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Abstract7

An emerging idea is to couple wastewater treatment and biofuel production using
microalgae to achieve higher productivities and lower costs. This paper proposes
a metabolic modelling of Chlorella sp. growing on fermentation wastes (blend of
acetate, butyrate and other acids) in mixotrophic conditions, accounting also for the
possible inhibitory substrates. This model extends previous works by modifying the
metabolic network to include the consumption of glycerol and glucose by Chlorella
sp., with the goal to test the addition of these substrates in order to overcome
butyrate inhibition. The metabolic model was built using the DRUM framework
and consists of 188 reactions and 173 metabolites. After a calibration phase, the
model was successfully challenged with data from 122 experiments collected from
scientific literature in autotrophic, heterotrophic and mixotrophic conditions. The
optimal feeding strategy estimated with the model reduces the time to consume the
volatile fatty acids from 16 days to 2 days. The high prediction capability of this
model opens new routes for enhancing design and operation in waste valorisation
using microalgae.

Keywords: Chlorella, metabolic modelling, heterotrophy, mixotrophy, diauxic8

growth, dynamical modelling9

1. Introduction10

Microalgae have been extensively studied during the past decade. Some species11

are capable of producing lipids or carbohydrates that can in turn be converted into12

biofuel (Sajjadi et al., 2018). Microalgae use light energy, via photosynthesis, to13

fix carbon dioxide. Not only, their growth rate is much faster than that of higher14

plants, but they can also be cultivated in wastewater, reducing the environmental15

impact of bioproducts (Morales et al., 2019, Arashiro et al., 2022). An emerging idea16

suggests using wastewater treatment to obtain biofuels as a co-product (Barsanti and17

Gualtieri, 2018). Even though the production efficiency appears to be attractive,18
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many optimization steps still need to be carried out for this process to become19

sufficiently cost-effective and environmentally-friendly (Tan et al., 2018).20

There is already an extensive list of works about wastewater treatment with21

microalgae. Nevertheless there is no unified framework for the modeling of this22

process (Shoener et al., 2019). Most of these models are variants of active sludge23

models (ASM) and anaerobic digestion models (ADM), which were originally de-24

signed for bacterial systems (Casagli et al., 2021b, Wágner et al., 2016). In addition25

mixotrophy is rarely considered in these models and microalgae are assumed to grow26

autotrophically, neglecting the simultaneous use of organic compounds. In contrast27

to these models, metabolic models can acquire the reaction yields, including pho-28

tosynthesis and organic carbon uptake by using the knowledge of the biochemical29

reactions taking place in the organism which is reconstructed from genomic data.30

Despite this, less than 5% of models of water recover facilities have metabolic re-31

constructions and usually rely on empirical yield coefficients (Shoener et al., 2019).32

Metabolic models also have the advantage of estimating internal metabolic fluxes,33

providing valuable information for future strain improvement via metabolic engi-34

neering. Nevertheless, the applicability of metabolic models to predict dynamical35

systems is constrained by the size of the metabolic network - which in genome scale36

models usually consists of thousands of reactions and metabolites. Consequently, to37

embed mixotrophic microalgal models in larger frameworks representing the mass38

fluxes within the wastewater process, it is necessary to use techniques to reduce39

the metabolic models to a reasonable size, while still keeping the phenotype of the40

original network.41

The development of techniques to reduce the size of metabolic networks started42

more than 20 years ago (Singh and Lercher, 2020). Since then new methods have43

been developed relying on a variety of different approaches, such as linear program-44

ming, graph-based search and elementary flux modes (Singh and Lercher, 2020).45

Our increasing understanding of genomic information led to the construction of46

more complex genome scale networks. This has motivated the field of bioinformat-47

ics to research new ways to reduce and analyze metabolic models, consequently new48

methods are still being developed (Küken et al., 2021, Hameri et al., 2021). The49

choice of the reduction method will depend on the intentions of the modeler, the50

wished degree of flexibility of the phenotype prediction and the final size of the51

model. In this work, we will rely on the DRUM framework (Baroukh et al., 2014,52

2016), which although requires input from the modeler and prior knowledge about53

the network, it is able to reproduce behaviour outside the steady state, while greatly54

reducing the number of metabolites and reactions in the final model. On top of this,55

such dynamic model can support a control strategy to enhance process efficiency.56

During dark fermentation of organic wastes, anaerobic bacteria and archaea con-57

vert complex and non-assimilable compounds into Volatile Fatty Acids (VFAs) us-58
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able by microalgae. Indeed, VFAs can support heterotrophic growth of microalgae,59

while they use ammonium and phosphate in the wastewater as source for nitrogen60

and phosphorus (Baroukh et al., 2017, Turon et al., 2015b,a, Gao et al., 2022). In61

this perspective, Chlorella sp. was selected for its potential in associating biofuel62

production with effluent treatment (Casagli et al., 2021b, Gao et al., 2022, Wágner63

et al., 2016). Indeed, this species can accumulate up to 50% of its dry weight in64

lipids, essentially in the form of triacylglycerol (TAG). In addition, its capacity to65

grow in the main dark fermentation effluents has been demonstrated, under het-66

erotrophic or mixotrophic conditions (Turon et al., 2015a, Lacroux et al., 2022).67

The VFA mixture resulting from dark fermentation is typically made of a blend68

composed of about 30% acetate and 70% butyrate. Other organic acids can also69

be found (Rafrafi et al., 2013, Turon et al., 2015a), among which lactate, which is70

not consumed and does not affect the growth of Chlorella (Turon et al., 2015a).71

