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Synthetic control chart with curtailment for monitoring shifts in 

fraction nonconforming 

Abstract 

The integration of the curtailment method with control charts considerably 

improves the detection speed by signaling an out-of-control condition prior to the 

inspection of the whole sample. To date, few research works have focused on the 

incorporation of the curtailment method to improve the performance of control 

charts. Thus, this paper incorporates the curtailment approach with the synthetic 

chart to propose a synthetic control chart with curtailment (Curt_Syn) for detecting 

upward shifts in the fraction nonconforming, p. We compared the newly developed 

Curt_Syn chart with the synthetic, exponentially weighted moving average 

(EWMA), cumulative sum (CUSUM), EWMA with curtailment (Curt_EWMA), 

and CUSUM with curtailment (Curt_CUSUM) charts. From an overall 

perspective, the results reveal that the Curt_Syn chart surpasses the synthetic chart 

by 38% under various conditions. For all p shifts, the Curt_Syn chart outperforms 

the CUSUM and EWMA charts. When the p shift is large, the Curt_Syn chart is 

superior to the Curt_CUSUM and Curt_EWMA charts. To demonstrate the 

implementation of the Curt_Syn chart, an illustrative example is provided. 

Keywords: control chart; synthetic chart; curtailment; fraction nonconforming; 

average number of nonconforming units 

Abbreviations 

SPC   statistical process control  

CRL   conforming run length  

CUSUM cumulative sum  

EWMA exponentially weighted moving average  

ANC   average number of nonconforming units  

ARL  average run length  

ATS  average time to signal  

VSI  variable sampling interval  

VSS  variable sample size  

VSSI  variable sample size and sampling interval  

Curt_Syn  synthetic with curtailment  

Curt_EWMA exponentially weighted moving average chart with curtailment 

Curt_CUSUM cumulative sum with curtailment  
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Notation 

p  fraction nonconforming  

d  nonconforming units  

n  sample size  𝑋̅       sample average 

s  sample standard deviation 

w  warning limit of the np sub-element of the synthetic chart   

L  lower limit of the CRL sub-element of synthetic chart 

c cumulative number of nonconforming units 

h  sampling interval 

t  time required for inspecting a unit 

H  upper limit of cumulative sum or exponentially weighted moving average 

chart 

k  reference parameter of cumulative sum chart  

λ  weighting parameter of exponentially weighted moving average chart 

δ  size of an upward shift in fraction nonconforming 

N  number of units produced per time unit 

µδ mean of shift in fraction nonconforming. 

τ    minimum allowable value of in-control average time to signal 

1. Introduction 

Throughout the years, Statistical Process Control (SPC) which is a technique that aids in 

monitoring the behavior of a process has been widely adopted to attain a competitive 

advantage and an economic benefit due to the increasing competition in the 

manufacturing and service industries. Most companies emphasize on continuous 

improvement of quality, meeting the requirements of customers and reduction of cost. 

Hence, a control chart which is the most powerful SPC tool is a common application to 

monitor the stability of a process. A process can be monitored by two types of control 

charts, i.e. variable and attribute charts. The type of the control chart to be used is mainly 

decided based on the nature of the quality characteristic to be monitored. When the quality 

characteristic is a quantitative measure, variable charts are used. On the other hand, 

attribute charts are widely used for monitoring quality characteristics that cannot be 
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represented quantitatively or not easily expressed on a numerical scale. Each item can be 

categorized as either conforming or nonconforming, depending on whether the 

specification of the product is met. The fraction nonconforming p is defined as the ratio 

of the number of nonconforming items to the total number of items in a population 

(Montgomery, 2019). The np chart is used to monitor the number d of nonconforming 

units in a sample of size n and it is used as an alternative to the p chart when n is constant 

for each sample.  

The conforming run length (CRL) chart was developed by Bourke (1991), where 

the CRL value changes with shifts in p. The CRL refers to the number of inspected 

samples between two consecutive nonconforming samples, including all conforming 

samples in between as well as the ending nonconforming sample (Wu et al. 2010). The 

concept of the CRL control chart is quite similar to the system proposed by Chen (1978) 

for monitoring congenital malformations which is based on the number of consecutive 

births occurring between the birth of an infant with the specific malformation being 

monitored and the birth of the next infant with that malformation. Such a group of 

consecutive births is defined as a set. Both the CRL and the size of the set proposed by 

Chen (1978) are random numbers and follow a geometric distribution. 

The synthetic control chart was proposed by Wu et al. (2001) who combined the 

CRL and np charts to study upward shifts in fraction nonconforming. The synthetic chart 

uses information on the number of conforming samples between two consecutive 

nonconforming samples, in contrast to the np chart that only uses information on the 

number of nonconforming units in the last sample (Chong et al., 2014). Thus, it was found 

that the synthetic chart significantly outperforms its standard counterparts (CRL and np 

charts) in detecting p shifts. Researchers have incorporated the synthetic feature with 

various attribute and variable control charts. Wu and Yeo (2001) computed the average 

time to signal (ATS) of the synthetic control chart for attribute data. Bourke (2008) 

monitored the increases in fraction nonconforming with the synthetic control chart. A 
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synthetic-np chart was developed by Haridy et al. (2012) and they discovered that the 

synthetic-np chart outperforms the synthetic and np charts by 31% and 73%, respectively. 

