using the method introduced in @e2tP.

Figures 2 and 3 show the boxplots of the in- and out-of-comtfd L distributions of
the ShewharfX charts with the adjusted and unadjusted limits. If the knaite computed
using the bootstrap adjustmentapproach, they are denetadjasted Limits”. Otherwise,
they are denoted as “Unadjusted Limits”. The boxplots arestracted from 1000/ RL
values.

(Please Insert Figures 2 to 3 Here)

From Figure 2, we may note that many in-contddlRL values in the “Adjusted
Limits” cases are larger than in the “Unadjusted Limits” &asThis is the result of the
adjustment of the parametéf, which widen the distance of the control limits from the
center line of the Shewhakl chart. Actually, as expected, the “Adjusted Limits” guaesn
about 90% of the Shewhal charts have in-contral/ RL values larger than the desired
M RLy = 257. While for the “Unadjusted Limits” case, about 90% of the 8hart X
charts have in-contrdl/ R L values larger than 126, which means many of the “Unadjusted
Limits” ShewhartX charts have a higher false alarm rate than the ones with ttei$ted
Limits”.

In practice, control charts with only large in-contddIR L performances are not enough
forimplementation, because we are also interested in tleetilen ability of control charts.
Thus, the out-of-contral/ RL values of the Shewhal charts with the “Adjusted Limits”
and “Unadjusted Limits” are presented in Figure 3far {0.3,0.5,0.7,1.0}, respectively.

It can be noted that for smaller shift size, the out-of-cohi? R L values of the Shewhart

X charts with “Adjusted Limits” are obviously larger than thaes of the ShewhaX
charts with “Unadjusted Limits”. For example, in Figure 3,(@&hens = 0.3, the median

of the M RL values for the ShewhaX charts with “Adjusted Limits” and “Unadjusted
Limits” are about 131 and 69, respectively. For moderataitpd shift sizes, the Shewhart
X charts with the “Adjusted Limits” only causes a small losshia out-of-control\/ RL
performance compared with using the “Unadjusted Limitst &xample, in Figure 3 (c),
whend = 0.7, the median of the out-of-contrdl R Ls of the Shewhark charts are about
14.5 and 9.0 for the “Adjusted Limits” and “Unadjusted Lisiitases, respectively. This
small loss in the out-of-contral/ RL performances is generally acceptable compared
with the gain in the in-contral/ RL performances. For these moderate to large shift sizes,
the bootstrap approach can give a good balance between-thedrout-of-control RL
performance for the Shewhaki charts with estimated parameters. Moreover, it can also
be seen from Figures 2 and 3 that theR L distributions of the ShewhaX charts with

the “Adjusted Limits” are loosen compared to the “Unadjddtanits” cases.
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When repeating Step (1) in the bootstrap approach, the &stthparameteys, anday
would be different from each other, which means that the t&tid Limits” will not be the
same each time. Based on many simulations, the results baly a small difference in
these adjusted limits. In order to provide practitionershwiore guidance on the adjusted
limits of the M RL based ShewhaiX chart, Table 7 presents the average adjusted limits
K, which guarantees about 90% of the in-contkélRL values larger than the desired
MRLy. The K values are based on 1000 runs of the bootstrap approaeh foil 00, and
100 runs for othern values larger than 100. The practitioners can refer to #itetfor
the adjusted control limits, or they can either follow St€bj(4) for obtaining the final
adjusted limits for the\/ RL based ShewhaiX chart.

(Please Insert Table 7 Here)

Since both in- and out-of-contraf R L performances of control charts are concerned by
practitioners and the bootstrap approach only guarartieés-controlM R L performance,
we should not ignore the out-of-contrd R performance of the Shewhaxt chart, If the
detection ability of control chart is deemed to be insuffitjgwo alternative options are
possibly adopted:

« Increase the amount of Phase | observations (increasen).
* Be more lenient on the desired in-contidIR L.