Turon et al. (2015a) first proposed a kinetic model of the consumption of butyrate72

and acetate by Chlorella. Later, an extended metabolic model was proposed using73

the DRUM framework (Baroukh et al., 2017). Here, we extend further this model74

by including the consumption of glucose and glycerol by Chlorella and propose a75

universal multi-substrate dynamic reduced metabolic model.76

This model is the cornerstone for tackling the major issue due to the high concen-77

tration of butyrate which is slowly consumed by microalgae and inhibited by acetate78

(Hu et al., 2012, Turon et al., 2015b, Lacroux et al., 2022). To address this problem,79

another organic substrate can be added to lever the inhibition effect of butyrate and80

eventually accelerate growth in dark fermentation effluents. Microalgae will first81

use a more efficient carbon substrate to reach a higher biomass concentration. It82

follows that acetate will be faster consumed, and in the end butyrate. Glucose could83

ideally play this role, but its cost is not compatible with process economics. Acetate84

addition is more reasonable but would generate large variations in pH. Glycerol is85

a by-product of biodiesel synthesis by transesterification. Its low cost is likely to be86

compensated by the enhanced microalgal productivity. Developing a mixotrophic87

multi-substrate metabolic model is the main objective of this paper, and such ap-88

proach can be used to identify strategies to more efficiently use dark fermentation89

products and optimize their conversion into algal biomass.90

The model developed here represents, in detail, the growth under different au-91

totrophic, heterotrophic and mixotrophic conditions and for four organic substrates.92

To our knowledge, this is the first model including such a large range of potential93

substrates in mixotophic regimes. The model was validated in different cultivation94

conditions using the abundant literature available on autotrophic, heterotrophic95

or mixotrophic growth of Chlorella. To this end, data from 122 experiments was96

extracted from 15 publications, amounting to more than 2600 concentration data97

points (see Table 1), thus reaching an unprecedented level of validation. This model98
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Table 1: Considered experiments for each substrate. In parenthesis, the number of experiments in
mixotrophic conditions out of the total experiments.

Substrate # exp. Species References
Glycerol 12 (9) C. sorokiniana León-Vaz et al. (2019)

C. sp. Sen and Martin (2018)

C. protothecoides
Chen and Walker (2011), O’Grady and
Morgan (2011)

C. vulgaris Ma et al. (2016)

Glucose 22 (11) C. sorokiniana
León-Vaz et al. (2019), Li et al. (2013,
2014)

C. protothecoides
Espinosa-Gonzalez et al. (2014), Chen
and Walker (2011)

C. pyrenoidosa Ogbonna et al. (1997)

Glucose/Glycerol 2 (2) C. protothecoides O’Grady and Morgan (2011)

Acetate 40 (25) C. sorokiniana
León-Vaz et al. (2019), Turon et al.
(2015a,b), Chen et al. (2017a,b), Xie
et al. (2020a)

C. sacchrarophila Xie et al. (2020b)
Butyrate 10 (4) C. sorokiniana Turon et al. (2015b,a)

Acetate/Butyrate 23 (6) C. sorokiniana Turon et al. (2015b,a)

Autotrophic 13 C. sorokiniana
Li et al. (2014), León-Vaz et al. (2019),
Turon et al. (2015b,a)

C. sp. Sen and Martin (2018)

is shown to support a strategy to enhance the bioconversion of VFA into microalgal99

biomass by managing the way the different substrates are supplied.100

2. Materials and methods101

2.1. General Principles of the DRUM approach102

The dynamic model development follows the DRUM (Dynamic Reduction of103

Unbalanced Metabolism) approach. The full description and complete explanation104

of the approach is available in Baroukh et al. (2014).105

Briefly, the metabolism of a microorganism can be described by its metabolic106

network composed of a set of nr biochemical reactions (here nr = 188) involving107
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nm metabolites (here nm = 173) and represented by the stoichiometric matrix K ∈108

Rnm×nr (see Appendix for the full list of reactions and metabolites). The biomass B109

is produced from a set of substrates S and excretes a set of products P. In a perfectly110

mixed reactor with a constant volume, the system can be described by the following111

set of ordinary differential equations:112

dM

dt
=

d

dt


S
C
P
B

 =


KS

KC

KP

KB

 .v(M).B−DM+DMin = K.v(M).B−DM+DMin (1)

where M represents the vector of the concentrations of metabolites composed of113

substrate (S), intracellular metabolites (C), excreted products (P) and biomass (B).114

Min is the influent concentration of these quantities. The dilution rate of the reactor115

(ratio of influent flow rate over the reactor volume) is D (D = 0 for a batch process).116

All the concentrations are expressed as total concentrations in the solution. v ∈ Rnr
117

is the reaction kinetic vector, while the matrices KS ∈ RnS×nr , KC ∈ RnC×nr ,118

KP ∈ RnP×nr and KB ∈ R1×nr correspond, respectively, to the stoichiometric119

matrices of substrates S, products P, intracellular metabolites C and biomass B120

(nS + nC + nP + 1 = nm).121

In metabolic models, intracellular metabolites are generally assumed to be quasi-122

stationary (dC
dt

= K.v = 0), i.e. they are assumed to be consumed as soon as they123

have been synthesised. However, in the case of microalgae, this hypothesis has124

proven to be false for certain of its metabolites (denoted A) during mixotrophic or125

autotrophic growth (Baroukh et al., 2014, 2017). The DRUM method (Baroukh126

et al., 2014), consists in dividing the metabolic network into n quasi-stationary127

subnetworks (K = (KSN1 , . . . , KSNn) , KSNi
.vSNi

= 0 for i ∈ 1, . . . , n). These are128

linked by the A metabolites that are, in contrast, non-stationary, can accumulate129

and be later consumed. This division into subnetworks is justified by the presence of130

metabolic pathways that correspond to metabolic functions, to reaction groups that131

are regulated simultaneously and to the presence of compartments within the cell.132

