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Values of E-functions are not Liouville numbers

S. Fischler and T. Rivoal

January 3, 2023

Abstract

Shidlovskii has given a linear independence measure of values of E-functions with

rational Taylor coefficients at a rational point not a singularity of the underlying

differential system satisfied by these E-functions. His measure holds as well for E-

functions with coefficients in an imaginary quadratic field, but not for other number

fields. Recently, Beukers has proved a remarkable qualitative linear independence

theorem for the values at an algebraic point of E-functions with arbitrary algebraic

Taylor coefficients. But no quantitative analogue of Shidlovskii’s measure has been

given in Beukers’ setting. The goal of this paper it to obtain such a measure, in an

even more general setting where the point can be a singularity. This enables us to

solve a long standing problem: the value of an E-function at an algebraic point is

never a Liouville number, a result which had been obtained before only under addi-

tional assumptions. We deduce various explicit irrationality measures, in particular

for values of the exponential and Bessel’s J0 function at non-zero algebraic points.

We also prove that the values at rational points of E-functions with rational Taylor

coefficients are linearly independent over Q if and only if they are linearly indepen-

dent over Q. Our methods rest upon improvements of results recently obtained by

André and Beukers by means of the theory of E-operators.

1 Introduction

Siegel [14] defined in 1929 the class of E-functions in order to generalize the Diophantine
properties of the exponential function (namely the Lindemann-Weierstrass Theorem) to
other special functions such as Bessel’s function J0(z) :=

∑∞
n=0(−1)n(z/2)2n/n!2 or hyper-

geometric series pFp with rational parameters. A power series
∑∞

n=0
an
n!
zn ∈ Q[[z]] is said

to be an E-function when it is solution of a linear differential equation over Q(z) (i.e.,
holonomic), and |σ(an)| (for any σ ∈ Gal(Q/Q)) and the least common denominator of
a0, a1, . . . , an all grow at most exponentially in n. Note that Siegel’s original definition of
E-functions is more general: see the end of this introduction. Throughout this paper we
fix an embedding of Q in C.

A lot of important qualitative results are known on the arithmetic nature of the values
taken by E-functions at algebraic points, amongst which we cite the celebrated Siegel-
Shidlovskii Theorem. It has been improved in [11]. However, these results are not always
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strong enough, in particular they do not imply the linear independence of values of E-
functions solutions of a differential system of order 1 and evaluated at a non-singular
point. Quantitative versions of certain of these results exist, but only under very strict
assumptions on algebraic independence or rationality of the coefficients of the E-functions.
The main result in this direction, in the setting of linear independence, is the following
one. It is due to Shidlovskii [13, p. 358, Theorem 1, Eq. (32)].

Theorem A (Shidlovskii). Let f = t(f1, . . . , fN) ∈ Q[[z]]N be a vector of E-functions
solution of a differential system f ′ = Af for some A ∈ MN(Q(z)). Assume that f1, . . . , fN
are linearly independent over Q(z) and that z0 ∈ Q∗ is not a pole of an entry of A. Then
for any ε > 0, there exists c = c(ε, z0, f1, . . . , fN) > 0 such that for all λ1, . . . , λN ∈ Z not
all zero, we have

∣

∣

∣

∣

N
∑

j=1

λjfj(z0)

∣

∣

∣

∣

> cH−N+1−ε where H := max
1≤j≤N

|λj|.

This theorem holds verbatim with Q replaced by an imaginary quadratic number field
and Z replaced by its ring of integers. However no such result is known for other number
fields K. The point is that all known quantitative results are based on the Siegel-Shidlovskii
method only, which provides linear independence of the full set of the values of E-functions
in Theorem A only when K is either Q or imaginary quadratic. Even the qualitative part
of Theorem A (namely,

∑N
j=1 λjfj(z0) 6= 0) has been proved only recently by Beukers [4,

Corollary 1.4] for arbitrary number fields, using André’s theory of E-operators [1].

Theorem B (Beukers). Let f = t(f1, . . . , fN) ∈ Q[[z]]N be a vector of E-functions solution

of a differential system f ′ = Af for some A ∈ MN (Q(z)). Assume that f1, . . . , fN are line-

arly independent over Q(z) and that z0 ∈ Q
∗
is not a pole of an entry of A. Then the

numbers f1(z0), . . . , fN(z0) are linearly independent over Q.

