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Abstract

Zooplankton contamination represents a major constraint in large-scale microal-

gal cultivation systems. While zooplankton contamination cannot be avoided,

their development can be controlled by regulating the dilution rate. However, it

is not straightforward to find the best control strategy for the dilution rate. Low

dilution rates (or long retention times) favor grazer development and high dilu-

tion rates avoid their establishment at the risk of reducing microalgal productiv-

ity. Furthermore, the presence of periodic regimes arising from the interaction

predator-prey makes it unclear if the presence of grazers must be completely

avoided. In this paper, we study the role of the dilution rate in the control of

zooplankton populations and in the optimization of biomass productivity. We

show that in the long-term operation (static optimal control problem or SOCP),

the optimal constant dilution rate must ensure the eradication of the zooplank-

ton population. In the case of time-varying dilution rate, we numerically solve

an optimal control problem (OCP) over a finite interval of time. We find that

the optimal solution approaches the solution for the SOCP most of the time, ex-

cept when zooplankton actively avoid the pond outflow. Based on these results,
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we propose a simple sub-optimal feedback control that approximately matches

the solution of the OCP when the initial concentration of grazers is low.

Keywords: Biotechnology, Chemostat, Predator-prey, Optimal Control,

Biomass productivity, Dilution rate

1. Introduction

Microalgae are a growing natural resource with several commercial appli-

cations in the fields of pharmaceuticals, cosmetics up to feedstocks for aqua-

culture [1]. A challenge when cultivating these organisms, especially in open

reactors like raceways, is to limit contamination by other organisms such as5

viruses, bacteria, fungus, other microalgal species, and grazers [2, 3]. In in-

dustrial conditions, it is indeed impossible to operate the process under axenic

conditions, and the surrounding environment will permanently bring invaders

to the medium. In particular, predators (ciliates, rotifers, daphnia, copepods,

etc.) are a poignant issue since they may rapidly develop and lead to a culture10

crash within a few days [3].

To date, there is no efficient strategy to limit crop loss through zooplank-

tonic predation, and most of the microalgae grown outdoors in open reactors

are extremophiles, which develop in a medium hostile to most of the organisms

present in the surrounding ecosystems. Chemical pesticides can limit contami-15

nation but they have both high economical and environmental costs. Physical

methods are effective, but they are not cost-effective and they can also affect

negatively microalgae [4]. An alternative that has scarcely been explored, is the

control of the dilution rate. Since species with a generation rate slower than the

dilution rate are unlikely to establish in cultivation systems, high dilution rates20

reduce grazers abundance [5, 6].

The dilution rate (the inverse of the hydraulic retention time) is one of

the most important operational variables for continuous cultivation systems [7].

Different authors have studied how to control the dilution rate to maximize

biomass productivity. In the absence of predators, when algal growth is limited25

2



only by light, there exists the well-known compensation principle [8, 9]: the

productivity is maximal when at the bottom of the culture, the specific growth

rate equals the respiration rate. The existence of an optimal dilution rate has

been experimentally shown by many authors in the absence of predators [10, 11].

Other theoretical works have considered the dilution rate varying in time [12,30

13]. Regarding contaminated systems, there are only a few works concerning

the impact of the dilution rate [14, 15].

Any control of the dilution rate should consider two important aspects. The

first one is that zooplankton often escape the outflow of the pond. For exam-

ple, cladocerans migrate to near the pond surface at night, resulting in lower35

densities in the deep water column where the outflow is often located [6, 16].

This has also been observed in chemostat experiments, where cladocerans con-

centrate near the bottom of the chemostat, remaining below the surface from

which the overflow occurs [17]. The critical dilution rate to eradicate some

zooplankton populations is therefore higher than their generation rate. Pre-40

vious theoretical studies assume that microalgae and zooplankton are equally

affected by the dilution rate [14, 15, 18], and therefore they may underestimate

the impact of grazers. The second important aspect is shared by any predator

prey model, that is, the existence of limit cycles. Low dilution rates favor the

existence of limit cycles [15]. This is because of the enrichment paradox: fa-45

vorable conditions for the prey may cause the population to destabilize into a

limit cycle [19, 20, 18]. Comparing the productivity along limit cycles with that

of equilibria is not trivial. In [15], we numerically show that in the long-term,

productivity is higher in the absence of grazers. Therefore, limit cycles cannot

be an optimal regime. However, we did not consider that zooplankton may50

avoid outflow. As shown in this paper, the avoidance of the outflow favors the

existence of limit cycles.

In this work, we investigate how to control the dilution rate to maximize

the microalgae production in a culture susceptible to predation. We study two

cases: (I) the dilution rate is constant and the system is operated in the long-55

term; (II) the dilution rate is time-varying, and biomass is harvested over a
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finite interval of time. In both cases, we consider a chemostat model in which

microalgae and grazers grow together (predator-prey model), and we assume

that only a fraction of predators is diluted. For Case (I), we determine the

necessary and sufficient conditions for the coexistence of both populations, and60

we show that any solution of the model approaches either an equilibrium or a

limit cycle. This allows us to state the static optimal control problem: to find

the value of the dilution rate that maximizes the biomass productivity in the

long-term (i.e. when an attracting set is reached). Using the toolbox Matcont

for MATLAB [21], we numerically find the best dilution rate. This is not trivial65

due to the existence of limit cycles. As we show in this paper, for a fixed dilution

rate, limit cycles provide higher biomass productivity than equilibria. For case

(II), we use the software BOCOP [22] to numerically solve the optimal control

problem of finding the best strategy to maximize the biomass productivity over

a finite time interval.70

This paper is organized as follows. In Section 2, we describe the microalgae-

grazers model. In Section 3, we determine the necessary and sufficient conditions

for the survival of predators. In Section 4, we study the steady-state optimiza-

tion problem of maximizing biomass productivity. In Section 5, we study the

optimal control problem of maximizing biomass productivity in a fixed interval75

of time. In Section 6, we discuss our results. Finally, the conclusion is presented

in Section 7.

