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Abstract—Inefficiencies in flight operations, like deviations and
non-optimal flight speed or altitude, are directly linked to flight
emission inefficiencies. Quantifying these emission inefficiencies
and studying potential mitigation strategies is certainly beneficial
for the sustainability of the aviation industry. In this paper, we
analyze emission inefficiencies in Dutch and French airspaces
using flight data from 2019. The emission inefficiency analysis
quantifies the excess carbon emissions for each flight by compar-
ing its emissions with a set of optimal alternative trajectories. We
find that around 19% of excess emissions existed in 2019 within
the airspace of interest. We also study the potential reduction of
emissions by replacing short-range flights with electric aircraft.
We propose a simple electric aircraft energy model and relate
that to emissions in electric generations in different countries.
We find that besides the significant increase in air traffic demand
caused by the limited capacities of electric flights, the emissions
caused by electricity generation cannot be neglected. Significant
reductions can only be achieved when emissions caused by
electricity generation are low, as is the case currently in France.
However, more emissions can be indirectly generated if the
electricity used to power the future electric aircraft is itself
produced from high emission sources, as is the case currently
in the Netherlands. The paper also provides further insights and
recommendations on the data sources, research approach, and
future research for aviation sustainability.

Keywords — flight emission; data analysis; emission inefficiencies;
trajectory optimization; electric flight

I. INTRODUCTION

The impact of aviation on emissions and climate has become
an increasing concern for the research community and the general
public. This is partially due to the lack of action by the aviation
industry policymakers over the past decades and partially the result of
increased awareness of aviation climate impact. While new technol-
ogy, like electric-powered flights and hydrogen-powered flights, are
still years away, the current spotlight has been on synthetic aviation
fuel. Furthermore, Synthetic aviation fuel is not always sustainably
produced, and it does not directly reduce emission in flight operations.

Inefficiencies associated with excess fuel consumption are directly
related to unnecessary emissions. Modeling and quantifying flight
inefficiencies, as well as deriving related performance metrics, have
been active areas of research over the past years [1], [2], [3].
Research [1] proposes comparing flight efficiencies using the actual
trajectory and optimal reference trajectory. Study [2] makes use
of aircraft surveillance data to provide cost-based indicators that
represent flight inefficiencies. In the SESAR APACHE project [3],
a set of new performance indicators, including distance-based and
fuel-based indicators, are developed to evaluate flight inefficiencies.

A recent analysis conducted by EUROCONTROL [4] conducts a
comprehensive study on fuel and emission inefficiencies. It finds that
between 8% and 11% of inefficiencies exist in current flight oper-
ations in the EURTOCONTROL network. The study is performed
based on all flights in the network, and the fuel inefficiencies are
calculated using the reference fuel burn model, which is based on
the 5th or 10th percentile of all fuel burn observed for a specific
airport pair and aircraft type combination. The actual fuel burn is
obtained based on the estimations from the tactical flow management
system. Unlike the previously mentioned studies of [2], [3], The
EUROCONTROL analysis [4] assumes the reference fuel burn based
on the percentile of airport pairs. This creates larger errors for
airspaces with structural inefficiencies, as all flights between two
airports may fuel inefficiencies.

Besides analyzing and proposing ways to reduce these operational
emission inefficiencies over Europe, electric-powered flights have
been suggested as a novel and easy to implement approach to
replace short-range flights [5]. However, the current energy density
constraints of batteries limit the range and the passenger capacity
of proposed electric aircraft designs [6]. In addition, not all types
of electricity are generated equally. There is a large difference in
terms of emissions caused by electricity generation [7]. All these facts
must be considered when analyzing the electric flights’s benefits for
emissions.

In this study, we propose an optimization-based method that is
similar to [3] for analyzing fuel and emission inefficiencies, which
proposes an accurate reference for each flight. For each selected flight,
we estimated the fuel consumption based on the open-source aircraft
performance model (OpenAP) [8]. At the same time, we provide the
reference trajectory using the optimal trajectory specifically generated
for the selected flight. The excess fuel consumption and emissions
are calculated for all flights and then aggregated for the entire region
of interest.