Cellular mechanisms are therefore employed for assessing the subnetwork. Hence,133

the A metabolites can either be found at the junction of several metabolic pathways,134

or they can be transported from one compartment to another, or they can be final135

products that accumulate in the cell. The system of ordinary differential equations136

(1) therefore becomes:137

dM ′

dt
=

d

dt


S
A
P
B

 =


KS

KA

KP

KB

 .α.B = K ′.α.B −DM ′ +DM ′
in (2)
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With K ′ the stoichiometric matrix of macroscopic reactions obtained through the138

analysis of elementary modes (Schuster et al., 1999) on the subnetworks, and α139

the kinetic vector associated to these macroscopic reactions. B now represents the140

structural biomass, i.e. the fraction of biomass that does not contain the inert141

compartments of reserve A. The total biomass can be deduced using a mass balance142

of the elemental compounds (C, N, P, O, ...).143

2.2. Construction of the model144

The core of the metabolic network from Baroukh et al. (2017) has been used and145

modified in order to add the glucose and glycerol consumption pathways (Figure146

1). This network contains the central autotrophic, mixotrophic and heterotrophic147

metabolic pathways including photosynthesis, glycolysis, the pentose phosphate148

pathway, the Krebs cycle, oxidative phosphorylation and the synthesis of chloro-149

phyll, carbohydrates (e.g. starch), amino-acids and nucleotides. The synthesis150

pathways of macromolecules such as proteins, lipids, starch, DNA, RNA as well151

as the functional biomass are represented through macroscopic reactions.152

The DRUM method requires the partitioning of the metabolism into subnet-153

works as well as the identification of the metabolites, in between the subnetworks,154

which can accumulate. The subnetworks are defined by their metabolic function155

and/or their affiliation to a cellular compartment. Different partitions among the156

188 reactions have been tested, with a view to select the one which minimized the157

number of parameters to assess while providing a correct representation of the ex-158

perimental data. The best result was obtained when the network is divided into four159

subnetworks (Figure 1), corresponding to, 1) the glyoxysome, 2) the chloroplast, 3)160

the absorption of glycerol and 4) the synthesis of biomass. The glyoxysome and161

chloroplast subnetworks remain unchanged in comparison with the initial Baroukh162

et al. (2017) model.163

The macroscopic reactions associated to each subnetwork are deduced from the164

elementary mode analysis (Klamt and Stelling, 2003). The Matlab “efmtool” was165

run to calculate the Elementary Flux Modes (EFMs) (Terzer and Stelling, 2008). In166

total, 86, 142 EFMs including 3, 310 associated to futile cycles (dissipation of carbon167

substrate in the form of CO2) have been achieved. These macroscopic reactions are168

further used to determine the mass fluxes in the different parts of the network by169

assembling reactions belonging to the same kinetics.170

2.3. Analysis of the sub-networks171

2.3.1. Motivations172

In this section, we present the macroscopic reactions which result from the re-173

duction of each subnetwork by the computation of the EFMs. As recommended174

by Baroukh et al. (2014), the reaction kinetics must be mathematically represented175
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Figure 1: Considered metabolic subnetworks to represent growth of Chlorella on a mixture of
glycerol, glucose, acetate and butyrate

Subnetwork Macroscopic reaction
MR1 Glyoxysome 2 ACE + 3.5 H + 0.5 O2 → SUC + 0.5 H2O
MR2 BUT + 7H + 1.5O2 → SUC + 5H2O
MR3 Chloroplast Light+ 3CO2 + 2H2O + Pi → GAP + 3O2

MR4 Glycerol pathway GLY + Pi → GAP +H2O

MR5(NH4) Biomass synthesis
4.15 GAP +2.54O2+0.99NH4+0.02SO4+0.01Mg2 →
B + 0.99H + 2.90H2O + 3.92CO2 + 4.02Pi

MR5(NO3)
4.64GAP + 2.04O2 + 0.99NO3 + 0.98H + 0.02SO4 +
0.01Mg2 → B + 5.39CO2 + 2.90H2O + 4.51Pi

MR6(NH4) Biomass synthesis
4.15 SUC + 7.30H + 4.61O2 + 0.99NH4 + 0.12Pi +
0.02SO4 + 0.01Mg2 → B + 7.04H2O + 8.06CO2

MR6(NO3)
4.90SUC5.28O2 + 0.99NO3 + 0.12Pi + 10.78H +
0.02SO4 + 0.01Mg2 → B + 11.07CO2 + 8.31H2O

MR7(NH4) Biomass synthesis
2.07 GLC + 2.54O2 + 0.99NH4 + 0.12Pi + 0.02SO4 +
0.01Mg2 → B + 3.91CO2 + 7.04H2O + 0.99H

MR7(NO3)
2.34GLC + 2.14O2 + 0.99NO3 + 0.12Pi + 0.98H +
0.02SO4 + 0.01Mg2 → B + 5.49CO2 + 7.63H2O

Table 2: List of the macroscopic reactions in each respective subnetwork. For biomass production,
the stoichiometric values differ if the nitrogen source is nitrate or ammonium.
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using minimal hypotheses, and when possible applying a mass action law. A list of176

all sub-networks and the macroscopic reactions can be found at Table 2.177

2.3.2. Glyoxysome subnetwork178

The glyoxysome pathway consists of 26 reactions, from which 8 are exchange179

reactions. The glyoxysome is the peroxysome compartment where the glyoxylate180

cycle occurs. Here carbon compounds are converted to succinate, also allowing the181

production of glucose from lipids. In this compartment, fatty acids can be used as182

a source of energy and carbon for growth is produced when no photosynthesis takes183

place. Two EFMs have been achieved for this subnetwork (MR1 and MR2). In the184

glyoxysome, butyrate and acetate are converted into acetyl-CoA, which is in turn185

converted, via the glyoxylate cycle, into succinate. The succinate then enters the186

cytosol and is injected into the Krebs cycle, thus producing the different metabolites187

necessary for the synthesis of biomass.188

Butyrate is known for inhibiting algal growth under heterotrophic and mixotrophic189

conditions (Turon et al., 2015a). Furthermore, acetate inhibits the absorption of190

butyrate, thus leading to diauxic growth (Turon et al., 2015a). Thereby, Michaelis-191