2. Model description

2.1. Mass balance equations

We consider the growth of microalgae (with density x) in a chemostat con-80

taminated by predators of population density y (see Figure 1). The dynamics

of both populations is given by the following system of ordinary differential

equations
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Figure 1: Scheme of a continuous microalgae (x) culture contaminated by predators (y). The

culture is illuminated from above with an incident light intensity Iin. The culture has a depth

L. The light intensity at the bottom is Iout. The inlet flow F is equal to the output flow.

dx

dt
= [µ(x)−D]x− 1

γ
ν(x)y,

dy

dt
= [ν(x)−m− αD]y.

(1)

The terms µ and ν are the specific growth rate of microalgae and predators,

respectively. The parameter γ ∈ [0, 1] corresponds to the assimilation efficiency85

and m is the mortality rate of predators. The term D is the dilution rate

that is defined as the inlet flow (F ) divided by the reactor volume (see Figure

1). Finally, the term α is a parameter reflecting the fact that some predators

can escape from dilution, for example, by accumulating at a place below the

output of the chemostat [17]. This parameter takes values between 0 and 1.90

If α = 1, then algae and predators are equally diluted; however, if α = 0,

then predators are unaffected by dilution. Along this work, we assume that α

is constant in time. While this assumption is reasonable for indoor cultures,

where parameters such as light and temperature are kept constant, the main

motivation for this assumption is to keep the model simple. Predator-prey95

models with time-varying parameters may exhibit a chaotic behavior [23].
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Table 1: Parameters

Parameter Value Unit Reference

pmax 1.68 d−1 [24]

KI 108 µ mol m−2 s−1 [24]

r 0.1 d−1

k 0.2 m2 g−1 [18]

νmax 1.4 d−1 [18]

Kx 219 g m−3 [18]

m 0.15 d−1 [18]

γ 0.21 [18]

L 0.15 m

Iin 1000 µ mol m−2 s−1

Dmax 2 d−1

2.2. Specific growth rates

The specific growth rate of predators depends on the microalgae concentra-

tion as follows:

ν(x) = νmax
x

Kx + x
, (2)

with νmax the maximal growth rate and Kx a half saturation constant.

The growth rate of microalgae follows from the combination of a light re-

sponse model and a light distribution model. Light intensity decreases as it

passes through the microalgae culture due to absorption and scattering by algal

cells [25]. Let L be the depth of the culture, which is illuminated from above

as illustrated in Figure 1. In line with standard hypotheses for photolimited

photobioreactors [26], light is assumed to be attenuated exponentially accord-

ing to the Lambert-Beer law. Thus, at a distance z ∈ [0, L] from the illuminated

surface, the corresponding light intensity I(x, z) is given by:

I(x, z) = Iine
−kxz,

with k > 0 the specific light attenuation coefficient of microalgae. Following [24],

the growth rate of microalgae is obtained integrating the local specific growth
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Figure 2: Graphical description of M and x∗ defined by (8) and (11), respectively.

rates over all the culture

µ(x) :=
1

L

∫ L

0

p(I(z, x))dz − r, (3)

where p(I) corresponds to the light response of microalgae and r > 0 is the

respiration rate. The function p(I) is described by a Monod model:

p(I) = pmax
I

KI + I
, (4)

whereKI > 0 is a half-saturation constant, and pmax > 0 is the maximal specific

growth rate. Parameters of the model are given in Table 1.100

The following lemma establishes some basic properties of the specific growth

rate of microalgae.

Lemma 1. The function µ : [0,∞) → R defined by (3) is continuous, strictly

decreasing, and limx→∞ µ(x) = −r.

Proof. See Appendix C in [27].105

From Lemma 1, we have that µ is strictly decreasing (see also Figure 2).

This property reflects the self shading effect, that is, as microalgae concentra-

tion increases, the light availability in the medium decreases, thus reducing the
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growth rate. This implies that µ(0) is the maximal hypotetical growth rate of

microalgae at which they tend to grow as their concentration decreases and the

medium becomes transparent. From (3), we have that

µ(0) = p(Iin)− r. (5)

The light intensity Iin is assumed to be large enough such that microalgae can

grow (gross growth rate larger than respiration), and therefore we assume that

µ(0) > 0. (6)

When x > 0, we can integrate (3) to obtain

µ(x) =
µmax

kxL
ln

(
KI + Iin

KI + Iout(x)

)
− r, x > 0. (7)

with Iout(x) = I(x, L) the light intensity at the bottom of the culture.

