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The angular measure on the unit sphere characterizes the first-order dependence structure of the components of
a random vector in extreme regions and is defined in terms of standardized margins. Its statistical recovery is an
important step in learning problems involving observations far away from the center. In the common situation
that the components of the vector have different distributions, the rank transformation offers a convenient and
robust way of standardizing data in order to build an empirical version of the angular measure based on the most
extreme observations. However, the study of the sampling distribution of the resulting empirical angular measure is
challenging. It is the purpose of the paper to establish finite-sample bounds for the maximal deviations between the
empirical and true angular measures, uniformly over classes of Borel sets of controlled combinatorial complexity.
The bounds are valid with high probability and, up to logarithmic factors, scale as the square root of the effective
sample size. The bounds are applied to provide performance guarantees for two statistical learning procedures
tailored to extreme regions of the input space and built upon the empirical angular measure: binary classification
in extreme regions through empirical risk minimization and unsupervised anomaly detection through minimum-
volume sets of the sphere.

MSC2020 subject classifications: Primary 62G05; 62G30; 62G32; secondary 62H30
Keywords: angular measure; classification; concentration inequality; extreme value analysis; minimum-volume
sets; ranks

1. Learning from multivariate extremes

Estimation and prediction problems regarding the extremal behaviour of a 𝑑-dimensional random vec-
tor 𝑋 are of key importance for risk assessment in finance, insurance, engineering and environmental
sciences and, recently, for the analysis of weak signals in machine learning. A standard assumption to
model the joint upper tail of 𝑋 is that its distribution lies in the maximal domain of attraction of a
multivariate extreme value distribution. This assumption comprises two parts:

(i) the marginal distributions of 𝑋 belong to the maximal domains of attraction of some univariate
extreme value distributions;

(ii) after marginal transformation of 𝑋 through the probability integral transform or a variation
thereof, the joint distribution of the transformed vector belongs to the maximal domain of
attraction of a multivariate extreme value distribution with pre-specified margins.

Under the side assumption that the marginal distributions of 𝑋 are continuous, point (ii) above only
involves the copula of 𝑋 . Point (ii) can be imposed on its own, that is, independently of the assumptions
on the margins in point (i), and this is what we will do in this paper.
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The angular measure for multivariate extremes. The multivariate extreme value distribution in
point (ii) is determined by a finite Borel measure, Φ, with support contained in the intersection of
[0,∞)𝑑 with the unit sphere on R𝑑 with respect to some norm. This so-called angular measure, origi-
nally called spectral measure in [19], describes the first-order dependence structure of joint extremes of
𝑋 and is rooted in the theory of multivariate regular variation [46]. Since then, it has been recognized
that the modelling of extremal dependence may require finer assumptions than the traditional maximal
domain of attraction condition, leading for instance to conditional extreme value models and the the-
ory of hidden regular variation; see for instance [14,54] and the references therein. Here, we focus on
inference on the angular measure Φ𝑝 with respect to some 𝐿𝑝-norm, for 𝑝 ∈ [1,∞].

Inference on the angular measure is an important problem in extreme value analysis. It plays a part
in the construction of confidence intervals for rare event probabilities [17,20]. It lies at the basis for a
test of the hypothesis that a bivariate distribution is in the maximum domain of attraction of an extreme
value distribution [25]. It serves to model the action of a covariate on the extremal dependence of
a baseline distribution through a density ratio model [8,15]. The angular density is also at the basis
of an estimator of bivariate tail quantile regions [24]. Bounds for probabilities of joint excesses over
high thresholds that are robust against misspecification of the angular measure are derived in [29]. The
angular measure underlies techniques to find groups of variables exhibiting extremal dependence, with
dimension reduction and sparse representations as objectives [9,40,44]; see [30] for a review. In [38],
the spherical 𝑘-means algorithm applied to a sample from the angular measure yields prototypes of
extremal dependence.

Furthermore, the angular measure is helpful for solving supervised and unsupervised learning tasks
for sample points far away from the center of the distribution. In the spirit of principal component anal-
ysis, the eigendecomposition of the Gram matrix of the angular measure yields low-dimensional sum-
maries of extremal dependence [13,21]. Anomalous data can be detected from unusual combinations of
variables being large simultaneously [33] or from their lack of membership of minimum-volume sets
of the unit sphere containing a large fraction of the total mass of the angular measure [52]. Binary clas-
sification in extreme regions can be performed on the basis of the differences between the intra-class
angular measures of the explanatory variables [37].

The empirical angular measure. For a given dimension 𝑑, the collection of all angular measures
is subject only to some moment constraints stemming from the marginal standardization of 𝑋 but does
not form a parametric family. The usual considerations in favor of and against the use of parametric
versus non-parametric methods therefore apply. Many parametric models have been proposed [11,12]
and new ones continue to be invented, with a growing emphasis on the use of flexible models almost
of a semi-parametric nature [4,48,49].

Our focus is on non-parametric estimation and inference via the empirical angular measure, Φ̂𝑝 ,
introduced in [26] and generalized to every 𝐿𝑝-norms in [28], although already alluded to some years
earlier [17,20]. Given a random sample from an unknown distribution, the marginal standardization
mentioned in point (ii) above is done by means of the empirical cumulative distribution functions. As
a result, the estimator depends on the data only through the ranks. On the one hand, the use of ranks
makes the method invariant with respect to marginal scales and reduces sensitivity to outliers. On the
other hand, the additional dependence stemming from the ranks greatly complicates the study of the
sampling distribution of the estimator.

In fact, the asymptotic distribution of the empirical angular measure is known only in the bivariate
case [26,28]. In higher dimensions, only its consistency has been established [38, Proof of Proposi-
tion 3.3]. This situation stands in contrast with the rank-based estimator of the stable tail dependence
function, the asymptotic normality of which is known in any dimension [7,23]. The reason why the
treatment of the empirical angular measure is so much more difficult is that it involves the empirical
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copula evaluated at sets of which the boundaries are not parallel to the coordinate axes. As a conse-
quence, the usual argument to deal with the marginal empirical distribution functions via the functional
delta method breaks down. Even outside the extreme value context, the asymptotic normality of the em-
pirical copula in even a single non-rectangular set is to this day an open problem.

Variations on the empirical angular measure enforce the aforementioned moment constraints through
empirical or Euclidean likelihoods [16,28] as well as a folding technique [34]. Other variations exploit
more specific assumptions on the marginal distributions to estimate them differently than by the empir-
ical distribution functions, for instance by fitting generalized Pareto distributions to the univariate tails
[27]. Sometimes, asymptotic results are established as if the marginal distributions are known. In our
paper, we focus on the original, rank-based empirical angular measure and we make no assumptions on
the unknown marginal cumulative distribution functions except for their continuity.

Concentration inequalities. It is the main goal of this paper to carry out a non-asymptotic anal-
ysis of the empirical angular measure Φ̂𝑝 , which, to the best knowledge, is the first of its kind. The
concentration inequality established in our main result, Theorem 3.1, states that with a certain large
probability 1− 𝛿 the estimation error is not larger than a certain small quantity depending, among other
things, on 𝛿 and on the number, 𝑘 , of sample points used in the definition of the estimator. The bound
concerns the worst-case estimation error

sup
𝐴∈A

���Φ̂𝑝 (𝐴) −Φ𝑝 (𝐴)
��� (1)

over classes A of Borel subsets 𝐴 of the unit sphere satisfying certain properties. In particular, the
complexity of A comes into play via the Vapnik–Chervonenkis dimension of a collection of sets con-
structed from A.

The result relies on two tools: first, the use of framing sets to capture certain random sets, as in [26]
and [28], although the framing sets are defined in a different manner here (see Section 3.1); and second,
a general concentration inequality for empirical processes indexed by rare events given in Theorem A.1.
The latter result is inspired by a similar inequality in [32] but the difference is that now the constant in
the bound is explicit.

Although the angular measure Φ can be studied with respect to any norm on R𝑑 , this study is limited
to the ones most frequently used in practice, the 𝐿𝑝-norms for 1 6 𝑝 6∞, i.e., for 𝑥 ∈ R𝑑 ,

‖𝑥‖𝑝 =
{
( |𝑥1 |𝑝 + · · · + |𝑥𝑑 |𝑝)1/𝑝 if 1 6 𝑝 <∞,

max ( |𝑥1 |, . . . , |𝑥𝑑 |) if 𝑝 =∞.
(2)

Applications to statistical learning. The concentration bounds for the empirical angular measure
are leveraged to study two statistical learning problems: minimum-volume set estimation and binary
classification in extreme regions. These two problems and the methods proposed to solve them were in-
troduced in the conference papers [52] and [37], respectively. In both cases, the method was based upon
the empirical angular measure. However, the technical difficulties inherent to the rank transformation
were ignored and the theoretical analysis was performed as if the marginal distributions are known.
Here, we apply concentration inequalities for the empirical angular measure to obtain finite-sample
performance guarantees for the rank-based methods.

We briefly describe the two learning problems and the role of the angular measure. For unsupervised
anomaly detection, the learning task can be formulated as minimum-volume set estimation on the
sphere, that is, the statistical recovery of a Borel set of the sphere with minimum volume but containing
a given, large fraction of the total mass of the angular measure [52]. Any large observation whose angle
lies outside the minimum-volume set is considered as a potential anomaly. Concentration inequalities
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for the uniform estimation error over a class of candidate sets enable us in Section 4.1 to get statistical
guarantees on the minimum-volume set selected within the class on the basis of an estimator of the
angular measure.

The second problem concerns binary classification in extreme regions. Empirical risk minimization,
which is the main paradigm of statistical learning theory, tends to ignore the predictive performance
of candidate classifiers in low-density regions of the input space. Instead, we focus on the probability
of classification error in such extreme regions. By controlling the fluctuations of the empirical angular
measure, we establish generalization bounds for classifiers obtained by minimizing the empirical clas-
sification error based on the most extreme input observations only. In Theorem 4.1, we state a bound
on the supremum of the empirical risk over a class of candidate classifiers.

Outline. The paper is organized as follows. In Section 2, the relevant notions pertaining to multivari-
ate extreme value analysis are briefly recalled. The main result related to the non-asymptotic analysis
of the empirical angular measure is formulated in Section 3. Section 4 illustrates the application of the
concentration inequalities to two statistical learning problems, minimum-volume set estimation and bi-
nary classification in extreme regions. Numerical experiments are presented in Section 5. A discussion
in Section 6 concludes the paper. Proofs and some auxiliary results, in particular a general concentra-
tion inequality for rare event probabilities, are deferred to the Appendices and the Supplement.

2. Upper tail dependence

We set out some basics of multivariate extreme value theory (Sections 2.1 and 2.2) and recall a rank-
based standardization procedure (Section 2.3). Equipped with these notions, we describe the empirical
angular measure (Section 2.4). For background, we refer to monographs such as [2,18,46].

2.1. Regular variation and exponent measure

Let 𝑋 = (𝑋1, . . . , 𝑋𝑑) be a random vector with distribution 𝑃 and continuous marginal cumulative
distribution functions 𝐹𝑗 (𝑢) = P[𝑋 𝑗 6 𝑢] for 𝑢 ∈ R. We standardize each component of 𝑋 to unit-Pareto
margins by a combination of the probability integral transform and the quantile transform through
𝑉 𝑗 = 1/(1 − 𝐹𝑗 (𝑋 𝑗 )) for 𝑗 = 1, . . . , 𝑑.

The working hypothesis in this paper is that the resulting random vector 𝑉 = (𝑉1, . . . ,𝑉𝑑) is mul-
tivariate regularly varying; this formalizes the assumption in point (ii) in the introduction. Specifi-
cally, we assume that there exists a non-zero Borel measure 𝜇 on the punctured orthant 𝐸 = [0,∞)𝑑 \
{(0, . . . ,0)} which is finite on Borel sets bounded away from the origin and such that

lim
𝑡→∞

𝑡 P[𝑡−1𝑉 ∈ 𝐵] = 𝜇(𝐵) (3)

for all Borel sets 𝐵 of 𝐸 bounded away from the origin and such that 𝜇(𝜕𝐵) = 0, with 𝜕𝐵 the
topological boundary of 𝐵. Convergence in (3) for all such 𝐵 is equivalent to measure convergence
𝑡 P[𝑡−1𝑉 ∈ · ] → 𝜇( · ) as 𝑡→∞ in the space M0 of Borel measures on 𝐸 that are finite on Borel sets
bounded away from the origin [36]. Specifically, we have lim𝑡→∞ 𝑡 E[ 𝑓 (𝑡−1𝑉)] =

∫
𝐸
𝑓 d𝜇 for every

bounded and continuous real function 𝑓 on 𝐸 vanishing in a neighbourhood of the origin. Alterna-
tively, multivariate regular variation can be described in the language of vague convergence of Radon
measures on the compactified, punctured orthant [0,∞]𝑑 \ {(0, . . . ,0)} [46,47].

The measure 𝜇 is referred to as the exponent measure because of its appearance in the exponent of the
expression of the multivariate extreme value distribution to which the distribution of 𝑉 is attracted [18,
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Definition 6.1.7]. The exponent measure is homogeneous: writing 𝜆𝐴 = {𝜆𝑥 : 𝑥 ∈ 𝐴} for 𝜆 > 0 and
𝐴 ⊆ R𝑑 , we have

∀𝜆 > 0, 𝜇(𝜆 · ) = 𝜆−1𝜇( · ). (4)

Its margins are standardized: by (3) and since each component 𝑉 𝑗 is unit-Pareto distributed, we have

∀𝑦 ∈ (0,∞), ∀ 𝑗 ∈ {1, . . . , 𝑑}, 𝜇({𝑥 ∈ 𝐸 : 𝑥 𝑗 > 𝑦}) = 𝑦−1. (5)

2.2. Angular measure

Recall ‖𝑥‖𝑝 in (2) and let

S𝑝 = {𝑥 ∈ [0,∞)𝑑 : ‖𝑥‖𝑝 = 1}, (6)

Consider the map 𝜃𝑝 : 𝐸 → S𝑝 that assigns to any vector 𝑥 ∈ 𝐸 its ‘angle’ 𝜃𝑝 (𝑥) = 𝑥/‖𝑥‖𝑝 .
The angular measure Φ𝑝 is defined as the push-forward measure by 𝜃𝑝 of the restriction of 𝜇 to

{𝑥 ∈ 𝐸 : ‖𝑥‖𝑝 > 1}: for any Borel set 𝐴 ⊆ S𝑝 , we have

Φ𝑝 (𝐴) = 𝜇(C𝐴) where C𝐴 = {𝑥 ∈ 𝐸 : ‖𝑥‖𝑝 > 1, 𝜃𝑝 (𝑥) ∈ 𝐴}. (7)

In view of the marginal standardization (5) and the ensuing identity (9) below, the total mass Φ𝑝 (S𝑝) =∫
S𝑝

‖𝜃‖𝑝 dΦ𝑝 (𝜃) of the angular measure is finite and we have 1 6Φ𝑝 (S𝑝) 6 𝑑.
The exponent measure 𝜇 is determined by the angular measure: by homogeneity (4),

𝜇({𝑥 ∈ 𝐸 : ‖𝑥‖𝑝 > 𝑢, 𝜃𝑝 (𝑥) ∈ 𝐴}) = 𝑢−1Φ𝑝 (𝐴)

for every 𝑢 > 0 and every Borel set 𝐴 ⊆ S𝑝 . More generally, for any non-negative Borel measurable
function 𝑓 on 𝐸 , we have ∫

𝐸

𝑓 d𝜇 =
∫
S𝑝

∫ ∞

0
𝑓 (𝑟𝜃) d𝑟

𝑟2 dΦ𝑝 (𝜃). (8)

The combination of the marginal standardization (5) with the change-of-variable formula in (8)
implies the identities

∀ 𝑗 = 1, . . . , 𝑑,
∫
S𝑝

𝜃 𝑗 dΦ𝑝 (𝜃) = 1. (9)

In fact, any non-negative Borel measure Φ𝑝 on S𝑝 satisfying the moment constraints (9) is the angular
measure of some random vector 𝑋 . Indeed, from such a measure Φ𝑝 on S𝑝 , we can define a measure 𝜇
on 𝐸 through (8) and then consider the max-stable distribution with 𝜇 as exponent measure as in [19].

2.3. Data standardization and ranks

The component-wise transformation of 𝑋 to a vector 𝑉 with unit-Pareto margins is formalized by the
map 𝑣 : R𝑑 → [1, ∞]𝑑 , with

∀𝑥 ∈ R𝑑 , 𝑣(𝑥) =
(

1
1 − 𝐹1 (𝑥1)

, . . . ,
1

1 − 𝐹𝑑 (𝑥𝑑)

)
, (10)

with the convention 1/0 =∞. In this notation, we have 𝑉 = 𝑣(𝑋).
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Let 𝑋1, . . . , 𝑋𝑛 be an independent random sample from the distribution 𝑃 of 𝑋 , with 𝑋𝑖 =

(𝑋𝑖1, . . . , 𝑋𝑖𝑑). Since 𝑃 is unknown in practice, it is replaced by its empirical version 𝑃𝑛 ( · ) =
𝑛−1 ∑𝑛

𝑖=1 1{𝑋𝑖 ∈ · }, where 1{E} denotes the indicator variable of the event E. In particular, the
marginal cumulative distribution functions 𝐹𝑗 are substituted with their empirical counterparts

𝐹𝑗 (𝑡) =
1
𝑛

𝑛∑︁
𝑖=1

1{𝑋𝑖 𝑗 6 𝑡}, for 𝑡 ∈ R and 1 6 𝑗 6 𝑑,

in order to mimic the aforementioned standardization.
The empirically standardized sample points are

𝑉𝑖 = �̂�(𝑋𝑖) =
(
�̂�1 (𝑋𝑖1), . . . , �̂�𝑑 (𝑋𝑖𝑑)

)
, 𝑖 = 1, . . . , 𝑛 (11)

where �̂�(𝑥) = (�̂�1 (𝑥1), . . . , �̂�𝑑 (𝑥𝑑)) for all 𝑥 ∈ R𝑑 and

�̂� 𝑗 (𝑥 𝑗 ) =
1

1 − 𝑛
𝑛+1𝐹𝑗 (𝑥 𝑗 )

, (12)

for 𝑗 = 1, . . . , 𝑑 and 𝑖 = 1, . . . , 𝑛. The factor 𝑛
𝑛+1 in (12) serves to avoid division by zero in case 𝑥 𝑗 >

max(𝑋1 𝑗 , . . . , 𝑋𝑛 𝑗 ).
We have �̂� 𝑗 (𝑋𝑖 𝑗 ) = 1/(1−𝑅𝑖 𝑗/(𝑛+1)), where 𝑅𝑖 𝑗 = 𝑛𝐹𝑗 (𝑋𝑖 𝑗 ) is the rank of 𝑋𝑖 𝑗 among 𝑋1 𝑗 , . . . , 𝑋𝑛 𝑗 .

Any statistic that is a function 𝑉1, . . . ,𝑉𝑛 depends on the data 𝑋1, . . . , 𝑋𝑛 only through the component-
wise ranks. This will be the case for the empirical angular measure.

2.4. The empirical angular measure

Let 𝛿𝑥 denote a point mass at 𝑥 and put

𝑃𝑛 =
1
𝑛

𝑛∑︁
𝑖=1

𝛿
𝑉𝑖
, (13)

the empirical distribution of the pseudo-observations 𝑉1, . . . ,𝑉𝑛 in (11). The random measure 𝑃𝑛 can
be legitimately considered as an estimator of the distribution of 𝑉 .

The definition (3) of the exponent measure 𝜇 involves a limit as 𝑡 → ∞. Setting 𝑡 = 𝑛/𝑘 for 𝑘 ∈
{1, . . . , 𝑛} such that both 𝑘 and 𝑛/𝑘 are large yields the empirical exponent measure

𝜇(𝐵) = 𝑛
𝑘
𝑃𝑛 ( 𝑛𝑘 𝐵) =

1
𝑘

𝑛∑︁
𝑖=1

1

{
𝑉𝑖 ∈ 𝑛

𝑘
𝐵

}
(14)

for Borel sets 𝐵 ⊆ 𝐸 . Consider a Borel set 𝐴 ⊆ S𝑝 and recall the angular measure Φ𝑝 and the cone C𝐴
in (7). In view of (14), the empirical angular measure [26] is defined as

Φ̂𝑝 (𝐴) = 𝜇(C𝐴) =
1
𝑘

𝑛∑︁
𝑖=1

1

{
𝑉𝑖 ∈ (𝑛/𝑘)C𝐴

}
=

1
𝑘

𝑛∑︁
𝑖=1

1

{
‖𝑉𝑖 ‖𝑝 > 𝑛/𝑘, 𝜃𝑝 (𝑉𝑖) ∈ 𝐴

}
. (15)

It is the empirical version of the pre-asymptotic angular measure

𝑡 P[𝑡−1𝑉 ∈ C𝐴]
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at level 𝑡 = 𝑛/𝑘 . In the bivariate case, the asymptotic distribution of the empirical angular measure
has been investigated in case the sequence 𝑘 = 𝑘 (𝑛) satisfies 𝑘 → ∞ and 𝑘/𝑛→ 0 as 𝑛→ ∞. The
max-norm was considered in [26], while the 𝐿𝑝-norm for 𝑝 ∈ [1,∞] was studied in [28] together with
empirical likelihood methods to exploit the moment constraints (9).

3. Concentration inequalities

Recall the empirical angular measure Φ̂𝑝 in (15). Our main result provides a concentration inequality
for the uniform deviations

sup
𝐴∈A

���Φ̂𝑝 (𝐴) −Φ𝑝 (𝐴)
��� . (16)

The supremum is taken over classes A of Borel sets 𝐴 of S𝑝 in (6) satisfying appropriate assump-
tions. To bound the supremum, the empirical measure is rewritten in terms of random sets which are
subsequently framed in between deterministic sets. We first explain the idea behind the framing ap-
proach (Section 3.1) before stating our main theorem on concentration bound for the empirical angular
measure (Section 3.2). We conclude with examples of collections A (Section 3.3).