Celano and Castagliola (2016) monitored the ratio of two normal variables using a 

synthetic control chart. Haq et al. (2015) proposed a synthetic control chart that detects 

shifts in mean and dispersion. Khoo et al. (2010) developed a synthetic double sampling 

control chart by integrating the synthetic and double sampling charts to monitor the 

process mean while the synthetic double sampling chart was proposed by Chong et al. 

(2014) for attribute data.  

Additionally, Haq (2017) studied the synthetic exponentially weighted moving 

average (EWMA) and synthetic cumulative sum (CUSUM) charts with auxiliary 

information. In the presence of measurement errors, Hu et al. (2015) evaluated the 

performance of the synthetic 𝑋̅ chart. The performance of the synthetic 𝑋̅ chart was 

studied by Hu et al. (2018) when the parameters are estimated. As a considerable amount 

of Phase I data is required to reduce variability but is limited in practice, they used a 

bootstrap approach to adjust the parameters of the synthetic 𝑋̅ chart. In terms of the 

median run length, Lee and Khoo (2016a) showed the outperformance of the synthetic np 

chart compared to the basic np chart. Meanwhile, Lee and Khoo (2016b) studied the 

performance of the multivariate synthetic |s| control chart. In a multivariate normally 

distributed process, the synthetic |s| control chart outperforms the standard |s| chart in 

detecting shifts in the covariance matrix. Shongwe and Graham (2017) combined the 

synthetic and runs-rules charts with the 𝑋̅ chart. Haq (2018) proposed a nonparametric 

synthetic EWMA control chart while Shongwe and Graham (2016) modified the side-

sensitive synthetic chart. Amdouni et al. (2016) proposed a new efficient method to 

monitor the coefficient of variation in a short production. Haghighati and Hassan (2018) 

studied the performance of control chart pattern recogniser with incomplete data and 

investigated the effectiveness of the exponential smoothing in restoring the patterns in 

order to enhance the recognition accuracy. Malela-Majika and Rapoo (2019) developed 
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two new synthetic double sampling charts for monitoring the location process parameter. 

They observed that the proposed charts have attractive zero-state and steady-state 

properties and outperform the existing traditional synthetic double sampling chart and all 

other competing charts in many situations. 

 The performance of a control chart can be improved through the incorporation of 

various approaches. An effective method to enhance a control chart’s performance is by 

integrating the curtailment feature which has been extensively adopted in acceptance 

sampling plans. When the number of nonconforming units surpasses an acceptance 

number, practitioners stop inspecting the sample and reject the corresponding lot 

(Montgomery, 2019). According to Montgomery (2019), curtailment substantially 

reduces the average sample number used in an acceptance sampling plan. In fact, the 

advantage of incorporating the curtailment with control charts has been shown by various 

research publications. Wu et al. (2006) integrated the curtailment approach with the np 

chart and found that its performance improved significantly by decreasing the out-of-

control average time to signal (ATS) by almost half in comparison with the standard np 

chart. In addition, Haridy et al. (2014) developed the CUSUM chart with curtailment 

which surpasses its counterpart without curtailment by 30%. While the rate of false alarm 

is maintained at a specified level, the incorporation of the curtailment feature into the 

EWMA chart by Haridy et al. (2017) has also shown a considerable improvement in the 

overall detection speed. The EWMA chart with curtailment was compared with the 

standard EWMA chart under various settings.  

To the best of the authors’ knowledge, a synthetic chart that incorporates the 

concept of curtailment is not present in the literature. Given the significant improvement 

of control charts through the incorporation of the curtailment approach, this paper fills 

this gap by proposing a synthetic control chart with curtailment to monitor p shifts. For 

brevity, the synthetic control chart with curtailment will be referred to as the Curt_Syn 

chart. This research focuses only on upward p shifts as it is more important to detect a 
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deterioration in quality rather than a process improvement (downward p shifts). In this 

paper, it is assumed that d follows a binomial distribution and the in-control value of p 

which is denoted as p0 is known. The Curt_Syn chart is compared with the conventional 

synthetic chart, in terms of the performance measures ATS and average number of 

nonconforming units (ANC). The organization of this paper hereafter is as follows: 

Section 2 provides an overview of the synthetic control chart while the implementation 

of the Curt_Syn chart is outlined in Section 3. In Section 4, a discussion of the statistical 

measures of performance is provided while Section 5 explains the optimal design of the 

Curt_Syn chart. Section 6 provides the numerical analysis and an illustrative example that 

shows the implementation of the Curt_Syn chart is given in Section 7. Lastly, Section 8 

completes the paper with conclusions and suggestions for further research.  

2. Synthetic control chart 

Wu et al. (2001) combined the operations of the CRL and np charts to develop the 

synthetic control chart. The CRL refers to the number of samples between two successive 

nonconforming samples, with the inclusion of the nonconforming sample at the end. 

Figure 1 illustrates three samples of the CRL, with CRL1 = 2, CRL2 = 3 and CRL3 = 4. 

[Please insert Figure 1 here] 
 
The implementation of the synthetic chart is as follows: 

(1) Determine the sample size n, warning limit w (of the np sub-chart) and lower 

control limit L (of the CRL sub-chart). 