For the first option, using more observations to estimate ptozess parameters
6= (fx0,00) would be more accurate and cause less uncertainty to acémuint the
unknown process parameters. So the adjustment of the tdintio KX will be smaller,
which will result in smaller increase in the in- and out-aftrol M RL values compared
to the cases with a large adjustment/of However, only a limited number of Phase |
observations may be available in practice. Under this dagesecond option has to be
adopted. The practitioners could choose a less small&L, than the predetermined
desired one, or use a smaller valuengf which guarantees a smaller probability to have
M RL values above the desired in-contddlR L.

6 Anillustrative example

In this section, we illustrate the proposaflRL based ShewhatX chart with unknown
parameters by applying it to a production process of 500ntk inottles. Similar to
Castagliolaetal. (2016), we are interested in the wéigbteach bottle. The in-control data
are generated from a normal distribution with mean 500 aantbistrd deviation 1. The Phase
| data set consists afi = 20 samples, each of size= 5 (see Table 8). From these Phase
| samples, we can obtain the estimated process paranjgtes§0.1349 and(=0.8241.
Considering the between-practitioners variability, we gat the adjusted parametéts—
1.533 of the Shewhark chartfrom Table 7. Then, the control limits of the Phase \@hart

X chart are set as follows:

UCL = 500.1349 + 1.533 x 0.8241 = 501.34
LCL =500.1349 — 1.533 x 0.8241 = 498.87
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The Phase Il data set consistingof= 20 samples, each of size= 5, is shown Table
9. These samples are also presented in Figure 4 (a). TheGissiniples are supposed to
be in-control, while the following 10 samples come from atroficontrol process. All the
mean valued’; of these Phase Il samples are presented in the last columabté , and
the corresponding Shewhakt chart is shown in Figure 4 (b). From Figure 4 (b), we may
note the mean value of samples #11, #15 and #20 (in bold ire@bdre below the low
control limit LC L, which indicates a possible assignable cause in the process

(Please Insert Tables 8 and 9 Here)
(Please Insert Figure 4 Here)

7 Conclusionsand recommendations

Since the shape of the run length distribution for the ShetnKachart is highly skewed,

a performance measure, such as #1eL, does not give a complete understanding of the
chart's performance. Thus, the RL is used to evaluate the properties of Shewhiart
chart. Furthermore, the process parameters are often wmkramd need to be estimated
from Phase | samples. Different practitioners will useatifint Phase | samples to estimate
the process parameters, thus causing the between-maetgivariability in control charts’
performance. Considering this variability, theR L. based Shewha chart with unknown
process parameters is investigated in this article.

Several tables are presented for the practitioners to sissesbetween-practitioners
variability of the M RL based ShewhaX chart, for different amount of Phase | samples.
The results show that at least~ 400 Phase | samples are needed to reduce the between-
practitioners variability in tha/ R based Shewha chart up to an acceptable level. Since
taking a large amount of Phase | samples is impractical ictipes a bootstrap approach is
adopted to adjust the control limits of tiié R based ShewhaiX chart. The simulations
results show that, for moderate to larger shift sizes, theséed control limits can give a
good balance between the in- and out-of-contfa® L performances. For different number
of Phase | samples, sample sizes, and the de&irBd., the average adjusted control limits
are given as a reference for the practitioners. As this wedonducted for the Shewhakt
chart, future research works can be conducted for EWMA or GM3ype charts.
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Table1l Percentiles and thd RLs of the Shewhark Chart for different values of and X when
n=>5
Percentiles of thé&k L distribution
1) ARL 5th 10th 20th 30th 40th 50th 60th 70th 80th 90th 95th

K =1.1519
0.0 100.00 6 11 23 36 51 69 92 120 161 230 299
0.2 55.88 3 6 13 20 29 39 51 67 90 128 166
0.5 13.78 1 2 3 5 7 10 13 16 22 31 40
0.8 4.64 1 1 1 2 3 3 4 5 7 10 13
1.0 2.72 1 1 1 1 2 2 3 3 4 6 7
1.5 1.28 1 1 1 1 1 1 1 1 2 2 2
2.0 1.03 1 1 1 1 1 1 1 1 1 1 1