3.1. Framing random sets

Since the estimators depend on the data only through the ranks, they are invariant under increasing
component-wise transformations. So although the marginal distributions 𝐹1, . . . , 𝐹𝑑 are unknown, we
can and will nevertheless assume that they are unit-Pareto already. In that case, we have 𝑣(𝑥) = 𝑥
for 𝑥 ∈ [1,∞]𝑑 in (10), so that 𝑉 = 𝑣(𝑋) = 𝑋 and 𝑉𝑖 = 𝑣(𝑋𝑖) = 𝑋𝑖 for 𝑖 = 1, . . . , 𝑛. In particular, the
distribution of 𝑉 = 𝑋 is 𝑃.

Recall 𝑃𝑛 in (13) and let 𝑃𝑛 = 𝑛−1 ∑𝑛
𝑖=1 𝛿𝑉𝑖 denote the empirical distribution of 𝑉1, . . . ,𝑉𝑛. Since

𝑉𝑖 = �̂�(𝑋𝑖) = �̂�(𝑉𝑖), we have 𝑃𝑛 = 𝑃𝑛 ◦ �̂�−1, that is, 𝑃𝑛 is the push-forward measure of 𝑃𝑛 by �̂�. Up
to a scaling factor, the value of the empirical angular measure Φ̂𝑝 in a Borel set 𝐴 of S𝑝 can thus be
expressed as 𝑃𝑛 evaluated in the random set

Γ̂𝐴 = �̂�
−1 ( 𝑛

𝑘
C𝐴) =

{
𝑥 ∈ 𝐸 : ‖�̂�(𝑥)‖𝑝 > 𝑛

𝑘
, 𝜃𝑝 (�̂�(𝑥)) ∈ 𝐴

}
, (17)

where, as before, 𝜃𝑝 (𝑦) = 𝑦/‖𝑦‖𝑝 for 𝑦 ∈ 𝐸 . Indeed, we have

Φ̂𝑝 (𝐴) = 𝑛
𝑘
𝑃𝑛 ( 𝑛𝑘 C𝐴) =

𝑛
𝑘
𝑃𝑛 (�̂�−1 ( 𝑛

𝑘
C𝐴)) = 𝑛

𝑘
𝑃𝑛 (Γ̂𝐴).

Let A be a class of Borel sets of S𝑝 . Following in the footsteps of [26] and [28], we construct for
any 𝐴 ∈ A two nested deterministic sets Γ−

𝐴
⊆ Γ+

𝐴
framing the cone C𝐴, i.e., such that Γ−

𝐴
⊆ C𝐴 ⊆ Γ+

𝐴
,

and such that on an event that occurs with high probability, we have

∀𝐴 ∈ A, 𝑛
𝑘
Γ−
𝐴 ⊆ Γ̂𝐴 ⊆ 𝑛

𝑘
Γ+
𝐴. (18)

On that event, the signed error can then be bounded from above by

Φ̂𝑝 (𝐴) −Φ𝑝 (𝐴) = 𝑛
𝑘
𝑃𝑛 (Γ̂𝐴) − 𝜇(C𝐴) 6 𝑛

𝑘
𝑃𝑛 ( 𝑛𝑘 Γ

+
𝐴) − 𝜇(Γ

−
𝐴)

6 𝑛
𝑘

��𝑃𝑛 ( 𝑛𝑘 Γ+
𝐴) − 𝑃(

𝑛
𝑘
Γ+
𝐴)

�� + �� 𝑛
𝑘
𝑃( 𝑛

𝑘
Γ+
𝐴) − 𝜇(Γ

+
𝐴)

�� + 𝜇(Γ+
𝐴 \ Γ

−
𝐴).
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A lower bound can be derived in a similar way, yielding, on the same event,���Φ̂𝑝 (𝐴) −Φ𝑝 (𝐴)
���6 max

𝐵∈{Γ+
𝐴
,Γ−

𝐴
}

�� 𝑛
𝑘
𝑃( 𝑛

𝑘
𝐵) − 𝜇(𝐵)

�� (bias term)

+ max
𝐵∈{Γ+

𝐴
,Γ−

𝐴
}
𝑛
𝑘

��𝑃𝑛 ( 𝑛𝑘 𝐵) − 𝑃( 𝑛𝑘 𝐵)�� (stochastic error)

+ 𝜇(Γ+
𝐴 \ Γ

−
𝐴) (framing gap).


(19)

Next we will introduce assumptions to enable the construction of the framing sets Γ−
𝐴

and Γ+
𝐴

together
with a high-probability event on which (18) holds. The task is then to control the three terms on the
right-hand side of (19) uniformly over 𝐴 ∈ A. The bias term will be left as such; controlling it is
an entirely different subject requiring higher-order multivariate regular variation [1,31]; however, see
Remark 3.3. Under appropriate complexity assumptions on the class A and the collection of framing
sets, the stochastic error term can be uniformly bounded by means of the concentration inequality for
tail empirical processes established in Theorem A.1. Finally, the framing gap can be controlled by
ensuring that the set Γ+

𝐴
\ Γ−

𝐴
is small.

3.2. Concentration bounds for the empirical angular measure

The main result of this paper, Theorem 3.1, is stated in this subsection. Let B = [−1,+1]𝑑 denote the
closed unit ball in R𝑑 with respect to the sup-norm ‖ · ‖∞. For sets 𝐴, 𝐵 ⊆ R𝑑 write 𝐴 + 𝐵 = {𝑎 + 𝑏 : 𝑎 ∈
𝐴, 𝑏 ∈ 𝐵}. For 𝜀 > 0 and 𝐴 ⊆ R𝑑 , we thus have 𝐴 + 𝜀B = {𝑥 ∈ R𝑑 : ∃𝑎 ∈ 𝐴, ‖𝑥 − 𝑎‖∞ 6 𝜀}.

Assumption 3.1 (Subsets of the sphere). The class A is a collection of non-empty Borel sets of S𝑝
with the following properties:

(i) There exists a countable collection A0 ⊆ A such that for every 𝐴 ∈ A there is a sequence
𝐴𝑛 ∈ A0 such that lim𝑛→∞ 1{𝑥 ∈ 𝐴𝑛} = 1{𝑥 ∈ 𝐴} for every 𝑥 ∈ S𝑝 .

(ii) There exists 𝜏 ∈ (0,1) such that

∀𝐴 ∈ A, 𝐴 ⊆ {𝑥 ∈ S𝑝 : min(𝑥) > 𝜏} =: S𝜏𝑝 . (20)

(iii) There is a constant 𝑐 > 0 such that for any 𝐴 ∈ A and 𝜀 > 0, there exist Borel subsets 𝐴+ (𝜀)
and 𝐴− (𝜀) of S𝑝 satisfying

Φ𝑝

(
𝐴+ (𝜀) \ 𝐴− (𝜀)

)
6 𝑐 𝜀 (21)

together with the inclusions(
𝐴− (𝜀) + 𝜀B

)
∩ S𝑝 ⊆ 𝐴 and (𝐴 + 𝜀B) ∩ S𝑝 ⊆ 𝐴+ (𝜀). (22)

Condition (i) amounts to the pointwise measurability of the indicators {1{· ∈ 𝐴} : 𝐴 ∈ A} [53, Ex-
ample 2.3.4] and ensures that for any 𝐴 ∈ A we can find 𝐴𝑛 ∈ A0 such that for any finite Borel measure
𝜈 on S𝑝 we have 𝜈(𝐴) = lim𝑛→∞ 𝜈(𝐴𝑛). The suprema over A in Eq. (16) are therefore equal to those
over A0 and are thus measurable. Condition (ii) stipulates that the elements of the class A are bounded
away from the 2𝑑 − 1 faces of the sphere. Though it may be considered as restrictive at first glance,
we point out that maximal deviations of the empirical angular measure over classes of Borel subsets of
a given face of the sphere correspond to maximal deviations of the empirical angular measure for the
corresponding components of 𝑋 . The crucial point in Condition (iii) is inequality (21), bounding the
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measure of the difference between the inner and outer 𝜀-hulls of 𝐴 ∈ A. The inequality is satisfied if it
holds with Φ𝑝 replaced by the (𝑑 − 1)-dimensional Lebesgue measure on S𝑝 and Φ𝑝 has a bounded
density on S𝑝 with respect to this measure.

In order to deal with the estimation error stemming from the use of the marginal empirical distribu-
tion functions in (12), we frame the cones C𝐴 in Eq. (7) between slightly smaller and larger sets built
from the inner and outer hulls. For 𝐴 ∈ A, 𝜎 ∈ {−,+} and 𝑟, ℎ > 0, define

Γ𝜎𝐴 (𝑟, ℎ) =
{
𝑥 ∈ [0,∞)𝑑 : ‖𝑥‖𝑝 > 1

𝑟
, 𝜃𝑝 (𝑥) ∈ 𝐴𝜎 (ℎ‖𝑥‖𝑝)

}
.

For all 𝐴 ∈ A and ℎ > 0, we have Γ−
𝐴
(𝑟, ℎ) ⊆ C𝐴 for 0 < 𝑟 6 1 and C𝐴 ⊆ Γ+

𝐴
(𝑟, ℎ) for 𝑟 > 1. The upper

confidence bound at level 1 − 𝛿 for the maximal deviation (1) stated in Theorem 3.1 below is derived
from the decomposition (19) with framing sets Γ+

𝐴
(𝑟+, ℎ) and Γ−

𝐴
(𝑟−, ℎ) for specific choices of 𝑟+, 𝑟−

and ℎ.
To control the stochastic error, we need a handle on the complexity of the collection of framing

sets. The Vapnik–Chervonenkis (VC) dimension of a collection F of subsets of some set X is the
supremum (possibly infinite) of the set of positive integers 𝑛 with the property that there exists a subset
{𝑥1, . . . , 𝑥𝑛} of X with cardinality 𝑛 such that all 2𝑛 subsets of {𝑥1, . . . , 𝑥𝑛} can be written in the
form {𝑥1, . . . , 𝑥𝑛} ∩ 𝐹 for some 𝐹 ∈ F . The VC-dimension is a central quantity in statistical learning
and empirical process theory as it lies at the basis of many concentration inequalities for empirical
distributions, see for instance [53] and [6].

Assumption 3.2. For any 𝑟, ℎ > 0, the collections {Γ−
𝐴
(𝑟, ℎ) : 𝐴 ∈ A} and {Γ+

𝐴
(𝑟, ℎ) : 𝐴 ∈ A} of sub-

sets of 𝐸 have finite VC-dimension.

In the framing sets Γ𝜎
𝐴
(𝑟, ℎ), the tolerance 𝜀 for the angle 𝜃𝑝 (𝑥) in the inner and outer hulls of a

set 𝐴 depends on the norm ‖𝑥‖𝑝 . Therefore, in Assumption 3.2 it is not sufficient to assume that the
collection A or even the collection of inner and outer hulls has finite VC-dimension. In Section 3.3
we provide a realistic example of an angular class A—namely a class defined by linear inequality
constraints—where Assumptions 3.1 and 3.2 are satisfied.

Theorem 3.1. Let 𝑋1, . . . , 𝑋𝑛 be an independent random sample from a distribution 𝑃 on R𝑑 with
continuous margins and let 𝑃𝑉 denote the distribution of 𝑉1 = 𝑣(𝑋1) where 𝑣 is defined in (10). Let 𝜇
be an exponent measure having angular measure Φ𝑝 with respect to ‖ · ‖𝑝 for some 𝑝 ∈ [1,∞]. Let A
be a collection of Borel sets of S𝑝 such that Assumptions 3.1 and 3.2 are fulfilled. Let 𝑛, 𝑘, 𝜌 be such that
𝜏𝑛 > 𝑘 > (3 ∨ 6𝑐) and 𝑘/𝑛 < 𝜌 < 𝜏, where the constant 𝑐 > 0 comes from point (iii) of Assumption 3.1.
Let 𝛿 ∈ (0,1). Put

Δ1 = Δ1 (𝑘, 𝛿, 𝜌) =
1√︁
𝑘𝜌

(
60 + 2

√︁
log((𝑑 + 1)/𝛿)

)
+ 2

3𝑘
log((𝑑 + 1)/𝛿).

For 𝜎 ∈ {−,+} and 𝐴 ∈ A, abbreviate Γ𝜎
𝐴
= Γ𝜎

𝐴
(𝑟𝜎 ,3Δ1) where 𝑟± = 1 ± Δ2 with Δ2 = 4(Δ1 + 1/𝑘).

Then, with probability at least 1 − 𝛿, the empirical angular measure satisfies

sup
𝐴∈A

���Φ̂𝑝 (𝐴) −Φ𝑝 (𝐴)
���6 sup

𝐴∈A, 𝜎∈{+,−}

�� 𝑛
𝑘
𝑃𝑉 ( 𝑛

𝑘
Γ𝜎𝐴 ) − 𝜇(Γ

𝜎
𝐴 )

��
+

√︄
𝑑1+1/𝑝 (1 + Δ2)

𝑘

(
60

√︁
𝑉F + 2

√︁
log((𝑑 + 1)/𝛿)

)
+

2 log
(
𝑑+1
𝛿

)
3𝑘

+ 2𝑑Δ2 + 3𝑐
(
log(𝑑/3𝑐) − log(Δ1) + 1

)
Δ1,

(23)
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provided 𝑘 is sufficiently large so that (2/𝑘) 6 Δ1 < (1/4− 1/𝑘) ∧ (1/(3𝑐)) and 𝜌/(1−Δ1𝜌) 6 𝜏 and
where 𝑉F is the VC-dimension of the collection{

Γ−
𝐴 : 𝐴 ∈ A

}
∪

{
Γ+
𝐴 : 𝐴 ∈ A

}
. (24)

The proof is given in Appendix C in the Supplement.
Note that 𝑟− 6 1 6 𝑟+, so that Γ−

𝐴
(𝑟−, ℎ) ⊆ C𝐴 ⊆ Γ+

𝐴
(𝑟+, ℎ) for all ℎ > 0. In the decomposition (19),

the framing gap is bounded by 2𝑑Δ2 + 3𝑐
(
log(𝑑/3𝑐) − log(Δ1) + 1

)
Δ1 while the estimation error is

bounded by √︄
𝑑1+1/𝑝 (1 + Δ2)

𝑘

(
60

√︁
𝑉F + 2

√︁
log((𝑑 + 1)/𝛿)

)
+ 2

3𝑘
log((𝑑 + 1)/𝛿)

with probability larger than 1 − 𝛿. This term is the one appearing in the concentration inequality for
empirical processes over collections of sets of extreme values proved in Theorem A.1 applied to the
collection {(𝑛/𝑘)Γ𝜎

𝐴
(𝑟𝜎 ,3Δ1) : 𝜎 ∈ {+,−}, 𝐴 ∈ A}. By Assumption 3.2, the collection in (24) has a

finite VC-dimension: For two collections F1 and F2 of subsets of a set X with finite VC-dimensions 𝑑1
and 𝑑2, respectively, the VC dimension of F1 ∪ F2 is bounded by 𝑑1 + 𝑑2 + 1 [45, Exercise 3.24].

Note that the bound is a decreasing function of the norm index 𝑝. It is related to the shape of the
associated sphere S𝑝 , which is easier to work with if more aligned with the axes. The faces of the unit
sphere induced by the supremum norm are parallel to the coordinate axes, a property that links up well
with the use of component-wise ranks, and has the advantage that its value is not affected by the precise
values of the smaller coordinates of 𝑥. Extensions to other 𝑝-norms can be performed through the use
of the equivalences of norms

∀𝑥 ∈ R𝑑 , ‖𝑥‖∞ 6 ‖𝑥‖𝑝 6 𝑑1/𝑝 ‖𝑥‖∞. (25)

For fixed 𝜌 and 𝛿, when ignoring the bias term, the bound on the right-hand side of (23) is of the
order

Δ1 log(1/Δ1) = O
(

log 𝑘
√
𝑘

)
, as 𝑘→∞. (26)

Even though Δ1 and Δ2 are of the optimal order O(1/
√
𝑘), the factor log 𝑘 shows up: its presence is

caused by the framing gap, the third line in both (19) and (23). Asymptotic theory for the empirical
angular measure in the bivariate case [26,28] suggests a learning rate of the order 1/

√
𝑘; whether our

logarithmic term is an artifact of our analysis or rather a genuine property of the estimator remains an
open problem.

Remark 3.1 (Other concentration inequalities). The constant 56 appearing in the error stems comes
from the use of chaining techniques as in [42, Theorems 1.16–17]. Relying instead on concentration
inequalities for rare events derived recently in [41], it is possible to reduce the constant at the price of
an additional logarithmic factor

√︁
log 𝑘 , which, for realistic values of 𝑘 , may well be smaller than the

constant involved in our bound. However, the bound would become more complicated and less accurate
from an asymptotic point of view.

The term Δ1 in Theorem 3.1 comes from the application of Theorem A.1 to the tails of the empirical
margins 𝐹𝑗 . As observed by an anonymous Referee, other concentration inequalities exist for such
one-dimensional tail empirical processes, see for instance Inequality 1 on page 446 in [51]. For finite
samples, some of these inequalities may be sharper than the one we used; nevertheless, the convergence
rate as a function of 𝑘 would not improve since chaining is already optimal in that respect.
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Remark 3.2 (Bias term and penultimate angular measure). As Theorem 3.1 is not concerned with
asymptotics, we did not actually have to assume that Φ𝑝 is the angular measure associated 𝑃𝑉 . The
link between 𝑃𝑉 and Φ𝑝 is quantified instead by the bias term sup𝐴,𝜎 | 𝑛

𝑘
𝑃𝑉 ( 𝑛

𝑘
Γ𝜎
𝐴
) − 𝜇(Γ𝜎

𝐴
) |. Even if

𝑃𝑉 has an angular measure of its own, it may be different from the one appearing in the theorem. This
flexibility allows for viewing the empirical angular measure as an estimator of a penultimate angular
measure, that is, the one for which the induced bias term is minimal.

Remark 3.3 (Controlling the bias term). For absolutely continuous models, a primitive condition
on the probability density function allows to control the bias term in Theorem 3.1. Let 𝑃𝑈 denote the
distribution of 𝑈 = (1 − 𝐹1 (𝑋1), . . . ,1 − 𝐹𝑑 (𝑋𝑑)) = 𝜄(𝑉) on [0,1]𝑑 where 𝜄 : (0,∞)𝑑 → (0,∞)𝑑 is
defined by 𝜄(𝑥) = (𝑥−1

1 , . . . , 𝑥−1
𝑑
). Assume that 𝑃𝑈 is absolutely continuous with density 𝑝𝑈 and that

the measure Λ = 𝜇 ◦ 𝜄−1 (the push-forward of 𝜇 by 𝜄) is absolutely continuous with Lebesgue density 𝜆
on (0,∞)𝑑 . Then

sup
𝐴∈A,𝜎∈{+,−}

�� 𝑛
𝑘
𝑃𝑉 ( 𝑛

𝑘
Γ𝜎𝐴 ) − 𝜇(Γ

𝜎
𝐴 )

��6 ∫
(0,∞)𝑑

1

{
min(𝑦) 6 𝑑1/𝑝𝑟+

} ����( 𝑘𝑛 )𝑑−1
𝑝𝑈 ( 𝑘

𝑛
𝑦) − 𝜆(𝑦)

���� d𝑦.

(27)
By way of example, consider the multivariate Cauchy density restricted to (0,∞)𝑑 with probability
density function

𝑓 (𝑥) = 2𝑑Γ( 𝑑+1
2 )𝜋−(𝑑+1)/2

(
1 + 𝑥2

1 + · · · + 𝑥2
𝑑

)−(𝑑+1)/2
, 𝑥 ∈ (0,∞)𝑑 ,

with limit density

𝜆(𝑥) = 2𝑑−1Γ( 𝑑+1
2 )𝜋−(𝑑−1)/2𝑥−2

1 · · · 𝑥−2
𝑑

(
𝑥−2

1 + · · · + 𝑥−2
𝑑

)−(1+𝑑)/2
, 𝑥 ∈ (0,∞)𝑑 .

In this case, the bound (27) is of the order O(𝑘/𝑛) as 𝑘 = 𝑘𝑛→∞ in such a way that 𝑘/𝑛→ 0. Detailed
calculations are given in Appendix D in the Supplement.

3.3. Examples of collections of subsets of the sphere

This sections aims at providing examples of classes A related to a wide range of statistical machine
learning algorithms (such as logistic regression, classification and regression trees or linear discrimi-
nant analysis) for which Assumptions 3.1 and 3.2 are satisfied. Proofs are deferred to Appendix E in
the Supplement.

Recall S𝜏𝑝 in (20). The scalar product and the Euclidean norm on R𝑑 are denoted by 〈𝑥, 𝑦〉 and
‖𝑥‖2 =

√︁
〈𝑥, 𝑥〉, respectively.

Example 3.1 (Linear restrictions). Fix 𝜏 ∈ (0,1) and consider the collection

A =
{
𝐴𝑎,𝛽,𝜏 : (𝑎, 𝛽) ∈ R𝑑 ×R, ‖𝑎‖2 = 1

}
of Borel subsets of S𝜏𝑝 defined via

𝐴𝑎,𝛽 = {𝑥 ∈ S𝑝 : 〈𝑎, 𝑥〉 6 𝛽}, 𝐴𝑎,𝛽,𝜏 = 𝐴𝑎,𝛽 ∩ S𝜏𝑝 .