Menten kinetics have been proposed to describe the absorption of acetate (αMR1).192

αMR1 =
kMR1.ACE

KSMR1 + ACE
(3)

For butyrate (αMR2) Haldane kinetics have been chosen with an inhibition by193

acetate term.194

αMR2 =
kMR2.BUT

BUT + kMR2

βMR2
.( BUT

SoptMR2
− 1)2

kd
(ACE + kd)

(4)

2.3.3. Chloroplast subnetwork195

The chloroplast subnetwork is composed of 21 reactions, from which 7 are ex-196

change reactions. The glycerate-3-phosphate produced by photosynthesis is assumed197

to be transferred from the chloroplast towards the cytosol where it can be converted198

by glycolysis into glucose-6-phosphate or pyruvate. These metabolites are essential199

for the synthesis of functional biomass.200

For autotrophic growth, light drives the reaction rate. When algae are grow-201

ing on a turbid medium like wastewater, the average light intensity stays low and202

the local photoinhibition impact can be neglected (Mart́ınez et al., 2018). Also un-203

der mixotrophic conditions with elevated concentration of carbon substrates, large204

biomass densities can be reached. Dense microalgal cultures strongly attenuate205

light. In line with Baroukh et al. (2017), photosynthesis rate is assumed to be lin-206

early depending upon the average light intensity Iµ in the culture (see Equation207

6).208
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Moreover, light attenuation in the culture medium is expected to follow the Beer-209

Lambert law. The light intensity at depth z depends on the incident light I0 and210

the extinction coefficient α due to the biomass (the turbidity of the medium without211

algae is negligible):212

I (z) = I0.e
−α.z.B (5)

The average light intensity of the culture medium in the reactor of depth L is213

given as follows (with βMR3 = α.L):214

Iµ =
I0
L

∫ L

0

e−α.B.zdz =
I0(1− e−βMR3.B)

βMR3.B
(6)

The kinetics in the chloroplast subnetwork is finally given by:215

αMR3 = kMR3.Iµ (7)

2.3.4. Glycerol absorption subnetwork216

The glycerol pathway subnetwork consists of 5 core reactions, plus the exchange217

reactions. Only one EFM was found for the glycerol absorption subnetwork (MR4).218

The glycerol in the medium is transferred to the cytosol. Within three steps,219

it is transformed into glycerate-3-phosphate. During glycolysis, this glycerate-3-220

phosphate is then used for the synthesis of precursor metabolites that are in turn221

required for the synthesis of functional biomass. Since inhibition has been observed222

for glycerol assimilation (Chen and Walker, 2011, Ma et al., 2016, Liang et al., 2009),223

a Haldane reaction kinetics with inhibition was chosen (αMR4):224

αMR4 =
kMR4.GLY

GLY + kMR4

βMR4
.( GLY

SoptMR4
− 1)2

(8)

2.3.5. Functional biomass synthesis subnetwork225

The reactions for the synthesis of lipids, proteins, DNA, RNA, chlorophyll and226

carbohydrates are all lumped together in the functional biomass synthesis subnet-227

work. This subnetwork includes glycolysis, the Krebs cycle, oxidative phosphoryla-228

tion, the pentose phosphate pathway, carbohydrate, lipid, amino-acid and nucleotide229

synthesis, as well as the assimilation of nitrogen, sulphur and glucose. In total there230

are 141 reactions in the functional biomass subnetwork.231

This subnetwork generated 86, 167 EFMs, including 3310 that did not produce232

biomass. Nearly all of the calculated EFMs are part of the biomass synthesis net-233

work. They can be sorted by using a similar method to the FBA (Flux Balance234

Analysis). The standard hypothesis supporting FBA is that evolution has selected235

metabolisms maximising biomass growth on each substrate (Orth et al., 2010), or236

9



equivalently, minimising the loss of carbon as CO2. Therefore, for each substrate, the237

EFM presenting the highest GAP/BIOM, SUC/BIOM and GLC/BIOM yields were238

selected. In this way, the use of GAP, SUC or GLC for the synthesis of biomass239

resulted from three macroscopic reactions (MR5, MR6 and MR7). The yield of240

biomass on the carbon substrate depends on the nitrogen source (NH4 or NO3).241

Table 1 shows the resulting macroscopic reactions for both cases.242

Glycerate-3-phosphate originates from the chloroplast and from the assimila-243

tion of glycerol. It is injected into the glycolysis so as to produce the necessary244

metabolites for growth (αMR5). The kinetics is supposed to be linear with respect245

to glycerate-3-phosphate (GAP ):246

αME5 = kMR5.GAP (9)

Succinate originates from the glyoxysome. It enters the Krebs cycle, thus also247

leading to the production of metabolites required for growth (αMR6). Assuming a248

linear kinetics we get:249

αMR6 = kMR6.SUC (10)

Glucose in the medium is transferred to the cytosol where it enables the produc-250

tion of biomass. Glucose is inhibiting at high concentration (osmotic stress), and251

its consumption is assumed to follow a Haldane kinetics (αMR7) (Azma et al., 2011,252