Using Lemma 1 and (6), we have the existence of a unique M > 0 such that

(see Figure 2):

µ(M) = 0. (8)

If the microalgae concentration is higher than M , then respiration (r) exceeds

the average photosynthesis along the column, and the specific growth rate µ

becomes negative. Thus, the quantity M represents the maximum population

density that can be reached by microalgae at steady state (replace D and y by

zero in (1)). In this paper, we are interested in the case where predators can

develop in the reactor, therefore we assume

ν(M) > m. (9)

If (9) does not hold, predators will naturally disappear from the reactor in the

long-term.

3. Establishment of predators

3.1. Dynamics in the absence of grazers110

To determine conditions for the establishment of predators in the chemostat,

we begin describing the situation in which microalgae grow in the absence of
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predators, that is, we replace y by zero in (1). The dynamics of microalgae is

then given by the following one-dimensional differential equation:

dx

dt
= [µ(x)−D]x. (10)

If µ(0) > D, since µ is strictly decreasing (Lemma 1) and µ(M) = 0, there is a

unique x∗ > 0 such that (see Figure 2):

µ(x∗) = D. (11)

It is clear that x∗ is globally asymptotically stable (GAS) with respect to (10)

on (0,∞). Sometimes we will write x∗(D) instead of x∗ to emphasize the fact

that x∗ depends on the dilution rate. On the other hand, if µ(0) ≤ D, then

any solution to (10) converges to 0. Thus, the dilution rate Dalg := µ(0) rep-

resents the minimal dilution rate at which microalgae are washed out from the

culture (see Figure 2). The equilibrium (of (1)) characterized by the presence

of microalgae and the absence of predators, whenever it exists, will be denoted

by

E∗ = (x∗, 0). (12)

3.2. Coexistence of microalgae and predators

The following proposition answers the question whether microalgae and

predators coexist in the long-term.

Proposition 1 (Coexistence). There is a dilution rateDcoex ∈ (0, Dalg) such

that115

(a) If 0 < D < Dcoex, then there is a unique coexistence equilibrium Ec =

(xc, yc), and any solution to (1) approaches asymptotically either Ec or a

positive periodic solution.

(b) If Dcoex ≤ D < Dalg, then there is no coexistence equilibrium, and any

solution to (1) approaches E∗ asymptotically.120

(c) If Dalg < D, then any solution approaches asymptotically (0, 0).

Proof. See Appendix A. □
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Figure 4: Possible assymptotic behaviors of the solutions of (1) when α = 0.5. A. The

coexistence equilibrium Ec exists and is unstable (D = 0.1 d−1), and solutions approach a

limit cycle. B. The coexistence equilibrium Ec exists and is stable (D = 0.5 d−1). C. There

is no coexistence equilibrium (D = 0.8 d−1)
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Proposition 1 shows the existence of a dilution rate Dcoex that character-

izes the long-term coexistence of microalgae and zooplankton. Note that since

zooplankton needs microalgae to grow, the survival of predators is equivalent to125

the coexistence of both populations.

The value of Dcoex can be determined from the following system of equations

for x∗ and D (see the proof of Proposition 1):

µ(x∗) = D,

ν(x∗) = m+ αD.
(13)

From Lemma 1, we have that the inverse of µ exists. Thus, from the first

equation in (13), we can write x∗ = µ−1(D). Then, Dcoex is obtained as the

intersection between the line m + αD and the function D 7−→ ν(µ−1(D)) (see

Figure 3). We note that low values of α (longer retention time of grazers in130

the reactor) and low values of m (low mortality rate) result in higher values of

Dcoex.

From now on, the coexistence equilibrium, whenever it exists, will be denoted

by

Ec = (xc, yc). (14)

The following result states some dynamical properties of Ec.

Lemma 2. (Stability of the coexistence equilibrium) Let us define the function

h : (0,∞) → R by

h(x) :=
(µ(x)−D)x

ν(x)
. (15)

If the coexistence equilibrium Ec exists, then:

(a) if h′(xc) < 0, then Ec is a sink (locally stable),135

(b) if h′(xc) = 0, then Ec is globally stable on (0,∞)× (0,∞)

(c) if h′(xc) > 0, then Ec is a source (unstable).

Proof. See Appendix B. □

Remark 1 (Existence of limit cycles). Lemma 2 describes the local stabil-

ity of the coexistence equilibrium. In particular, it states sufficient conditions140
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for the existence of limit cycles, that is, when Ec is unstable. Proving that the

instability of Ec is a necessary condition for the existence of limit cycles has

been the concern of many authors [28, 29, 30]. However, most of the results are

limited to the case when µ(x) is described by logistic growth. In this work, we

do not aim to prove such results for our model, which could be the subject of145

a completely different work. However, numerical simulations suggest that the

instability of Ec is a necessary and sufficient condition for the existence of a

limit cycle (see Figure 4).

Lemma 3. Let h be the function defined by (15). Assume that the coexistence

equilibrium Ec exists. If h′(xc) > 0 and the following inequality holds for all

x ∈ (0, x∗)− {xc}:
d

dx

(
ν(x)h′(x)

ν(x)−m− αD

)
≤ 0. (16)

then (1) admits a unique limit cycle, which is globally stable on (0,∞)× (0,∞).