(2) Inspect a sample of n units and determine the number of nonconforming units d 

present in the sample.  

(3) If d w , the sample is conforming and the control flow returns to Step 2 for taking 

the next sample. Otherwise, if d w  the sample is nonconforming and the control 

flow proceeds to the next step. 
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(4) Determine the value of CRL. If CRL L , the process is in-control and the control 

flow returns to Step 2. Otherwise, if CRL < L , the process is out-of-control and 

the control flow proceeds to the next step. 

(5) Stop the process and take corrective actions to identify and remove the assignable 

cause(s) 

3. Curt_Syn chart 

Like the synthetic chart, the implementation of the Curt_Syn chart involves the 

parameters n, w and L. For the synthetic chart, the status of a process can only be decided 

after inspecting all the units in a sample of size n. On the other hand, the Curt_Syn chart 

enables the detection of an out-of-control condition prior to the inspection of all n units 

in the sample. The implementation of the Curt_Syn chart can be described as follows:  

(1) Identify the sample size n, warning limit w (of the np sub-chart) and lower control 

limit L (of the CRL sub-chart).  

(2) Inspect a sample of n units one by one and increase the cumulative number c of 

detected nonconforming units by one whenever a nonconforming unit is found. 

(3) If c w  up to the end of the sample, the sample is conforming and return to Step 

2 for taking the next sample. Otherwise, if c w  at any moment, the sample is 

nonconforming and proceed to the next step. 

(4) Determine the value of CRL. If CRL L , the process is in-control and return to 

Step 2. Otherwise, if CRL < L , the process is out-of-control and proceed to the 

next step. 

(5) Stop the process and take the necessary actions to eliminate the assignable 

cause(s). Subsequently, the control flow returns to Step 2. 
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It is worth mentioning that when d is larger than w (in the case of the synthetic 

chart) or c exceeds w (in the case of the Curt_Syn chart), the sample is considered as 

nonconforming but an out-of-control signal is not issued immediately. According to Wu 

et al. (2001), the sample is marked as a nonconforming one and an out-of-control signal 

is produced only if the CRL is less than L. In both synthetic and Curt_Syn charts, the 

CRL is defined as the number of samples between two consecutive nonconforming 

samples (including the ending nonconforming sample) as mentioned earlier. 

4. Statistical measures of performance 

In this section, the performance measures ATS and ANC are discussed. ATS is a widely 

adopted performance indicator to measure the speed of signaling an out-of-control 

condition. When the process is in-control, a larger ATS indicates a lower Type-I error or 

false alarm rate in comparison to other charts. On the other hand, a smaller out-of-control 

ATS indicates that the chart signals faster and is more sensitive to process shifts in 

comparison to other charts. In other words, a chart with a lower out-of-control ATS has 

a superior shift detection ability. Generally, ATS can be calculated as follows (Haridy et 

al., 2014): 

 ATS ARLh=    (1) 

where h refers to the sampling interval while the average run length (ARL) is the expected 

number of samples until an out-of-control condition is signaled. According to 

Montgomery (2009), an attribute control chart based on 100% inspection of all process 

output is common due to the simplicity of the inspection of attribute data. Hence, 100% 

inspection is used in the discussions of this paper (similar to Wu et al., 2006 and Haridy 

et al., 2014, 2017).  

The value of h is equivalent to the product of n and the time (t) required for 

inspecting a unit with 100% inspection. Hence, ATS is given as (Haridy et al., 2014) 
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 ATS ARL ARLh n t=  =     (2) 

If we assume t = 1 time unit, we simply have (Haridy et al., 2017) 

 ATS ARLn=    (3) 

There are two types of ATS, i.e. zero-state and steady-state ATS. The zero-state ATS is 

the expected time from the beginning of the process to the time when the chart signals an 

out-of-control condition. On the other hand, the steady-state ATS is defined as the 

expected time from the occurrence of an assignable cause to the time an out-of-control 

signal is issued by the chart. In this paper, the out-of-control ATS is computed using the 

steady-state mode. This is because the steady-state mode leads to more realistic results 

as, during the inspection of the sample, the p shift can occur randomly at any time (Wu 

et al., 2006). During the occurrence of a process shift, the out-of-control value of p is 

defined as follows (Haridy et al., 2017): 

 0p p=    (4) 

where δ measures the size of an upward shift in p, in terms of p0. Note that max1      

such that max  is the maximum shift. When δ = 1 (p = p0), the process is in the in-control 

state. Meanwhile, when max1    , the process is out-of-control with p at its maximum 

max max 0 p p=  . 

 To obtain an overall measure of the performance of the charts, the ANC which is 

the expected number of nonconforming units produced in various out-of-control cases, 

for a range of p shifts, is used. When comparing several charts, the one with a smaller 

ANC is more efficient over various values of the shift δ. In fact, the ANC is a weighted 

average of ATS, where the weight is δ. The ANC is given by (Haridy et al., 2017) 

 
max

0

1

ANC N  ATS( )  ( ) dp f



   =      (5) 
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where N is the number of units produced per time unit, ( )f   represents the probability 

density function of δ, while ATS( )  refers to the ATS value for the shift δ. As N in 

Equation (5) does not affect the performance of the charts, we may assume N=1 and; 

hence, Equation (5) simplifies to    

 
max

0

1

ANC  ATS( ) ( ) dp f



   =      (6) 

In general, there is no closed-form for the ANC and the value of the integral can only be 

obtained using a numerical method like, for instance, the Legendre-Gauss Quadrature. 