The research is funded by the Dutch-Franco aviation sustainability
collaboration initiative and specifically addresses flight operations
between Dutch and French airspaces, which are also some of the
busiest airspaces including free routing and non-free routing sectors.

The research objective is twofold. First, we want to quantify the
total carbon emission and excess emissions created by inefficiencies
for flights departing and arriving in the Netherlands and France, and
Belgium, during 2019. Secondly, we want to focus on short-range
flights (less than 500km) and study the potential emission reductions
associated with prospective electric passenger aircraft.

The structure of the paper is organized as follows. Section II
addresses the methodologies for obtainingflight operations’ ineffi-
ciencies in the studied airspaces. Section III discusses the challenge
of modeling and estimating emissions from newly emerging elec-
tric flights. Section IV provides the results and analysis. Finally,
Sections V and VI describe the discussions, recommendations, and



conclusion of this study.

II. MODELING EMISSION INEFFICIENCY

In this section, we discuss the models and methods used for
evaluating the fuel and emission inefficiencies of individual flights.
We focus on the fuel and emission estimations based on data from
the EUROCONTROL R&D dataset, as well as the qualification
of inefficiencies that occur in each flight compared to an optimal
reference trajectory.

A. Fuel estimation
Fuel consumption can be estimated based on aircraft performance

models. BADA (developed by EUROCONTROL) and OpenAP (de-
veloped by TU Delft) are two models commonly used in such air
transport research. In this study, we choose the open-source OpenAP
model for the estimation [8].

OpenAP currently supports the performance and emission models
for the around 35 most common aircraft type codes. It can also model
another additional 21 aircraft types through a similar aircraft type
using synonyms, which estimate emissions using existing aircraft
models in OpenAP. Table I shows the aircraft type codes that are
supported by OpenAP and the percentage of flights in the airspaces
for this study.

TABLE I
OPENAP AIRCRAFT TYPES

support typecode flights

Full models

A19N A20N A21N A319 A320 A321 A332
A333 A343 A359 A388 B37M B38M B39M
B3XM B734 B737 B738 B739 B744 B748
B752 B763 B772 B773 B77W B788 B789
C550 E145 E170 E190 E195 E75L GLF6

60%

Synonyms
C525 B77L B733 C25A E290 B762 MD11
A310 SU95 PC24 AT75 GLF5 C56X AT72
CRJ2 A306 B735 AT76 CRJ9 A124 LJ45

7%

The fuel flow model requires the flight states of speed, altitude, and
vertical rate, which are all provided by the R&D dataset. However,
the trajectories in this dataset have relatively low resolution. To ensure
the consistency of fuel flow estimations, each trajectory is filtered and
resampled into a trajectory of 15-second resolution before estimating
the fuel and emissions. The processing, filtering, and resampling is
performed with the traffic library [9]. The uncertainties in aircraft
mass is also considered and described in detail in section II-C.

B. Fuel optimal reference trajectory
A set of emission optimal trajectories is generated for each flight

to evaluate the emission inefficiency. The optimal trajectory is created
using the open-source OpenAP.top trajectory optimizer [10]. The
optimizer uses a non-linear optimal control approach to generate
an optimal trajectory according to different cost functions, including
both climate objectives and conventional cost index objectives. In this
paper, we used the fuel optimal objective, which also minimizes for
CO2 emission. In the remainder of this section, we briefly explain
the theory of this optimizer.

1) Optimal control problem: The optimal flight trajectory
generation can be considered as an optimal control problem, where
the best combination of parameters (such as position, speed, and
altitude) over time need to be determined.