Wu and Shi, 2007, Liang et al., 2009). MR7:253

αMR7 =
kMR7.GLC

GLC + kMR7

βMR7
.( GLC

SoptMR7
− 1)2

(11)

2.4. Global dynamics of the network254

Finally, the dynamical evolution of the metabolic fluxes associated to the 188255

considered metabolic core reactions can be derived from a system with 17 ordinary256

differential equations comprising 17 metabolites and 7 macroscopic reactions:257

dM”

dt
=

d

S
A
B


dt

= K”.α.B −DM” +DM”
in (12)

Where M” is the metabolite vector (17x1) comprising the substrates S, the258

metabolites that can accumulate A (SUC and GAP) and the functional biomass259

B. K’ is the stoichiometric matrix (17x7) of the macroscopic reactions and α the as-260

sociated kinetics vector (7x1). It is worth noting that, even if the model results from261

a reduction process through the DRUM approach, it can still predict the evolution262

of the 188 metabolic fluxes in the cell:263
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Moreover, the total biomass comprising the functional biomass and the metabo-264

lites A can be described as follows:265

Xz (t) =
∑
A

ZA.A (t) + ZB.B (t) (13)

Where Z is a chemical element (Z ∈ {C;N ;O;H;P ; . . .}), ZA and ZB are the266

number of chemical elements Z per mole of metabolites A and biomass B, A(t) and267

B(t) are the concentrations of A and B at time t XZ(t) is the concentration of the268

chemical element in the total biomass X at time t.269

Finally, the metabolic fluxes within the whole network can be derived from the270

α kinetics and the elementary modes associated to the ESNi
, i ∈ 1, 2, 3 subnetworks:271

v =

vSN1

. . .
vSNk

 =

ESN1 .αSN1

. . .
ESNk

.αSNk

 (14)

2.5. Sensitivity analysis272

We calculate the sensitivity coefficient for the model parameters as defined in273

Bernard et al. (2001):274

σ∆p
y =

1

tf

∫ tf

0

y(p+∆p, x0, u, τ)− y(p, x0, u, τ)

y(p, x0, u, τ)
dτ (15)

where y is the simulated output at time τ with parameter set p, initial condition275

x0 and input variables u (e.g. light intensity and dilution rate). We calculate276

the global sensitivity using Morris’s sampling method implemented in the SALib277

Python toolbox (Morris, 1991, Herman and Usher, 2017), replacing the standard278

elementary effect by the sensitivity coefficient defined above. We analyse the region279

between ±20% of the calibrated values of the parameters. The analysis is conducted280

separately for each of the four carbon substrates in mixotrophic conditions at a light281

intensity of 500 µmol/(m2.s). σ∆p
y is calculated as the average of the simulations282

considering a cultivation of 6 hours and three different initial concentration of the283

considered carbon substrate (0.1, 1 and 10 g/L). Table 3 shows the result of the284

sensibility analysis for all the parameters.285

2.6. Reduced model calibration286

In order to calibrate, and then validate the model, a large set of experiments287

from the literature have been used. In total 122 selected experiments (see Table 1)288

gather data on growth i) under autotrophic conditions, without any organic carbon289

input and submitted to light intensities ranging from 30 to 540 µE.m−2.s−1 ii)290

under heterotrophic conditions, without any light, and with varying concentrations291
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Table 3: Kinetic parameters obtained after model calibration. Results of sensibility analysis ( σ∆p
y

and standard deviation (SD) of σ∆p
y . Parameters calibrated in this work A and in Baroukh et al.

(2017) B . MB: mole of biomass

Parameter Value Unit σ∆p
y SD σ∆p

y Ref.

kMR1 3.79 10−1 M.h−1.MB−1 4.5910−03 2.5210−03 B

KSMR1 5.50 10−5 M 9.2010−05 5.2410−03 B

kMR2 3.60 10−2 Mh−1.MB−1 9.9610−05 1.4010−03 B

SoptMR2 1.90 10−5 M 2.4810−04 1.4110−03 B

βMR2 2.58 105 h−1.MB−1 1.8910−04 1.4010−03 B

kMR3 1.90 10−3 Mh−1.MB−1.(m2.s.µmol−1) 9.2110−04 5.7010−04 B

βMR3 2.48 103 MB−1 −5.3810−04 8.8210−05 B

kMR4 1.01 M.h−1.MB−1 5.5410−04 1.8610−03 A

SoptMR4 7.00 10−2 M 9.2710−04 2.2510−03 A

βMR4 9.05 h−1.MB−1 1.1010−04 2.4310−03 A

kMR5 2.82 101 h−1.MB−1 9.7310−04 1.1610−03 B

kD 5.39 10−10 M −1.1010−04 1.4310−03 B

kMR6 2.37 105 h−1.MB−1 3.0710−06 3.3310−03 B

kMR7 6.81 10−2 M.h−1.MB−1 2.3910−03 2.1610−03 A

SoptMR7 5.07 10−2 M 9.5410−05 3.2210−03 A

βMR7 2.95 10+1 h−1.MB−1 4.2410−04 3.2410−03 A

in acetate, butyrate, glucose and glycerol, pure or combined iii) under mixotrophic292

conditions, with light and varying concentrations in acetate, butyrate, glucose and293

glycerol. Depending on the studies, different combinations of these substrates were294

tested.295

Only the parameters for glucose and glycerol consumption were calibrated. All296

the other kinetic parameters for the macro reactions are taken from Baroukh et al.297