Then A satisfies Assumption 3.2, and, if Φ𝑝 has a bounded Lebesgue density on S𝑝 , also Assump-
tion 3.1.
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Example 3.2 (Stability under intersections and unions). Let A1 and A2 be two collections of Borel
subsets of S𝑝 that satisfy Assumptions 3.1 and 3.2. Then the same is true for the collection of intersec-
tions

A1 uA2 = {𝐴1 ∩ 𝐴2 : 𝐴1 ∈ A1, 𝐴2 ∈ A2}

and for the collection of unions

A1 tA2 = {𝐴1 ∪ 𝐴2 : 𝐴1 ∈ A1, 𝐴2 ∈ A2} .

In combination with Example 3.1, this property covers classifiers built from decision trees with a given
depth. The leaves of such a tree correspond to unions of rectangles, the maximum number of rectangles
in the union being determined by the tree depth.

4. Applications to statistical learning

We illustrate how a concentration inequality such as the one in Theorem 3.1 is useful to establish sound
non-asymptotic guarantees for the validity of certain statistical learning procedures relying on the em-
pirical angular measure and recently introduced in the literature. In Section 4.1, after introducing some
minimal background about anomaly detection in extreme regions via minimum-volume set estimation,
we show how our main results bring immediate guarantees on this matter. In Section 4.2, we recall
the whys and wherefores of classification in extreme regions and leverage the techniques developed in
Section 3 to control the excess risk of a specific empirical risk minimizer targeting the tail region of
the covariate space.

4.1. Minimum-volume set estimation

To illustrate the usefulness of bounds on the supremum in (1), consider the problem of estimating a
minimum-volume set [22], such sets extending the notion of univariate quantiles. A minimum-volume
set at level 𝛼 is a subset of the sample space of minimum (Lebesgue) volume, constrained to contain
a probability mass of at least 𝛼. There are fruitful connections between minimum-volume sets and
semi-supervised anomaly detection, where data are available from the majority class only and the
goal is to construct a decision function delimitating the extent of the normal region. In a Neyman–
Pearson framework, an optimal anomaly detection procedure at a certain level 0 < 1 − 𝛼 � 1 would
declare abnormal any new point such that no minimum-volume set of level 𝛼 contains it [3]. In the
context of anomaly detection, the tail of the random vector under scrutiny is of particular interest
because many anomalies correspond to unusually large values of at least one component. However,
it may not be appropriate to declare as abnormal all such points and a finer analysis of the tails can
improve the overall performance of an anomaly detection algorithm. For instance, consider a complex
infrastructure monitored by several physical variables. Raising an alert at each extreme value of one
of its physical variables can lead to high false alarm rates. A way to reduce this false alarm rate is to
study the multivariate distribution of the set of observations such that at least one of their variables is
large. This framework can be useful in a wide variety of applications (e.g., fraud detection, safety in
aeronautics), where the control of the false alarm rate is crucial (given the cost of safety inspections),
thus making the detection of anomalies among extremes undeniably relevant.

In this section, we follow in the footsteps of [52] who consider the problem of constructing sets
of relatively high probability in regions of the kind {𝑥 ∈ R𝑑 : ‖𝑥‖ > 𝑡} for large values of 𝑡, under
regular variation assumptions. Their statistical analysis is limited to the ideal case where the marginal
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distributions are known. We extend their guarantees in order to encompass the influence of the rank
transformation.

In the context of the angular measure for multivariate upper extremes, the question is to find a Borel
set Ω of the unit sphere S𝑝 in [0,∞)𝑑 with minimal volume 𝜆(Ω)—with 𝜆 some reference measure such
as the (𝑑 − 1)-dimensional Hausdorff measure—but still having content Φ𝑝 (Ω) not smaller than some
pre-specified lower limit 𝛼 ∈ (0,Φ𝑝 (S𝑝)). In [52], such a set is used for the purpose of (unsupervised)
anomaly detection in extreme regions. As Ω is supposed to contain a large fraction Φ𝑝 (Ω)/Φ𝑝 (S𝑝)
of the possible directions of extreme points, a new such point is deemed to be a potential anomaly if it
lies in a direction outside Ω. The fact that Ω has minimal volume 𝜆(Ω) means that the critical region
S𝑝 \Ω to detect suspicious points is as large as possible.

As Φ𝑝 is unknown, Ω needs to be learned from a training sample. Although Ω may be character-
ized as a certain super-level set of the density of Φ𝑝 with respect to the reference measure 𝜆, a more
practical approach than estimating this density, especially in high dimensions, is to limit the search to
an algorithmically manageable collection A of Borel subsets of S𝑝 . Let Φ̂𝑝 be any estimator of Φ𝑝 ,
not necessarily the empirical angular measure. Following the logic in [50], let �̂� solve the empirical
angular minimum-volume set problem

min
{
𝜆(𝐴) : 𝐴 ∈ A, Φ̂𝑝 (𝐴) > 𝛼 − 𝜓

}
where 𝜓 ∈ (0, 𝛼) is a tolerance parameter. The price to pay for having to estimate the angular measure
is that the minimal required content 𝛼 has been relaxed to 𝛼 − 𝜓.

Bounds on the largest estimation error of Φ̂𝑝 over A are helpful to provide probabilistic guarantees
for �̂�. Suppose that, on some event E, we have

sup
𝐴∈A

��Φ̂𝑝 (𝐴) −Φ𝑝 (𝐴)
��6 𝜓. (28)

Then, on the same event E, we obviously have

Φ𝑝 ( �̂�) > Φ̂𝑝 ( �̂�) − 𝜓 > 𝛼 − 2𝜓 (29)

as well as

𝜆( �̂�) 6 inf
{
𝜆(𝐴) : 𝐴 ∈ A, Φ𝑝 (𝐴) > 𝛼

}
. (30)

Indeed, on E, the collection {𝐴 ∈ A : Φ𝑝 (𝐴) > 𝛼} is contained in {𝐴 ∈ A : Φ̂𝑝 (𝐴) > 𝛼 − 𝜓} so that
the infimum of 𝜆(𝐴) for 𝐴 in the latter collection must be the smaller one. By (29), the empirical
solution �̂� is guaranteed to have at least content 𝛼 − 2𝜓 under Φ𝑝 , while according to (30), the volume
of �̂� is smaller than the one of the actual minimum-volume set under Φ𝑝 .

Concentration inequalities for the supremum of |Φ̂𝑝 (𝐴) −Φ𝑝 (𝐴) | over 𝐴 ∈ A provide the existence,
for a given 𝛿 > 0, of a scalar 𝜓 ≡ 𝜓(𝛿) such that (28) holds on an event with probability at least 1 − 𝛿.
It follows that, with high probability, the empirical minimum-volume set �̂� satisfies (29) and (30).
Provided 𝜓 and 𝛿 are both small, the combination of both properties justifies the use of �̂� as an approx-
imation to the true but unknown minimum-volume set under Φ𝑝 . For the empirical angular measure, a
valid choice for the tolerance parameter 𝜓(𝛿) is given by the upper bound in Theorem 3.1.

4.2. Classification in extreme regions

We apply Theorem 3.1 to binary classification in extreme regions. Classification is arguably one of
the most studied problems in the statistical learning literature. Most existing guarantees are formulated
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in terms of a risk which is an integrated version of the loss function over the whole covariate space.
However, the local performance of a global classifier is not necessarily guaranteed in low probability
regions of the covariate space, typically in regions corresponding to an exceedance by one component
of a high quantile—where few training points are available—or outside the convex envelope of the
training set. In other words, the risk of an error conditional to the norm of the input being large is not
adequately controlled in the classical setting. Nevertheless, in a wide variety of applications, ranging
from finance/insurance to environmental sciences through teletraffic data analysis for instance, extreme
observations of the covariates are of crucial importance.

In this section, we adopt the framework originally proposed in [37], who formalize this argument and
propose a risk minimization strategy aiming at improving performance of classification algorithms on
such regions. In [37], the marginal distributions of the predictor variables were assumed to be known,
so that a standardized vector with exact unit-Pareto margins is observable. Here, we rather assume that
the margins are unknown and employ a rank-based standardization instead.

First we recall the set-up of [37]. Consider a random pair (𝑉,𝑌 ) where 𝑌 in {−1,1} is the label to
be predicted and 𝑉 in [0,∞)𝑑 is the vector of predictors (features). The goal is to learn a classifier
𝑔 : [0,∞)𝑑 → {−1,1} such that the classification risk for feature vectors 𝑉 far away from the origin is
small. Let 𝜚 = P[𝑌 = 1] and assume 0 < 𝜚 < 1.

The starting point in [37] is to assume a conditional version of the regular variation condition (3):
there exist non-zero Borel measures 𝜇+ and 𝜇− on 𝐸 = [0,∞)𝑑 \ {0} that are finite on Borel sets
bounded away from the origin and such that

lim
𝑡→∞

𝑡 P[𝑡−1𝑉 ∈ 𝐵 | 𝑌 = 𝜎 1] = 𝜇𝜎 (𝐵) (31)

for 𝜎 ∈ {−,+} and Borel sets 𝐵 ⊆ 𝐸 bounded away from the origin satisfying 𝜇𝜎 (𝜕𝐵) = 0. The angular
measure associated to the 𝐿𝑝-norm of 𝜇𝜎 is

Φ𝜎𝑝 (𝐴) = 𝜇𝜎 (C𝐴), for 𝜎 ∈ {−,+} and Borel sets 𝐴 ⊆ S𝑝 ,

with C𝐴 as in (7). By (31), the unconditional distribution of 𝑉 is regularly varying as in (3) with limit
measure 𝜇 = 𝜚𝜇+ + (1 − 𝜚)𝜇− and angular measure Φ𝑝 = 𝜚Φ

+
𝑝 + (1 − 𝜚)Φ−

𝑝 .
In [37] it was assumed that an independent random sample {(𝑉𝑖 ,𝑌𝑖)}𝑛𝑖=1 from the distribution of

(𝑉,𝑌 ) is given. Here, instead, the set-up is that we observe an independent random sample {(𝑋𝑖 ,𝑌𝑖)}𝑛𝑖=1
from the distribution of (𝑋,𝑌 ) and that (31) holds with𝑉 = 𝑣(𝑋), where 𝑣 is defined via the probability
integral transform in (10). This means that the classifier will have to be learned from the pairs (𝑉𝑖 ,𝑌𝑖)
where 𝑉𝑖 = �̂�(𝑋𝑖) in (11) is based on the rank transform.

We emphasize that the marginal distribution functions 𝐹𝑗 in the definition of 𝑣 are not conditioned
upon 𝑌 . Indeed, for a new observation, marginal standardization will have to be carried out without the
knowledge of the label to be predicted.

In [37] the focus is on the conditional classification risk above level 𝑡 > 0 of a classifier 𝑔 : [0,∞)𝑑 \
{0} → {−1,1} defined on the standardized input 𝑉 :

𝐿cond
𝑡 (𝑔) = P[𝑌 ≠ 𝑔(𝑉) | ‖𝑉 ‖𝑝 > 𝑡], (32)

Let G be a pre-defined family of classifiers 𝑔 and let 𝐿cond∗
𝑡 = inf𝑔∈G 𝐿cond

𝑡 (𝑔) be the smallest condi-
tional classification risk for classifiers in G. The purpose is to learn from the training sample a classifier
�̂� ∈ G such that for large 𝑡 the excess risk 𝐿cond

𝑡 (�̂�) − 𝐿cond∗
𝑡 is small.

In [37] it is argued that, asymptotically, attention can be restricted to angular classifiers 𝑔, that
is, for which 𝑔(𝑥) = 𝑔(𝜃𝑝 (𝑥)) with 𝜃𝑝 (𝑥) = 𝑥/‖𝑥‖𝑝 for 𝑥 ∈ 𝐸 . Their analysis involves a random pair
(𝑉∞,𝑌∞) whose distribution is the weak limit as 𝑡→∞ of (𝑡−1𝑉,𝑌 ) conditionally on ‖𝑉 ‖𝑝 > 𝑡, a limit
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which exists thanks to (31). Let 𝜂(𝑥) = P[𝑌 = 1 | 𝑉 = 𝑥] denote the regression function of (𝑉,𝑌 ) and let
𝜂∞ (𝑥) = P[𝑌∞ = 1 | 𝑉∞ = 𝑥] be the one of (𝑉∞,𝑌∞). The respective Bayes classifiers are

𝑔∗ (𝑥) = 1{𝜂(𝑥) > 1/2},

𝑔∗∞ (𝑥) = 1{𝜂∞ (𝑥) > 1/2}.
(33)

Note that 𝑔∗ minimizes the conditional risk 𝐿cond
𝑡 for any 𝑡 > 0. Assume that when ‖𝑥‖𝑝 is large, 𝜂(𝑥)

and 𝜂∞ (𝑥) are uniformly close:

sup
𝑥∈[0,∞)𝑑 :‖𝑥 ‖𝑝>𝑡

|𝜂(𝑥) − 𝜂∞ (𝑥) | → 0 as 𝑡→∞. (34)

Then by Theorem 1 in [37], (i) the asymptotic Bayes classifier 𝑔∗∞ is angular, and (ii) the latter’s ex-
cess conditional risk over the actual Bayes classifier 𝑔∗ vanishes in the limit, that is, 𝐿cond

𝑡 (𝑔∗∞) −
𝐿cond
𝑡 (𝑔∗) → 0 as 𝑡→∞.
These properties motivate restricting the search to a class G of candidate classifiers 𝑔 depending on

the angle only. Theorem 2 in [37] provides a concentration inequality for the excess risk of the empirical
risk minimizer �̂�𝑘 ∈ G learned from a sample {(𝑉𝑖 ,𝑌𝑖)}𝑛𝑖=1, using only those points for which ‖𝑉𝑖 ‖𝑝
belongs to a top fraction among those observed. Here, we intend to do the same but for the rank-based
transformed feature vectors 𝑉𝑖 = �̂�(𝑋𝑖) in (11).

Classification risk and angular measure. For 𝑔 in a class of angular classifiers G, recall the con-
ditional classification risk 𝐿cond

𝑡 (𝑔) above level 𝑡 in (32) and define its unconditional version by

𝐿𝑡 (𝑔) = 𝑡 P[‖𝑉 ‖𝑝 > 𝑡]𝐿cond
𝑡 (𝑔) = 𝑡 P[𝑔(𝑉) ≠𝑌, ‖𝑉 ‖𝑝 > 𝑡] . (35)

The multiplicative factor 𝑡 P[‖𝑉 ‖𝑝 > 𝑡] converges to Φ𝑝 (S𝑝) and does not change the minimizer in
the class G. Working with the unconditional version 𝐿𝑡 (𝑔) rather than with 𝐿cond

𝑡 (𝑔) simplifies the
analysis that follows.

In view of Assumption 3.1 required in Section 3, we exclude from our empirical risk minimization
(ERM) strategy those feature vectors whose angle (after standardization) is too close to the boundary
of the unit sphere. Let 𝜏 ∈ (0,1) and recall S𝜏𝑝 in (20). We have

𝐿𝑡 (𝑔) = 𝐿>𝜏𝑡 (𝑔) + 𝐿6𝜏𝑡 (𝑔) (36)

with

𝐿>𝜏𝑡 (𝑔) = 𝑡 P[𝑔(𝑉) ≠𝑌, 𝜃𝑝 (𝑉) ∈ S𝜏𝑝 , ‖𝑉 ‖𝑝 > 𝑡],

𝐿
6𝜏
𝑡 (𝑔) = 𝑡 P[𝑔(𝑉) ≠𝑌, 𝜃𝑝 (𝑉) ∉ S𝜏𝑝 , ‖𝑉 ‖𝑝 > 𝑡] .

The regions of the sphere S𝑝 labeled +1 and −1 by 𝑔 ∈ G are denoted by

S𝜎𝑝 (𝑔) = {𝑥 ∈ S𝑝 : 𝑔(𝑥) = 𝜎1}, for 𝜎 ∈ {−,+}.

We work hereafter under the following smoothness assumption. Let 𝜕𝐴 denote the boundary of set 𝐴.

Assumption 4.1 (Smoothness). The scalar 𝜏 ∈ (0,1) is such that Φ𝑝 (𝜕S𝜏𝑝) = 0 and the class G is such
that Φ𝑝 (𝜕S+𝑝 (𝑔)) = Φ𝑝 (𝜕S−𝑝 (𝑔)) = 0 for all 𝑔 ∈ G.
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Lemma 4.1. If the conditional regular variation property (31) and Assumption 4.1 hold, then for any
angular classifier 𝑔 ∈ G,

lim
𝑡→∞

𝐿>𝜏𝑡 (𝑔) = 𝐿>𝜏∞ (𝑔) := 𝜚Φ+
𝑝 (S−𝑝 (𝑔) ∩ S𝜏𝑝) + (1 − 𝜚)Φ−

𝑝 (S+𝑝 (𝑔) ∩ S𝜏𝑝),

lim
𝑡→∞

𝐿
6𝜏
𝑡 (𝑔) = 𝐿6𝜏∞ (𝑔) := 𝜚Φ+

𝑝 (S−𝑝 (𝑔) \ S𝜏𝑝) + (1 − 𝜚)Φ−
𝑝 (S+𝑝 (𝑔) \ S𝜏𝑝),

and thus

lim
𝑡→∞

𝐿𝑡 (𝑔) = 𝐿∞ (𝑔) := 𝜚Φ+
𝑝 (S−𝑝 (𝑔)) + (1 − 𝜚)Φ−

𝑝 (S+𝑝 (𝑔)).

The proof is deferred to Appendix F. The idea of the decomposition (36) is to discard points with
angle outside S𝜏𝑝 . If Φ𝑝 is concentrated on the interior of S𝑝 , the corresponding loss term 𝐿

6𝜏
𝑡 (𝑔) can

be expected to be small for 𝜏 close zero, since

sup
𝑔∈G

𝐿
6𝜏
𝑡 (𝑔) 6 𝑡 P[𝜃𝑝 (𝑉) ∉ S𝜏𝑝 , ‖𝑉 ‖𝑝 > 𝑡] →Φ𝑝 (S𝑝 \ S𝜏𝑝), as 𝑡→∞.

ERM classifier and decomposition of the excess risk. Given 0 < 𝜏 < 1 and integers 1 < 𝑘 6 𝑛,
define the empirical risk of a classifier 𝑔 ∈ G by

�̂�𝜏 (𝑔) = 1
𝑘

𝑛∑︁
𝑖=1

1

{
𝑔(𝑉𝑖) ≠𝑌𝑖 , 𝜃𝑝 (𝑉𝑖) ∈ S𝜏𝑝 , ‖𝑉𝑖 ‖𝑝 > 𝑛/𝑘

}
. (37)

Assuming a minimizer exists, the ERM classifier is defined as

�̂�𝜏𝑘 ∈ arg min
𝑔∈G

�̂�𝜏 (𝑔).

Otherwise, introduce a tolerance parameter and consider an approximate minimizer instead, i.e., an
argument where the value of the objective function is close to the infimum.

Recall 𝐿∞ in Lemma 4.1. A consequence of Theorem 1 in [37] is that if (34) holds, the Bayes
classifier 𝑔∗∞ in (33) minimizes 𝐿∞ over all measurable classifiers. One way to measure the performance
of the ERM classifier �̂�𝜏

𝑘
is via the asymptotic excess risk

𝐿∞ (�̂�𝜏𝑘 ) − inf
𝑔∈G

𝐿∞ (𝑔).

The latter can be bounded in terms of the supremum deviation of the empirical and asymptotic risks
over G: since �̂�𝜏 (�̂�𝜏

𝑘
) is equal to the infimum of �̂�𝜏 (𝑔) over 𝑔 ∈ G, we have

𝐿∞ (�̂�𝜏𝑘 ) − inf
𝑔∈G

𝐿∞ (𝑔) 6 2 sup
𝑔∈G

����̂�𝜏 (𝑔) − 𝐿∞ (𝑔)
��� . (38)

Our main purpose is therefore to obtain a concentration inequality for the supremum on the right-hand
side of this inequality.

In our context, the supremum deviation itself decomposes further, since for all 𝑔 ∈ G, we have
𝐿
6𝜏
∞ (𝑔) 6Φ𝑝 (S𝑝 \ S𝜏𝑝) and thus

sup
𝑔∈G

����̂�𝜏 (𝑔) − 𝐿∞ (𝑔)
���6 sup

𝑔∈G

����̂�𝜏 (𝑔) − 𝐿>𝜏∞ (𝑔)
��� +Φ𝑝 (S𝑝 \ S𝜏𝑝). (39)
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The term Φ𝑝 (S𝑝 \ S𝜏𝑝) may be viewed as an additional bias term which vanishes as 𝜏→ 0 provided
Φ𝑝 is concentrated on the interior of S𝑝 . On the other hand, the upper bounds in Theorem 3.1 and The-
orem 4.1 grow roughly as 1/

√
𝜏 as 𝜏→ 0. The choice of 𝜏 thus constitutes an additional bias-variance

compromise.
Lemma F.1 in Appendix F parallels Lemma 4.1 by relating the empirical risk �̂�𝜏 (𝑔) to the empirical

angular measures of the positive and negative instances,

Φ̂𝜎𝑝 (𝐴) =
1
𝑘𝜎

𝑛∑︁
𝑖=1

1 {𝑌𝑖 = 𝜎1} · 1
{
𝜃𝑝 (𝑉𝑖) ∈ 𝐴, ‖𝑉𝑖 ‖𝑝 > 𝑛/𝑘

}
, 𝐴 ⊆ S𝑝 , 𝜎 ∈ {−,+}, (40)

where 𝑘𝜎 = 𝑘𝑛𝜎/𝑛 and 𝑛𝜎 =
∑𝑛
𝑖=1 1{𝑌𝑖 = 𝜎1} is the number of points such that 𝑌𝑖 = 𝜎1.

In view of the error decomposition (38)–(39), we state our main result in terms of the maximum
deviation sup𝑔∈G | �̂�𝜏 (𝑔) − 𝐿>𝜏∞ (𝑔) |, following the techniques from Section 3.