With the simplified point-mass aircraft performance model, the
following flight states are considered:

xt = [xt, yt, ht,mt] (1)

where (x, y), h, and m are the position, altitude, and mass of the
aircraft. The control states include:

ut = [Mt, vst, ψt] (2)

where M , vs, and ψ are Mach number, vertical rate, and heading of
the aircraft. The dynamic, or evolution, of the states, can be defined
by the following ordinary differential equations:

dx

dt
= vt sin(ψt) cos(γt) + wx,t (3)

dy

dt
= vt cos(ψt) cos(γt) + wy,t (4)

dh

dt
= vst (5)

dm

dt
= −fft(m, v, h) (6)

where v is the true airspeed, γ is the flight path angle, and ff is the
fuel flow model that is dependent on the aircraft mass, speed, and
altitude. wx and wy are wind speed components. True airspeed are
calculated based on Mach number and altitude under the international
standard atmosphere conditions:

γ = tan−1
(vs
v

)
(7)

v =Ma0
√
ΓRTh (8)

where a0 is the speed of sound constant at sea level, Γ is the ratio
of specific heat, R is the gas constant for air, and Th is the air
temperature at altitude h.

Knowing states, controls, and the dynamic of an optimal control
system, the next task is to formulate the problem in a way that
can be solved by non-linear programming that consists of a set of
constraints and an objective function. The generalized form of an
objective function (J) can be expressed as:

J(x,u, t0, tf ) := E(t0, tf ,xt0 ,xtf ) +

∫ tf

t0

L(xt,ut, t)dt (9)

where E(·) and L(·) are the Mayer and Lagrangian terms. They
correspond to the cost at the endpoints, as well as the cost along the
trajectory, respectively. The minimization of the objective function
is:

min
xt,ut

J(x,u, t0, tf ); t0 < t < tf (10)

is subject to the following constraints:

ẋt = f(xt,ut) (11)
h(xt,ut) < 0 (12)

e(t0, tf ,xt0 ,ut0 ,xtf ,utf ) = 0 (13)

where ẋ is the first-order dynamic constraint represented by the
earlier system equations, h(·) represents the path constraints, and
e(·) represents the conditions at endpoints.

2) Numerical approximations: The solution for such an op-
timal control problem can be computed numerically. The direct
collocation approach from OpenAP.top discretizes the continuous
problem into segments that consist of a predefined number of time
intervals. Within each interval, the states are approximated using
polynomials at collocation points in each time interval.

Finally, a numeric solver is adopted to derive the optimal control
states (and related flight states). The numerical solver used by
OpenAP.top is an open-source library called CasADi [11], a symbolic
framework for numeric optimization. CasADi further utilizes the



lower-level C code that invokes the Interior Point Optimizer (IPOPT)
[12] to solve the non-linear programming problem.

The OpenAP.top optimizer can generate the global 4D flight from
the initial climb to the final approach. Flight phases do not need to
be explicitly expressed, which implies that the optimizer needs to
generate the optimal climb, cruise, and descent automatically from
the origin to the destination, considering the performance limit of the
aircraft and wind conditions at different locations and altitudes.

3) Resulting optimal trajectory: Figure 1 shows an example of
a flight and its optimal alternative from Amsterdam Airport Schiphol
to Toulouse-Blagnac Airport. The red and green colors represent the
actual flight and optimal trajectory, respectively.

The optimizer can consider real wind conditions. However, the
analysis in this paper considers a large number of flights. To reduce
computation load, wind information is not used for optimization.
Hence, the ground track is equivalent to the great circle trajectory. We
can observe a relatively large deviation from the optimal trajectory.
This is one of the causes for potential fuel and emission inefficiencies.

Fig. 1. Ground tracks of an example flight and optimal trajectory from EHAM
airport to LFBO airport

The altitude and speed profiles of the optimal trajectory are depen-
dent on the aircraft’s takeoff mass. In Figure 2, we illustrate different
optimal vertical profiles with different assumptions of takeoff mass.
Based on these outputs, we can see that the altitude is most affected
by the mass of the aircraft, while the speeds of these optimal
trajectories are relatively similar.