(2017). The calibration was done following a two-step process. First a stochastic298

global optimizer, Differential Evolution algorithm (Storn and Price, 1997), calculates299

the set of parameters minimizing the relative error between model and experimental300

data of biomass and substrate concentration over time. This parameter set is, then,301

used as initial point in a Markov Chain Monte Carlo sampler, which returns the302

parameters set inside a confidence interval (Foreman-Mackey et al., 2013). Glucose303

kinetics parameters were calibrated using concentration data from 5 experiments of304

Li et al. (2013), while glycerol parameters were fitted using data from 6 experiments305

of Ma et al. (2016). Table 3 shows the value of calibrated parameters and Figure 2306

shows the simulation of the calibrated model together with the experimental data307

used for calibration.308
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Figure 2: Comparison of the model against experimental data used for the calibration of glucose
and glycerol kinetic parameters. Lines represent the average of 100 simulations and the colored
region represents ±1 standard deviation of estimated concentrations using Markov Chain Monte
Carlo method.

2.7. Optimization of butyrate consumption309

We consider the optimal control problem (Harmand et al., 2019), whose objective310

is to minimize the time tf , where the chemical oxygen demand of the remaining311

waste substrates falls below the regulation threshold. The control variable is the312

concentration of the substrate to be added to the dark fermentation effluent (glucose313

or glycerol).314

min
S0

tf : S(tf ) ≤ S̄ (16)

To solve the minimization problem we use a Nelder-Mead algorithm (Gao and315

Han, 2012). The output function simulates the metabolic model for a given S0316

returning tf , the time required to reach the regulation threshold.317

3. Results and discussion318

3.1. Validation of the model319

The experimental data not used during the calibration stage were used to vali-320

date the model. A coherent set of experiments, representing various experimental321
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Figure 3: Model simulation and experimental data with two substrates. From left to right: glycerol
and glucose; butyrate and acetate. The line represents the average of 100 simulations and the
colored region represents ±1 standard deviation of estimated concentrations using Markov Chain
Monte Carlo method.

conditions, was kept for this validation stage (see Table 1 ). We used a Markov322

Chain Monte Carlo method to select parameters (Foreman-Mackey et al., 2013).323

We considered a ±20% uncertainty in the initial concentration of substrates. In324

Figure 3, the results of the model simulations are compared with the experimental325

data with more than one substrate.326

As illustrated in Figure 2 for single substrates, the model efficiently predicts the327

production of biomass and the consumption of substrates, whether in autotrophic,328

heterotrophic or in mixotrophic conditions. Furthermore, the model is still accurate329

when there are two substrates (Figure 3). More generally, the predictive performance330

of the model is summarized in the Taylor diagram in Figure 4 for the whole data331

set. This diagram represents at the same time the standard deviation of the biomass332

prediction error and the Pearson correlation coefficient (Taylor, 2001). It illustrates333

both the centered and reduced quadratic errors between the experimental data sets334

and the associated simulations, as well as the correlation between the model and335

the data. It thus summarizes the degree of resemblance between the data and the336

simulations for the vast range of considered data. Indeed, the closer a data point337

is to (0;1), the better the model reproduces the experimental data (Taylor, 2001).338

Figure 5 represents all the data points versus model prediction, also demonstrating339

the goodness of fit of the model.340

The results of the sensibility analysis is also show in Table 3. Most parameters341

have the same order of sensibility (10−4) showing that all have an importance in342

the model. The high standard deviation of the sensibility coefficient demonstrates343

the intertwined influence of parameters, for example maximum uptake rate and the344

optimal concentration of the substrate, also and the dependence of the actual sub-345

strate and biomass concentration in the dynamics of the system. This demonstrates346

the necessity of calibrating the model in a wide range of conditions.347
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Figure 4: Taylor Diagram where each point represents the Pearson correlation coefficient and a
normalized standard deviation of one experiment and model simulation. The semi circles centered
at standard deviation 1.0 show the root-mean-square error.
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Figure 5: Validation of model predictions based on experimental data of butyrate, glycerol, glu-
cose, acetate and biomass. All p-values for the regression are below 10−3. R2 for the lines are,
respectively, 0.97, 0.71, 0.95, 0.97 and 0.64. Darker colors represent a concentration of data points.
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Figure 6: Time to reach the regulation threshold of a typical dark fermentation effluent using differ-
ent conditions of cultivation - Batch (typical waste effluent), Batch GLC/GLY (typical waste with
addition of an optimal concentration of glucose and glycerol), Fed-batch GLC, GLY, GLC/GLY
(typical waste feeding, respectively, glucose, glycerol and a mixture of both.)

3.2. Optimization of microalgae growing on a mixture of dark fermentation products348

Acetate and butyrate are the main volatile fatty acids (VFA) products of dark349

fermentation. Butyrate will inherently lead to growth inhibition, and a strategy350

must be found to unblock this inhibition. Here, we propose a strategy to enhance351

batch and fed-batch cultivation of microalgae from dark fermentation wastes, by352

adding glucose and glycerol. We first study mixotrophic conditions, considering353

a typical effluent from dark fermentation with 3.5g/L of butyrate and 1.7g/L of354

acetate (Lacroux et al., 2020, Ghimire et al., 2015) and a continuous light intensity355

of 500 µmol/(m2.s). The objective was that the chemical oxygen demand (COD) of356

the effluent at the end of the effluent treatment must be below S̄ (here S̄ = 125mg/L)357

so that it can satisfy the state policies for discharge in the environment. We call this358

objective the regulation threshold. We solve the resulting optimal control problem359

in minimal time, with the objective that the COD of the remaining waste substrates360

falls below the regulation threshold. The control variable is the concentration of361

the substrate to be added to the dark fermentation effluent (glucose or glycerol).362