K =1.2553
0.0 200.00 11 22 45 72 102 139 183 241 322 460 598
0.2 10298 6 11 23 37 53 72 94 124 165 236 308
0.5 21.90 2 3 5 8 11 15 20 26 35 50 65
0.8 6.48 1 1 2 3 4 5 6 8 10 14 18
1.0 3.52 1 1 1 2 2 3 3 4 5 7 9
1.5 1.41 1 1 1 1 1 1 1 1 2 2 3
2.0 1.05 1 1 1 1 1 1 1 1 1 1 1

K =1.3416
0.0 370.40 19 39 83 132 189 257 339 446 596 852 1109
0.2 177.73 10 19 40 64 91 123 163 214 286 409 531
0.5 33.40 2 4 8 12 17 23 31 40 53 76 99
0.8 8.86 1 1 2 3 5 6 8 11 14 20 26
1.0 4.50 1 1 1 2 3 3 4 5 7 10 12
1.5 1.57 1 1 1 1 1 1 1 2 2 3 3
2.0 1.08 1 1 1 1 1 1 1 1 1 1 2

K =1.3820
0.0 500.00 26 53 112 179 256 347 458 602 804 1151 1497
0.2 23199 12 25 52 83 119 161 213 279 373 534 694
0.5 41.14 3 5 10 15 21 29 38 49 66 94 122
0.8 10.36 1 2 3 4 6 7 10 12 16 23 30
1.0 5.09 1 1 2 2 3 4 5 6 8 11 14
1.5 1.66 1 1 1 1 1 1 1 2 2 3 4
2.0 1.09 1 1 1 1 1 1 1 1 1 1 2
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Table2 The distribution of the in-contral/ RL of the ShewharfX chart for different values af.

and the desired/ RLo whenn = 5

m_ 5th 10th 20th 30th 40th 50th 60th 70th 80th 90th OStWMARL SDMRL
MRL, = 69 (K = 1.1519)
20 23 28 36 42 50 58 67 79 97 129 165 71.32 51.55
30 29 34 41 48 54 61 69 79 93 117 142  70.46 39.04
50 35 40 47 53 58 64 71 78 89 106 122  69.74 28.23
80 41 46 52 57 61 66 71 77 85 97 109  69.36 21.40
100 44 48 53 58 62 67 71 77 83 94 104 69.36 19.01
200 50 54 58 62 65 68 71 75 80 87 93  69.37 13.12
300 53 56 60 63 66 69 71 74 78 84 88  69.44 10.74
400 56 58 62 64 66 69 71 74 77 82 86  69.40 9.20
500 57 59 62 65 67 69 71 73 76 80 84  69.46 8.24
MRL, = 139 (K = 1.2553)
20 38 48 64 78 94 112 135 164 207 288 382 149.90 133.84
30 50 60 75 89 104 120 139 162 197 257 322 14480  96.40
50 63 74 88 101 113 127 141 160 185 227 270 141.48  68.22
80 75 85 98 109 120 131 143 157 176 207 236 139.89  51.22
100 81 90 102 113 122 132 143 156 173 199 224 139.72  45.38
200 95 103 113 121 128 135 143 152 163 180 195 139.05  31.00
300 102 109 118 124 130 136 143 150 159 172 184 138.95  25.11
400 107 113 121 127 132 137 143 149 156 167 177 139.00  21.68
500 110 115 122 128 133 137 142 148 154 164 173 138.83  19.32
MRL, = 257 (K = 1.3416)
20 61 78 107 135 166 202 248 309 403 588 810 29241  312.65
30 80 99 129 156 185 218 257 307 379 515 666 277.32  222.23
50 106 125 154 179 204 231 263 302 355 446 543 266.18  148.41
80 129 147 173 196 218 240 265 296 336 404 468 262.16  110.70
100 139 157 182 203 223 243 266 292 327 385 442 260.62  96.54
200 168 183 203 220 234 250 266 284 308 345 379 25837  65.70
300 182 196 213 227 239 252 265 280 299 327 353 257.79  52.78
400 191 203 219 231 242 253 264 277 293 317 338 257.34 4535
500 197 209 223 234 244 254 264 276 290 310 329 257.39  40.51
MRL, = 347 (K = 1.3820)
20 75 98 137 176 220 270 334 422 558 839 1173 407.27  473.54
30 101 126 167 205 246 291 345 417 523 723 950 379.67  320.52
50 136 162 202 237 272 310 355 411 489 623 771 363.94  217.64
80 167 194 230 262 292 324 360 403 461 559 658 356.86  159.90
100 181 206 240 270 298 327 359 398 449 531 615 353.15  139.07
200 221 242 271 294 315 337 360 387 421 474 523 349.78  94.07
300 242 260 284 304 322 340 359 380 408 448 485 34852  75.45
400 253 270 293 310 326 342 358 376 399 434 466 34821  65.36
500 262 278 299 315 329 343 357 373 394 424 451 347.83  58.01
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Table3 In-Control AM RL andSDM RL for different combinations of the desiréd RLy and
m whenn = 3