The range of takeoff masses selected is intentionally the same
as the ones earlier used for estimating the fuel and emissions. This
provides convenient way to deal with uncertainties in both emission
estimations and to compare the results with optimal alternative
trajectories.

C. Dealing with uncertainty in aircraft mass
Take-off mass have a considerable impact on fuel consumption.

For each aircraft, several sets of estimations are calculated based on
different initial mass assumptions. In this study, six different initial
mass values between 60% and 100% of the maximum takeoff weight
are chosen for the estimations. In the later sections of this paper, we
address how to choose the most likely mass based on the optimal
trajectory.

The uncertainty of mass also affects the estimation of fuel con-
sumption and emissions based on actual trajectories. Figure 3 shows
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Fig. 2. Altitude and speed profiles of the example flight (red) and optimal
trajectories with different takeoff mass (blue). The optimal trajectory in green
is the one that has the closest flight level to the actual flight.

the difference in fuel consumption considering a range of aircraft
take-off masses for this flown trajectory. The difference in fuel
consumption is around 13% (2.6 tons versus 2.3 tons of fuel).
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Fig. 3. Difference in fuel consumption due to different initial assumptions of
aircraft takeoff mass. The variation of total fuel consumption is around 13%
for this trajectory among different masses.

Figure 2 visualizes the influence of optimal trajectory due to
different aircraft mass, from which we can see that mass affects
mostly the optimal altitude of the aircraft based on these optimal
trajectories. The same range of mass values is used for conducting
the emission estimation. In this study, we chose the most likely
optimal trajectory based on the closest altitude profiles among all



different optimal alternatives. For the example flight, the selected
optimal trajectory (86 % of takeoff mass) is marked in green in Figure
2, which corresponds to the fuel estimates marked with red color in
Figure 3.

By combining all different pairs of estimates and optimal emis-
sions, we can analyze the variations caused by different mass as-
sumptions, and we can also provide an improved understanding of
the uncertainties. Figure 4 shows the variation of excess between
estimations and optimal trajectories due to different assumptions of
takeoff mass.
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Fig. 4. Excess fuel estimated under different takeoff mass assumptions. The
chosen mass from earlier figures, approximately 86% of maximum takeoff
weight (MTOW), is marked in the dashed vertical line.

III. IMPACT OF ELECTRIC FLIGHTS

In the second part of this study, we focus on short-range flights’
emissions, which are flights with ranges of less than 500 kilometers.
The city pairs and number of daily average flights for this analysis
are shown in Figure 5. According to earlier studies [13], [14], these
short-range flights have the most potential to be replaced by electric-
powered airplanes. The recent development of all-electric flight tests
by Eviation’s Alice aircraft have demonstrated such capability with
limited passenger capacities.

Fig. 5. City pairs with ranges of less than 500 kilometers. The thickness of
the lines represent the number of average daily flight connections.

However, there are still two main constraints to achieving emission
reductions through the replacement of the current fleet with a new
all-electric fleet. Firstly, the energy density of the current battery

limits both the passenger capacity and the flight range. Secondly,
energy generation itself is not currently free from emissions in most
countries. Hence, assessing the actual reduction in emissions provided
by electric aircraft requires further investigation.

A. Electric plane performance model
The passenger capacity of current short-range regional, electric

flights is quite limited currently. This study makes use of a reference
aircraft, Eviation Alice, as the baseline for modeling the emission
performance of electric flights.

Alice is designed and tested with a capacity of nine passengers.
The maximum range is around 800 kilometers with zero payloads.
When carrying all nine passengers, the range is significantly reduced.
Since detailed performance is not available, we use the energy model
shown in Table II as a base energy model for the electric aircraft,
which is established on the empirical assumptions of this aircraft.