Additionally, note that Equation (6) (without N) can be used for the design and 

comparison of the charts. However, to compute the actual ANC value, Equation (5) 

should be used.  

 Typically, it is assumed that the shift δ for fraction nonconforming p follows a 

probability distribution. In this paper, we assume that δ follows a Rayleigh distribution. 

For more information on the Rayleigh distribution, readers can refer to Haridy et al. 

(2014, 2017). If we assume a Rayleigh distribution for the shift δ, the probability density 

function of δ is 

 
2

2 2

( 1) ( 1)
( ) exp

2( 1) 4( 1)
f

 

   


 
 − −

= − − − 
  (7) 

and its cumulative distribution function is 

 
2

2

( 1)
F( ) 1 exp

4( 1)

 



 −

= − − − 
  (8) 

where  is the mean of δ. The historical data corresponding to the out-of-control cases 

can be used to estimate 𝜇𝛿. Let 𝑝̂𝑖 be the value of p obtained during the follow-up 

investigation after the control chart signals an out-of-control condition, then an estimate 
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of the sample shift 
î

  is 𝑝̂𝑖 𝑝0⁄ . Suppose that there are k records of 
î

 , i =1,...,k, then an 

estimation ˆ of   is (Haridy et al. 2014) 

 1

ˆ
ˆ

k

ii

k



 ==    (9) 

Note that the value of δmax in Equation (6) can be obtained from Equation (8) such 

that the probability of δ > δmax is negligible (lower than 0.001). Consequently, F(δmax) in 

Equation (8) will be equal to 0.999 and δmax can be computed from   as follows: 

2

max

2

2

max

2

2

max

2

( 1)
0.999 1 exp

4( 1)

( 1)
exp 0.001

4( 1)

( 1)
ln 0.001

4( 1)







 


 


 


 −
= − − − 

 −
− = − 

−
− =

−

   

giving 

 
2

max

4( 1) ln 0.001
1 


− −

= +   (10) 

5. Optimal design of the Curt_Syn chart 

This section outlines the optimal design of the Curt_Syn chart with the objective of 

minimizing the ANC. In this paper, the design algorithm minimizes the ANC instead of 

the ATS to obtain a better overall detection effectiveness over a range of process shifts. 

It has been shown by Haridy et al. (2014) that a control chart that uses the ANC as the 

objective function has a better overall performance compared to its counterpart that 

minimizes the ATS. Prior to the optimal design of the Curt_Syn chart, three specifications 

should be determined:  

(1) τ: minimum allowable value of the in-control ATS (ATS0), 
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(2) p0: in-control fraction nonconforming, 

(3) 𝜇𝛿: mean of the shift δ. 

 With reference to the false alarm rate, the quality engineer can determine the value 

of τ. When managing false alarms is costly, a larger value of τ can be used to lower the 

frequency of false alarms. When the process is in-control, 𝑝0 can be estimated from the 

Phase I data. Additionally, Equation (9) can be used to estimate the value of  𝜇𝛿 from the 

historical data of the out-of-control cases.  

The optimal design of the Curt_Syn chart is based on the following model: 

Objective:   Minimize ANC          (11) 

Constraint:    0ATS             (12) 

Design variables:  n, L, w  

where the objective of the model is to determine the optimal parameters n, L and w that 

minimize the ANC while adhering to the constraint 0ATS  . Note that the value of ATS0 

may not be exactly equal to τ due to the variability of the simulation results and the 

discrete characteristic of attribute data. Nevertheless, ATS0 should be approximately 

equal to τ.  

 A two-level search is used to implement the optimal design of the Curt_Syn chart 

as follows: 

(1) Specify the values of τ, p0 and 𝜇𝛿. 

(2) Initialize a very large number (i.e. 107) as the minimum value of ANC (ANCmin).  

(3) For the first level, the optimal value of n is determined by trying all possible values 

with an increment of 1 from the initial value n = 1, until the ANC cannot be further 

reduced. 
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(4) For the second level, using the value of n obtained from the first level, search for 

the optimal value of w in the range 0 ≤ w ≤ n. For each set of (n, w) values, 

• Determine the value of L such that it satisfies the constraint 0ATS  . 

• Given that all the values of the three charting parameters n, L and w have been 

determined, compute the ANC using Equation (6).  

• If the computed ANC has a smaller value than ANCmin, then substitute the 

latter with the former and store the current n, L and w values as a temporary 

optimal solution. 

(5) At the end of the two-level search, the optimal Curt_Syn chart that produces the 

minimum ANC value and meets the constraint 0ATS   is obtained. At the same 

time, the finalized optimal parameters n, L and w are determined. 

 The grid search used in this optimization procedure can be considered as a global 

one because of the discrete nature of attributes which allows all possible values of the two 

independent integer variables (n and w) to be explored. A code has been written in C 

language to compute the optimal parameters and to calculate the performance measures, 

ATS and ANC, of the Curt_Syn chart by simulation using 10,000 replications. This code 

can be obtained from the authors upon request. 