MRLg = 69 MRL =139 MRLg = 257 MRLg = 347
(K = 1.4872) (K = 1.6206) (K = 1.7321) (K = 1.7841)

m  AMRL SDMRL AMRL SDMRL AMRL SDMRL AMRL SDMRL

20 86.40 111.20 196.53 351.51 419.67 1025.60 613.31 1759.23
30 79.28 70.03 171.33 194.41 345.72 489.98 489.30 774.40
50 74.71 45.49 155.87 116.53 302.55 268.56 419.14 403.75
70 72.97 35.92 150.25 89.33 287.49 199.58 395.05 294.80
100 71.84 28.65 146.52 69.82 277.25 152.65 378.74 222.87
150 70.98 22.54 143.76 54.23 269.93 116.71 367.24 168.94
200 70.62 19.21 142.45 45.81 266.48 97.91 361.81 141.17
250 70.35 17.01 141.66 40.39 264.51 85.97 358.60 123.64
300 70.18 15.41 141.17 36.53 263.13 77.49 356.59 111.29
400 70.00 13.26 140.52 31.25 261.55 66.12 354.01 94.73
500 69.90 11.76 140.15 27.78 260.59 58.59 352.47 83.91
600 69.86 10.72 139.96 25.22 259.97 53.16 351.56 76.07

700 69.75 9.91 139.79 23.26 259.51 49.00 350.85 70.08
1000 69.71 8.27 139.47 19.35 258.74 40.70 349.62 58.15
1100 69.71 7.90 139.41 18.47 258.55 38.72 349.33 55.36
1300 69.59 7.24 139.31 16.93 258.30 35.56 348.94 50.77
1500 69.63 6.72 139.24 15.76 258.11 33.03 348.59 47.18
2000 69.56 5.81 139.10 13.60 257.85 28.53 348.16 40.74
2500 69.57 5.16 139.07 12.15 257.65 25.47 347.79 36.36
2600 69.54 5.10 139.09 11.96 257.62 24.99 347.85 35.64
2700 69.50 5.02 139.00 11.65 257.55 24.49 347.81 34.95
2800 69.49 4.97 139.01 11.48 257.52 24.07 347.7634.34
3000 69.47 4.84 139.02 11.09 257.53 23.22 347.66 33.17
5000 69.50 3.67 138.93 8.56 257.26 17.94 347.25 25.59

00 69.00 0.00 139.00 0.00 257.00 0.00 347.00 0.00
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Table4 In-Control AM RL andSDM RL for different combinations of the desiréd RLq and
mwhenn =5

MRLg = 69 MRL =139 MRLg = 257 MRLg = 347
(K = 1.1519) (K = 1.2553) (K = 1.3416) (K = 1.3820)

m  AMRL SDMRL AMRL SDMRL AMRL SDMRL AMRL SDMRL

20 71.52 51.65 149.90 134.83 292.86 318.13 407.45 484.77
30 70.25 38.62 144.53 96.50 276.50 217.01 380.33 321.87
50 69.62 28.09 141.38 68.15 266.55 148.31 363.43 216.10
70 69.44 23.18 140.27 55.55 262.99 119.36 357.47 172.77
100 69.41 19.03 139.67 45.26 260.73 96.44 353.56 138.97
150 69.36 15.29 139.30 36.25 259.24 76.76 350.96 110.15
200 69.41 13.21 139.10 31.06 258.50 65.60 349.74 94.03
250 69.43 11.71 139.02 27.64 258.16 58.22 349.08 83.36
300 69.42 10.69 138.97 25.14 257.93 52.91 348.61 75.69