TABLE II
REFERENCE ENERGY MODEL OF ELECTRIC FLIGHTS IN THIS STUDY

parameter Eviation Alice simplified model

range 800 km 500 km
capacity 9 (max) 10
power 2×640 kW (max) 1000 kW (80%)
speed 400 km/h 320 km/h (80%)

trip energy 1600 kWh
energy / pax 170 kWh / pax

energy / pax / km 0.3 kWh / pax / km

sensitivity ± 0.1 kWh / pax / km

Several assumptions are made in our study to form a more realistic
model for electric flights. First, the range is reduced to 500 kilometers
from 900 kilometers based on a fully loaded aircraft. Furthermore,
we assume 80% of the average power and speed during the trip. This
is then used to estimate the total energy required per trip, as well as
the energy required per passenger and kilometer.

B. Estimation of carbon emissions
Once we have the baseline energy model for potential future

electric flights, we calculate the total energy required to theoretically
replace all the short-range flights in the Dutch and French airspaces.

The energy requirement is then combined with the carbon emis-
sions rate caused by energy generation from both countries. This
provides indications on actual emissions for switching to electric
flights, without considering the life-cycle of electric airplanes or
batteries.

We approximate the number of total passengers based on the
passenger capacity of current airliners provided by the OpenAP
model. This way, we can estimate the number of electric power flights
that are needed to replace total current short-range flight demand.

Once these results are obtained, we compare the difference in
emissions between these future scenarios and the emissions we
estimated earlier based on flight trajectories from the dataset. The
entire process is shown in Figure 6.

Table II also provides an empirical sensitivity model, which we use
to study the variations in the emissions caused by electrification of
short-range flights. This will later be used in the sensitivity analysis
for emission reduction caused by electrification in the future.

IV. ANALYSIS

To analyze all the flights in 2019, flights with both departures
and destinations in the Netherlands and France (and also Belgium)
are extracted from the EUROCONTROL R&D dataset. We indicated
earlier the flights in this dataset have a low resolution, hence the
traffic library [9] is used to reconstruct and resample the flights with
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Fig. 6. The process of evaluating potential emission reductions with short-
range electric flights

a 15-second resolution. This new subset of trajectory data then forms
the basis of the analysis in the rest of this section.

A. Emission inefficiencies in current flight operations
For each flight in our research dataset, we compute the total fuel

consumption, CO2 emissions (linear to the fuel consumption), and
inefficiencies based on the methods proposed earlier. Then, the total
statistics are aggregated based on the four months of data included
in the dataset. To obtain the estimations with the entire year of data,
we extrapolate the aggregated results by a factor of three. The final
emission inefficiency is found to be around 19%, which means that
up to 19% of total emissions can be reduced if all flights can fly the
most optimal trajectories.

TABLE III
EXCESS EMISSIONS FOR ALL THE FLIGHTS IN THE DUTCH, BELGIUM,

AND FRENCH AIRSPACES DURING 2019

parameter 4 months full year

number of flights 88,000 264,000 t

total fuel 160,000 t 479,000 t
total excess fuel 31,000 t 93,000 t

total CO2 502,000 t 1,510,000 t
total excess CO2 97,000 t 291,000 t

CO2 (<500 km) 104,000 t 1,500,000 t
excess CO2 (<500km) 28,000 t 291,000 t

CO2 (>500 km) 398,000 t 1,190,000 t
excess CO2 (>500km) 70,000 t 209,000 t

We can normalize the fuel efficiencies for each flight using the
following simple equation:

η =
Eestimate

Eoptimal
(14)

where Eestimate is the total emissions estimated based on the actual
flight, and Eoptimal is the emissions obtained from the optimal
trajectory. With that, we visualize the efficiency for all the flights,
aggregated by city pairs, in Figure 7.
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Fig. 7. Normalized fuel efficiencies among all flights in 2019 in the selected
airspace, aggregated by pairs of origin and destination airports.

In this figure, the total trip fuel of all flights between each city
pair is compared with the total fuel of all optimal trajectories. The
green line shows the ones with the most efficient origin-detonation
pairs. The red line shows a linear regression model. We can observe
that the majority of the efficiency is only around 80% (or 20%
of inefficiency). There is also more inefficiency among short-range
flights, compared with the rest of the flights.