Proof. Direct application of Theorem 2.2 in [31].150

Remark 2 (Uniqueness of limit cycles). Following Lemma 3, we can show

numerically that when Ec is unstable, (1) admits a unique limit cycle that is

globally stable [15]. Such result is probably not surprising, the multiplicity of

limit cycles has only been observed, for example, in the presence of Allee effect

on prey [32] or non-monotonic functional responses by predators [33].155

4. Static optimal control problem (SOCP)

4.1. Productivity in the absence of grazers

In the absence of predators (y = 0), as discussed in the previous section, for

any dilution rate D ∈ [0, Dalg], the microalgae concentration converges toward

the steady state x∗(D) (defined by (11)). We then define the steady state

biomass productivity as follows P (D) := LDx∗(D). This term represents the

quantity of microalgae that is produced per unit of area and time when a solution
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Table 2: Different notations for the dilution rate.

Notation Description

Dalg Minimum dilution rate at which microalgae go extinct.

Dcoex Minimum dilution rate at which predators go extinct.

DC Solution of (17). Dilution rate at which a pure culture of microalgae

reaches its maximal productivity.

DSOCP Conjectured solution of the SOCP (20). Dilution rate at which the

contaminated cultures reaches its maximal productivity.

DOCP Optimal solution of the OCP (24).

D̂ Suboptimal feedback control proposed in this work (see (25)).

of (10) reaches its steady state. The units of P (D) are g/m2/d. The problem

of maximizing P can be written as:

max
D

P (D),

s.t. 0 < D < Dalg.
(17)

It is well known that P reaches the maximum value when the following com-

pensation condition holds [8]:

p(Iout(x
∗(D))) = r. (18)

We will denote by DC the dilution rate at which the equilibrium x∗ verifies the

compensation condition (18). Thus, DC is the solution to (17) (The different

notations for the dilution rate are summarized in Table 2.).160

4.2. Productivity in the presence of grazers

To extend the definition of productivity to a culture contaminated by preda-

tors, we must take into account the asymptotic behavior of any solution to (1)

with positive initial conditions. According to Proposition 1, there is a dilution

rate Dcoex > 0 such that for any D < Dcoex microalgae and predators survive in165

the long-term. Moreover, they either settle in the coexistence equilibrium Ec or

they approach a periodic solution of (1) (see Figure 4). Following Remark 2, we
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assume that, when Ec is unstable, there is a unique limit cycle. We will denote

the trajectory and period of the limit cycle by (xp, yp) and T , respectively.

We define the areal long-term productivity, denoted by Q(D), as
L

T

∫ T

0

Dxp(t)dt, if Ec exists and is unstable,

LDxc, if Ec exists and is stable,

LDx∗, if Dcoex ≤ D < Dalg.

(19)

The definition of Q accounts for three different types of asymptotic behavior in170

which microalgae are present; limit cycle, coexistence equilibrium, and equilib-

rium without grazers (see Figure 4). Note that when the coexistence equilibrium

exists and is unstable, Q corresponds to the daily average biomass productivity

during the whole period of the limit cycle. In this way, the units of Q are exactly

the same of P , and the productivity along limit cycles can be compared to that175

provided by equilibria.

We are interested in finding the constant dilution rate that provides the

highest value of Q, that is, we want to solve the following optimization problem:

max
D

Q(D),

s.t. 0 < D < Dalg.
(20)

We will refer to (20) as the static optimal control problem (SOCP).

4.3. Limit cycles are not optimal

The following proposition shows that Q cannot be optimal at a coexistence

equilibrium.180

Proposition 2. Let D be such that Ec exists and is stable. Then, Q(D) is not

the maximum value of Q.

Proof. Let D be such that Ec = (xc, yc) exists and is stable and let us assume

that Q reaches the maximum at D. Let x∗ be such that µ(x∗) = Dcoex. From

the definition of xc and from Proposition 1, we have

ν(xc) = αD +m < αDcoex +m.
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From (13), we conclude that

ν(xc) = αD +m < ν(x∗).

Since ν is strictly increasing, xc < x∗, and consequently Q(D) < Q(Dcoex),

which contradicts the hypothesis that Q reaches the maximum at D.

Proposition 2 states that Q is optimal either at a limit cycle or at an equi-185

librium without predators (first and third cases in (19)). When dealing with

limit cycles, it is not clear how Q behaves. The following Proposition shows

that for a constant dilution rate, the microalgal biomass along a limit cycle is

higher than that of the unstable coexistence equilibrium.

Proposition 3. Let D be such that (1) admits an unstable coexistence equi-

librium Ec = (xc, yc). Let (xp, yp) be a limit cycle of (1) with period T . We

have that

xc <
1

T

∫ T

0

xp(t)dt. (21)

Proof. From the second equation in (1), after dividing both sides by y, we have

that

ν(xc) = m+ αD =
1

T

∫ T

0

ν(xp(t))dt.

Since ν is strictly concave, applying Jensen inequality [34], we obtain

ν(xc) < ν

(
1

T

∫ T

0

xp(t)dt

)
.

Finally, since ν is increasing, we obtain (21).190

In terms of productivity, Proposition 3 states that for an unstable equilib-

rium Ec = (xc, yc), we have that

DLxc < Q(D). (22)

Expression (22) is an indicator of the difficulty of arguing that limit cycles

cannot be optimal. While we know that coexistence equilibria are not optimal

(see Proposition 2), we have no argument to say that the gain in biomass through

16



a limit cycle cannot surpass the biomass production in the absence of predators.