In the initial situation, without addition of organic carbon substrates, 16 days are363

necessary to reach the the regulation threshold.364

Considering that glucose can be added, it turns out that the addition 98g/L of365

glucose reduces the time to reach the COD threshold to 4.0 days (see Figures 6 and366

7). Using only glycerol takes longer: 5.6 days with an addition of 39.5g/L glycerol.367

Using a mixture of both substrates, the optimal starting concentration for the batch368
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Figure 7: Concentrations of butyrate and acetate over time in different cultivation conditions.
Optimal fed-batch with glycerol (blue), optimal fed-batch with glucose (red), batch with optimal
addition of glycerol and glucose (orange), batch with only butyrate and acetate as substrates
(green).

is 115g/L of glucose and 19g/L of glycerol, reducing the time to consume the VFAs369

to only 2.7 days.370

Considering now a fed-batch cultivation systems instead of a batch one, the371

minimisation problem can be rewritten as following:372

min
D

tf : S(tf ) ≤ S̄ (17)

where D is the dilution rate of the inflow containing only the additional substrates,373

at a high concentration, so that the volume of the reactor does not change. tf is the374

time to reach the regulation threshold. The optimal strategy can be approximated375

into a sub-optimal strategy, which would maximize the reaction rates for glucose376

and glycerol consumption. The strategy thus consists in computing the dilution377

rate such that glucose and glycerol concentrations stay constant close to the values378

for which the consumption of glucose and glycerol is maximum. The control problem379

is then reduced to finding the optimal final time of the inlet flux in the cases of a380

glucose, glycerol, and mixture inlet. In the case of the mixture, a fraction of 0.21 of381

glucose and 0.79 of glycerol is obtained, keeping glycerol at an optimal concentration.382

Using this control strategy, the final times for fed-batch cultivation are: 3.2 days for383

glucose, 1.4 days for glycerol and 1.2 days for a mixture of glucose and glycerol (see384

Figure 6), to be compared to the 16 days whithout inorganic carbon addition.385

3.3. Analysis of metabolic maps386

One of the advantages of metabolic model is that the main metabolic fluxes can387

be estimated. They are represented in Figure 8 considering the exponential growth388

phase. During autotrophic growth, a strong activity takes place in the chloroplast389

subnetwork where photosynthesis occurs. The greatest fluxes are associated to the390

fixation of CO2 by RUBISCO, the conversion to 3PG (3-phosphoglycerate) and the391
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conversion of 3PG to glycerate-3-phosphate (GAP). GAP is then mainly transported392

toward the cytoplasm, where it is injected into the glycolysis. From then on, it393

enables the synthesis of precursor metabolites that are necessary for the synthesis of394

functional biomass composed of proteins, DNA, RNA, chlorophyll, carbohydrates,395

and lipids. During pure heterotrophic growth, in the dark, no reaction occurs in396

the chloroplast subnetwork. Considering a a mix of acetate or butyrate, the largest397

fluxes are concentrated in the glyoxysome subnetwork where carbon substrates are398

converted into succinate. The synthesised succinate is exported from the glyoxysome399

and injected into the Krebs cycle. The latter then enables the synthesis of precursor400

metabolites for the production of functional biomass. To ascend the glycolysis, the401

anaplerotic pathways are in an upward direction.402

No reaction takes place in the glyoxysome, neither in the glycerol utilization403

pathway for growth on glucose only. Glucose carried from the medium into the404

cytoplasm is directly injected into the upper glycolysis for the production of pre-405

cursor metabolites necessary for the synthesis of functional biomass. Glycolysis is406

therefore entirely in a downward direction, as the anaplerotic pathways that enable407

the synthesis of oxaloacetate (OXA) fueling the Krebs cycle.408

For growth on glycerol only, the greatest fluxes are located in the glycerol utiliza-409

tion pathway subnetwork, where the uptaken glycerol is converted to glycerate-3-410

phosphate. The glycerate-3-phosphate is then injected into the middle of glycolysis,411

this time in an upward direction for the high glycolysis and in a downward direction412

for the lower glycolysis. The remnants of the fluxes are similar to those observed413

for glucose.414

In mixotrophic conditions, when all carbon substrates are present in the medium,415

all metabolic reactions are activated. First, diauxic growth occurs, and acetate is416

consumed instead of butyrate. Glycerol and glucose are also used, but the flux417

remains after the acetate is depleted. Secondly, once all acetate has disappeared,418

butyrate is in turn consumed.419

Figure 8 shows the metabolic fluxes after 30 hours of batch culture with opti-420

mal initial conditions (110 g/l of glucose and 20 g/L of glycerol). At this point,421

the acetate in the culture is practically depleted, but the concentration of butyrate422

remains similar to the initial condition. The rate of consumption of butyrate then423

remains stable for 2 days, and the rate rapidly increases until the concentration424

threshold is reached. Since the optimal concentration is about 40 times lower than425

the regulation threshold, the butyrate consumption rate does not reach the max-426

imum value. Glycerol has a much lower concentration, while the flux of glucose427

concentration is still high. As a result of the higher concentration of biomass and428

the lower availability of light per cell, the metabolic fluxes in the chloroplast are429

reduced.430
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Figure 8: Metabolic charts showing the fluxes of an optimized batch. Above, A, at initial con-
centration of acetate and butyrate with optimal conditions of glucose and glycerol. Below, B, 30
hours after the beginning of the batch. The widths are linearly proportional to the calculated flux.
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3.4. Model limitations and perspectives431