B. Uncertainties considering the varying mass assumptions
In the earlier section, we analyze the effect of variation among

emission estimations due to different assumptions of masses with
one example flight. To further demonstrate the aggregated results,
Figure 8 shows the distributions for all flights in the dataset. The top
plot shows the distributions of estimated CO2 emissions per flight,
and the bottom plot shows the distributions of excess CO2 emissions
per flight. Green and red dashed lines represent low and high takeoff
mass assumptions. Black solid lines show the default results based
on vertical profile matching.

We can see a large variety of emissions exists among all flights.
The distributions do not change much based on different aircraft mass
assumptions. The difference in excess CO2 caused by the different
mass assumptions is found to be around 30,000 tons. The following
Table IV shows the lower and upper bound for the total emissions
and excess emissions.

TABLE IV
UNCERTAINTIES CAUSED BY TAKEOFF MASS (4-MONTH)

parameter lower bound upper bound

total CO2 490,000 t 510,000 t
total excess CO2 90,000 t 120,000 t

excess CO2 (>500 km) 27,000 t 31,000 t
excess CO2 (<500 km) 63,000 t 89,000 t

Compared to the previous Table III, we can see that the previously
obtained total inefficiency (19%) is at the lower bound of the ineffi-
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ciency level. Hence, we can infer that the real emission inefficiency
might be even higher.

C. Emission reductions with electric powered flights
Based on the performance model from Table II and the process

shown in Figure 6, we estimate the total number of electric flights
required for replacing the current short-range flights in the regions of
interest. Figure 9 reveals the number of flights and passengers that
were carried during March, June, September, and December of 2019.
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Fig. 9. Number of flights and passengers for the four months of data in 2019

Figure 9 demonstrates the challenge of replacing current passenger
flights (average capacity >100 passengers) with electric aircraft that
have very limited passenger capacities. This results in a much higher
density of air traffic in the airspaces, which can disrupt current
operations and further calls for a very high level of automation in air
traffic control.

Another commonly ignored factor we want to study is the
emissions caused by the generation of electricity. Figure 10 shows
the carbon emissions for electricity production among most of the
western and southern European countries [7]. Among these countries,
France, the Netherlands, and Belgium are used for evaluating the
potential emission reduction of electric flights.
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Fig. 10. CO2 emissions caused by electricity generation in different countries

Table V offers the quantitative results of this analysis. We can
conclude that, replacing all the flights with the electric flight based
on our simplified model requires a new fleet of electric-power flights
that is more than 10 times larger than the current fleet. The table
also shows the comparison of emissions between current flights and
emissions at energy production source for electric flights. The positive
conclusion is that, with the energy emission rate of the French
electricity matrix, there is a significant decrease in carbon emissions
(around 80% of reduction). However, if the electricity is generated in
the Netherlands where the energy matrix comes from more than 75%
fossil sources, electrification will induce more carbon emissions from
the aviation sector than emissions from all current jet fuel aircraft.

TABLE V
COMPARISON STUDY BETWEEN CURRENT JET FUEL AND POTENTIAL

ELECTRIC FLIGHTS

jet electric

number of flights (avg. daily) 240 2,700
number of flights (4 months) 28,500 320,000
number of flights (est. yearly) 85,500 960,000

jet fuel CO2 (yearly) 310,000 t
electricity CO2 - FR (yearly) 67,000 t
electricity CO2 - BE (yearly) 187,000 t
electricity CO2 - NL (yearly) 370,000 t

It is worth noting that this analysis considers the direct energy
consumption, which does not account for the emissions’ loss during
transmission. However, we think this is a fair comparison since the
excess emission caused by the production and transporting of jet fuel
are also not included in our study and most other aviation emission
studies.