400 69.46 9.20 138.94 21.69 257.61 45.52 348.10 65.10
500 69.46 8.25 138.90 19.30 257.46 40.59 347.82 57.99
600 69.42 7.49 138.88 17.60 257.36 36.94 347.64 52.78
700 69.45 6.94 138.80 16.25 257.23 34.14 347.46 48.78
1000 69.43 5.81 138.83 13.61 257.23 28.50 347.26 40.67
1100 69.44 5.56 138.79 12.96 257.14 27.16 347.25 38.71
1300 69.45 5.08 138.84 11.93 257.13 24.94 347.11 35.58
1500 69.39 4.81 138.79 11.08 257.07 23.20 347.0533.11
2000 69.46 4.04 138.79 9.63 257.05 20.09 346.98 28.62
2500 69.45 3.68 138.81 8.56 257.02 17.93 346.91 25.58
3000 69.46 3.38 138.79 7.80 256.99 16.38 346.90 23.35
5000 69.46 2.62 138.78 6.07 256.91 12.63 346.86 18.07

00 69.00 0.00 139.00 0.00 257.00 0.00 347.00 0.00
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Table5 In-Control AM RL andSDM RL for different combinations of the desiréd RLq and
mwhenn =7

MRLg = 69 MRL =139 MRLg = 257 MRLg = 347
(K = 0.9736) (K = 1.0610) (K = 1.1339) (K = 1.1680)

m  AMRL SDMRL AMRL SDMRL AMRL SDMRL AMRL SDMRL

20 67.49 37.85 138.09 93.97 263.08 210.21 361.07 311.08
30 67.62 29.55 136.99 71.64 258.07 156.06 351.78 227.57
50 68.06 22.15 137.01 52.83 255.88 112.99 347.17 163.14
70 68.35 18.45 137.27 43.79 255.51 93.00 346.06 133.72
100 68.62 15.31 137.48 36.13 255.57 76.31 345.73 109.44
150 68.85 12.39 137.89 29.17 255.75 61.41 345.69 87.88

200 68.99 10.68 138.04 25.08 255.95 52.78 345.83 75.48

250 69.11 9.52 138.16 22.36 256.10 46.97 345.98 67.16
300 69.16 8.69 138.32 20.39 256.21 42.78 346.04 61.13
400 69.21 7.49 138.37 17.61 256.37 36.91 346.19 52.72
500 69.26 6.71 138.47 15.73 256.47 32.93 346.28 47.01
600 69.31 6.14 138.52 14.33 256.52 30.03 346.37 42.87
700 69.33 5.67 138.52 13.26 256.55 27.76 346.37 39.64
800 69.36 5.25 138.54 12.38 256.59 25.97 346.43 37.04
900 69.34 5.00 138.59 11.66 256.64 24.45 346.49 34.91
1000 69.31 4.80 138.59 11.07 256.66 23.21 346.5333.09
1100 69.40 454 138.64 10.57 256.63 22.14 346.51 31.52
1300 69.45 4.16 138.65 9.74 256.74 20.31 346.49 29.01
1500 69.37 3.83 138.70 9.01 256.72 18.92 346.58 26.99
2000 69.43 3.38 138.68 7.81 256.78 16.38 346.57 23.34
2500 69.41 3.01 138.74 6.99 256.81 14.62 346.61 20.87
3000 69.42 2.72 138.69 6.39 256.82 13.34 346.67 19.03
5000 69.35 2.04 138.74 4.99 256.84 10.32 346.65 14.75

00 69.00 0.00 139.00 0.00 257.00 0.00 347.00 0.00
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Table6 In-Control AM RL andSDM RL for different combinations of the desiréd RLq and
m whenn =9