An answer to the question of whether limit cycles can be optimal or not can be195

numerically investigated.

4.4. Numerical evaluation of the productivity

We use the toolbox Matcont for MATLAB [21] to evaluate numerically the

productivity Q as a function of the dilution rate. Figure 5 shows a bifurcation

diagram of (1) with respect to the dilution rate and the evaluation of Q. We200

observe a unique value of D at which a Hopf bifurcation takes place, that is,

when the coexistence equilibrium changes its stability and a limit cycle appears

[35]. We observe that a reduction of α favors the existence of limit cycles and

increases the range of dilution rates admitting a coexistence equilibrium. Re-

garding the productivity, we observe that Q is strictly increasing on [0, Dcoex],205

despite the presence of limit cycles. When grazers are equally diluted as mi-

croalgae (α = 1), Dcoex is lower than DC , and DC is the trivial choice for the

optimal dilution rate. This dilution rate not only ensures the washout of graz-

ers, but ensures the highest biomass productivity. When α = 0.5 or α = 0.1,

Dcoex is higher than DC . In this case, Dcoex is the optimal dilution rate, despite210

the apparent microalgal biomass loss.

Based on our numerical simulations and on the fact that there is no paper

citing any advantage of predators in microalgal cultivation, we propose the

following conjecture on the solution of the SOCP.

Conjecture 1. Let Dcoex be the dilution rate given by Proposition 1 and let

DC be the solution to (17). Then, the solution to (20) is given by

DSOCP = max{Dcoex, DC}. (23)

To understand Conjecture 1, let us imagine a chemostat with a pure culture215

of microalgae that is operated at optimal dilution rate DC . We allow then

the system to reach steady state. Now, let us imagine that a zooplankton

population invades the culture. If the growth rate of zooplankton is negative,

17
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and microalgae have different concentration units. Parameters are taken from Table 1 and

x0 = 0.1 g/m3.

they will washout and the culture is optimally operated. This corresponds to

the case Dcoex < DC , that is, the optimal dilution rate for the monoculture is220

too high to allow the development of zooplankton. On the other hand, if the

invaders have a positive growth rate, they will develop and remain in the culture

in the long-term. In this case, Conjecture 1 states that the dilution rate must

be increased at the minimal value ensuring the washout of predators, that is,

the dilution rate must be set at Dcoex.225

5. Optimal control problem (OCP)

5.1. Problem statement

In the previous section, we studied the optimal constant value of the dilution

rate in the long-term operation. In this section, the dilution rate is allowed to

vary in time, and we want to maximize the quantity of biomass that is harvested

on a fixed interval of time [t0, tf ]. We consider the following optimal control
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problem (OCP):

max
D

J :=

∫ tf

t0

LD(t)x(t)dt,

s.t.
dx

dt
= [µ(x)−D]x− 1

γ
ν(x)y,

dy

dt
= [ν(x)−m− αD]y,

0 ≤ D(t) ≤ Dmax, t ∈ [t0, tf ],

(24)

where Dmax is the maximal dilution rate allowed. The best policy for D(t) is

known as optimal control.

Note that the microalgae productivity is given by J and it represents the230

quantity of biomass (in grams) that is harvested per meter squared in a given

interval of time. This productivity is measured in g/m2 and not g/m2/d as

the productivity Q defined in Section 4. If J is divided by tf − t0, then we

obtain the daily average productivity, which is comparable to Q. However, in

this section, we are focus on investigating the structure of the optimal control.235

For this purpose, it is equivalent to maximizing J or J/(tf − t0).

Since D appears linearly in the objective function in (24) and on the system

(1), the optimal control is “bang-bang” type, singular, or a combination of

both. This follows from the theory of optimal control and the application of

the Pontryagin Maximum Principle [36]. When a singular arc takes place, the240

dilution rate takes intermediate values between 0 and Dmax. When a bang-bang

solution occurs, the optimal control oscillate between 0 and Dmax.

5.2. Numerical solution

We solve numerically the OCP (24) with a direct method implemented in

the sofware BOCOP [22] (version 2.21). The problem is discretized by a two-245

stage Gauss-Legendre method of order 4 with 100-500 time steps. We consider a

constant initialization, and the tolerance for IPOPTNLP solver is set at 10−12.

Figure 6 shows the optimal solution for different values of α and different

initial abundances of grazers. When the initial concentration of grazers is low

(y0 = 0.1 g/m3), the structure of the optimal control is bang-singular-bang.250

That is, at the beginning, the dilution rate is set to zero (bang), then the dilution
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rate takes intermediate values between 0 and Dmax (singular arc), and finally

the dilution rate is set to Dmax (bang). We note that the singular arc is very

close to the solution of the SOCP, especially when α = 1. When α = 0.5 and the

initial concentration of predators is high (y0 = 100 g/m3), the optimal control255

is of the form bang-bang-singular-bang. In this case, an additional switch time

is added and the dilution rate is set at its maximum value at the beginning.