The purpose of this paper is to prove new Diophantine results using this approach of
André and Beukers. Our first main result is the following theorem, where we generalize
Theorem A to any E-functions, by removing the rationality assumption on the coefficients
and also the non-singularity assumption on z0. We recall that for a non-zero algebraic
number α, its house α is the maximum of the moduli of α and of all its Galois conjugates
over Q. We also denote by OK the ring of integers of a number field K.

Theorem 1. Let K be a number field of degree d over Q, z0 ∈ K, and f = t(f1, . . . , fN) be
a vector of E-functions with coefficients in K such that f ′ = Af for some A ∈ MN(K(z)).
Then for any ε > 0, there exists c = c(ε,K, z0, f1, . . . , fN) > 0 with the following property.

For any λ1, . . . , λN ∈ OK, if Λ := λ1f1(z0) + . . .+ λNfN(z0) is non-zero, then

|Λ| > cH−dd+1Nd+1−ε where H := max
1≤j≤N

λj .
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Remarks. – Given arbitrary E-functions f1, . . . , fN and any z0 ∈ Q, this theorem applies
because there exists a number field K containing z0 and all coefficients of f1, . . . , fN , and
the family (f1, . . . , fN) can always be enlarged to satisfy a first-order differential system.
This shows, without any assumption on f1, . . . , fN and z0, the existence of κ, c > 0 such
that |Λ| > cH−κ provided Λ 6= 0.

– Note that in Theorem 1, and even in the previous remark, we do not assume that
f1(z0), . . . , fN(z0) are linearly independent over K, and we do not wonder whether z0 is
a singularity or not of a differential system involving the fj . Therefore with K = Q,
Theorem 1 is a generalization of Theorem A: we obtain the same lower bound under
milder assumptions (using Beukers’ results in [4] and improvements of the latter).

– We shall prove that if λ1, . . . , λN ∈ Z, the lower bound in Theorem 1 can be refined
to cH−dNd+1−ε.

– To our knowledge, Theorem 1 provides the first quantitative version of Beukers’ The-
orem B, when it is further assumed in Theorem 1 that f1, . . . , fN are linearly independent
over K(z) and that z0 ∈ K∗ is not a pole of A, ensuring that Λ 6= 0.

An important consequence of Theorem 1 is the following result, which completely settles
the problem of deciding whether (real) values of E-functions can be Liouville numbers or
not. We recall that a Liouville number is a real number ξ such that there exist two
sequences of rational integers pn, qn such that 0 < |qnξ−pn| < 1/qnn for all sufficiently large
integers n (a fortiori pnqn 6= 0).

Corollary 1. Let f be an E-function, and z0 be an algebraic number. Then f(z0) is not
a Liouville number.

The proof of Corollary 1 runs as follows: in Theorem 1, let z0 ∈ Q, take f1 := 1, f2 := f
and consider a vector t(f1, f2 . . . , fN) of E-functions with coefficients in a number field K

such that f ′ = Af for some A ∈ MN (K(z)), where K is large enough to contain z0. If
f(z0) ∈ Q, then f(z0) is not a Liouville number. If f(z0) /∈ Q, then λ1 + λ2f(z0) 6= 0 for
all λ1, λ2 ∈ Z not both zero, so that Theorem 1 yields |λ1 + λ2f(z0)| > cmax(|λ1|, |λ2|)−κ

for some c, κ > 0. This rules out the possibility that f(z0) is a Liouville number.
Of course Corollary 1 is interesting only when f(z0) ∈ R. If we do not assume this,

note however that the real and imaginary parts of f(z0) are values of E-functions (see the
remark in §2.1 below), so that none of them is a Liouville number.

Let us also mention another interesting corollary, which is a consequence of the third
remark that follows Theorem 1 with N = 2 and N = 3 respectively (recall that J0(z) is
solution of zy′′(z) + y′(z) + zy(z) = 0).

Corollary 2. For any algebraic number α ∈ Q
∗
of degree d over Q and any ε > 0, there

exists c = c(α, ε) such that, for all (p, q) ∈ Z× N with q 6= 0,
∣

∣

∣
eα −

p

q

∣

∣

∣
>

c

qd2d+ε
, respectively

∣

∣

∣
J0(α)−

p

q

∣

∣

∣
>

c

qd3d+ε
.

A general transcendence measure for E-functions due to Lang and Galochkin [6, p. 238,
Theorem 5.29 and remarks] (applied with m = 1 and m = 2 respectively) gives 4d2 + 1
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instead of d2d, and 16d3 + 1 instead of d3d; see also [13, p. 403]. This is of course much
better than Corollary 2 for large d but our bounds turn out to be smaller for d ∈ {1, 2, 3, 4}
and d ∈ {1, 2, 3, 4, 5} respectively.