The reduced metabolic model efficiently represents the microalgal growth un-432

der various substrates in heterotrophic or mixotrophic conditions. More accurate433

predictions could probably be obtained by expanding the model to include other434

factors such as pH, CO2, O2 and temperature which were differing among the large435

experimental data set considered in our study. According to Lacroux et al. (2020),436

pH fluctuations when algae consume VFA can strongly impact growth and should437

now be included in the model. Associating a pH model that accounts for the various438

chemical species and their speciation, as proposed by Casagli et al. (2021a), would439

allow the calculation of the pH and the concentration of the undissociated form of440

the acids, which is the one actually taken up by the microalgae.441

The effect of mixotrophic growth, here considered as the sum of autotrophic and442

heterotrophic conditions, can be more subtle in some cases. There is no consen-443

sus in the literature for a general model that fits all cases. For example, according444

to Mart́ınez and Orús (1991), mixotrophic growth is greater than the sum of au-445

totrophic and heterotrophic conditions when the concentration of CO2 is limiting,446

since CO2 produced by respiration can be recycled for the photosynthesis pathway.447

Recently, circular use of CO2 and O2 and preferential consumption of inorganic car-448

bon has also been evidenced for Chlorella vulgaris, nonetheless heterotrophic growth449

was promoted at high 02 concentrations (Manhaeghe et al., 2020). Furthermore,450

under certain conditions an inverse relationship between light intensity and glucose451

consumption has been recorded (Patel et al., 2019, Wan et al., 2011).452

Temperature is one of the most important factors affecting microalgae growth,453

even if only a minority of the models account for it (Shoener et al., 2019). The454

experimental data considered here were carried out at various temperatures and455

accounting for it would increase model accuracy. In the case of metabolic models,456

including temperature is challenging, and will involve a large number of parameters457

to characterize the influence of temperature on each individual reaction. The influ-458

ence of short variations of temperature could be well estimated by the Arrhenius459

equation, but large variations of temperature typically occurring in outdoor cultiva-460

tion require more advanced models (Casagli and Bernard, 2022, Pessi et al., 2022).461

For these reasons, calibrating the temperature effect would require a large amount462

of dedicated experiments.463

It is likely that other factors were influencing the experimental outcomes in the464

considered data base, especially for the experiments carried out with high concen-465

trations of glucose and glycerol. It seems that another substrate was sometimes466

limiting growth, most probably nitrogen according to the mass balance from the467

medium initial composition.468

Extending the metabolic model to account for all these mechanisms is beyond469

the scope of this paper. It will require a large number of experiments to further470
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calibrate and validate the model. Our objective was primarily to validate the model471

across a wide range of conditions, demonstrating a strong foundation for future472

improvements in the model, knowing that most models of water resource recovery473

facilities are calibrated, but not validated (Shoener et al., 2019). Overall, despite474

the simplicity of the model in its present form, it is already very efficient. Especially475

when accounting for the diversity of strain and experimental conditions considered476

through the 15 studied papers. The model can then, already in its present form,477

can be used as a tool for optimizing microalgae growth on a mix of substrates.478

Better predictions will be achieved if biochemical and also cellular level processes479

(e.g. metabolic reactions) are considered in the next generation of water treatment480

models (Batstone et al., 2019). Metabolic models are able to accurately predict481

the specific VFAs produced by a mixed-culture depending on the components of482

the input medium (Regueira et al., 2020). We could envisage the coupling of these483

models - VFA production by mixed-culture and treatment by microalgae - to opti-484

mize production of hydrogen constrained by the capacities of the waste treatment485

system, or to predict in advance the necessity of adding another carbon substrate486

such as glycerol. Metabolic knowledge could also give a strong foundation for esti-487

mating possible medium conditions take could lead to undesirable emissions, such488

as N2O, and which are not well modeled through the current approaches (Casagli489

et al., 2021a).490

4. Conclusion491

The metabolic model developed in this work for Chlorella accurately predicts492

growth under autotrophic, heterotrophic and mixotrophic conditions with acetate,493

butyrate, glucose and glycerol for more than a hundred experiments from the liter-494

ature. Covering a large range of conditions, strains and substrates, the predictive495

capacity of this reduced metabolic model remains remarkable. Moreover, to lift the496

inhibition exerted by the presence of butyrate, the optimal addition of different sub-497

strates in the medium has been predicted by the model. Optimising the cultivation498

conditions reduce the time to reach the regulation threshold from 16 to less than 2499

days.500

Thanks to this approach, it will become possible to streamline two-stage wa-501

ter treatment strategies, and to recycle, carbon, nitrogen and phosphorus into the502

microalgal biomass. In particular, this approach highlights noteworthy synergies be-503

tween waste molecules, and the important role of of the metabolic network for future504

models. The anticipated management of these molecules could improve productivity505

significantly.506
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Baroukh, C., Muñoz-Tamayo, R., Steyer, J.P., Bernard, O., 2014. DRUM: A526

new framework for metabolic modeling under non-balanced growth. Applica-527

tion to the carbon metabolism of unicellular microalgae. PLOS ONE 9, 1–15.528

doi:10.1371/journal.pone.0104499.529

Baroukh, C., Turon, V., Bernard, O., 2017. Dynamic metabolic modeling of het-530

erotrophic and mixotrophic microalgal growth on fermentative wastes. PLoS Com-531

put. Biol. 13, 1–18. doi:10.1371/journal.pcbi.1005590.532

Barsanti, L., Gualtieri, P., 2018. Is exploitation of microalgae economically and533

energetically sustainable? Algal Res. 31, 107–115. doi:10.1016/j.algal.2018.02.001.534
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Mart́ınez, F., Orús, M.I., 1991. Interactions between Glucose and Inorganic Carbon624

Metabolism in Chlorella vulgaris Strain UAM 101. Plant Physiol. 95, 1150–1155.625

doi:10.1104/PP.95.4.1150.626
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