D. Sensitivity of electric flight energy model
Previously, in Table II, we have specified the level of uncertainties

in the energy rate for the electric flights. Figure 11 shows the impact
of emissions if we also consider these levels of uncertainties.
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Fig. 11. CO2 emission by jet aircraft and electric aircraft for short-range
flights in Dutch and French airspaces

We observe that if all electricity used to power the electric aircraft
is generated in France, then there is still a very large reduction in
emissions even in the worst scenarios for passenger energy rate.
This also confirms the importance of sustainable energy sources over
largely fossil fuel-based electricity generation (like the Netherlands or
Germany). The transition to sustainable aviation cannot be separated
from the wider energy transition.

V. DISCUSSIONS

This study addresses the emission inefficiency for flight operations
over Dutch and French airspace and evaluates the potential of
emission reduction with short-range electric flights. Both analyses are
based on the EUROCONTROL R&D dataset from 2019, where the
network operates at its peak capacity before the COVID-19 pandemic.
In the section, we further elaborate on the limitations associated with
some of the approaches proposed in the paper. We also give more
insight into the models and analysis of the study.

A. Limitations
EUROCONTROL R&D dataset is a comprehensive dataset that

contains all commercial flights over the network. However, several
limitations exist that restrict the potential of this paper’s analysis.
First, only four months of data from each year are provided in the
dataset, which is always March, June, September, and December. This
limits the completeness of the dataset for this study, and results have
to be extrapolated to obtain the yearly statistics.

The publication of this data also has a delay of two years,
which makes the analyses of recent emissions impossible. Lastly,
the resolution of the flight trajectories can be quite low. In some
cases, only a few data points are available for flight trajectories. This
certainly reduces the accuracy of estimations for some trajectories.

OpenAP is the aircraft performance model used for emission
estimation, and it is also the base model for generating fuel-optimal
trajectories. However, it is known that the model underestimates the
emissions during the climbing phase of the flight. Hence, the actual
emissions may be higher than the results presented in this paper.
When the model is used to quantify the emission inefficiencies, the
discrepancy is, fortunately, reduced. This is because both estimation
and optimal trajectories obtained from the OpenAP consider fewer
emissions during the climb. Hence, a large portion of the bias is likely
to be canceled out.

OpenAP also has a limited number of aircraft models. In the
original dataset, there are a number of aircraft types, which are not
modeled by OpenAP and not included in the analysis of this study.
These aircraft type codes are shown in Table VI. The actual emission
would be higher if these aircraft types are considered. Most of these
un-modelled aircraft are light jets, helicopters, turboprops.

TABLE VI
AIRCRAFT TYPECODES OCCUR IN EUROCONTROL DATASET BUT NOT
MODELED IN OPENAP. RELATED FLIGHTS ARE NOT INCLUDED IN THE

ANALYSIS.

A139 A338 A3ST AN12 AS65 AT43 AT45 AT46 AT73 ATP
B190 B350 B462 B712 BE20 BE40 BE9L C208 C25B C25C
C25M C310 C402 C425 C510 C55B C650 C680 C68A C750
CL30 CL35 CL60 CRJ7 CRJX D228 D328 DA62 DH8D E135
E35L E50P E545 E550 E55P E75S EA50 EC55 EC75 F100
F2TH F406 F900 FA10 FA50 FA7X FA8X GL5T GLEX GLF4
H25B H25C HDJT IL76 J328 JS32 LJ35 LJ40 LJ60 LJ75
P180 P68 PA46 PC12 PRM1 RJ1H RJ85 SF34 SW3 SW4

The entire process of analysis is time-consuming and computation-
ally expensive. This is because, for each trajectory, several estimates
need to be computed under different takeoff mass assumptions. At the
same time, multiple optimal trajectories under different initial mass
assumptions need to be generated for each flight. The OpenAP.top
optimizer is already quite efficient, taking tens of second to compute
an optimal trajectory. However, there are around 88,000 flights and
each with 6 optimal alternatives to generate, which requires 528,000
optimization runs to complete the analysis.