MRLgy = 69 MRLg = 139 MRLgy = 257 MRLg = 347
(K = 0.8586) (K = 0.9357) (K =1) (K = 1.0301)

m  AMRL SDMRL AMRL SDMRL AMRL SDMRL AMRL SDMRL

20 65.61 31.39 132.69 76.13 249.88 166.30 340.75 242.86
30 66.38 24.98 133.54 59.70 249.54 128.08 338.72 185.23
50 67.35 18.95 134.89 44.85 250.78 95.14 339.49 136.69
70 67.82 15.91 135.66 37.44 251.88 79.07 340.64 113.30
100 68.21 13.21 136.46 31.01 253.03 65.28 341.88 93.43

150 68.65 10.71 137.13 25.11 254,11 52.75 343.17 75.44

200 68.83 9.23 137.51 21.67 254.73 45.48 343.95 64.96
250 68.97 8.28 137.73 19.32 255.11 40.54 344.47 57.87
300 69.04 7.52 137.92 17.61 255.38 36.92 344.76 52.72
400 69.12 6.49 138.10 15.20 255.75 31.92 345.25 45.48
500 69.19 5.81 138.21 13.58 255.95 28.48 345.56 40.63
600 69.25 5.26 138.34 12.40 256.15 25.97 345.72 37.07
700 69.25 4.94 138.40 11.47 256.21 24.03 345.8334.29
1000 69.34 4.05 138.48 9.61 256.44 20.12 346.06 28.61
1100 69.32 3.86 138.56 9.12 256.45 19.14 346.12 27.28
1300 69.36 3.61 138.59 8.41 256.49 17.59 346.19 25.09
1500 69.37 3.36 138.60 7.82 256.59 16.40 346.31 23.35
2000 69.41 2.92 138.62 6.77 256.64 14.19 346.40 20.20
2500 69.42 2.61 138.68 6.08 256.68 12.64 346.51 18.05
3000 69.39 2.39 138.68 5.52 256.72 11.57 346.55 16.52
5000 69.42 1.85 138.87 4.32 256.84 8.92 346.68 12.79

00 69.00 0.00 139.00 0.00 257.00 0.00 347.00 0.00
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Figure1l Histograms of the in-contral/ RL for n = 5 and (a)m = 50, (b) m = 100, (c)
m = 200, (d) m = 400. (The red line corresponds to tié RLo, = 257 on the

horizontal axis)
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Figure2 The boxplots of the in-contral/ RL for the Shewharf{ chart with the adjusted and
unadjusted limits.



Table7 The average adjusted control limiks for the ShewharX chart

n=3 n=>5
m MRLy=69 MRLy=139 MRLy=257 MRLy= 347 MRLy=69 MRLy=139 MRLy=257 MRLy= 347
20 1.793 1.954 2.074 2.150 1.321 1.434 1.533 1.5815
30 1.721 1.871 2.003 2.063 1.279 1.395 1.490 1.539§
50 1.651 1.801 1.924 1.988 1.243 1.358 1.449 1.4960
80 1.614 1.761 1.882 1.938 1.221 1.333 1.421 1.468_-::
100 1.593 1.742 1.863 1.915 1.213 1.323 1.415 1.455®
130 1.580 1.724 1.846 1.898 1.202 1.312 1.403 1.446%
150 1.573 1.717 1.835 1.889 1.199 1.310 1.399 1.442=
200 1.559 1.702 1.819 1.876 1.191 1.300 1.390 1.433%
250 1.553 1.694 1.810 1.863 1.187 1.295 1.384 1.42 o‘
300 1.546 1.686 1.803 1.858 1.184 1.292 1.380 1.42335
350 1.541 1.680 1.796 1.852 1.180 1.289 1.377 1.419+
400 1.537 1.679 1.791 1.845 1.178 1.287 1.375 1.415;;