6. Numerical analysis 

In this section, the sensitivity of the synthetic and Curt_Syn charts in detecting upward p 

shifts is compared. The design of both charts follows the model in Equations (11) and 

(12) where the objective function is to minimize the ANC while meeting the constraint

0ATS  .  

6.1 Comparison under one case 

This section compares the synthetic and Curt_Syn charts under one case in which the 

design specifications are as shown below:  
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𝑝0 = 0.01, τ = 50/𝑝0, 𝜇𝛿 = 7 

where τ is expressed in terms of 𝑝0 (Wu et al., 2001, Wu et al., 2006). The optimal 

parameters of both charts are: 

Synthetic chart: n = 67, L = 20, w = 2 

Curt_Syn chart: n = 71, L = 16, w = 2 

Table 1 shows the ATS values of both charts. The in-control ATS values are 

obtained when δ = 1 and the out-of-control ones are obtained when δ = {2,3,...,18}. Note 

that the value of max  can be determined using Equation (10). For this case, max  is 

approximately equal to 18. With reference to Table 1, it can be seen that 

(1) The synthetic and Curt_Syn charts have 0ATS   when the process is in-control. 

Hence, a common ground for comparison is provided as both charts have similar 

false alarm rates.  

(2) For all shifts, the Curt_Syn chart has lower ATS values compared to the synthetic 

chart. Thus, the Curt_Syn chart is superior in detecting increasing p shifts as the 

out-of-control condition is detected earlier. From an overall viewpoint, adapting 

curtailment improves the effectiveness of the synthetic chart.  

(3) For both charts, the ATS value decreases as δ increases. This indicates that the 

charts become more sensitive in detecting p shifts as δ becomes larger which is 

justified by the need to detect large shifts that lead to a significant loss of quality 

swiftly.  

(4) It can also be seen from Case 0 in Table 2 that ANCSynthetic/ANCCurt_Syn = 1.43. 

This reveals that the Curt_Syn chart outperforms the synthetic chart by 43% from 

an overall standpoint over the entire range of shifts (1 < δ ≤ 18).  

Figure 2 shows the curves of the normalized ATS (ATS/ATSCurt_Syn) for both charts. The 

normalized ATS of the synthetic chart is more than 1 for all δ; hence for all p shifts, the 

Curt_Syn chart outperforms the synthetic chart. The detection ability of the synthetic 
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chart compared to the Curt_Syn chart worsens when the normalized ATS increases. It 

can be seen that the normalized ATS curve of the synthetic chart increases with δ (highest 

at δ = 18), indicating that the Curt_Syn chart surpasses the synthetic chart as δ increases. 

This is justifiable because when δ is large, the curtailment mechanism will come into play 

very effectively and gives an out-of-control signal much earlier before all of the n units 

in the sample are inspected. 

[Please insert Table 1 here] 
 

[Please insert Figure 2 here] 

6.2 Comparison under more cases  

In this section, the synthetic and Curt_Syn charts are compared under different conditions. 

As shown in Table 2 (in cases 1 to 35), there are three input factors (p0, τ and 𝜇𝛿). p0 has 

5 levels, while τ and 𝜇𝛿 are varied at 3 levels. The levels of p0 and τ are decided with 

reference to those commonly used by many authors (Reynolds and Stoumbos 1998, Wu 

et al. 2001, Bourke 2008, Haridy et al. 2013). Case 0 corresponds to the specific case in 

Section 6.1. The factors varied at different levels are shown below: 

p0: 0.005, 0.03, 0.05, 0.1, 0.15 

τ:  10/𝑝0, 30/𝑝0, 100/𝑝0               

 𝜇𝛿: 4, 6, 10 

Note that τ is expressed in terms of p0 as indicated in the previous section. To 

illustrate, if p0 = 0.005, then τ = 10/p0 = 2000. Along with their respective charting 

parameters, the ANC and normalized ANC (
Curt_SynANC / ANC ) values are enumerated 

in Table 2 for the 36 cases. It can be seen that, for all the 36 cases, the Curt_Syn chart 

outperforms the synthetic chart. This is because the ANC of the synthetic chart is larger 

than the ANC of the Curt_Syn chart for all cases. Additionally, the normalized ANC of 

the synthetic chart for all cases is larger than one, indicating that the Curt_Syn chart 

surpasses the synthetic chart. This is especially so in case 5, where the normalized ANC 
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of the synthetic chart is at its maximum at 1.9476. In other words, the outperformance of 

the Curt_Syn chart compared to the synthetic chart is 95%.  

In order to obtain a complete view of the performance of the charts, a grand 

average of the normalized ANC for the synthetic chart in all the 36 cases shown in Table 

2, denoted by 
syntheti Curt_Syc nANC / ANC , is computed. We found that 

synthetic Curt_SynANC / ANC 1.3785= , where the Curt_Syn chart outperforms the 

synthetic chart by 38%, on average in detecting p shifts. From a comprehensive point of 

view, the Curt_Syn chart is considerably superior to the synthetic chart. This clearly 

reflects the substantial contribution of the curtailment method in improving the 

performance of the synthetic chart.  