Theorem 4.1 (Deviations of the empirical tail risk). Let G be a class of angular classifiers. Consider
the collection A = {S+𝑝 (𝑔) ∩ S𝜏𝑝 : 𝑔 ∈ G} ∪ {S−𝑝 (𝑔) ∩ S𝜏𝑝 : 𝑔 ∈ G}. If Assumptions 3.1 and 3.2 relative
to the class A and the unconditional angular measure Φ𝑝 are satisfied and if the conditional regular
variation assumption (31) and Assumption 4.1 hold, then, with probability at least 1 − 𝛿,

sup
𝑔∈G

| �̂�𝜏 (𝑔) − 𝐿>𝜏∞ (𝑔) | 6 2(error+bias II+gap)

where error and gap are nearly the same as in Theorem 3.1 (𝛿 has been halved in the error term), that
is,

error =

√︄
𝑑1+1/𝑝 (1 + Δ2)

𝑘

(
60

√︁
𝑉F + 2

√︁
log(2(𝑑 + 1)/𝛿)

)
+ 2

3𝑘
log(2(𝑑 + 1)/𝛿),

gap = 2𝑑Δ2 + 3𝑐
(
log(𝑑/3𝑐) − log(Δ1) + 1

)
Δ1,

with Δ1,Δ2 and 𝑉F as defined in Theorem 3.1, and

bias II = sup
{�� 𝑛
𝑘
P[𝑉 ∈ 𝑛

𝑘
𝐵,𝑌 = 𝜎1] − P[𝑌 = 𝜎1]𝜇𝜎 (𝐵)

�� :

𝐵 = Γ+
𝐴 or 𝐵 = Γ−

𝐴 for some 𝐴 ∈ A and 𝜎 ∈ {−,+}
}
.

The proof relies on the relationships between the (empirical) classification risks and the (empirical)
angular measure pointed out in Lemmata 4.1 and F.1, which imply that

| �̂�𝜏 (𝑔) − 𝐿>𝜏∞ (𝑔) | 6
���𝑛+
𝑛
Φ̂+
𝑝 (S−𝑝 (𝑔) ∩ S𝜏𝑝) − 𝜚Φ+

𝑝 (S−𝑝 (𝑔) ∩ S𝜏𝑝)
���

+
���𝑛−
𝑛
Φ̂−
𝑝 (S+𝑝 (𝑔) ∩ S𝜏𝑝) − (1 − 𝜚)Φ−

𝑝 (S+𝑝 (𝑔) ∩ S𝜏𝑝)
���

for 𝑔 ∈ G. The right-hand side of the latter display is then bounded uniformly in 𝑔 ∈ G by adapting the
proof of Theorem 3.1; see Appendix F in the Supplement for details.



18

5. Simulation experiments

Our experiments aim at illustrating the influence of the threshold 𝜏 introduced in Equation (20) on
the supremum error sup𝐴∈A𝑝

|Φ̂𝑝 (𝐴) −Φ𝑝 (𝐴) |. For a simple class of sets A𝑝 , we will demonstrate
empirically that the supremum error increases as 𝜏 decreases. This finding suggests that this additional
parameter is not a mere artifact from our proof.

We report the results of Monte Carlo experiments on simulated data. The setting is such that Φ𝑝 (𝐴)
can be approximated with arbitrary precision by Monte Carlo sampling, the standardization 𝑣 to unit-
Pareto margins can be computed analytically, and the bias term in the upper bounds of Theorems 3.1 is
zero. The estimation error then only stems from the stochastic error and framing gap in (19) leading to
the terms on the second and third lines in (23).

The experiments were implemented in Python 3 using the packages numpy, scipy, matplotlib, and
scikit-learn. The computer code to reproduce the experiments is publicly available online. 1

Experimental setting. We consider angular measures with respect to the 𝐿𝑝-norm for 𝑝 ∈ {1,2,∞}
and we limit ourselves to dimensions 𝑑 ∈ {2, . . . ,5}, higher dimensions requiring much more compu-
tational effort to evaluate the supremum error on the class of sets described below.

The different classes A𝑝 for different values of 𝑝 are all obtained by projection of a single class A
defined on the 𝐿∞-sphere. Namely, let 𝜃𝑝 (𝑥) = ‖𝑥‖−1

𝑝 𝑥 for 𝑥 ∈ R𝑑 \ {0}. Recall S𝜏𝑝 = S𝑝 ∩ (𝜏,∞)𝑑 . Fix
0 < 𝜏 < 1. For a class A of sets on S𝜏∞, we define A𝑝 = {𝜃𝑝 (𝐴) ∩ S𝜏𝑝 : 𝐴 ∈ A} for 𝑝 ∈ [1,∞]. We
choose the class A on S𝜏∞ as the finite collection of hyper-rectangles forming a regular grid on S𝜏∞ with
side length ℎ = (1 − 𝜏)/𝑆 with 𝑆 = 10. Each set 𝐴 ∈ A is of the form 𝐴 = 𝐴1 × · · · × 𝐴𝑑 , where, for
some 𝑗0 ∈ {1, . . . , 𝑑} and some integer vector (𝑖 𝑗 ) 𝑗∈{1,...,𝑑 }≠ 𝑗0 ∈ {0,1, . . . , 𝑆 − 1}𝑑−1, we have

𝐴 𝑗 =

{
{1} if 𝑗 = 𝑗0,

(𝜏 + 𝑖 𝑗ℎ, 𝜏 + (𝑖 𝑗 + 1)ℎ) if 𝑗 ≠ 𝑗0.

We consider an independent random sample 𝑋1, . . . , 𝑋𝑛 drawn from the distribution of a random
vector 𝑋 = 𝑅Θ where 𝑅 and Θ are independent, the random variable 𝑅 follows a unit-Pareto distribution
on [1,∞) and Θ follows a symmetric Dirichlet distribution on the unit simplex S1 = {𝑥 ∈ [0,1]𝑑 :
𝑥1 + · · · + 𝑥𝑑 = 1} with parameter (𝜈, . . . , 𝜈) for some concentration parameter 𝜈 > 0. The larger 𝜈, the
stronger Θ is concentrated around the barycenter (1/𝑑, . . . ,1/𝑑). As detailed in Lemma G.1 in the
Supplement, the angular measure Φ𝑝 for 𝑝 ∈ [1,∞] is Φ𝑝 (𝐴) = 𝑑 P[𝑋 ∈ C𝐴] for Borel sets 𝐴 ⊆ S𝑝 . If
𝑝 = 1, then this simplifies to Φ1 (𝐴) = 𝑑 P[Θ ∈ 𝐴].

In this setting, all statistics involved in our analysis are easily computable. The following facts are an
immediate consequence of Lemma G.1 in the Supplement. Let 𝐴 ⊆ S𝜏𝑝 be a Borel set with 𝜏 ∈ (0,1)
and recall S𝜏𝑝 in (20).

• The true Φ𝑝 (𝐴) may be approached with arbitrary precision by the Monte Carlo estimator

Φ𝑝,MC (𝐴) =
𝑑

𝑁

𝑁∑︁
𝑖=1

1
{
𝑋 ′
𝑖 ∈ C𝐴

}
=
𝑑

𝑁

𝑁∑︁
𝑖=1

1
{
Θ′
𝑖/‖Θ′

𝑖 ‖𝑝 ∈ 𝐴, 𝑅′
𝑖 ‖Θ′

𝑖 ‖𝑝 > 1
}
, (41)

where 𝑋 ′
𝑖
= (𝑅′

𝑖
,Θ′
𝑖
) for 𝑖 ∈ {1, . . . , 𝑁} is another independent random sample from the distribution

of (𝑅,Θ). The Monte Carlo estimator is unbiased and has variance bounded by 𝑑2/(4𝑁).
• We have Φ𝑝 (𝐴) = 𝑛

𝑘
P[𝑉 ∈ 𝑛

𝑘
C𝐴] as soon as 𝑛/𝑘 > 𝑑/𝜏, so that the bias term in Theorem 3.1 is

null under the latter condition.

1https://github.com/Hamid-Jalalzai/

https://github.com/Hamid-Jalalzai/
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(d) 𝑑 = 5

Figure 1: Average errors sup𝐴∈A |Φ̂𝑝 (𝐴) − Φ𝑝 (𝐴) | with 𝑝 ∈ {1,2,∞}, in dimension 𝑑 = 2 (top left
panel), 𝑑 = 3 (top right panel), dimension 𝑑 = 4 (bottom left panel) and 𝑑 = 5 (bottom right panel),
as a function of 𝜏. Colored intervals represent standard deviations of errors over 500 independent
replications.

Results. We choose a sample size of 𝑛 = 104 and we let 𝑘 = 100 in dimension 𝑑 ∈ {2, . . . ,5}. The
Monte Carlo parameter 𝑁 in (41) is set to 107. The Dirichlet concentration parameter is chosen as
𝜈 = 1/10 so that the angular measure is concentrated near the boundaries of the positive orthant.

Figure 1 displays the supremum errors sup𝐴∈A𝑝
|Φ̂𝑝 (𝐴) −Φ𝑝 (𝐴) | averaged over 500 independent

replications as a function of the parameter 𝜏. The latter varies in the range [𝑑𝑘/𝑛,0.1] in line with
Lemma G.1, for the reason explained above. The average errors of all three estimators Φ̂𝑝 decrease
for larger values of 𝜏 in line with our theoretical findings. Note that the errors also decrease when the
dimension increases. This is a direct consequence of the definition of the class A, forming a rectangular
grid on the sphere S𝜏∞ consisting of 𝑑×10𝑑−1 subsets (each face requires 10𝑑−1 rectangles to be covered)
so that the grid becomes finer as the dimension increases and the Φ𝑝-mass of the sets 𝐴 considered in
the supremum error is decreasing.

Of particular interest is the behaviour of the different norms. The error associated to the 𝐿2-norm and
the 𝐿∞-norm behave similarly while the one linked to the 𝐿1-norm seems quite different. Moreover, the
nature of the difference changes with the dimension. An explanation of these phenomena is depicted
in Figure 2. Since the estimation error of Φ̂𝑝 is measured with a supremum and increases while 𝜏
decreases, it suggests that this supremum is realized near the boundary of the considered subset S𝜏𝑝 of
the sphere, i.e., near the intersections with the coordinate axes. In this region, the 𝐿2-sphere and the
𝐿∞-sphere are close to each other, the latter being even tangent to the former in dimension 𝑑 = 2. The
𝐿1-sphere is quite different there since it forms a 45◦ angle with the 𝐿∞-sphere. This explains why
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Figure 2: Restriction to coordinates larger than 𝜏 has an heavier impact on the 𝐿1-sphere than on the
𝐿2-sphere and the 𝐿∞-sphere, which touch each other near the coordinate axes (left panel). The cone
{𝑥 ∈ [0,∞)𝑝 : ‖𝑥‖𝑝 > 1, 𝑥 ∈ 𝜃𝑝 (𝐴)} generated by the projection 𝜃𝑝 (𝐴) of a set 𝐴 ⊆ S𝜏∞ onto S𝜏𝑝 is
largest when the 𝐿1-norm is considered (right panel).

the error behaves so differently when the 𝐿1-norm is considered. The fact that it becomes smaller in
higher dimension can be understood as follows. Two forces play an opposite role in making the 𝐿1-
sphere different from the others: on the one hand, as illustrated in the left panel of Figure 2, censuring
coordinates smaller than 𝜏 has a higher impact on the 𝐿1-sphere since it looses more volume than the
others, on the other hand, as illustrated in the right panel, the cones C𝐴 generated by the projection of
a set 𝐴 ⊆ S𝜏∞ are larger for 𝑝 = 1 than for 𝑝 = 2 or 𝑝 =∞. The first force tends to reduce the Φ1-mass
of the 𝐿1-sphere while the second tends to increase it. Following the results of Figure 1, the latter is
dominated by the former when the dimension increases.

6. Conclusion

We derived non-asymptotic guarantees in the form of concentration inequalities for the rank-based
empirical angular measure with respect to any 𝐿𝑝-norm, 𝑝 ∈ [1,∞]. The bounds are valid in any
dimension and concern the supremum error over certain collections of subsets of the 𝐿𝑝-sphere. Apart
from a logarithmic term, the bounds match the convergence rate known in the bivariate case [26,28].
Two applications to statistical learning based on observations in extreme regions were worked out:
minimum-volume set estimation and binary classification.

It would be interesting to be able to complement our upper bounds with lower bounds on the estima-
tion error. Sharp bounds would provide guidance on the choice of the threshold parameter 𝑘 , ideally in
an adaptive manner as in [5].

The results are limited to subsets of the relative interior of the unit sphere to avoid non-extreme
components, which are difficult to manage. Allowing for sets touching the boundary constitutes an
important but challenging avenue left for further research. A numerical experiment has been provided
to illustrate the influence of this restriction on the estimation error, for different norms and dimensions.

The application to classification was limited to two balanced classes. Extensions to multiple classes
and unbalanced situations can be developed in the same way. Of an altogether different nature, however,
is the prediction of a continuous response from observations in extreme regions. The latter would re-
quire concentration inequalities for the empirical angular measure evaluated on collections of functions
more general than set indicators. This topic has not yet even been broached in the bivariate case.
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Appendix A: Concentration inequality for rare events

The main concentration tool that we use in the proof of Theorem 3.1 is the following. Since the result
may be of independent interest, we provide a detailed proof.

Theorem A.1. Let 𝑃𝑛 denote the empirical distribution of an independent random sample 𝜉1, . . . , 𝜉𝑛
from a distribution 𝑃 on some measurable space X. Let A be a VC-class of measurable subsets of X
with VC-dimension 𝑉A . Let 𝐵 be a measurable subset of X containing

⋃
𝐴∈A 𝐴 and write 𝜅 = 𝑃(𝐵).

Then, for all 𝛿 ∈ (0,1), there exists an event with probability at least 1 − 𝛿 on which we have

sup
𝐴∈A

|𝑃𝑛 (𝐴) − 𝑃(𝐴) | 6
√︂
𝜅

𝑛

(
60

√︁
𝑉A + 2

√︁
log(1/𝛿)

)
+ 2

3𝑛
log(1/𝛿).

In [32, Theorem 1], a similar inequality is derived, but with a generic constant 𝐶 that is not made
explicit. Just before their Lemma 14, there is a reference to [39] providing bounds on the expectation
of a symmetrized supremum, but from that source, the value of the constant looks nearly impossible
to trace. We follow an alternative route to obtain that value via Theorems 1.16–17 in [42], giving an
explicit bound for the expectation of a symmetrized supremum in terms of an integral over covering
numbers of the class of sets. In turn, the covering numbers of such a class can be bounded in terms of
its VC-dimension. In this way, the constant 𝐶 can be made explicit. Its value is most likely not optimal
but, should a sharp value for the constant be found in the future, it can be substituted in our result.

We now give the proof of Theorem A.1. It is based on a McDiarmid’s concentration inequality for
the supremum around its expected value in [43], extending Bernstein’s classical inequality and recalled
in [32, Proposition 11]. We rewrite it in a form which is more convenient for us [41, Proposition 5].

Proposition A.1. Under the assumptions of Theorem A.1, for all 𝛿 ∈ (0,1), there exists an event with
probability at least 1 − 𝛿 on which we have

sup
𝐴∈A

|𝑃𝑛 (𝐴) − 𝑃(𝐴) | 6 2
√︂
𝜅

𝑛
log(1/𝛿) + 2

3𝑛
log(1/𝛿) + E

[
sup
𝐴∈A

|𝑃𝑛 (𝐴) − 𝑃(𝐴) |
]
.

Proof of Theorem A.1. Apply Proposition A.1. To bound the remaining expectation, we make use of
Theorem 1.16 in [42], which relies on a chaining argument to ensure that

E

[
sup
𝐴∈A

|𝑃𝑛 (𝐴) − 𝑃(𝐴) |
]
6

24
√
𝑛

max
𝑥1 ,...,𝑥𝑛∈X

∫ 1

0

√︂
log

(
2N

(
𝑟,A(𝑥𝑛1 )

))
d𝑟, (42)

where N(𝑟,A(𝑥𝑛1 )) is the covering number (the smallest number of balls of radius 𝑟 needed to
cover a set) of the set A(𝑥𝑛1 ) :=

{
(1𝐴(𝑥𝑖))𝑛𝑖=1 : 𝐴 ∈ A

}
⊆ {0,1}𝑛 with respect to the metric 𝜌(𝑏, 𝑐) =

𝑛−1/2‖𝑏 − 𝑐‖2 for 𝑏, 𝑐 ∈ {0,1}𝑛, see [42, page 29] for definitions and notation. Haussler [35] showed
that, if A has a finite VC-dimension, then the associated covering number is bounded in the following
way: for any 0 < 𝑟 6 1,

N
(
𝑟,A(𝑥𝑛1 )

)
6 𝑒(𝑉A + 1)

(
2𝑒
𝑟2

)𝑉A
. (43)

Using (43) in (42) we can bound the integral as follows: for any points 𝑥1, . . . , 𝑥𝑛 ∈ X, we have∫ 1

0

√︂
log

(
2N

(
𝑟,A(𝑥𝑛1 )

))
d𝑟 6

∫ 1

0

√︃
log (2𝑒(𝑉A + 1)) +𝑉A log

(
2𝑒/𝑟2

)
d𝑟
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6
√︁
𝑉A

∫ 1

0

√︁
3 log 2 + 2 − 2 log 𝑟 d𝑟6 2.44

√︁
𝑉A ,

by numerical integration or by expressing the integral in terms of the standard normal cumulative
distribution function. Combining this result and (42), we get

E

[
sup
𝐴∈A

|𝑃𝑛 (𝐴) − 𝑃(𝐴) |
]
6 59

√︂
𝑉A
𝑛
. (44)

This bound is of the right order but does not use the extreme nature of the events in the class A. To
this end, we use the conditioning trick in [41, Lemma 2], which states that if 𝐾 =

∑𝑛
𝑖=1 1{𝑋𝑖 ∈ 𝐵}, with

𝐵 ⊇ ⋃
𝐴∈A 𝐴 as in the statement of the theorem, we have the distributional equality[

(𝑃𝑛 (𝐴))𝐴∈A
���𝐾 = 𝑘

]
𝑑
=

(
𝑘

𝑛
𝑃𝑌𝑘 (𝐴)

)
𝐴∈A

,

where 𝑃𝑌
𝑘

, for 𝑘 ∈ {1, . . . , 𝑛}, is the empirical measure associated to an independent random sample
𝑌1, . . . ,𝑌𝑘 from the conditional distribution 𝑃( · | 𝐵). It easily follows that [41, Lemma 6]

E

[
sup
𝐴∈A

|𝑃𝑛 (𝐴) − 𝑃(𝐴) |
]
6 E

[
𝐾

𝑛
E

[
sup
𝐴∈A

��𝑃𝑌𝐾 (𝐴) − 𝑃(𝐴 | 𝐵)
�� ��� 𝐾] ]

+
√︂
𝜅

𝑛
.

The conditional expectation on the right-hand side is bounded by means of (44), giving

E

[
𝐾

𝑛
E

[
sup
𝐴∈A

��𝑃𝑌𝐾 (𝐴) − 𝑃(𝐴 | 𝐵)
�� ���𝐾] ]

6 E

[
𝐾

𝑛
· 59

√︂
𝑉A
𝐾

]
6

59
𝑛

√︁
𝑉A

√︁
E[𝐾] 6 59

√︂
𝜅

𝑛
𝑉A

in view of Jensen’s inequality and E[𝐾] = 𝑛𝜅. Combining everything and using the fact that 𝑉A > 1,
we get the result. The proof is complete.

Supplementary Material

Supplement to “Concentration bounds for the empirical angular measure with statistical learn-
ing applications”
The supplement contains some auxiliary lemmas and proofs of all results developed in the paper: main
theorem, examples, binary classification application and simulations.
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Supplement
This supplement contains mathematical details related to in the paper [10]. Appendix B contains

auxiliary results. The proof of the main result in the paper, Theorem 3.1, is given in Appendix C.
Appendix D provides a practical criterion to control the bias term in Theorem 3.1 and applies it to
the multivariate Cauchy distribution. In Appendix E, it is verified that the examples of collections of
sets A in Section 3.3 in the paper indeed satisfy Assumptions 3.1 and 3.2. The proofs of the results in
Section 4.2 on classification in extreme regions are given in Appendix F, while Appendix G contains
an additional result related to the simulation experiments in Section 5 in the paper.

Appendix B: Auxiliary results

We will use the following minor results in the proof of Theorem 3.1.

Lemma B.1. Let 𝑥, 𝑣 ∈ [1,∞)𝑑 , 𝑝 ∈ [1,∞] and ℎ ∈ [0,1/2). If

∀ 𝑗 ∈ {1, . . . , 𝑑},
����𝑥 𝑗𝑣 𝑗 − 1

����6 ℎ,

then ���� ‖𝑣‖𝑝‖𝑥‖𝑝
− 1

����6 ℎ

1 − ℎ =: Δ < 1,

which implies

∀𝑟 > 0 : ‖𝑥‖𝑝 >
𝑟

1 − Δ
=⇒ ‖𝑣‖𝑝 > 𝑟 =⇒ ‖𝑥‖𝑝 >

𝑟

1 + Δ
.

Proof. By hypothesis, for every 𝑗 ∈ {1, . . . , 𝑑}, we have

1 − ℎ6
𝑥 𝑗

𝑣 𝑗
6 1 + ℎ,

hence
1

1 + ℎ 6
𝑣 𝑗

𝑥 𝑗
6

1
1 − ℎ

and we deduce ����𝑣 𝑗𝑥 𝑗 − 1
����6 ℎ

1 − ℎ .

In particular,

∀ 𝑗 ∈ {1, . . . , 𝑑} : |𝑣 𝑗 − 𝑥 𝑗 | 6
ℎ

1 − ℎ𝑥 𝑗 .