n="7 n=9 g
m MRLy=69 MRLy=139 MRLy=257 MRLy= 347 MRLy=69 MRLy=139 MRLy=257 MRLy= 347 %
20 1.090 1.190 1.272 1.310 0.954 1.042 1.107 1.144%
30 1.062 1.161 1.240 1.279 0.929 1.014 1.086 1.1143
50 1.038 1.133 1.210 1.249 0.909 0.992 1.061 1.0932
80 1.022 1.115 1.191 1.228 0.896 0.977 1.045 1.077%
100 1.016 1.108 1.186 1.221 0.890 0.972 1.039 1.071%
130 1.009 1.102 1.178 1.212 0.886 0.967 1.033 1.0655
150 1.006 1.098 1.174 1.209 0.883 0.965 1.031 1.0615
200 1.001 1.094 1.168 1.203 0.880 0.960 1.027 1.0578
250 0.997 1.088 1.164 1.198 0.877 0.958 1.022 1.0542
300 0.995 1.086 1.161 1.196 0.875 0.955 1.020 1.05;‘5
350 0.993 1.083 1.159 1.193 0.873 0.953 1.019 1.050~
400 0.991 1.082 1.157 1.192 0.872 0.952 1.018 1'049'r\1>1
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Table8 Phase | Data used to estimate the process parameters

Phase | datay; ;) X; S?
1 500.60 500.44 500.07 499.01 498.81 499.79 0.68
2 500.76 501.76 501.34 500.47 501.88 501.24 0.38
3 499.07 499.95 500.15 500.14 498.95 499.65 0.35
4 499.39 49955 500.06 500.41 500.79 500.04 0.34
5 500.55 500.88 501.55 502.17 500.96 501.22 0.41
6 499.96 500.97 499.31 501.18 501.59 500.60 0.88
7 500.45 498.82 499.73 501.19 499.78 499.99 0.79
8 500.82 500.37 499.71 499.44 500.87 500.24 0.42
9 500.28 499.30 497.19 497.66 499.30 498.75 1.64
10 499.83 498.41 501.54 501.10 499.86 500.15 1.51
11 500.08 499.13 500.45 499.18 498.99 499.57 0.43
12 500.88 499.89 501.18 500.83 500.72 500.70 0.24
13 499.98 499.03 499.79 499.25 500.52 499.71 0.35
14 500.03 499.97 500.21 499.46 499.26 499.79 0.16
15 499,59 499.20 501.28 500.52 500.30 500.18 0.67
16 500.45 501.96 498.84 501.19 499.43 500.38 1.61
17 499.13 500.82 500.88 499.50 498.91 499.85 0.88
18 500.42 499.83 498.59 500.52 500.54 499.98 0.69
19 500.77 499.86 500.33 500.56 500.64 500.43 0.13
20 499.14 499.75 500.57 501.70 501.05 500.44 1.03

Table9 Phase Il data to be monitored using the ShewXadhart

O©CoO~NOOUITA, WN P

Phase Il datdg ;) Y;

498.98 500.12 498.98 499.34 499.68 499.42
500.90 499.97 500.74 502.11 499.68 500.68
499.97 499.70 499.06 499.61 498.49 499.37
500.47 500.34 500.70 499.69 499.27 500.10
500.29 500.52 500.32 498.00 499.13 499.65
499.21 501.02 500.21 499.51 498.33 499.65
500.76 500.29 498.16 499.53 499.75 499.70
500.60 498.74 500.05 498.92 500.41 499.75
498.46 501.95 500.05 501.28 502.52 500.85
497.87 498.63 500.98 500.81 500.82 499.82
498.14 498.25 498.02 499.45 499.54 498.68

500.09 499.68 499.05 499.76 499.11 499.54
499.41 500.85 498.63 497.79 499.31 499.20
499.03 499.30 499.93 499.17 499.12 499.31
498.28 498.71 498.86 497.56 500.58 498.80

500.20 499.37 500.69 499.45 498.14 499.57
497.36 501.54 498.96 500.57 498.77 499.44
497.84 499.41 499.84 500.78 497.71 499.12
499.90 497.71 498.97 500.56 500.59 499.55
497.92 500.21 499.23 498.29 498.39 498.81
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Figure4 ShewhartX chart corresponding to the Phase Il data in Table 9