[Please insert Table 2 here] 
 

6.3 Comparison with CUSUM and EWMA charts with and without curtailment 

Lastly, the performance of the Curt_Syn chart is compared with the CUSUM and EWMA 

charts, as well as their respective counterparts with curtailment, denoted as Curt_CUSUM 

chart and Curt_EWMA chart, respectively, for detecting increasing p shifts. We selected 

four different cases from Haridy et al. (2014, 2017) and studied each case in terms of the 

ANC. Table 3 shows the design specifications, optimal parameters and results of each 

case. Note that H is the upper control limit of the CUSUM and EWMA charts, k is the 

reference parameter of the CUSUM chart and λ is the weighting parameter of the EWMA 

chart.  

[Please insert Table 3 here] 
 

Based on Table 3, the Curt_Syn chart outperforms the CUSUM and EWMA 

charts for all cases as the CUSUM and EWMA charts’ normalized ANC values are more 

than one. In fact, the Curt_Syn chart significantly outperforms the CUSUM and EWMA 

charts when p0 is large (p0 = 0.03). The Curt_Syn chart surpasses the synthetic chart for 

all cases. Meanwhile, the Curt_Syn chart also outperforms the Curt_CUSUM and 

Curt_EWMA charts when p0 is large. 
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It can also be seen that, generally, the Curt_CUSUM and Curt_EWMA charts are 

slightly superior to the Curt_Syn chart when p0 is small (p0 = 0.005). However, as the 

synthetic chart without curtailment has larger ANC values compared to the Curt_CUSUM 

and Curt_EWMA charts for all cases (except for case 4 where the Curt_CUSUM chart 

has a larger ANC value), the incorporation of the curtailment method has improved the 

performance of the synthetic chart significantly. To illustrate, in case 2, the synthetic chart 

has ANC = 11.564 which decreases to ANC = 7.496 for the Curt_Syn chart, which is 

closer to the performance of the Curt_CUSUM (ANC = 7.865) and Curt_EWMA (ANC 

= 7.459) charts. It can also be observed in case 3 that the addition of the curtailment 

approach to the synthetic chart reduced its ANC from 5.147 to 3.286; hence 

outperforming the Curt_CUSUM (ANC = 4.441) and Curt_EWMA (ANC = 4.332) 

charts. 

7. Illustrative example 

The implementation of the Curt_Syn chart in a company that manufactures golf balls is 

shown in this example. A golf ball is considered nonconforming if the label on the golf 

ball is printed wrongly. As the quality engineer is only interested in process deterioration, 

only upward shifts in p are monitored. Based on the Phase I dataset, the p0 value is 

estimated as 0.01. The mean value 𝜇𝛿 of the random shift δ is estimated as 5, based on 

some investigation records of the out-of-control cases. The quality engineer has also set 

the allowable minimum τ = 6000. The value of max  is 12 when 𝜇𝛿 = 5 according to 

Equation (10). Using the optimization program, the optimal parameters, ANC and 

normalized ANC of the two charts are as follows:  

Synthetic chart: n = 67, L = 16, w = 2, ANC = 6.3380, ANCSyn/ANCCurt_Syn = 1.2283 

 Curt_Syn chart: n = 62, L = 23, w = 2, ANC = 5.1598 

[Please insert Table 4 here] 
 

[Please insert Figure 3 here] 
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 It can be seen from Table 4 that the Curt_Syn chart is superior to the synthetic 

chart for all shifts. From an overall point of view, the Curt_Syn chart outperforms the 

synthetic chart by 23%. Additionally, Figure 3 shows that the curve of the Curt_Syn 

chart is lower than the synthetic chart; thus the Curt_Syn chart has lower ATS values 

and it is more sensitive for detecting p shifts. Using the Curt_Syn chart, 20 samples, 

each with size n = 62 are selected. Table 5 shows the cumulative number c of detected 

nonconforming units and the status of the samples while Figure 4 shows the 

implementation of the Curt_Syn chart. For each sample, the 62 units are inspected one 

by one and c is increased by one when a nonconforming unit is found. At sample #17, c 

= 5 exceeds w = 2, thus, the sample is nonconforming. As CRL = 17 does not exceed L 

= 23, an out-of-control condition is signaled at sample #17. Hence, the quality engineer 

stops the process to take corrective actions.  

[Please insert Table 5 here] 
 

[Please insert Figure 4 here] 

8. Conclusions 

In this paper, we propose a new synthetic chart with curtailment which is abridged as the 

Curt_Syn chart. The performance of the Curt_Syn chart is comprehensively studied in 

this paper for various conditions, in terms of ATS and ANC to provide readers with an 

overall view of the performance of the chart. Additionally, the implementation, optimal 

design and performance evaluation of the Curt_Syn chart are explained to assist 

practitioners in using the chart.  

The curtailment method can be easily applied and has significantly improved the 

performance of the synthetic chart by 38%, in terms of ANC. The Curt_Syn chart also 

outperforms the CUSUM and EWMA charts, in terms of ANC. In addition, the Curt_Syn 

chart surpasses the Curt_CUSUM and Curt_EWMA charts for large p shifts. When p 

shifts occur, an out-of-control condition will be signaled by the Curt_Syn chart before the 
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inspection of all the n units in a sample; consequently, an improvement in the speed of 

detecting p shifts is attained.  