5.3. Suboptimal feedback control

Microalgae cultures are generally initiated without zooplankton and with a

low concentration of microalgae. In such situations, as suggested by numeri-260

cal simulations, the solution of the OPC (8) sets the dilution rate to zero at

the beginning (see Figure 6). Thus, the microalgae concentration will rapidly

increase until reaching a value close to xSOCP . Then, the microalgae concen-

tration stays close to xSOCP while the dilution rate follows a singular arc that

is close to DSOCP . Based on this, we propose the following feedback control:265

D̂ =

 DSOCP if x ≥ xSOCP ,

0 if x < xSOCP ,
(25)

with DSOCP defined by Conjecture 1 and xSOCP defined by the following equa-

tion

µ(xSOCP ) = DSOCP . (26)

The feedback control D̂ depends on whether zooplankton can develop or not

when the compensation condition (18) holds. If the zooplankton cannot sur-

vive, the feedback control leads the process to rapidly satisfy the compensation

condition and keeps the system in that state. However, if zooplankton can

survive, the strategy consists of forcing microalgae to rapidly reach the lowest270

equilibrium concentration (x∗) at which they do not support the development

of zooplankton (ν(x∗) = m+αD). Then, the system is kept at equilibrium until

the end.

This control is not appropriate for initial conditions with a remarkable dom-

inance of grazers in the culture, the application of D̂ can result in an oscillatory275
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Figure 7: Comparison of the productivity obtained with the optimal control and the feedback

control defined by (25). The initial conditions are x0 = 0.1 g/m3 and y0 = 0.1 g/m3 and the

interval of time is [0, 50].

behavior in which zooplankton will collapse only after reaching its maximum

concentration. As shown in Figure 6, an initial phase with high dilution rate is

more suitable for cultures that are already highly contaminated.

Figure 7 shows the productivity associated with D̂ and with the optimal

control DOCP . We observe that as α increases, both controls give a similar280

productivity. However, when α is low, the optimal control clearly outperforms

the feedback control D̂. When α = 0.1, the productivity associated with DOCP

is a 27% higher than the productivity associated with D̂. When α is higher than

or equal to 0.4, there is an increase of only about 0.5 − 1.5%. This is because

low values of α are associated with high values of DSOCP
1. Thus, when the285

feedback control sets the dilution rate at DSOCP , there is a loss of microalgae

due to dilution that cannot be compensated by the eradication of grazers. For

this reason, the optimal control DOCP sets a dilution rate lower than D̂ (see

Figure 8). This disagreement between both controls is related to time horizon.

1Indeed, for low values of α, predators are more likely to survive, that is, Dcoex is higher

(see Figure 3). In view of the definition of DSOCP (see (23)), it is clear that DSOCP increases

with α.
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The construction of D̂ is primarily based on the solution of the steady state290

optimization problem, that is, when the system is operated in large time. As

shown in Figure 9, when the time horizon is increased, the optimal control

becomes closer to the control D̂. This reveals a Turnpike-like property of the

optimal control problem [37]: when the optimal control is settled in large time

intervals, most of the time the optimal control stays close to the solution of the295

steady state problem. This property becomes more evident when α approaches

1 as shown in Figure 6.

6. Discussion

6.1. Description of the feedback control D̂

We have proposed a feedback control of the dilution rate to increase biomass300

productivity in microalgal cultivation systems that are susceptible to predation.

This strategy is sub-optimal but very close to the optimal control when predators
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Figure 9: Optimal control when α = 0.1 on the time interval [0, 200].

are efficiently diluted (Figure 7, α ≈ 1) and their initial concentration is low.

The efficiency of the feedback control reflects a Turnpike-like property of the

optimal control problem [37]: when the optimal control is settled in a large time305

interval, most of the time the optimal control stays close to the solution of the

steady state problem (see Figure 9).

The feedback control D̂ is not suitable for highly contaminated systems be-

cause setting the dilution rate to zero is not always a good way to rapidly

increase microalgae concentration. At fixed low dilution rates, solutions of (1)310

oscillate approaching a limit cycle (e.g. see Figure 4A). If the initial concen-

tration of grazers is high, the trajectories move counter clock-wise in such a

way that the microalgae concentration decreases. Indeed, as shown in Figure

6, the optimal control (DOCP ) sets the dilution rate to its maximum value to

reduce the abundance of grazers and then sets the dilution rate to zero to in-315

crease microalgae density to its optimum steady state value. In future work,

the minimum-time control problem of reaching the optimal microalgae density

of the SOCP should be addressed. This would allow us to propose a feedback

control suitable for any state of the cultivation system.

6.2. Typical start-up of continuous cultures320

In real situations, microalgae continuous cultures generally consist of two

phases: an initial batch phase (dilution rate equal to zero) in which microalgae
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Figure 10: Productivity obtained using the IB control (defined in subsection 6.2) with different

values for xbatch and Dfixed, with α = 0.5. A. Productivity surface plot. B. Level curves of

the productivity. The circle (o) represents the optimum choice of xbatch and Dfixed for the

IB control, which provides productivity of 727 g/m2. Each level curve represents a percentage

of the maximum productivity obtained using the IB control. The star (⋆) corresponds to the

feedback control D̂, that is, xbatch = xSOCP and DSOCP .

rapidly grow reaching a sufficient cell density, and a second phase in which the

reactor is operated at a constant dilution rate [38, 39]. Such control of the

dilution rate, henceforth referred to as initial-batch (IB) control (we follow the325

definition given in [38]), is characterized by two parameters, the microalgae con-

centration at the end of the batch phase (denoted by xbatch) and by a constant

dilution rate during the chemostat phase (denoted by Dfixed).