Taking the 𝑝-th power on each side, summing over 𝑗 and taking the 𝑝-th square root leads to��‖𝑣‖𝑝 − ‖𝑥‖𝑝
��6 ‖𝑣 − 𝑥‖𝑝 6

ℎ

1 − ℎ ‖𝑥‖𝑝 .
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This shows the first part of the lemma. To obtain the second part, just note that the first part guarantees
that

‖𝑥‖𝑝 (1 − Δ) 6 ‖𝑣‖𝑝 6 ‖𝑥‖𝑝 (1 + Δ),

Those inequalities imply the second statement.

Lemma B.2. For every 𝑗 ∈ {1, . . . , 𝑑} and 𝑥 𝑗 > 0, we have���� 𝑥 𝑗

�̂� 𝑗 (𝑥 𝑗 )
− 1

����6 ��𝑥 𝑗𝑃𝑛, 𝑗 ((𝑥 𝑗 ,∞)) − 1
�� + |𝑥 𝑗 − 1|

𝑛
.

Proof. By definition of the transform �̂�, we have for every 𝑗 ∈ {1, . . . , 𝑑} and 𝑥 𝑗 > 0:

�̂� 𝑗 (𝑥 𝑗 ) =
1

1 − 𝑛
𝑛+1 �̂�𝑗 (𝑥 𝑗 )

=
𝑛 + 1

𝑛𝑃𝑛, 𝑗 ((𝑥 𝑗 ,∞)) + 1
.

Therefore, by the triangle inequality,���� 𝑥 𝑗

�̂� 𝑗 (𝑥 𝑗 )
− 1

���� = ����𝑥 𝑗 (𝑛𝑃𝑛, 𝑗 ((𝑥 𝑗 ,∞)) + 1
)

𝑛 + 1
− 1

���� = ����𝑥 𝑗 (𝑛𝑃𝑛, 𝑗 ((𝑥 𝑗 ,∞)) + 1
)
− (𝑛 + 1)

𝑛 + 1

����
=

����𝑛 (
𝑥 𝑗𝑃𝑛, 𝑗 ((𝑥 𝑗 ,∞)) − 1

)
+ (𝑥 𝑗 − 1)

𝑛 + 1

����
6

��𝑥 𝑗𝑃𝑛, 𝑗 ((𝑥 𝑗 ,∞)) − 1
�� + |𝑥 𝑗 − 1|

𝑛
.

Lemma B.3. Let ‖ · ‖ be a norm on a real vector space and write 𝜃 (𝑧) = 𝑧/‖𝑧‖ for non-zero vector 𝑧.
For non-zero vectors 𝑥 and 𝑦, we have

‖𝜃 (𝑥) − 𝜃 (𝑦)‖ 6 2
‖𝑥 − 𝑦‖

‖𝑥‖ ∨ ‖𝑦‖ .

Proof. Since 𝜃 ( · ) is scale-invariant, we can divide both 𝑥 and 𝑦 by ‖𝑥‖ ∨ ‖𝑦‖ without changing the
two sides of the inequality. For the sake of the proof we can thus assume that ‖𝑥‖ = 1 > ‖𝑦‖ > 0, in
which case we need to show that

‖𝑥 − 𝜃 (𝑦)‖ 6 2‖𝑥 − 𝑦‖.

By the triangle inequality, we have

‖𝑥 − 𝜃 (𝑦)‖ 6 ‖𝑥 − 𝑦‖ + ‖𝑦 − 𝜃 (𝑦)‖

and

‖𝑦 − 𝜃 (𝑦)‖ =
����1 − 1

‖𝑦‖

���� · ‖𝑦‖ = |‖𝑦‖ − 1| = |‖𝑦‖ − ‖𝑥‖| 6 ‖𝑦 − 𝑥‖.
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Appendix C: Proof of Theorem 3.1

Proof of Theorem 3.1. The empirical exponent and angular measures 𝜇 and Φ̂𝑝 only depend on the
sample 𝑋1, . . . , 𝑋𝑛 through the transformed data

𝐹𝑗 (𝑋𝑖 𝑗 ) =
1
𝑛

𝑛∑︁
𝑡=1

1{𝑋𝑡 𝑗 6 𝑋𝑖 𝑗 }

for 𝑖 = 1, . . . , 𝑛 and 𝑗 = 1, . . . , 𝑑. The sum of indicators is equal to the rank of 𝑋𝑖 𝑗 within 𝑋1 𝑗 , . . . , 𝑋𝑛 𝑗 .
As the marginal cumulative distribution function 𝐹𝑗 is continuous, the ranks of 𝑋1 𝑗 , . . . , 𝑋𝑛 𝑗 are with
probability one equal to those of 𝑉1 𝑗 , . . . ,𝑉𝑛 𝑗 , where 𝑉𝑖 𝑗 = 1/(1 − 𝐹𝑗 (𝑋𝑖 𝑗 )). Hence, even though the
margins 𝐹1, . . . , 𝐹𝑑 are unknown, the fact that 𝜇 and Φ̂𝑝 are rank statistics implies that for the sake of
the proof, we may and will henceforth assume that the margins 𝐹1, . . . , 𝐹𝑑 are unit-Pareto.

Abbreviate Γ±
𝐴
= Γ±

𝐴
(𝑟±,3Δ1) with 𝑟± = 1 ± Δ2 and 0 < Δ1,Δ2 < 1 are as in the statement of the

theorem. Since 𝑟− 6 1 6 𝑟+, we have

∀𝐴 ∈ A, Γ−
𝐴 ⊆ C𝐴 ⊆ Γ+

𝐴.

We shall construct an event E1 with probability at least 1 − 𝑑𝛿/(𝑑 + 1), on which we have

∀𝐴 ∈ A, 𝑛
𝑘
Γ−
𝐴 ⊆ Γ̂𝐴 ⊆ 𝑛

𝑘
Γ+
𝐴. (45)

Then, on the event E1, the decomposition (19) of the estimation error holds true. We treat the three
terms involved in the decomposition in turn. At the end, we construct the event E1 with the required
properties.

Bias term. Taking the supremum over 𝐴 ∈ A immediately yields the first term on the right-hand
side of the bound (23).

Stochastic error. We apply Theorem A.1 to the collection

F =
{
𝑛
𝑘
Γ𝜎𝐴 : 𝜎 ∈ {−,+}, 𝐴 ∈ A

}
, (46)

which has finite VC dimension𝑉F in view of Assumption 3.2 and the paragraph following Theorem 3.1;
the rescaling by the factor 𝑛/𝑘 obviously does not change the VC dimension. For every 𝐴 ∈ A, we have

𝑛
𝑘
Γ−
𝐴 ⊆ 𝑛

𝑘
Γ+
𝐴 ⊆

{
𝑥 ∈ [0,∞)𝑑 : ‖𝑥‖𝑝 > 𝑛

𝑘
1

1+Δ2

}
.

By the equivalence of norms (25), since the margins of 𝑃 are unit-Pareto, it follows that the probability
𝜅 appearing in Theorem A.1 applied to F is bounded by

𝑃

[⋃𝑑
𝑗=1

{
𝑥 ∈ [0,∞)𝑑 : 𝑥 𝑗 > 𝑛

𝑘
1

𝑑1/𝑝 (1+Δ2)

}]
6 𝑑1+1/𝑝 (1 + Δ2) 𝑘𝑛 . (47)

As a consequence, on an event E2 with probability at least 1 − 𝛿/(𝑑 + 1), we have,

sup
𝐴∈A,𝜎∈{−,+}

𝑛
𝑘

��𝑃𝑛 (
𝑛
𝑘
Γ𝜎𝐴

)
− 𝑃

(
𝑛
𝑘
Γ𝜎𝐴

) ��
6

√︄
𝑑1+1/𝑝 (1 + Δ2)

𝑘

(
60

√︁
𝑉F + 2

√︁
log((𝑑 + 1)/𝛿)

)
+ 2

3𝑘
log((𝑑 + 1)/𝛿).
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This is the second term on the right-hand side of the bound (23). Since E1 and E2 have probabilities at
least 1 − 𝑑𝛿/(𝑑 + 1) and 1 − 𝛿/(𝑑 + 1), respectively, the event E1 ∩ E2 has probability at least 1 − 𝛿.

Framing gap. For 𝐴 ∈ A, any point 𝑥 ∈ Γ+
𝐴
\ Γ−

𝐴
has either a norm ‖𝑥‖𝑝 between 𝑟− and 𝑟+ or an

angle 𝜃𝑝 (𝑥) contained in a set of the form 𝐴+ (𝜀) \ 𝐴− (𝜀) for some 𝜀 > 0. Specifically,

𝜇(Γ+
𝐴 \ Γ

−
𝐴) 6 𝜇

({
𝑥 ∈ [0,∞)𝑑 : (1 + Δ2)−1 6 ‖𝑥‖𝑝 6 (1 − Δ2)−1

})
+ 𝜇

({
𝑥 ∈ [0,∞)𝑑 : ‖𝑥‖𝑝 > 1, 𝜃𝑝 (𝑥) ∈ 𝐴+ (3Δ1‖𝑥‖𝑝) \ 𝐴− (3Δ1‖𝑥‖𝑝)

})
.

(48)

The first term on the right-hand side in (48) is equal to

((1 + Δ2) − (1 − Δ2)) 𝜇({𝑥 ∈ [0,∞)𝑑 : ‖𝑥‖𝑝 > 1}) = 2Δ2Φ𝑝 (S𝑝).

The second term on the right-hand side in (48) can be computed via the product representation (8) of
𝜇 in polar coordinates: in view of (21) in Assumption 3.1, the result is∫ ∞

1
Φ𝑝

(
𝐴+ (3Δ1𝑟) \ 𝐴− (3Δ1𝑟)

) d𝑟
𝑟2 6

∫ ∞

1
min

{
Φ𝑝 (S𝑝),3𝑐Δ1𝑟

} d𝑟
𝑟2

= 3𝑐Δ1
(
1 + logΦ𝑝 (S𝑝) − log(3𝑐Δ1)

)
,

since
∫ ∞

1 min(𝑏, 𝑎𝑟) d𝑟
𝑟2 = 𝑎(log(𝑏/𝑎) + 1) for 𝑎 ∈ (0, 𝑏] and 3𝑐Δ1 6 1 6Φ𝑝 (S𝑝) by assumption.

The resulting upper bound in (48) does not depend on 𝐴 ∈ A. Bounding Φ𝑝 (S𝑝) by 𝑑, we obtain
the third term on the right-hand side of the bound (23).

Construction of the event E1. We still need to construct an event E1 with probability at least
1 − 𝑑𝛿/(𝑑 + 1) on which the inclusions (45) hold. To do this, we apply Theorem A.1 to each of the
collections

F𝑗 =
{
{𝑥 ∈ [0,∞)𝑑 : 𝑥 𝑗 > 𝑛

𝑘
𝑦} : 𝑦 ∈ [𝜌,∞)

}
, 𝑗 = 1, . . . , 𝑑.

Fix 𝑗 = 1, . . . , 𝑑 and let 𝑃𝑛, 𝑗 = 𝑛−1 ∑𝑛
𝑖=1 𝛿𝑋𝑖 𝑗 . Each set in the collection F𝑗 is a subset of {𝑥 ∈ [0,∞)𝑑 :

𝑥 𝑗 >
𝑛
𝑘
𝜌}, whose 𝑃-probability is 𝜅 = 𝑘

𝑛
𝜌−1. The class F𝑗 has VC dimension 1. By Theorem A.1, there

exists an event E1, 𝑗 with probability at least 1 − 𝛿/(𝑑 + 1) on which

sup
𝑥 𝑗> 𝑛

𝑘
𝜌

���𝑃𝑛, 𝑗 ((𝑥 𝑗 ,∞)) − 𝑥−1
𝑗

���6 𝑘

𝑛

{√︄
1
𝑘𝜌

(
56 + 2

√︁
log((𝑑 + 1)/𝛿)

)
+ 2

3𝑘
log((𝑑 + 1)/𝛿)

}
=
𝑘

𝑛
Δ1. (49)

Since

�̂� 𝑗 (𝑥 𝑗 ) =
1

1 − 𝑛
𝑛+1𝑃𝑛, 𝑗 ((−∞, 𝑥 𝑗 ])

=
𝑛 + 1

𝑛𝑃𝑛, 𝑗 ((𝑥 𝑗 ,∞)) + 1
,

we have on the event E1, 𝑗 the bounds

∀𝑥 𝑗 > 𝑛
𝑘
𝜌,

𝑛 + 1
𝑛𝑥−1
𝑗

+ 𝑘Δ1 + 1
6 �̂� 𝑗 (𝑥 𝑗 ) 6

𝑛 + 1
(𝑛𝑥−1

𝑗
− 𝑘Δ1)+ + 1

. (50)
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Moreover, since �̂� 𝑗 is monotone, we have on E1, 𝑗 the inequalities

∀𝑥 𝑗 6 𝑛
𝑘
𝜌, �̂� 𝑗 (𝑥 𝑗 ) 6 �̂� 𝑗 ( 𝑛𝑘 𝜌) 6

𝑛 + 1
𝑘 (𝜌−1 − Δ1) + 1

6
𝑛

𝑘

𝜌

1 − 𝜌Δ1
6
𝑛

𝑘
𝜏. (51)

Let E1 =
⋂𝑑
𝑗=1 E1, 𝑗 , the probability of which is at least 1− 𝑑𝛿/(𝑑 + 1), as required. We need to show

that on E1, the inclusions (45) hold. To do so, we proceed in steps. Throughout, we work on E1.

Step 1: Restriction to ( 𝑛
𝑘
𝜌,∞)𝑑 . — If 𝑥 ∈ [0,∞)𝑑 is such that ‖�̂�(𝑥)‖𝑝 > 𝑛

𝑘
but there exists 𝑗 =

1, . . . , 𝑑 with 𝑥 𝑗 6 𝑛
𝑘
𝜌, then, by (51), we have on E1 the bound

𝜃𝑝, 𝑗 (�̂�(𝑥)) =
�̂� 𝑗 (𝑥 𝑗 )
‖�̂�(𝑥)‖𝑝

6 𝜏

and thus, by Assumption 3.1, necessarily 𝜃𝑝 (�̂�(𝑥)) ∉ 𝐴 for all 𝐴 ∈ A. Hence, on E1, we have

Γ̂𝐴 =
{
𝑥 ∈ ( 𝑛

𝑘
𝜌,∞)𝑑 : ‖�̂�(𝑥)‖𝑝 > 𝑛

𝑘
, 𝜃𝑝 (�̂�(𝑥)) ∈ 𝐴

}
. (52)

Step 2: Radial framing. — We consider the following decomposition of Γ̂𝐴:(
Γ̂𝐴 ∩ {𝑥 ∈ ( 𝑛

𝑘
𝜌,∞)𝑑 : ‖𝑥‖∞ 6 2 𝑛

𝑘
}
)
∪

(
Γ̂𝐴 ∩ {𝑥 ∈ ( 𝑛

𝑘
𝜌,∞)𝑑 : ‖𝑥‖∞ > 2 𝑛

𝑘
}
)
,

and we frame each set separately.
For points 𝑥 with ‖𝑥‖∞ 6 2 𝑛

𝑘
, we seek to apply Lemma B.1. To this end, we first construct ℎ ∈

[0,1/2) such that, on E1, we have

∀ 𝑗 ∈ {1, . . . , 𝑑} :
���� 𝑥 𝑗

�̂� 𝑗 (𝑥 𝑗 )
− 1

����6 ℎ,

for every 𝑥 𝑗 > 𝑛
𝑘
𝜌 (which is larger than 1, by assumption that 𝜌 > 𝑘/𝑛). We simply apply Lemma B.2

combined with (49), giving���� 𝑥 𝑗

�̂� 𝑗 (𝑥 𝑗 )
− 1

����6 𝑘
𝑛
Δ1𝑥 𝑗 +

|𝑥 𝑗−1 |
𝑛

6 𝑘
𝑛
𝑥 𝑗

(
Δ1 + 1

𝑘

)
6 2

(
Δ1 + 1

𝑘

)
= ℎ,

since 𝑥 𝑗 6 2 𝑛
𝑘

. Hence, we may apply Lemma B.1 with 𝑟 = 𝑛/𝑘 and Δ = Δ2 since

ℎ

1 − ℎ 6 4(Δ1 + 1/𝑘) = Δ2.

This leads to the inclusions

Γ̂𝐴 ∩ {𝑥 ∈ ( 𝑛
𝑘
𝜌,∞)𝑑 : ‖𝑥‖∞ 6 2 𝑛

𝑘
}

⊆
{
𝑥 ∈ ( 𝑛

𝑘
𝜌,∞)𝑑 : ‖𝑥‖𝑝 > 𝑛

𝑘
1

1+Δ2

}
∩ {𝑥 ∈ ( 𝑛

𝑘
𝜌,∞)𝑑 : ‖𝑥‖∞ 6 2 𝑛

𝑘
} and

Γ̂𝐴 ∩ {𝑥 ∈ ( 𝑛
𝑘
𝜌,∞)𝑑 : ‖𝑥‖∞ 6 2 𝑛

𝑘
}

⊇
{
𝑥 ∈ ( 𝑛

𝑘
𝜌,∞)𝑑 : ‖𝑥‖𝑝 > 𝑛

𝑘
1

1−Δ2

}
∩ {𝑥 ∈ ( 𝑛

𝑘
𝜌,∞)𝑑 : ‖𝑥‖∞ 6 2 𝑛

𝑘
}.
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For points 𝑥 with ‖𝑥‖∞ > 2 𝑛
𝑘

, similar inclusions hold trivially. Indeed, on this set, by definition of
the 𝐿∞-norm, there exists 𝑗 ∈ {1, . . . , 𝑑} such that 𝑥 𝑗 > 2 𝑛

𝑘
. Therefore, by our assumption that 𝑘 is large

enough such that Δ1 + 1/𝑘 6 1/4, we have by (50),

�̂� 𝑗 (𝑥 𝑗 ) >
𝑛 + 1

𝑘
2 + 𝑘Δ1 + 1

>
𝑛

𝑘

1
1
2 + (Δ1 + 1

𝑘
)
>
𝑛

𝑘
.

Hence, we have ‖�̂�(𝑥)‖∞ > 𝑛/𝑘 , and, by equivalence of norms (25), also ‖�̂�(𝑥)‖𝑝 > 𝑛/𝑘 for every
𝑝 ∈ [1,∞]. Furthermore, ‖𝑥‖𝑝 > ‖𝑥‖∞ > 2 𝑛

𝑘
> 𝑛

𝑘
1

1+Δ2
for every 0 < Δ2 < 1. These inequalities imply

the inclusions

Γ̂𝐴 ∩ {𝑥 ∈ ( 𝑛
𝑘
𝜌,∞)𝑑 : ‖𝑥‖∞ > 2 𝑛

𝑘
}

⊆
{
𝑥 ∈ ( 𝑛

𝑘
𝜌,∞)𝑑 : ‖𝑥‖𝑝 > 𝑛

𝑘
1

1+Δ2

}
∩ {𝑥 ∈ ( 𝑛

𝑘
𝜌,∞)𝑑 : ‖𝑥‖∞ > 2 𝑛

𝑘
} and

Γ̂𝐴 ∩ {𝑥 ∈ ( 𝑛
𝑘
𝜌,∞)𝑑 : ‖𝑥‖∞ > 2 𝑛

𝑘
}

⊇
{
𝑥 ∈ ( 𝑛

𝑘
𝜌,∞)𝑑 : ‖𝑥‖𝑝 > 𝑛

𝑘
1

1−Δ2

}
∩ {𝑥 ∈ ( 𝑛

𝑘
𝜌,∞)𝑑 : ‖𝑥‖∞ > 2 𝑛

𝑘
}.

Combining the two cases, we get radial framing, i.e.,

Γ̂𝐴 ⊆
{
𝑥 ∈ ( 𝑛

𝑘
𝜌,∞)𝑑 : ‖𝑥‖𝑝 > 𝑛

𝑘
1

1+Δ2

}
Γ̂𝐴 ⊆

{
𝑥 ∈ ( 𝑛

𝑘
𝜌,∞)𝑑 : ‖𝑥‖𝑝 > 𝑛

𝑘
1

1−Δ2

}
.

(53)

Step 3: Angular framing. — We will show that, on E1, for any 𝑥 ∈ ( 𝑛
𝑘
𝜌,∞)𝑑 and 𝐴 ∈ A,

𝜃𝑝 (𝑥) ∈ 𝐴− (3 𝑘𝑛Δ1‖𝑥‖𝑝) =⇒ 𝜃𝑝 (�̂�(𝑥)) ∈ 𝐴 =⇒ 𝜃𝑝 (𝑥) ∈ 𝐴+ (3 𝑘𝑛Δ1‖𝑥‖𝑝). (54)

In combination with (53), this will show the inclusions (45) and thus finish the proof.
Fix such 𝑥 and 𝐴. Put 𝜀 = 3 𝑘

𝑛
Δ1‖𝑥‖𝑝 . We consider two cases: 𝜀 < 1 and 𝜀 > 1.

If 𝜀 > 1, the two implications in (54) are trivially fulfilled: Since the ‖ · ‖𝑝-diameter of S𝑝 is equal
to 1, we have 𝐴− (𝜀) =∅ (as S𝑝 \ 𝐴 is not-empty) while 𝐴+ (𝜀) = S𝑝 .

The interesting case is thus 𝜀 < 1. By Lemma B.3, we have

‖𝜃𝑝 (�̂�(𝑥)) − 𝜃𝑝 (𝑥)‖𝑝 6 2
‖�̂�(𝑥) − 𝑥‖𝑝

‖𝑥‖𝑝
.