 As the Curt_Syn chart is studied based on 100% inspection in this paper, further 

research can investigate the Curt_Syn chart’s performance for uniform or random 

sampling inspection. In addition, the performance of the adaptive (i.e. variable sampling 

interval (VSI), variable sample size (VSS) and variable sample size and sampling interval 

(VSSI)) charts can be improved with the addition of curtailment. Further research can 

also be done on the incorporation of the curtailment technique with multiattribute charts.  
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Table 1: ATS values of the synthetic and Curt_Syn charts for the specific case 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

δ 

ATS 

Synthetic Curt_Syn 

1 5123.611 4901.927 

2 507.787 495.920 

3 210.200 183.360 

4 133.934 104.543 

5 102.719 73.772 

6 82.491 56.530 

7 71.430 45.623 

8 62.653 38.800 

9 57.232 33.983 

10 52.757 29.987 

11 48.817 26.953 

12 45.956 25.013 

13 43.236 22.847 

14 41.621 21.181 

15 39.799 20.067 

16 39.062 18.435 

17 38.412 17.442 

18 37.615 16.487 
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 Table 2: Comparison of the synthetic and Curt_Syn charts under different levels  
of p0, τ and 𝜇𝛿 

 

  

Case p0 τ 𝜇𝛿 Chart n L w ANC ANC/ANCCurt_Syn 

0 0.01 50/p0 7 Synthetic 67 20 2 5.6048 1.4295 

        Curt_Syn 71 16 2 3.9207 1.0000 

1 0.005 10/p0 4 Synthetic 1 22 0 4.2733 1.3025 

        Curt_Syn 70 27 1 3.2808 1.0000 

2 0.005 10/p0 10 Synthetic 1 22 0 2.7678 1.2094 

        Curt_Syn 75 21 1 2.2886 1.0000 

3 0.005 10/p0 6 Synthetic 1 22 0 3.4452 1.2790 

        Curt_Syn 77 20 1 2.6936 1.0000 

4 0.005 100/p0 4 Synthetic 49 5 1 12.7656 1.6430 

        Curt_Syn 112 19 2 7.7698 1.0000 

5 0.005 100/p0 10 Synthetic 38 9 1 7.5626 1.9476 

        Curt_Syn 111 19 2 3.8830 1.0000 

6 0.005 100/p0 6 Synthetic 49 5 1 9.2602 1.7490 

        Curt_Syn 111 19 2 5.2946 1.0000 

7 0.005 30/p0 4 Synthetic 40 29 1 7.6711 1.6349 

        Curt_Syn 162 17 2 4.6921 1.0000 

8 0.005 30/p0 10 Synthetic 40 29 1 4.3554 1.2698 

        Curt_Syn 40 29 1 3.4299 1.0000 

9 0.005 30/p0 6 Synthetic 40 29 1 5.6335 1.5286 

        Curt_Syn 185 10 2 3.6853 1.0000 

10 0.03 10/p0 4 Synthetic 12 28 1 3.5987 1.2811 

        Curt_Syn 108 4 3 2.8090 1.0000 

11 0.03 10/p0 10 Synthetic 1 4 0 2.6398 1.2205 

        Curt_Syn 13 21 1 2.1628 1.0000 

12 0.03 10/p0 6 Synthetic 12 28 1 3.3596 1.2825 

        Curt_Syn 13 21 1 2.6195 1.0000 

13 0.03 100/p0 4 Synthetic 39 18 3 8.3399 1.2792 

        Curt_Syn 109 4 5 6.5194 1.0000 

14 0.03 100/p0 10 Synthetic 22 11 2 5.5922 1.5480 

        Curt_Syn 20 16 2 3.6126 1.0000 

15 0.03 100/p0 6 Synthetic 20 16 2 6.3430 1.2546 

        Curt_Syn 40 16 3 5.0559 1.0000 

16 0.03 30/p0 4 Synthetic 30 12 2 5.6705 1.2953 

        Curt_Syn 105 4 4 4.3777 1.0000 

17 0.03 30/p0 10 Synthetic 25 28 2 5.1487 1.8023 

        Curt_Syn 31 10 2 2.8567 1.0000 

18 0.03 30/p0 6 Synthetic 30 12 2 5.1858 1.4672 

        Curt_Syn 31 10 2 3.5345 1.0000 
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Table 2 (continued) 