The feedback control D̂ can be seen as an IB control in which xbatch is equal

to xSOCP (defined by (26)) and Dfixed is equal to DSOCP (defined by (23)).330

A natural question is whether D̂ is an efficient control among all the possible

IB controls. Figure 10A shows the productivity that is obtained using the IB

control with different values of xbatch andDfixed. We observe the existence of an

optimal combination of xbatch and Dfixed that maximizes the productivity. The

maximal productivity is 727 g/m2, and it is reached when xbatch = 109 g/m3 and335

Dfixed = 0.75 d−1. Figure 10B shows the level curves for productivity obtained

using the IB control and the productivity associated with D̂(x). We observe that
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the feedback control is close to the optimal IB control (xSOCP = 139 g/m3 and

DSOCP = 0.79 d−1). The feedback control provides productivity of 724 g/m2,

that is, a 0.46% lower than the maximum productivity with IB control. This340

shows that the feedback control D̂ is a good approximation of the optimal IB

control. Simultaneously, this indicates a good agreement between the optimal

IB control and the optimal control DOCP .

6.3. Real implementation of the feedback control

The implementation of the feedback control D̂ requires the estimation of345

three parameters Dcoex, DC , and xSOCP . The values of DC and xSOCP can be

estimated from the specific growth rate curve of the microalgae species. The

parameter DC can be also estimated experimentally [10]. Estimating the value

of Dcoex is probably the main difficulty. This parameter depends on the grow

capacity of the possible predators, that is, the growth rate of predators, the350

capacity of predators to escape the outflow, the mortality rate of zooplankton,

and factors that were not taken into account in this study, such as temperature.

Therefore, dedicated experiments may be needed to estimate Dcoex, or at least

un upper bound.

Once the parameters defining D̂ are known, the application of this feedback355

control is rather conventional: the microalgae culture is operated in batch mode

until the system reaches the concentration xSOCP , and then the culture is oper-

ated at the dilution rateDSOCP . Different techniques exist for online estimation

of the microalgae concentration [40]. This allows the estimation of the moment

at which the microalgae concentration is equal to xSOCP . It is important to360

note that even if this estimation is not precise, the final productivity will not

be severely affected. The productivity is rather robust with respect to xSOCP

(see Figure 10B).

One advantage of the feedback control D̂ is that it does not depend on the

population density of grazers. Early detection of zooplankton is not easy, and365

by the time zooplankton have been detected, it may be too late to optimally

operate the system [41].
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6.4. Presence of predators in optimal regime

Under constant operation of the chemostat, the optimal dilution rateDSOCP

avoids the development of predators. When the dilution rate is allowed to vary370

in time and the system is run for a finite time, under optimal operation, the

presence of grazers depends on their capacity to avoid outflow. If the reten-

tion time of zooplankton is notably higher than that for phytoplankton, then

some grazers are allowed to stay in the system (see Figure 6 case α = 0.5).

This is because the benefits of eradicating predators in a short period do not375

compensate the losses of microalgae due to a high dilution. When grazers are

more susceptible to be flushed out from the culture, some grazers may develop

but their concentration will remain low for most of the time (see Figure 6 case

α = 1). Thus, while in the long-term operation predators must be completely

avoided, in a finite horizon their eradication may not be optimal.380

6.5. Integrated solutions

Microalgae productivity can be increased by implementing the feedback con-

trol hatD with other techniques to reduce zooplankton contamination. Since

xSOCP is determined from (26), the control D̂ is completely determined by the

value of DSOCP . As shown in Figure 11A, the productivity associated with D̂385

decreases as the value of DSOCP increases. The reduction of DSOCP is possible

by decreasing α or m (see Figure 11B). The reduction of α, can be techno-

logically performed by, for example, placing the outflow closer to where grazers

have higher concentrations, or just after the paddle wheel, where individuals are

uniformly mixed [6]. Increasing m can be done using methods such as hydro-390

dynamic cavitation [42], increasing CO2 concentration [43], or even biocontrol

using predators for the grazers [4].

7. Conclusion

We have shown the existence of an optimal dilution rate for the steady state

operation of continuous microalgae cultures. This optimal dilution rate ensures395
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Figure 11: A. Productivity using D̂ with different values of DSOCP on the interval of time

[0, 50] d. B. Value of DSOCP for different combinations of aα and m.

the eradication of zooplankton, and therefore the productivity cannot be optimal

through limit cycles. Another consequence of this is that if predators develop

in a microalgae culture, the dilution rate must be increased until avoiding their

development. This strategy may not be intuitive because increasing the dilution

rate will also negatively affect the microalgae population. However, as shown400

in the paper, the loss in microalgae through dilution compensates for grazing.

It is also important to highlight that such a property is mathematically difficult

to prove, and therefore, we used numerical methods to corroborate it.

When the culture is operated during a finite interval of time, we have pro-

posed a simple feedback control for the dilution rate. This feedback control405

is characterized by an initial batch phase followed by a steady-state operation

at optimum dilution rate. This control follows the same structure as typical

controls used in real systems, which makes its application possible. Even if this

control is not optimal, it is very close to the optimal control when the system

is operated for a large period. Finally, this feedback control has the advantage410

that it depends on the microalgae concentration but not on the grazers con-

centration. This is important because the early detection of zooplankton is not

easy.