Since 𝜀 < 1, we have ‖𝑥‖∞ 6 ‖𝑥‖𝑝 6 (𝑛/𝑘)/(3Δ1). Hence, for all 𝑗 = 1, . . . , 𝑑, we have 𝑛𝑥−1
𝑗

− 𝑘Δ1 >

𝑛 · 3 𝑘
𝑛
Δ1 − 𝑘Δ1 > 0. By (50), we deduce

|�̂� 𝑗 (𝑥 𝑗 ) − 𝑥 𝑗 | 6 max
𝜎∈{−1,+1}

����� 𝑛 + 1
𝑛𝑥−1
𝑗

+ 𝜎𝑘Δ1 + 1
− 𝑥 𝑗

�����
= 𝑥 𝑗 max

𝜎∈{−1,+1}

���� 𝑛 + 1
𝑛 + (𝜎𝑘Δ1 + 1)𝑥 𝑗

− 1
����

= 𝑥 𝑗 max
𝜎∈{−1,+1}

|1 − (𝜎𝑘Δ1 + 1)𝑥 𝑗 |
𝑛 + (𝜎𝑘Δ1 + 1)𝑥 𝑗

.
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Recall that 𝑥 𝑗 > 𝑛
𝑘
𝜌 > 1 and 𝑘Δ1 > 2. For he case 𝜎 = +1, we have

|1 − (+𝑘Δ1 + 1)𝑥 𝑗 |
𝑛 + (+𝑘Δ1 + 1)𝑥 𝑗

6
(𝑘Δ1 + 1)𝑥 𝑗

𝑛 + (𝑘Δ1 + 1)𝑥 𝑗
6

3
2
𝑘

𝑛
Δ1𝑥 𝑗 .

For the case 𝜎 = −1, we also have

|1 − (−𝑘Δ1 + 1)𝑥 𝑗 |
𝑛 + (−𝑘Δ1 + 1)𝑥 𝑗

=
(𝑘Δ1 − 1)𝑥 𝑗 − 1
𝑛 + (−𝑘Δ1 + 1)𝑥 𝑗

6
𝑘Δ1𝑥 𝑗

𝑛 − 𝑘Δ1𝑥 𝑗
6

3
2
𝑘

𝑛
Δ1𝑥 𝑗 ,

since 𝜀 < 1 implies 𝑛 − 𝑘Δ1𝑥 𝑗 > 𝑛 − 𝑘Δ1‖𝑥‖𝑝 > 𝑛 − 𝑛/3 = 2𝑛/3. We deduce that

∀ 𝑗 ∈ {1, . . . , 𝑑} : |�̂� 𝑗 (𝑥 𝑗 ) − 𝑥 𝑗 | 6
3
2
𝑘

𝑛
Δ1𝑥

2
𝑗 .

Consequently,

‖�̂�(𝑥) − 𝑥‖𝑝 6
3
2
𝑘

𝑛
Δ1‖𝑥‖2

𝑝 ,

where we use the (easy to prove) inequality ‖(𝑥2
1, . . . , 𝑥

2
𝑑
)‖𝑝 6 ‖(𝑥1, . . . , 𝑥𝑑)‖2

𝑝 , and thus

‖𝜃𝑝 (�̂�(𝑥)) − 𝜃𝑝 (𝑥)‖𝑝 6 3 𝑘
𝑛
Δ1‖𝑥‖𝑝 = 𝜀.

The implications (54) now follow by definition of 𝐴− (𝜀) and 𝐴+ (𝜀).
We conclude that, on E1, the inclusions (45) hold, as required. The proof Theorem 3.1 is complete.

Appendix D: Proofs of Remark 3.3
As ‖𝑥‖𝑝 > 𝜌 implies ‖𝑥‖∞ > 𝑑−1/𝑝𝜌 for 𝑥 ∈ R𝑑 and 𝜌 > 0, the bias term appearing in Theorem 3.1 is
bounded by the total variation distance between the measures 𝑛

𝑘
𝑃𝑉 ( 𝑛

𝑘
·) and 𝜇 restricted to

𝐸𝑐 =
{
𝑥 ∈ (0,∞)𝑑 : max(𝑥) > 𝑐

}
,

for 𝑐 = 𝑑−1/𝑝𝑟−1
+ . (This 𝑐 is not the same as the one in the statement of Theorem 3.1.) More precisely,

we have

sup
𝐴∈A, 𝜎∈{+,−}

�� 𝑛
𝑘
𝑃𝑉 ( 𝑛

𝑘
Γ𝜎𝐴 ) − 𝜇(Γ

𝜎
𝐴 )

��6 sup
𝐵∈B(𝐸𝑐)

�� 𝑛
𝑘
𝑃𝑉 ( 𝑛

𝑘
𝐵) − 𝜇(𝐵)

�� ,
where B(𝐸𝑐) denotes the Borel 𝜎-field on 𝐸𝑐 . Recall 𝑝𝑈 and 𝜆 in Remark 3.3 and define

D𝑇 (𝑠) =
∫
𝐿𝑇

���𝑠𝑑−1𝑝𝑈 (𝑠𝑦) − 𝜆(𝑦)
��� d𝑦 with 𝐿𝑇 = {𝑦 ∈ (0,𝑇]𝑑 : min(𝑦) 6 1}.

The following proposition provides a refined version of the bound (27) in Remark 3.3 in the paper; the
bound (27) itself appears in the course of the proof of the proposition.

Proposition D.1. For 𝑐 > 0, let B(𝐸𝑐) denote the Borel 𝜎-field on 𝐸𝑐 . Then, for 𝑡 > 1/𝑐,

sup
𝐵∈B(𝐸𝑐)

|𝑡𝑃𝑉 (𝑡𝐵) − 𝜇(𝐵) | 6 1
𝑐
D𝑐𝑡 ( 1

𝑐𝑡
) + 𝜇

({
𝑥 ∈ (0,∞)𝑑 : max(𝑥) > 𝑐,min(𝑥) 6 1/𝑡

})
.
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Proof. Writing 𝑢 = 𝑡−1, we get

sup
𝐵∈B(𝐸𝑐)

|𝑡 𝑃𝑉 (𝑡𝐵) − 𝜇(𝐵) | = sup
𝐵∈B(𝐸𝑐)

���𝑡 𝑃𝑈 (𝑡−1𝜄(𝐵)) −Λ(𝜄(𝐵))
���

= sup
𝐵∈B( 𝜄 (𝐸𝑐))

���𝑢−1 𝑃𝑈 (𝑢𝐵) −Λ(𝐵)
��� .

For any Borel set 𝐵 ⊆ (0,∞)𝑑 , we have, by a change of variables,

𝑢−1 𝑃𝑈 (𝑢𝐵) = 𝑢−1
∫
𝑢𝐵

𝑝𝑈 (𝑧) d𝑧 = 𝑢𝑑−1
∫
𝐵

𝑝𝑈 (𝑢𝑦) d𝑦.

It follows that

sup
𝐵∈B(𝐸𝑐)

|𝑡 𝑃𝑉 (𝑡𝐵) − 𝜇(𝐵) | = sup
𝐵∈B( 𝜄 (𝐸𝑐))

����∫
𝐵

(
𝑢𝑑−1𝑝𝑈 (𝑢𝑦) − 𝜆(𝑦)

)
d𝑦

����
6

∫
𝜄 (𝐸𝑐)

���𝑢𝑑−1𝑝𝑈 (𝑢𝑦) − 𝜆(𝑦)
���d𝑦

=

∫
0<min(𝑦)61/𝑐

���𝑢𝑑−1𝑝𝑈 (𝑢𝑦) − 𝜆(𝑦)
���d𝑦,

which is (27) in the paper with 𝑢 = 𝑘/𝑛 and 𝑐 = 𝑑−1/𝑝𝑟−1
+ . Since the copula density 𝑝𝑈 vanishes outside

[0,1]𝑑 , we get

sup
𝐵∈B(𝐸𝑐)

|𝑡 𝑃𝑉 (𝑡𝐵) − 𝜇(𝐵) | =
∫

0<min(𝑦)61/𝑐
max(𝑦)61/𝑢

���𝑢𝑑−1𝑝𝑈 (𝑢𝑦) − 𝜆(𝑦)
���d𝑦 + ∫

0<min(𝑦)61/𝑐
max(𝑦)>1/𝑢

𝜆(𝑦) d𝑦.

The first integral on the right-hand side is denoted by I(𝑢, 𝑐) and is analysed below. The second integral
on the right-hand side is

Λ

({
𝑦 ∈ (0,∞)𝑑 : min(𝑦) 6 1/𝑐, max(𝑦) > 1/𝑢

})
= 𝜇

({
𝑥 ∈ (0,∞)𝑑 : max(𝑥) > 𝑐, min(𝑥) < 𝑢

})
.

By a change of variables 𝑦 = 𝑐−1𝑥 (component-wise), we find

I(𝑢, 𝑐) = 𝑐−𝑑
∫

0<min(𝑥)61
max(𝑥)6𝑐/𝑢

���𝑢𝑑−1𝑝𝑈 (𝑢𝑐−1𝑥) − 𝜆(𝑐−1𝑥)
���d𝑦.

The density 𝜆 is homogeneous of order 1 − 𝑑, i.e., 𝜆(𝑐−1𝑥) = 𝑐𝑑−1𝑥. Writing 𝑐−1𝑢 = 𝑠, we find

I(𝑢, 𝑐) = 𝑐−𝑑
∫

0<min(𝑥)61
max(𝑥)6𝑐/𝑢

���𝑐𝑑−1𝑠𝑑−1𝑝𝑈 (𝑠𝑥) − 𝑐𝑑−1𝜆(𝑥)
���d𝑥

= 𝑐−1
∫

0<min(𝑥)61
max(𝑥)61/𝑠

���𝑠𝑑−1𝑝𝑈 (𝑠𝑥) − 𝜆(𝑥)
���d𝑥

= 𝑐−1D1/𝑠 (𝑠).

Substituting 𝑠 = 𝑐−1𝑢 = (𝑐𝑡)−1 yields the stated bound.



Concentration bounds for the empirical angular measure 33

Example D.1 (The multivariate Cauchy distribution). Let us assume that 𝑋 follows a multivariate
Cauchy distribution on the positive orthant whose density is given by

𝑓 (𝑥) =
2𝑑Γ( 1+𝑑

2 )

𝜋
1+𝑑

2

1

(1 + ‖𝑥‖2
2)

1+𝑑
2

for 𝑥 > 0 and 𝑓 (𝑥) = 0 otherwise. We will show that the bound in Proposition D.1 is O(1/𝑡) as 𝑡→∞.
This implies that the bias term is O(𝑘/𝑛) as 𝑘 = 𝑘𝑛→∞ in such a way that 𝑘/𝑛→ 0.

For simplicity of notation, let 𝑝 = 𝑝𝑈 denote the probability density function of 𝑈 = (1 −
𝐹1 (𝑋1), . . . , 1 − 𝐹𝑑 (𝑋𝑑)). Some computations related to the univariate Cauchy distribution lead to

𝑝(𝑥) = 𝜋
𝑑−1

2 Γ( 1+𝑑
2 )

∏𝑑
𝑖=1

(
1 + tan2 ( 𝜋2 (1 − 𝑥𝑖))

)
(
1 +∑𝑑

𝑖=1 tan2 ( 𝜋2 (1 − 𝑥𝑖))
) 1+𝑑

2

.

Asymptotic considerations on the tangent function permit to show that

lim
𝑠→0

𝑠𝑑−1𝑝(𝑠𝑥) =
2𝑑−1Γ( 1+𝑑

2 )

𝜋
𝑑−1

2

𝑥−2
1 · · · 𝑥−2

𝑑(
𝑥−2

1 + · · · + 𝑥−2
𝑑

) 1+𝑑
2

=: 𝜆(𝑥).

We start with the first term in the upper bound of Proposition D.1. We have the decomposition

D1/𝑠 (𝑠) =
∫
𝐿1/𝑠

(
𝑠𝑑−1𝑝(𝑠𝑥) − 𝜆(𝑥)

)
+

d𝑥 (55)

+
∫
𝐿1/𝑠

(
𝜆(𝑥) − 𝑠𝑑−1𝑝(𝑠𝑥)

)
+

d𝑥. (56)

We start by studying the integral (55). We observe that for 𝑧 ∈ (0,1]

tan2 (
𝜋
2 (1 − 𝑧)

)
= cot2

(
𝜋
2 𝑧

)
=

1

sin2 (
𝜋
2 𝑧

) − 1 =
2

1 − cos(𝜋𝑧) − 1.

If 𝑥𝑖 6 1 for every 𝑖 ∈ {1, . . . , 𝑑}, we may apply (57) in Lemma D.1 below to get

𝑝(𝑥) = 𝜋
𝑑−1

2 Γ( 1+𝑑
2 )

∏𝑑
𝑖=1

(
1 + tan2 ( 𝜋2 (1 − 𝑥𝑖))

)
(
1 +∑𝑑

𝑖=1 tan2 ( 𝜋2 (1 − 𝑥𝑖))
) 1+𝑑

2

= 𝜋
𝑑−1

2 Γ( 1+𝑑
2 )

2
1−cos(𝜋𝑥1) · · ·

2
1−cos(𝜋𝑥𝑑)(

1 − 𝑑 + 2
1−cos(𝜋𝑥1) + · · · + 2

1−cos(𝜋𝑥𝑑)

) 1+𝑑
2

= (2𝜋)
𝑑−1

2 Γ( 1+𝑑
2 )

1
1−cos(𝜋𝑥1) · · ·

1
1−cos(𝜋𝑥𝑑)(

1−𝑑
2 + 1

1−cos(𝜋𝑥1) + · · · + 1
1−cos(𝜋𝑥𝑑)

) 1+𝑑
2
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6 (2𝜋)
𝑑−1

2 Γ( 1+𝑑
2 )

(
2

𝜋2𝑥2
1
+ 1

3

)
· · ·

(
2

𝜋2𝑥2
𝑑

+ 1
3

)
(

1−𝑑
2 + 2

𝜋2𝑥2
1
+ 1

6 + · · · + 2
𝜋2𝑥2

𝑑

+ 1
6

) 1+𝑑
2

.

Hence, for 0 < 𝑠 6 1 and 𝑥 ∈ 𝐿1/𝑠 , we have the upper bound

𝑠𝑑−1𝑝(𝑠𝑥) 6 (2𝜋)
𝑑−1

2 Γ( 1+𝑑
2 )

𝑠𝑑−1
(

2
𝜋2𝑠2𝑥2

1
+ 1

3

)
· · ·

(
2

𝜋2𝑠2𝑥2
𝑑

+ 1
3

)
(

1−𝑑
2 + 2

𝜋2𝑠2𝑥2
1
+ 1

6 + · · · + 2
𝜋2𝑠2𝑥2

𝑑

+ 1
6

) 1+𝑑
2

=
2𝑑−1Γ( 1+𝑑

2 )

𝜋
𝑑−1

2

(
1
𝑥2

1
+ 𝜋2𝑠2

6

)
· · ·

(
1
𝑥2
𝑑

+ 𝜋2𝑠2

6

)
(

1
𝑥2

1
+ · · · + 1

𝑥2
𝑑

− 𝜋2𝑠2

4 ( 2𝑑
3 − 1)

) 1+𝑑
2

.

Note that the upper bound converges to 𝜆(𝑥) as 𝑠→ 0.
Now observe that

1(
1
𝑥2

1
+ · · · + 1

𝑥2
𝑑

− 𝜋2𝑠2

4 ( 2𝑑
3 − 1)

) 1+𝑑
2

=
1

(𝑥−2
1 + · · · + 𝑥−2

𝑑
)

1+𝑑
2

1(
1 − 𝜋2

4 ( 2𝑑
3 − 1) 𝑠2

𝑥−2
1 +···+𝑥−2

𝑑

) 1+𝑑
2

,

with

𝜋2

4
( 2𝑑

3 − 1) 𝑠2

𝑥−2
1 +···+𝑥−2

𝑑

6
𝜋2

4
( 2𝑑

3 − 1)𝑠2.

Since we are interested in the limit 𝑠→ 0, we may assume that 𝑠2 6 2
𝜋2 ( 2𝑑

3 −1)
so that we may apply

the upper bound in (60) in Lemma D.2 below. We get

𝑠𝑑−1𝑝(𝑠𝑥) 6
2𝑑−1Γ( 1+𝑑

2 )

𝜋
𝑑−1

2

(
1
𝑥2

1
+ 𝜋2𝑠2

6

)
· · ·

(
1
𝑥2
𝑑

+ 𝜋2𝑠2

6

)
(

1
𝑥2

1
+ · · · + 1

𝑥2
𝑑

− 𝜋2𝑠2

4 ( 2𝑑
3 − 1)

) 1+𝑑
2

6
2𝑑−1Γ( 1+𝑑

2 )

𝜋
𝑑−1

2

(
𝑥−2

1 + 𝜋2𝑠2

6

)
· · ·

(
𝑥−2
𝑑

+ 𝜋2𝑠2

6

)
(
𝑥−2

1 + · · · 𝑥−2
𝑑

) 1+𝑑
2

· ©«1 + 𝑠2 2
(
2

1+𝑑
2 − 1

)
𝜋2

4 ( 2𝑑
3 − 1)

𝑥−2
1 + · · · + 𝑥−2

𝑑

ª®¬ .
Defining 𝐶1,𝐶2 > 0 by

𝐶1 =
2𝑑−1Γ( 1+𝑑

2 )

𝜋
𝑑−1

2

and 𝐶2 =
𝜋2

2
(
2

1+𝑑
2 − 1

)
( 2𝑑

3 − 1),
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we thus have the bound

(𝑠𝑑−1𝑝(𝑠𝑥) − 𝜆(𝑥))+ 6 𝑠2𝐶1𝐶2
𝑥−2

1 · · · 𝑥−2
𝑑(

𝑥−2
1 + · · · 𝑥−2

𝑑

) 3+𝑑
2

+𝐶1

∑𝑑−1
𝑘=0

∑
𝐼 ⊂{1,...,𝑑 }, |𝐼 |=𝑘 𝑥

−2
𝐼
( 𝜋2𝑠2

6 )𝑑−𝑘(
𝑥−2

1 + · · · 𝑥−2
𝑑

) 1+𝑑
2

+ 𝑠2𝐶1𝐶2

∑𝑑−1
𝑘=0

∑
𝐼 ⊂{1,...,𝑑 }, |𝐼 |=𝑘 𝑥

−2
𝐼
( 𝜋2𝑠2

6 )𝑑−𝑘(
𝑥−2

1 + · · · 𝑥−2
𝑑

) 3+𝑑
2

,

where 𝑥𝐼 denotes the sub-vector of 𝑥 with coordinates in 𝐼 and the square is to be understood
coordinate-wise.

The first term is the easiest to handle as it is bounded by a multiple of 𝜆(𝑥), it is integrable over 𝐿∞
and its contribution to the bias term is at most 𝑂 (𝑠2). The third term is bounded by a multiple of the
second term times 𝑠2 and is therefore negligible in front of the second term. Now note that that the
domain of integration 𝐿1/𝑠 can be rewritten as

𝐿1/𝑠 =
⋃

∅≠𝐽 ⊂{1,...,𝑑 }
𝐵𝐽 ,1/𝑠 where 𝐵𝐽 ,1/𝑠 =

{
𝑥 ∈ (0,1/𝑠]𝑑 : ∀ 𝑗 ∈ 𝐽, 𝑥 𝑗 6 1;∀ 𝑗 ∈ 𝐽𝑐 : 𝑥 𝑗 > 1

}
.

Hence, integrating the second term over 𝐿1/𝑠 implies that we will need to bound integrals of the form

𝑠2(𝑑−|𝐼 |)
∫
𝐵𝐽,1/𝑠

∏
𝑖∈𝐼 𝑥

−2
𝑖(

𝑥−2
1 + · · · + 𝑥−2

𝑑

) 1+𝑑
2

d𝑥,

for subsets 𝐼, 𝐽 ⊂ {1, . . . , 𝑑} with 𝐼𝑐 ≠ ∅ and 𝐽 ≠ ∅. Without loss of generality we may assume that
𝐽 = {1, . . . , 𝑗} for some 𝑗 ∈ {1, . . . , 𝑑} and therefore, a change of variable 𝑥ℓ = 𝑦−1

ℓ
for all ℓ ∈ {1, . . . , 𝑑}

permits to rewrite the integral as

𝑠2(𝑑−|𝐼 |)
∫ 1

𝑥1=0
. . .

∫ 1

𝑥 𝑗=0

∫ 1/𝑠

𝑥 𝑗+1=1
. . .

∫ 1/𝑠

𝑥𝑑=1

(
𝑥−2

1 + · · · + 𝑥−2
𝑑

)−(1+𝑑)/2 ∏
𝑖∈𝐼

𝑥−2
𝑖 d𝑥

= 𝑠2 |𝐼 𝑐 |
∫ ∞

𝑦1=1
. . .

∫ ∞

𝑦 𝑗=1

∫ 1

𝑦 𝑗+1=𝑠
. . .

∫ 1

𝑦𝑑=𝑠

(
𝑦2

1 + · · · + 𝑦2
𝑑

)−(1+𝑑)/2 ∏
𝑖∈𝐼 𝑐

𝑦−2
𝑖 d𝑦.

If 𝑗 = 𝑑, the integral is finite and hence the contribution to the bias is at least of the order 𝑂 (𝑠2) as
|𝐼𝑐 | > 1. Thus, we shall assume 𝑗 < 𝑑. Observe that for every 𝑖 ∈ 𝐼𝑐 , if 𝑖 6 𝑗 , then we may upper
bound 𝑦−1

𝑖
6 1. Consequently, the worst case will happen whence 𝐼𝑐 ∩ 𝐽 = ∅. In this case, bounding(

𝑦2
1 + · · · + 𝑦2

𝑑

)−(1+𝑑)/2
by

(
𝑦2

1 + · · · + 𝑦2
𝑗

)−(1+𝑑)/2
permits to upper bound the latter integral by

𝑠2 |𝐼 𝑐 |
∫ ∞

𝑦1=1
. . .