In the end, we had to rely on the TU Delft’s DelftBlue supercom-
puter [15] to perform this calculation, which takes for more than 10
days for processing the entire dataset of 2019. Such computational
complexity also prevents the use of real-time wind conditions and
limits the analysis to only the Dutch and French airspaces in this
study.

B. Insights on emission inefficiencies
It is worth pointing out the 19 % emission inefficiencies is the

comparison with the absolute theoretically optimal trajectories. It is
apparent that not all of can be completely mitigated.

For example, deviation due to convective weather or avoiding
special use airspace (like military activities) is hard to avoid. This
calls for better predictions of extreme weather and better integration
of different airspace users. On the other hand, inefficiencies caused
by a lack of capacities can be reduced, for example, with a high
level of automation [16]. There are also inherent inefficiencies caused
by routing planning and execution of the flights, which can be, and
should be, mitigated in future flight operations.

To further analyze the causes of inefficiencies, more research
should be conducted to associate the inefficiencies with flight plans,
airspace capacity measures, convective weather data, and airspace
restriction information. This will lead to futher understand how
inefficiencies occur.

C. Less jargon and more transparency – the only pathway to
sustainable aviation

Electric aircraft, in addition to synthetic aviation fuel and hydrogen
aircraft, has been identified as one of the pathways to aviation
sustainability. We constructed a simplified model to evaluate the
potential benefit of introducing electric flights as the replacement
for current short-range jet-fuel powered air travel, based on an
existing electric aircraft model. It is worth noting that the simplified
model used in the paper may differ from the electric aircraft real
performance. However, it helps us to have a rudimentary comparison
with currently jet fuel-powered aircraft.

The main insight provided is that aviation sustainability cannot
be claimed without the context of the energy sources powering
flight. It is often assumed that electric flight will lower emissions,
but the source of the electricity determines whether this assumption
becomes a reality. Especially, we must form a better understanding
of the carbon budget when analyzing different approaches, including
electrification, hydrogen, and synthetic aviation fuel. For example,



a recent open model, CAST [17], addresses exactly such energy
transition and carbon budget challenges for aviation. It places aviation
in a global context to evaluate the actions required to achieve better
sustainability.

The pathway to a truly sustainable aviation future, unfortunately,
asks for the de-growth of air travel, at least in short term. For example,
a limited number of short-range electric flights can be best combined
with railway transport to avoid the saturation of airspace resources.
On the one hand, this scenario can reduce air traffic management
challenges, and at the same time, it reduces emissions by avoiding
short-range air travel. In the longer term, new technology in batteries
and more energy sources with low emissions is the only way that
aviation can truly reach sustainability.

VI. CONCLUSION

In this paper, we used the flight trajectory data from 2019 and
conducted studies on emission inefficiency and reduction for flight
operations in Dutch, French, and Belgium airspaces. The emission
inefficiency analysis focused on quantifying the excess carbon emis-
sions by comparing flight emissions with an optimal alternative
trajectory. The potential emission reduction focused on short-range
flights with less than 500 km range, which have the potential to be
replaced by the emerging electric aircraft. We conducted this part of
the study by introducing a simplified electric aircraft emission model
and calculated indirect emissions in electric generations.

The first main finding is that around 19% of excess emissions
existed in the entire airspace containing the Netherlands, Belgium,
and France. The second part of the study focused on the challenge of
reducing emissions by replacing the current fleet with electric flights.
In addition to the ten-fold increase in air traffic caused by the limited
passenger capacity of electric flights, we found that the emission
caused by electricity generation cannot be neglected in evaluating
aviation emissions. We concluded that a significant reduction can
be archived if the electricity is provided by France, while more
total emissions are produced if the electricity is provided in the
Netherlands.

This study focused primarily on the Dutch and French airspaces.
However, the methodologies developed during the study, including
the emission estimation, and optimal trajectory generations, are all
openly accessible and can be extended to a broader scope. Follow-up
studies can also focus on further identifying the causes of emission
inefficiencies and studying the emission reductions caused by other
sustainable alternatives.
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