Predation during microalgae cultivation has often been neglected while it
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is one of the most challenging problems at the industrial scale. Its theoretical415

approach has so far rarely been targeted. It is important to account for a longer

residence time of the predators, which makes the problem even more difficult to

address. The strategies that we propose are likely to help a practitioner manage

this issue and avoid the installation of the grazers in the reactor. They must,

however, be associated with a direct treatment, such as biocontrol, to increase420

the predator mortality rate, favoring the proposed control strategy.
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Appendix A. Proof of Proposition 1

To prove Proposition 1, we need the following lemma on the boundedness of

solutions of (1).

Lemma 4 (Boundedness). Solutions to (1) are bounded.

Proof. Let (x, y) be a solution of (1) with x(0), y(0) > 0 and let x̄ be such

that
dx̄

dt
= (µ(x̄)−D)x̄, x̄(0) = x(0).

It is clear that x̄(t) ≤ b := max{x(0), x∗} with x∗ defined by (11). From a

comparison argument, it follows that x(t) ≤ x̄(t) for all t ≥ 0, then x(t) is
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bounded from above by b. Now, let us define the variable z = γx+ y. Then we

have
dz

dt
= γµ(x)x−my −Dz + (1− α)Dy.

Since, y(t) ≤ z(t) for all t ≥ 0, we obtain that

dz

dt
≤ γµ(0)b−Dz.

Then z(t) ≤ b′ := max{z(0), γµ(0)b/D} for all t ≥ 0. It is clear that b′ is an435

upper bound for y which completes the proof. □

Proof. (of Proposition 1) For any D ≥ 0, let us define x∗(D) by means of (11).

Now define φ(D) = ν(x∗(D))−m−αD. Note that φ is strictly decreasing, and

that φ(0) = ν(M) − m > 0 and φ(Dalg) = −m − αDalg < 0. Then, there is

a unique Dcoex ∈ (0, Dalg) such that φ(Dcoex) = 0. For the part (a), assume

that D < Dcoex, then there is xc ∈ (0, x∗(Dcoex)) such that ν(xc) = D. Since

µ is strictly decreasing, we have that µ(xc) > µ(x∗(Dcoex)) = Dcoex > D.

Consequently,

yc := γ
(µ(xc)−D)xc

ν(xc)
> 0.

Then the coexistence equilibrium is given by Ec = (xc, yc). The uniqueness of

Ec follows directly from the monotonicity of ν and µ.

The Jacobian matrix associated with (1) is given by

 µ(x)−D + µ′(x)x− 1
γ ν

′(x)y − 1
γ ν(x)

ν′(x)y ν(x)−m− αD

 . (A.1)

It is straightforward to verify that E0 := (0, 0) and E∗ are saddle points. Using

a stable manifold theorem argument [35], E0 and E∗ can only be reached by

solutions starting on ({0} ×R+)∪ (R+ × {0}). From Lemma 4, any solution to

(1) is bounded. Thus, using the Poincaré-Bendixon Theorem, we conclude that

any solution starting on the interior of R2
+ approaches asymptotically either

Ec or a periodic cycle. For part (b), by contradiction, let Ec = (xc, yc) be a

coexistence equilibrium. Then

µ(xc)− µ(x∗) =
ν(xc)

γxc
yc > 0,
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from where xc < x∗. Now, since D ≥ Dcoex we have

0 = ν(xc)−m− αD < ν(x∗)−m− αD = φ(D) ≤ 0,

which is a contradiction. Then, there is no coexistence equilibrium. Hence,440

there is no limit cycle. Consequently, any solution with positive initial condi-

tions approaches either E0 or E∗. Again, since E0 is a saddle point, using a

stable manifold theorem argument, we conclude that E0 can only be reached

by solutions starting on {0} × R+. Which completes the proof of (b). Finally,

if D > Dalg, E0 is the unique equilibrium that (1) admits. Using again the445

Poincaré-Bendixon Theorem, we conclude that any solution approaches asymp-

totically E0 and the part (c) is proved. □

Appendix B. Proof of Lemma 2

Proof. The Jacobian matrix associated to (1) evaluated at Ec is given by (see

(A.1))

J(Ec) =

 µ(xc)−D + µ′(xc)xc − 1
γ ν

′(xc)y − 1
γ ν(xc)

ν′(xc)yc 0

 .

Then the trace of J(Ec), denoted τ , and the determinant of J(Ec), denoted δ,

are given by

τ = µ(xc)−D + µ′(xc)xc − 1
γ ν

′(xc)y and

δ = 1
γxcycf(xc)ν

′(xc) > 0.

Thus, if τ < 0, Ec is a sink, if τ > 0, then Ec is a source. If τ = 0, then Ec

is a center for the linear system d
dt (x, y)

T = J(Ec)(x, y)
T . Then, according to450

Theorem 5 in Chapter 2.10 in the book of [35], Ec is either a focus, a center,

or a center-focus for (1). Choosing appropriately b in Theorem 2.1 in [31], we

conclude that there are no limit cycles when τ = 0. Hence, Ec is focus, and

consequently stable. From Proposition 1, we conclude the global stability of

Ec. Finally, it is straightforward to prove that τ and h′(xc) have the same sign.455

This completes the proof. □
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