∫ ∞

𝑦 𝑗=1
(𝑦2

1 + · · · + 𝑦2
𝑗 )−(1+𝑑)/2 · d𝑦1 · · ·d𝑦 𝑗 ·

∏
𝑖∈𝐼 𝑐

∫ 1

𝑦𝑖=𝑠

𝑦−2
𝑖 d𝑦𝑖 ,

which is of order 𝑂 (𝑠 |𝐼 𝑐 |) as the integral over (𝑦1, . . . , 𝑦 𝑗 ) is finite. Since |𝐼𝑐 | > 1, we find that the
order of the first integral in the bias decomposition (55) is of the order 𝑂 (𝑠).
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We now claim that second term in the decomposition (56) is always equal to zero for suffi-
ciently small 𝑠 > 0 and therefore conclude that D1/𝑠 (𝑠) = 𝑂 (𝑠) as 𝑠→ 0. Previous computations and
bounds (57) show that for every 𝑥 such that 𝑥𝑖 6 1 for 𝑖 ∈ {1, . . . , 𝑑},

𝑝(𝑥) = (2𝜋)
𝑑−1

2 Γ( 1+𝑑
2 )

1
1−cos(𝜋𝑥1) · · ·

1
1−cos(𝜋𝑥𝑑)(

1−𝑑
2 + 1

1−cos(𝜋𝑥1) + · · · + 1
1−cos(𝜋𝑥𝑑)

) 1+𝑑
2

> (2𝜋)
𝑑−1

2 Γ( 1+𝑑
2 )

(
2

𝜋2𝑥2
1
+ 1

6

)
· · ·

(
2

𝜋2𝑥2
𝑑

+ 1
6

)
(

1−𝑑
2 + 2

𝜋2𝑥2
1
+ 1

3 + · · · + 2
𝜋2𝑥2

𝑑

+ 1
3

) 1+𝑑
2

.

Hence, for 𝑥 ∈ 𝐿1/𝑠 , we have

𝑠𝑑−1𝑝(𝑠𝑥) > (2𝜋)
𝑑−1

2 Γ( 1+𝑑
2 )

𝑠𝑑−1
(

2
𝜋2𝑠2𝑥2

1
+ 1

6

)
· · ·

(
2

𝜋2𝑠2𝑥2
𝑑

+ 1
6

)
(

2
𝜋2𝑠2𝑥2

1
+ · · · + 2

𝜋2𝑠2𝑥2
𝑑

− ( 𝑑6 − 1/2)
) 1+𝑑

2

=
2𝑑−1Γ( 1+𝑑

2 )

𝜋
𝑑−1

2

(𝑥−2
1 + 𝜋2𝑠2

12 ) · · · (𝑥−2
𝑑

+ 𝜋2𝑠2

12 )(
𝑥−2

1 + · · · + 𝑥−2
𝑑

− 𝑠2𝜋2 ( 𝑑3 − 1)
) 1+𝑑

2

.

Note that the lower bound converges to 𝜆(𝑥) as 𝑠→ 0. Since we are interested in 𝑠→ 0, we may assume
that 𝑠2 6 (2𝜋2 (𝑑/3−1))−1 and apply the lower bound in (60) in Lemma D.2 below to get that for every
𝑥 ∈ 𝐿1/𝑠 ,

𝑠𝑑−1𝑝(𝑠𝑥) >
2𝑑−1Γ( 1+𝑑

2 )

𝜋
𝑑−1

2

(𝑥−2
1 + 𝜋2𝑠2

12 ) · · · (𝑥−2
𝑑

+ 𝜋2𝑠2

12 )(
𝑥−2

1 + · · · 𝑥−2
𝑑

) 1+𝑑
2

(
1 + 𝑠2 𝜋

2 ( 𝑑3 − 1) ( 1+𝑑
2 )

𝑥−2
1 + · · · 𝑥−2

𝑑

)
.

This shows in particular that 𝑠𝑑−1𝑝(𝑠𝑥) − 𝜆(𝑥) > 0 for every value of 𝑥 ∈ 𝐿1/𝑠 and 𝑠 6 (2𝜋2 (𝑑/3 −
1))−1/2 so that the integral ∫

𝐿1/𝑠
(𝜆(𝑥) − 𝑠𝑑−1𝑝(𝑠𝑥))+d𝑥 = 0,

for those values of 𝑠 and we get that the bias D1/𝑠 (𝑠) =𝑂 (𝑠) as 𝑠→ 0.
To deal with the second term in the upper bound of Proposition D.1, we note that since,

d𝜇
d𝑥

(𝑥) = 𝜆(𝜄(𝑥))𝑥−2
1 · · · 𝑥−2

𝑑 =𝐶1‖𝑥‖−1−𝑑
2 ,

the density associated to Φ2 is constant, say 𝜑, so that

𝜇

({
𝑥 ∈ (0,∞)𝑑 : max(𝑥) > 𝑐,min(𝑥) 6 1/𝑡

})
6 𝑐−1Φ2

(
{𝜃 ∈ S2 : min(𝜃) 6 1

𝑐𝑡
}
)
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= 𝑐−1𝜑 leb𝑑−1

(
{𝜃 ∈ S2 : min(𝜃) 6 1

𝑐𝑡
}
)
=𝑂 (1/𝑡),

when 𝑡→∞. This concludes the analysis of the bias term for the multivariate Cauchy distribution.

Lemma D.1. We have
1
6
6

1
1 − cos(𝑡) −

2
𝑡2

6
1
3

for 0 < 𝑡 6 𝜋. (57)

Proof. Note that we may rewrite the inequality as follows: for 0 6 𝑡 6 𝜋, we must have

1
6
6

1
1 − cos 𝑡

− 2
𝑡2

6
1
3

⇐⇒ 1
6
+ 2
𝑡2

6
1

1 − cos 𝑡
6

1
3
+ 2
𝑡2

⇐⇒ 12 + 𝑡2

6𝑡2
6

1
1 − cos 𝑡

6
6 + 𝑡2

3𝑡2

⇐⇒ 3𝑡2

6 + 𝑡2
6 1 − cos 𝑡 6

6𝑡2

12 + 𝑡2
,

which gives the inequalities

cos 𝑡 6 1 − 3𝑡2

6 + 𝑡2
=

6 − 2𝑡2

6 + 𝑡2
(58)

cos 𝑡 > 1 − 6𝑡2

12 + 𝑡2
=

12 − 5𝑡2

12 + 𝑡2
. (59)

We start by showing (58). Taylor’s theorem implies that

cos 𝑡 6 1 − 𝑡2

2!
+ 𝑡

4

4!
− 𝑡6

6!
+ 𝑡

8

8!
.

Consequently,

(6 + 𝑡2) cos 𝑡 6 (6 + 𝑡2) ·
(
1 − 𝑡2

2!
+ 𝑡

4

4!
− 𝑡6

6!
+ 𝑡

8

8!

)
= 6 − 3𝑡2 + 𝑡

4

4
− 𝑡6

120
+ 𝑡8

6720
+ 𝑡2 − 𝑡

4

2
+ 𝑡6

24
− 𝑡8

720
+ 𝑡10

40320

= 6 − 2𝑡2 + 𝑡4

40320

(
𝑡6 − 50𝑡4 + 1344𝑡2 − 10080

)
.

Hence, if we show that the polynomial 𝑅(𝑠) := 𝑠3 −50𝑠2 +1344𝑠−10080 is strictly negative on 0 6 𝑠6
𝜋2, we are done proving (58). It is sufficient to observe that 𝑅(𝜋2) < 0 and 𝑅′(𝑠) > 0 for the concerned
values of 𝑠 since

𝑅′(𝑠) = 3𝑠2 − 100𝑠 + 1344

satisfies Δ𝑅 = 1000 − 12 · 1344 < 0 and 𝑅′(0) = 1344 > 0.
To prove (59), we follow the same path: Taylor’s theorem implies that

cos 𝑡 > 1 − 𝑡
2

2
+ 𝑡

4

4!
− 𝑡6

6!
.
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Consequently,

(12 + 𝑡2) cos 𝑡 > (12 + 𝑡2) ·
(
1 − 𝑡

2

2
+ 𝑡

4

4!
− 𝑡6

6!

)
= 12 − 6𝑡2 + 𝑡

4

2
− 𝑡6

60
+ 𝑡2 − 𝑡

4

2
+ 𝑡6

24
− 𝑡8

720

= 12 − 5𝑡2 + 𝑡6

720

(
−𝑡2 + 18

)
.

Since −𝑡2 + 18 > 0 for 0 6 𝑡 6
√

18 and
√

18 > 𝜋, we have proven (59).

Lemma D.2. For 𝑎 ∈ [0,1/2], we have

1 +
(

1 + 𝑑
2

)
𝑎 6 (1 − 𝑎)−

1+𝑑
2 6 1 + 2

(
2

1+𝑑
2 − 1

)
𝑎. (60)

Proof. To prove the upper bound, we will use a convexity argument. Note that the function 𝜙(𝑎) =
(1 − 𝑎)−

1+𝑑
2 on the left hand side is a convex function of its argument. Since it is a 𝐶2 function, we

may prove that fact by differentiating it two times and show that 𝜙′′(𝑎) > 0 for 0 6 𝑎 6 1/2. Since we
compute that

𝜙′′(𝑎) = 𝑑+1
2 · 𝑑+3

2 · (1 − 𝑎)−
𝑑+5

2 ,

the convexity on the domain of interest is proven. This implies that for any 𝜆 ∈ [0,1] and any pair of
points 𝑎1, 𝑎2 ∈ [0,1/2],

𝜙(𝜆𝑎1 + (1 − 𝜆)𝑎2) 6 𝜆𝜙(𝑎1) + (1 − 𝜆)𝜙(𝑎2).

In particular, the graph of 𝜙 is anywhere bounded by the straight line joining the points 𝜙(0) = 1 and

𝜙(1/2) = 2
1+𝑑

2 on the domain of interest. This affine function has analytic expression

𝐿 (𝑎) = 1 + 2
(
2

1+𝑑
2 − 1

)
𝑎

and corresponds to the upper bound in the statement.
To prove the lower bound, define 𝜙(𝑎) = (1 − 𝑎)−(𝑑+1)/2. Then, we already showed that it satisfies

𝜙′′(𝑎) > 0 for 𝑎 ∈ [0,1/2]. Consequently, Taylor’s theorem ensures that for every 𝑎 in the region of
interest

𝜙(𝑎) = 𝜙(0) + 𝜙′(0)𝑎 + 𝑅1
0𝜙(𝑎) > 𝜙(0) + 𝜙′(0)𝑎,

since, by Lagrange’s formula, the rest 𝑅1
0𝜙(𝑎) =

𝜙′′ (𝑐)
2 𝑎2 for some 𝑐 ∈ (0, 𝑎) and the second derivative

is positive at this point. Observing that 𝜙(0) = 1 and 𝜙′(0) = (1 + 𝑑)/2 permits to conclude.

Appendix E: Proofs of examples

Proof of Example 3.1. We first consider Assumption 3.1. Restricting 𝑎 and 𝛽 to have rational coordi-
nates yields a countable collection A0 ⊂ A satisfying item (i) in Assumption 3.1. Item (ii) is satisfied
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by definition. For 𝐴𝑎,𝛽,𝜏 ∈ A and 𝜀 > 0, define the inner and outer hulls

𝐴𝑎,𝛽,𝜏;− (𝜀) = 𝐴𝑎,𝛽−√𝑑𝜀,𝜏+𝜀 ,

𝐴𝑎,𝛽,𝜏;+ (𝜀) = 𝐴𝑎,𝛽+√𝑑𝜀,𝜏−𝜀 ,

with the convention that S𝜐𝑝 = S𝑝 if 𝜐 < 0 (a case which arises if 𝜀 > 𝜏). We show that item (iii)
in Assumption 3.1 is satisfied, provided the angular measure Φ𝑝 has a bounded density on S𝜏𝑝 with
respect to (𝑑 − 1)-dimensional Lebesgue measure. First, we show the inclusions (22).

• For 𝑥 ∈ 𝐴𝑎,𝛽,𝜏;− (𝜀) and for 𝑦 ∈ S𝑝 such that ‖𝑦 − 𝑥‖∞ 6 𝜀, we have 𝑦 ∈ 𝐴𝑎,𝛽,𝜏 : indeed,

𝑦1 ∧ · · · ∧ 𝑦𝑑 > 𝑥1 ∧ · · · ∧ 𝑥𝑑 − 𝜀 > 𝜏 + 𝜀 − 𝜀 = 𝜏

as well as (by equivalence of norms (25))

〈𝑎, 𝑦〉 = 〈𝑎, 𝑥〉 + 〈𝑎, 𝑦 − 𝑥〉 6 𝛽 −
√
𝑑𝜀 + ‖𝑎‖2‖𝑦 − 𝑥‖2 6 𝛽 −

√
𝑑𝜀 +

√
𝑑‖𝑦 − 𝑥‖∞ 6 𝛽.

This is the first inclusion in (22).
• For 𝑥 ∈ 𝐴𝑎,𝛽,𝜏 and for 𝑦 ∈ S𝑝 such that ‖𝑦 − 𝑥‖∞ 6 𝜀, we have

𝑦1 ∧ · · · ∧ 𝑦𝑑 > 𝑥1 ∧ · · · ∧ 𝑥𝑑 − 𝜀 > 𝜏 − 𝜀

so that 𝑦 ∈ S𝜏−𝜀𝑝 (if 𝜀 > 𝜏 this trivial since S𝜐𝑝 = S𝑝 for 𝜐 < 0) together with

〈𝑎, 𝑦〉 = 〈𝑎, 𝑥〉 + 〈𝑎, 𝑦 − 𝑥〉 6 𝛽 + ‖𝑎‖2‖𝑦 − 𝑥‖2 6 𝛽 +
√
𝑑‖𝑦 − 𝑥‖∞ 6 𝛽 +

√
𝑑𝜀.

This implies the second inclusion in (22).

The difference between the inner and outer hulls is

𝐴𝑎,𝛽,𝜏;+ (𝜀) \ 𝐴𝑎,𝛽,𝜏;− (𝜀) ⊆
{
𝑥 ∈ S𝑝 : 𝛽 −

√
𝑑𝜀 < 〈𝑎, 𝑥〉 6 𝛽 +

√
𝑑𝜀

}
∪ (S𝜏−𝜀𝑝 \ S𝜏+𝜀𝑝 ).

Since ‖𝑎‖2 = 1, the (𝑑 −1)-dimensional Lebesgue measure of the set on the right-hand side is bounded
by a constant multiple of 𝜀.

Next we show that Assumption 3.2 is satisfied. The VC-dimension is preserved under bijections. We
identify 𝐸 = [0,∞)𝑑 \ {(0, . . . ,0)} with the product set (0,∞) × S𝑝 via 𝑥 ↦→ (‖𝑥‖𝑝 , 𝑥/‖𝑥‖𝑝). In the
latter space, we need to establish the finiteness of the VC-dimensions of the collections {Υ−

𝐴
(𝑟, ℎ) : 𝐴 ∈

A} and {Υ+
𝐴
(𝑟, ℎ) : 𝐴 ∈ A} for fixed 𝑟, ℎ > 0, where

Υ𝜎𝐴 (𝑟, ℎ) =
{
(𝑢, 𝜃) ∈ ( 1

𝑟
,∞) × S𝑝 : 𝜃 ∈ 𝐴𝜎 (ℎ𝑢)

}
for 𝜎 ∈ {−,+} and 𝐴 ∈ A. For 𝐴 = 𝐴𝑎,𝛽,𝜏 we have

𝜃 ∈ 𝐴− (ℎ𝑢) ⇐⇒
[
𝜃1 ∧ · · · ∧ 𝜃𝑑 > 𝜏 + ℎ𝑢 and 〈𝑎, 𝜃〉 6 𝛽 −

√
𝑑ℎ𝑢

]
.

This corresponds to 𝑑 + 1 linear inequality constraints on (𝑢, 𝜃) as (𝑎, 𝛽) ranges over R𝑑 × R. The
VC dimension of {Υ−

𝐴
(𝑟, ℎ) : 𝐴 ∈ A} as a collection of subsets of (0,∞) × S𝑝 is therefore finite [53,

Lemma 2.6.17 and Exercise 14 on page 152], and the same is then true for {Γ−
𝐴
(𝑟, ℎ) : 𝐴 ∈ A} as a

collection of subsets of 𝐸 . The argument for the outer hulls is similar.
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Proof of Example 3.2. We first consider the collection of intersections. In Assumption 3.1, item (i)
follows by considering the countable collection of intersections A1,0 uA2,0, where A 𝑗 ,0 is the count-
able subset of A 𝑗 for 𝑗 ∈ {1,2}. Item (ii) is trivially satisfied. Regarding (iii): given 𝐴 𝑗 ∈ A 𝑗 with
inner and outer hulls 𝐴 𝑗 ,𝜎 (𝜀), the inner and outer hulls of 𝐴1 ∩ 𝐴2 can chosen to be 𝐴1,− (𝜀) ∩ 𝐴2,− (𝜀)
and 𝐴1,+ (𝜀) ∩ 𝐴2,+ (𝜀). The two inclusions (22) are straightforward to verify. The measure of the set
difference between the inner and outer hulls can be controlled via(

𝐴1,+ (𝜀) ∩ 𝐴2,+ (𝜀)
)
\
(
𝐴1,− (𝜀) ∩ 𝐴2,− (𝜀)

)
⊆

(
𝐴1,+ (𝜀) \ 𝐴1,− (𝜀)

)
∪

(
𝐴2,+ (𝜀) \ 𝐴2,− (𝜀)

)
.

If 𝑐1 and 𝑐2 denote the constants on the right-hand of (21) for A1 and A2, respectively, then 𝑐1 + 𝑐2 is
a valid constant for A1 uA2.

To show that the collections of framing sets derived from the inner and outer hulls thus constructed
have a finite VC-dimension (Assumption 3.2), it suffices to observe that, by definition,

Γ𝜎𝐴1∩𝐴2
(𝑟, ℎ) = Γ𝜎𝐴1

(𝑟, ℎ) ∩ Γ𝜎𝐴2
(𝑟, ℎ)

and thus

{Γ𝜎𝐴 (𝑟, ℎ) : 𝐴 ∈ A1 uA2} = {Γ𝜎𝐴1
(𝑟, ℎ) : 𝐴1 ∈ A1} u {Γ𝜎𝐴2

(𝑟, ℎ) : 𝐴2 ∈ A2}.

The collection on the left-hand side has a finite VC-dimension since, by assumption, each of the two
collections on the right-hand side has a finite VC-dimension; see for instance [53, Lemma 2.6.17].

For the collection of unions, the verification of Assumptions 3.1 and 3.2 is completely similar. The
inner and outer hulls of a union 𝐴1 ∪ 𝐴2 are now defined as the unions of the inner and outer hulls of
𝐴1 and 𝐴2.

Appendix F: Proofs of classification application

In the proofs, we find it sometimes convenient to take explicit note of the map 𝑇 : R𝑑 → [0,∞)𝑑 used
to transform the marginal distributions of the predictor variable; typically, 𝑇 = 𝑣 or 𝑇 = �̂�. In line with
the theoretical and empirical classification risks 𝐿𝑡 (𝑔) and �̂�𝜏 (𝑔) in (35) and (37) in the paper, define

𝐿𝑡 (𝑔,𝑇) = 𝑡 P[𝑔(𝑇 (𝑋)) ≠𝑌, ‖𝑇 (𝑋)‖𝑝 > 𝑡],

�̂�𝜏 (𝑔,𝑇) = 1
𝑘

𝑛∑︁
𝑖=1

1{𝑔(𝑇 (𝑋𝑖)) ≠𝑌𝑖 , 𝜃𝑝 (𝑇 (𝑋𝑖)) ∈ S𝜏𝑝 , ‖𝑇 (𝑋𝑖)‖𝑝 > 𝑛/𝑘}.

Then 𝐿𝑡 (𝑔) in (35) corresponds to 𝐿𝑡 (𝑔, 𝑣) here and �̂�𝜏 (𝑔) in (37) to �̂�𝜏 (𝑔, �̂�).

Proof of Lemma 4.1. We prove the first statement only. The proof of the second one follows the same
lines and is left to the reader. The third statement is obtained by adding up the left and right hand sides
of the first two identities.

Decompose 𝐿>𝜏𝑡 into a type-I and a type-II risk: 𝐿>𝜏𝑡 (𝑔,𝑇) = 𝐿>𝜏𝑡,+ (𝑔,𝑇) + 𝐿>𝜏𝑡,− (𝑔,𝑇) with

𝐿>𝜏𝑡,± (𝑔,𝑇) = 𝑡 P[𝑔(𝑇 (𝑋)) ≠𝑌, 𝑌 = ±1, 𝜃𝑝 (𝑇 (𝑋)) ∈ S𝜏𝑝 , ‖𝑇 (𝑋)‖𝑝 > 𝑡] .

Consider the cones generated by regions S±𝑝 (𝑔) = {𝑥 ∈ S𝑝 : 𝑔(𝑥) = ±1}, that is, 𝑅±𝑝 (𝑔) = {𝑡𝑥 : 𝑥 ∈
S±𝑝 (𝑔), 𝑡 > 1}. Equipped with this notation we may write

𝐿>𝜏𝑡,+ (𝑔,𝑇) = 𝑡 P[𝑇 (𝑋) ∈ 𝑅−𝑝 (𝑔), 𝑌 = +1, 𝜃𝑝 (𝑇 (𝑋)) ∈ S𝜏𝑝 , ‖𝑇 (𝑋)‖𝑝 > 𝑡],
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𝐿>𝜏𝑡,− (𝑔,𝑇) = 𝑡 P[𝑇 (𝑋) ∈ 𝑅+𝑝 (𝑔), 𝑌 = −1, 𝜃𝑝 (𝑇 (𝑋)) ∈ S𝜏𝑝 , ‖𝑇 (𝑋)‖𝑝 > 𝑡] .