Case p0 τ 𝜇𝛿 Chart n L w ANC ANC/ANCCurt_syn 

19 0.05 10/p0 4 Synthetic 8 21 1 3.6419 1.2702 

        Curt_Syn 64 4 3 2.8672 1.0000 

20 0.05 10/p0 10 Synthetic 1 3 0 2.5690 1.1579 

        Curt_Syn 8 21 1 2.2186 1.0000 

21 0.05 10/p0 6 Synthetic 1 3 0 3.2734 1.2462 

        Curt_Syn 8 21 1 2.6267 1.0000 

22 0.05 100/p0 4 Synthetic 12 19 2 8.2075 1.2463 

        Curt_Syn 63 5 5 6.5854 1.0000 

23 0.05 100/p0 10 Synthetic 13 13 2 5.6036 1.4755 

        Curt_Syn 12 19 2 3.7978 1.0000 

24 0.05 100/p0 6 Synthetic 12 19 2 6.2001 1.2228 

        Curt_Syn 28 7 3 5.0703 1.0000 

25 0.05 30/p0 4 Synthetic 18 13 2 5.6006 1.2686 

        Curt_Syn 39 6 3 4.4148 1.0000 

26 0.05 30/p0 10 Synthetic 18 13 2 5.3955 1.7824 

        Curt_Syn 18 13 2 3.0272 1.0000 

27 0.05 30/p0 6 Synthetic 18 13 2 5.1378 1.4340 

        Curt_Syn 19 10 2 3.5828 1.0000 

28 0.1 30/p0 4 Synthetic 9 16 2 5.3494 1.2192 

       Curt_Syn 10 9 2 4.3877 1.0000 

29 0.1 30/p0 10 Synthetic 9 16 2 4.9890 1.4772 

       Curt_Syn 9 16 2 3.3773 1.0000 

30 0.1 100/p0 4 Synthetic 7 13 2 7.7125 1.2086 

       Curt_Syn 32 5 5 6.3812 1.0000 

31 0.1 100/p0 10 Synthetic 6 30 2 5.3246 1.3181 

       Curt_Syn 7 13 2 4.0396 1.0000 

32 0.15 30/p0 4 Synthetic 6 21 2 4.8768 1.2190 

       Curt_Syn 13 7 3 4.0005 1.0000 

33 0.15 30/p0 10 Synthetic 2 26 1 4.1410 1.0741 

       Curt_Syn 6 21 2 3.8553 1.0000 

34 0.15 100/p0 4 Synthetic 5 13 2 7.2179 1.2043 

       Curt_Syn 15 8 4 5.9935 1.0000 

35 0.15 100/p0 10 Synthetic 2 7 1 7.5150 1.3776 

        Curt_Syn 10 7 3 5.4553 1.0000 
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Table 3: Comparison with the CUSUM and EWMA charts with and without curtailment 
 

Case p0 τ 𝜇𝛿 Chart n L w H k or λ ANC ANC/ANCCurt_Syn 

1 0.005 1000 3 EWMA 56 - - 0.511 0.53 2.944 1.010 

    CUSUM 84 - - 0.242 0.88 2.991 1.026 

    Synthetic 2 23 0 - - 3.141 1.077 

    Curt_EWMA 80 - - 0.432 0.47 2.697 0.925 

    Curt_CUSUM 83 - - 0.368 0.84 2.669 0.915 

    Curt_Syn 50 2 0 - - 2.916 1.000 

2 0.005 10000 3 EWMA 54 - - 0.239 0.08 8.048 1.074 

    CUSUM 76 - - 2.702 0.66 8.570 1.143 

    Synthetic 64 5 1 - - 11.564 1.543 

    Curt_EWMA 84 - - 0.064 0.02 7.459 0.995 

    Curt_CUSUM 112 - - 2.910 0.87 7.865 1.049 

    Curt_Syn 141 16 2 - - 7.496 1.000 

3 0.03 1000 7 EWMA 63 - - 1.083 0.50 7.637 2.324 

    CUSUM 62 - - 1.060 2.97 8.059 2.452 

    Synthetic 30 12 2 - - 5.147 1.566 

    Curt_EWMA 50 - - 1.138 0.50 4.332 1.318 

    Curt_CUSUM 69 - - 0.861 3.14 4.441 1.351 

    Curt_Syn 30 12 2 - - 3.286 1.000 

4 0.03 10000 7 EWMA 50 - - 2.106 0.50 11.375 1.945 

    CUSUM 66 - - 3.961 3.02 12.112 2.071 

    Synthetic 14 27 2 - - 7.896 1.350 

    Curt_EWMA 53 - - 2.125 0.50 7.853 1.343 

    Curt_CUSUM 71 - - 3.239 3.76 8.160 1.395 

    Curt_Syn 33 14 3 - - 5.848 1.000 
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Table 4: ATS values of the Synthetic and Curt_Syn charts corresponding to the golf ball 
manufacturing process 

 

δ Synthetic Curt_Syn 

1 6108.4034 6053.5346 
2 593.2122 535.6702 
3 217.5566 201.5670 
4 135.7697 114.9303 
5 101.8074 80.9814 
6 83.4829 58.9744 
7 71.3157 47.9615 
8 63.9055 40.1599 
9 57.1117 34.7150 
10 52.2140 30.3919 
11 48.8171 27.3797 
12 45.6547 24.5865 

 

 

Table 5:  Phase II dataset from the golf ball manufacturing process 

 
 

 

  

 Sample c   Status 

1 1 Conforming  

2 2 Conforming  

3 1 Conforming  

4 0 Conforming  

5 1 Conforming  

6 1 Conforming  

7 1 Conforming  

8 0 Conforming 

9 1 Conforming  

10 2 Conforming  

11 2 Conforming  

12 1 Conforming  

13 1 Conforming  

14 0 Conforming  

15 0 Conforming  

16 0 Conforming  

17 5 Nonconforming  

18 0 Conforming  

19 1 Conforming  

20 0 Conforming  
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Figure 1: Example of conforming run length (CRL) 

 

 

 

Figure 2: Normalized ATS of the synthetic and Curt_Syn charts for the specific case 
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Figure 3: ATS values of the synthetic and Curt_Syn charts corresponding to the golf 
ball manufacturing process 

 
 
 
 

 

Figure 4: The Curt_Syn chart corresponding to the golf ball manufacturing process 

 

 