Setting the standardization function 𝑇 to 𝑣 yields 𝑇 (𝑋) =𝑉 and thus

𝐿>𝜏𝑡,+ (𝑔, 𝑣) = 𝑡 P[𝑉 ∈ 𝑅−𝑝 (𝑔), 𝜃𝑝 (𝑉) ∈ S𝜏𝑝 , ‖𝑉 ‖𝑝 > 𝑡, 𝑌 = +1]

= 𝜚𝑡 P[𝜃𝑝 (𝑉) ∈ S−𝑝 (𝑔) ∩ S𝜏𝑝 , ‖𝑉 ‖𝑝 > 𝑡 | 𝑌 = +1]

→ 𝜚Φ+
𝑝 (S−𝑝 (𝑔) ∩ S𝜏𝑝), 𝑡→∞,

where the last convergence occurs because of Assumption 4.1 and the fact that Φ+
𝑝 is dominated by

Φ𝑝 , so that S−𝑝 (𝑔) ∩ S𝜏𝑝 is a Φ+
𝑝-continuity set. Proceeding similarly with 𝐿>𝜏𝑡,− (𝑔, 𝑣), the result is

obtained.

The next result parallels Lemma 4.1 by relating the empirical risk with the empirical angular measure
of the positive and negative classes.

Consider the type-I and type-II empirical errors,

�̂�𝜏± (𝑔,𝑇) =
1
𝑘

𝑛∑︁
𝑖=1

1{𝑔(𝑇 (𝑋𝑖)) ≠𝑌𝑖 , 𝑌𝑖 = ±1, 𝜃𝑝 (𝑇 (𝑋𝑖)) ∈ S𝜏𝑝 , ‖𝑇 (𝑋𝑖)‖𝑝 > 𝑛/𝑘}.

Setting 𝑇 = �̂� as in (12) yields 𝑇 (𝑋𝑖) =𝑉𝑖 and thus

�̂�𝜏+ (𝑔, �̂�) =
1
𝑘

𝑛∑︁
𝑖=1

1{𝜃𝑝 (𝑉𝑖) ∈ S−𝑝 (𝑔) ∩ S𝜏𝑝 , 𝑌𝑖 = +1, ‖𝑉𝑖 ‖𝑝 > 𝑛/𝑘}.

Recall from (40) the empirical angular measures Φ̂𝜎𝑝 of the positive and negative instances. A similar
treatment of �̂�𝜏− (𝑔, �̂�) yields immediately:

Lemma F.1. In the case where 𝑇 is the rank transformation �̂�,

�̂�𝜏+ (𝑔, �̂�) =
𝑘+
𝑘
Φ̂+
𝑝 (S−𝑝 (𝑔) ∩ S𝜏𝑝) , �̂�𝜏− (𝑔, �̂�) =

𝑘−
𝑘
Φ̂−
𝑝 (S+𝑝 (𝑔) ∩ S𝜏𝑝).

Proof of Theorem 4.1. Recall from the proof of Lemma 4.1 the decomposition of 𝐿>𝜏∞ into type-
I and type-II errors, 𝐿>𝜏∞ = 𝐿>𝜏∞,+ + 𝐿>𝜏∞,− with 𝐿>𝜏∞,+ (𝑔) = 𝜚Φ+

𝑝 (S−𝑝 (𝑔) ∩ S𝜏𝑝) and 𝐿>𝜏∞,− (𝑔) = (1 −
𝜚)Φ−

𝑝 (S+𝑝 (𝑔) ∩ S𝜏𝑝). Recall also the identities for their empirical counterparts �̂�𝜏± in Lemma F.1. For
𝑔 ∈ G, the deviations of the empirical risk may be bounded by the sum of the deviations of the two
error types, ����̂�𝜏 (𝑔, �̂�) − 𝐿>𝜏∞ (𝑔)

��� = ����̂�𝜏+ (𝑔, �̂�) − 𝐿>𝜏∞,+ (𝑔) + �̂�𝜏− (𝑔, �̂�) − 𝐿>𝜏∞,− (𝑔)���
6

����̂�𝜏+ (𝑔, �̂�) − 𝐿>𝜏∞,+ (𝑔)��� + ����̂�𝜏− (𝑔, �̂�) − 𝐿>𝜏∞,− (𝑔)��� . (61)

Let us focus on the first term of the sum. The treatment of the second term is entirely similar and
this accounts for the factor two on the right-hand side of the bound in the theorem. From Lemma F.1
and the definition of 𝐿>𝜏∞,+ (𝑔) recalled above, we have

| �̂�𝜏+ (𝑔, �̂�) − 𝐿>𝜏∞,+ (𝑔) | =
���� 𝑘+𝑘 Φ̂+

𝑝 (S−𝑝 (𝑔) ∩ S𝜏𝑝) − 𝜚Φ+
𝑝 (S−𝑝 (𝑔) ∩ S𝜏𝑝)

����,
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which suggests extending the concentration results concerning the empirical measure Φ̂𝑝 to its con-
ditional version Φ̂+

𝑝 . To do so we shall work on the product space R𝑑 × {−1,1}. We first introduce
some notation. Let 𝑄 be the joint distribution of the pair (𝑋,𝑌 ) on R𝑑 × {−1,1} and let 𝑄𝑛 denote its
empirical version, 𝑄𝑛 = 𝑛−1 ∑𝑛

𝑖=1 𝛿 (𝑋𝑖 ,𝑌𝑖) . As in Section 3 we can and will assume that each margin 𝑋 𝑗
is unit-Pareto so that 𝑋 =𝑉 . The empirical measure of the rank-transformed data is

𝑄𝑛 =
1
𝑛

𝑛∑︁
𝑖=1

𝛿 (�̂�𝑖 ,𝑌𝑖) =𝑄𝑛 ◦ (�̂�, id)
−1

where id is the identity function mapping (on {−1,1}).
Define the limit measure on 𝐸 × {−1,1}: for 𝜎 ∈ {−,+} and Borel sets 𝐵 ⊆ 𝐸 bounded away from

the origin with 𝜇𝜎 (𝜕𝐵) = 0, put

𝜈(𝐵 × {𝜎1}) = lim
𝑡→∞

𝑡 P[𝑉 ∈ 𝑡𝐵,𝑌 = 𝜎1] = P[𝑌 = 𝜎1] 𝜇𝜎 (𝐵),

a limit which exists by the conditional regular variation assumption (31). Notice that 𝜈 is homogeneous
of order −1 w.r.t. the first component. With this notation and the one borrowed from the proof of
Theorem 3.1 (see (52) for the definition of Γ̂𝐴), we have, for 𝐴 ⊆ S𝑝 ,

𝑘+
𝑘
Φ̂+
𝑝 (𝐴) = 𝑛

𝑘
𝑄𝑛

(
𝑛
𝑘
C𝐴 × {+1}

)
= 𝑛
𝑘
𝑄𝑛

(
�̂�−1 ( 𝑛

𝑘
C𝐴) × {+1}

)
= 𝑛
𝑘
𝑄𝑛 (Γ̂𝐴 × {+1})

and

𝜚Φ+
𝑝 (𝐴) = 𝜈(C𝐴 × {+1}).

It is shown in the proof of Theorem 3.1 that under the assumptions of the statement, there exists an
event E1 of probability at least 1 − 𝑑𝛿/(𝑑 + 1) on which 𝑛

𝑘
Γ−
𝐴
⊆ Γ̂𝐴 ⊆ 𝑛

𝑘
Γ+
𝐴

, see (45). In addition recall
that

∀𝐴 ∈ A, Γ−
𝐴 ⊆ C𝐴 ⊆ Γ+

𝐴.

Thus on the event E1, we can decompose the error as in the proof of Theorem 3.1 into

𝑘+
𝑘
Φ̂+
𝑝 (𝐴) − 𝜚Φ+

𝑝 (𝐴) = 𝑛
𝑘
𝑄𝑛 (Γ̂𝐴 × {+1}) − 𝜈(C𝐴 × {+1})

6 𝑛
𝑘
𝑄𝑛 ( 𝑛𝑘 Γ

+
𝐴 × {+1}) − 𝜈(Γ−

𝐴 × {+1})

6 𝑛
𝑘

��𝑄𝑛 ( 𝑛𝑘 Γ+
𝐴 × {+1}) −𝑄( 𝑛

𝑘
Γ+
𝐴 × {+1})

��
+
�� 𝑛
𝑘
𝑄( 𝑛

𝑘
Γ+
𝐴 × {+1}) − 𝜈(Γ+

𝐴 × {+1})
��

+ 𝜈
(
(Γ+
𝐴 \ Γ

−
𝐴) × {+1}

)
.

A lower bound for the estimation error can be derived in a similar way, yielding, on E1,��� 𝑘+𝑘 Φ̂+
𝑝 (𝐴) − 𝜚Φ+

𝑝 (𝐴)
���6 max

𝐵∈{Γ+
𝐴
,Γ−

𝐴
}
𝑛
𝑘

��𝑄𝑛 ( 𝑛𝑘 𝐵 × {+1}) −𝑄( 𝑛
𝑘
𝐵 × {+1})

�� (stochastic error II)

+ max
𝐵∈{Γ+

𝐴
,Γ−

𝐴
}
𝑛
𝑘

��𝑄( 𝑛
𝑘
𝐵 × {+1}) − 𝜈(𝐵 × {+1})

�� (bias term II)
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+ 𝜈
(
(Γ+
𝐴 \ Γ

−
𝐴) × {+1}

)
(framing gap II).

We treat the three terms separately, following closely the proof of Theorem 3.1.
Bias term II. Taking the supremum over 𝐴 ∈ A immediately yields the bias term in the statement

of Theorem 4.1.
Stochastic error II. Since 𝑄(𝐵 × {+1}) 6 P[𝑋 ∈ 𝐵], the 𝑄-probability of sets in the class F ′ =

F × {+1} (with F defined in (46)) is less than 𝑑1+1/𝑝 (1 + Δ2) 𝑘𝑛 , see (47). The class F ′ has the same
VC-dimension𝑉F as F . Thus on an event E+

2 of probability 1− 𝛿/(2(𝑑 +1)) we have, by Theorem A.1,

sup
𝐴∈A

max
𝐵∈{Γ+

𝐴
,Γ−

𝐴
}
𝑛
𝑘

��𝑄𝑛 ( 𝑛𝑘 𝐵 × {+1}) −𝑄( 𝑛
𝑘
𝐵 × {+1})

��
6

√︄
𝑑1+1/𝑝 (1 + Δ2)

𝑘

(
56

√︁
𝑉F + 2

√︁
log(2(𝑑 + 1)/𝛿)

)
+ 2

3𝑘
log(2(𝑑 + 1)/𝛿),

which is the term labelled ‘error’ in the statement.
Framing gap II. As in the proof of Theorem 3.1, the framing gap in the product space satisfies

𝜈
(
(Γ+
𝐴 \ Γ

−
𝐴) × {+1}

)
6 𝜈

({
𝑥 ∈ [0,∞)𝑑 : (1 + Δ2)−1 6 ‖𝑥‖𝑝 < (1 − Δ2)−1

}
× {+1}

)
+ 𝜈

({
𝑥 ∈ [0,∞)𝑑 : ‖𝑥‖𝑝 > 1, 𝜃𝑝 (𝑥) ∈ 𝐴+ (3Δ1‖𝑥‖𝑝) \ 𝐴− (3Δ1‖𝑥‖𝑝)

}
× {+1}

)
.

(62)

The first term on the right-hand side of (62) is equal to

2Δ2𝜈({𝑥 ∈ [0,∞)𝑑 : ‖𝑥‖𝑝 > 1} × {+1}) = 2Δ2𝜚Φ
+
𝑝 (S𝑝) 6 2Δ2Φ𝑝 (S𝑝),

where the latter inequality comes from the decomposition Φ𝑝 = 𝜚Φ
+
𝑝 + (1− 𝜚)Φ−

𝑝 . The second term on
the right-hand side in (62) can be expressed using the polar decomposition of 𝜇+ (and thus 𝜈), yielding

𝜈

({
𝑥 ∈ [0,∞)𝑑 : ‖𝑥‖𝑝 > 1, 𝜃𝑝 (𝑥) ∈ 𝐴+ (3Δ1‖𝑥‖𝑝) \ 𝐴− (3Δ1‖𝑥‖𝑝)

}
× {+1}

)
=

∫ ∞

1
𝜚Φ+

𝑝

(
𝐴+ (3Δ1𝑟) \ 𝐴− (3Δ1𝑟)

) d𝑟
𝑟2 6

∫ ∞

1
Φ𝑝

(
𝐴+ (3Δ1𝑟) \ 𝐴− (3Δ1𝑟)

) d𝑟
𝑟2 .

In the proof of Theorem 3.1, it has been shown that the bound in the latter display is less than

3𝑐Δ1 (1 + logΦ𝑝 (S𝑝) − log(3𝑐Δ1)).

We thus obtain the same gap term as in Theorem 3.1.
So far we have only treated one of the two terms of the error decomposition (61). The second one is

treated in the same way and the associated upper bound is identical, which yields the factor two in the
statement of Theorem 4.1. The decomposition of | 𝑘−

𝑘
Φ̂−
𝑝 (𝐴) − (1 − 𝜚)Φ−

𝑝 (𝐴) | into a stochastic error,
a bias term and framing gap holds true on the same event E1. The bound on the stochastic error is
valid on an event E−

2 of probability at least 1 − 𝛿/(2(𝑑 + 1)). Thus the upper bound in the statement of
Theorem 4.1 holds true on the intersection E1 ∩ E+

2 ∩ E−
2 , which has probability at least 1 − 𝛿.
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Appendix G: Proofs of simulations experiments
The following lemma describes convenient properties relative to the simulation setting described in
Section 5 in the paper. Recall S𝜏𝑝 = {𝑥 ∈ S𝑝 : min(𝑥) > 𝜏} for 𝜏 ∈ (0,1) as well as the cones C𝐴 in (7)
in the paper.

Lemma G.1. Let 𝑅 be a unit-Pareto distributed random variable and let Θ be a random vector inde-
pendent from 𝑅, with support in S1 = {𝑥 ∈ [0,1]𝑑 : 𝑥1 + · · · + 𝑥𝑑 = 1} and satisfying E(Θ 𝑗 ) = 1/𝑑 for
𝑗 ∈ {1, . . . , 𝑑}. Let 𝑋 = 𝑅Θ and write 𝑉 = 𝑣(𝑋) with 𝑣(𝑥) = (1/(1 − 𝐹1 (𝑥1)), . . . ,1/(1 − 𝐹𝑑 (𝑥𝑑))) for
𝑥 ∈ R𝑑 , where 𝐹𝑗 (𝑥 𝑗 ) = P[𝑋 𝑗 6 𝑥 𝑗 ].

(i) We have 𝑣(𝑥) = 𝑑𝑥 for all 𝑥 ∈ [1,∞)𝑑 . Conversely, if 𝑥 ∈ R𝑑 satisfies 𝑣(𝑥) ∈ (𝑑,∞)𝑑 , then
𝑥 ∈ (1,∞)𝑑 and thus 𝑣(𝑥) = 𝑑𝑥.

(ii) The distribution of 𝑉 is multivariate regularly varying and its angular measure Φ𝑝 with re-
spect to the 𝐿𝑝-norm, for 𝑝 ∈ [1,∞], is given by

Φ𝑝 (𝐴) = 𝑑 P[𝑋 ∈ C𝐴]

for Borel sets 𝐴 ⊆ S𝑝 . Moreover, if 𝐴 ⊆ S𝜏𝑝 for some 𝜏 ∈ (0,1) and if 𝑡 > 𝑑/𝜏, then also

Φ𝑝 (𝐴) = 𝑡 P[𝑡−1𝑉 ∈ C𝐴] .

Proof of Lemma G.1. (i) For any 𝑗 ∈ {1, . . . , 𝑑} and any 𝑥 𝑗 > 0,

1 − 𝐹𝑗 (𝑥 𝑗 ) = P[𝑅Θ 𝑗 > 𝑥 𝑗 ]

= E{P[𝑅 > 𝑥 𝑗/Θ 𝑗 | Θ 𝑗 ]}

= E{min(1,Θ 𝑗/𝑥 𝑗 )}.

Since the support of Θ is contained in the unit simplex, we have Θ 𝑗/𝑥 𝑗 6 1 almost surely whenever
𝑥 𝑗 > 1. In addition E(Θ 𝑗 ) = 1/𝑑 by assumption. It follows that

1/(1 − 𝐹𝑗 (𝑥 𝑗 )) =
{
𝑑𝑥 𝑗 if 𝑥 𝑗 > 1,
1/E{min(1,Θ 𝑗/𝑥 𝑗 )} if 0 < 𝑥 𝑗 < 1.

This proves that 𝑣(𝑥) = 𝑑𝑥 ∈ [𝑑,∞)𝑑 for 𝑥 ∈ [1,∞)𝑑 . The converse statement follows from 1− 𝐹𝑗 (1) =
1/𝑑 and monotonicity.

(ii) Let 𝑥 ∈ (0,∞)𝑑 and let 𝑡 > 0 be sufficiently large so that 𝑡𝑥 𝑗 > 𝑑 for all 𝑗 ∈ {1, . . . , 𝑑}. Then

1 − P[𝑉1 6 𝑡𝑥1, . . . ,𝑉𝑑 6 𝑡𝑥𝑑] = P[∃ 𝑗 = 1, . . . , 𝑑 : 𝑑𝑅Θ 𝑗 > 𝑡𝑥 𝑗 ]

= P

[
𝑅 > (𝑡/𝑑) min

𝑗=1,...,𝑑
(𝑥 𝑗/Θ 𝑗 )

]
= (𝑑/𝑡) E

[
max
𝑗=1,...,𝑑

(Θ 𝑗/𝑥 𝑗 )
]
.

In the last step, we conditioned on Θ and we used the fact that (𝑡/𝑑) (𝑥 𝑗/Θ 𝑗 ) > 1 a.s., by the assump-
tions on 𝑡 and Θ. Recall 𝐸 = [0,∞)𝑑 \ {(0, . . . ,0)}. It follows that

∀𝑥 ∈ (0,∞)𝑑 , ∀𝑡 > 𝑑

min 𝑗=1,...,𝑑 𝑥 𝑗
, 𝑡 P[𝑡−1𝑉 ∈ 𝐸 \ [0, 𝑥]] = 𝑑 E

[
max
𝑗=1,...,𝑑

(Θ 𝑗/𝑥 𝑗 )
]
. (63)
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For fixed 𝑥 ∈ (0,∞)𝑑 , the limit as 𝑡→∞ trivially exists. This implies that 𝑉 is multivariate regularly
varying as in Section 2.1 in the paper; see for instance [47, Lemma 6.1]. More precisely, 𝑡 P[𝑡−1𝑉 ∈ · ] →
𝜇( · ) as 𝑡→∞ in the space M0, where 𝜇 is determined by the right-hand side of the previous display
via the values of 𝜇(𝐸 \ [0, 𝑥]) for 𝑥 ∈ (0,∞)𝑑 .

The angular measure Φ𝑝 determines the exponent measure 𝜇 uniquely via the relation (8) in the
paper. In that identity, letting 𝑓 be the indicator function of the set 𝐸 \ [0, 𝑥] with 𝑥 ∈ (0,∞)𝑑 , it
follows by a standard calculation involving Fubini’s theorem that

𝜇(𝐸 \ [0, 𝑥]) =
∫
S𝑝

max
𝑗=1,...,𝑑

(𝜃 𝑗/𝑥 𝑗 ) dΦ𝑝 (𝜃).

Define a Borel measure Φ′
𝑝 on S𝑝 by

Φ′
𝑝 (𝐴) = 𝑑 P[𝑋 ∈ C𝐴]

= 𝑑 P[𝑅‖Θ‖𝑝 > 1, Θ/‖Θ‖𝑝 ∈ 𝐴]

= 𝑑 E[‖Θ‖𝑝1{Θ/‖Θ‖𝑝 ∈ 𝐴}]

for Borel sets 𝐴 ⊆ S𝑝 . Recall that Φ𝑝 is considered with respect to a general 𝐿𝑝-norm but Θ is a
random vector in the unit simplex, so 0 < ‖Θ‖𝑝 6 1 almost surely since 𝑝 > 1. The last equality
follows by conditioning on Θ, the independence of 𝑅 and Θ, and the assumption that the distribution
of 𝑅 is unit-Pareto. For Borel measurable, nonnegative functions 𝑔 on S𝑝 , we get∫

S𝑝

𝑔(𝜃) dΦ′
𝑝 (𝜃) = 𝑑 E[‖Θ‖𝑝 𝑔(Θ/‖Θ‖𝑝)] .

Applying the latter identity to the function 𝑔 defined by 𝑔(𝜃) = max 𝑗=1,...,𝑑 (𝜃 𝑗/𝑥 𝑗 ) for some fixed
𝑥 ∈ (0,∞)𝑑 yields∫

S𝑝

max
𝑗=1,...,𝑑

(𝜃 𝑗/𝑥 𝑗 ) dΦ′
𝑝 (𝜃) = 𝑑 E

[
max
𝑗=1,...,𝑑

(Θ 𝑗/𝑥 𝑗 )
]
= 𝜇(𝐸 \ [0, 𝑥]).

We conclude that Φ𝑝 is equal to Φ′
𝑝 , as required.

Finally, let 0 < 𝜏 < 1 and let 𝐴 ⊆ S𝜏𝑝 be a Borel set. The cone C𝐴 = {𝑥 ∈ 𝐸 : ‖𝑥‖𝑝 > 1, 𝑥/‖𝑥‖𝑝 ∈ 𝐴}
is a subset of (𝜏,∞)𝑑 . The equality (63) together with the inclusion–exclusion formula and the fact that
rectangles form a measure-determining class imply that the measures 𝑡 P[𝑡−1𝑉 ∈ · ] and 𝜇 correspond
on (𝜏,∞)𝑑 . It follows that

𝑡 P[𝑡−1𝑉 ∈ C𝐴] = 𝜇(C𝐴) = Φ𝑝 (𝐴).
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