A less classical example is the following: for any α ∈ Q
∗
and any integers p, q ≥

1, the value at z = α of the function Ap,q(z) :=
∑∞

n=0(
∑n

k=0

(

n
k

)p(n+k
n

)q
)zn/n! is not

a Liouville number; Ap,q(α) is proved to be a transcendental number in [5, §4.6] when
(p, q) ∈ {1, 2, 3, 4}2, the situation in general being unknown. More specifically, it is also
proved in [5, §4.6, Table 1] that when (p, q) = (2, 2), the minimal inhomogeneous differential
equation over Q(z) satisfied by A2,2 is of order 4 and 0 is its only singularity. Hence, the

following holds by the third remark that follows Theorem 1 with N = 5: for all α ∈ Q
∗
of

degree d over Q and all ε > 0, there exists c = c(ε, α) > 0 such that for all λj ∈ Z not all
0, we have

∣

∣

∣
λ4 +

3
∑

j=0

λjA
(j)
2,2(α)

∣

∣

∣
> c max

0≤j≤4
|λj|

−d5d+1−ε.

In particular, for any α ∈ Q
∗
of degree d and ε > 0, there exists c = c(ε, α) > 0 such that

for any (p, q) ∈ Z× N with q 6= 0,
∣

∣

∣
A2,2(α)−

p

q

∣

∣

∣
>

c

qd5d+ε
. (1.1)

It seems reasonable to make the following conjecture, which probably belongs to folk-
lore. This conjecture is Roth’s Theorem if f(z0) is algebraic.

Conjecture 1. Let f be an E-function and z0 ∈ Q. For any ε > 0, there exists c > 0 such
that for any (p, q) ∈ Z× N with q 6= 0, either qf(z0)− p = 0 or

∣

∣

∣
f(z0)−

p

q

∣

∣

∣
>

c

q2+ε
.

Zudilin has proved this conjecture in [15] in a stronger form but under additional
assumptions (which even imply f(z0) /∈ Q), namely: f is an E-function with rational
coefficients, z0 ∈ Q∗ is not a singularity of a differential system satisfied by 1, f, f2, . . . , fN
over Q(z) (for some N ≥ 2) and f, f2, . . . , fN are algebraically independent over Q(z).
It would be interesting to know if A2,2,A′

2,2,A
′′
2,2,A

′′′
2,2 are algebraically independent over

Q(z), in which case the exponent 5 could be improved to 2 in (1.1) when α ∈ Q∗.

The second goal of this paper is to understand the structure of the ring E of all values
at algebraic points of E-functions; this algebraic point can always be assumed to be 1
because if f(z) is an E-function, so is f(αz) for any α ∈ Q. Elements of E are related to
exponential periods (see [9, §4.3]).

For any subfield K of Q, we shall also consider the subring EK of E which consists of
the evaluations f(1) where f is an E-function with coefficients in K (the number 1 could
be replaced by any non-zero element of K without changing EK). Note that E is the union
of all EK, where K is a number field, since for any E-function f the holonomy property
implies the existence of a number field that contains all coefficients of f .
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We have defined and studied [7] analogous rings GK with G-functions instead of E-
functions; it turns out that GK is nearly independent from K (precisely, GK = GQ if
K ⊂ R, and GK = GQ(i) otherwise). The situation is completely different for E-functions.
A first hint in this direction was given in [8, Theorem 4] (stated as Lemma 1 in §4 below).
The way EK depends on K is completely described by the following result.

Theorem 2. Elements of EQ are linearly independent over Q if, and only if, they are
linearly independent over Q. In other words, the Q-algebras EQ and Q are linearly disjoint,
and the natural map EQ ⊗Q Q → E (sending ξ ⊗ z to ξz) is a Q-algebra isomorphism.

We refer to [3, Chapter V, §2, No. 5] for the definition and properties of linearly disjoint
algebras, which imply the following.

Corollary 3. Let K be a number field, and (ω1, . . . , ωd) be a basis of the Q-vector space
K. Then

EK = ω1EQ ⊕ . . .⊕ ωdEQ.

In other words, for any ξ ∈ EK there exists a unique d-tuple (ξ1, . . . , ξd) ∈ Ed
Q such that

ξ = ω1ξ1 + . . .+ ωdξd.

Theorems 1 and 2 may seem disjoint at first sight but their proofs share many com-
mon aspects, in particular both use Proposition 1 stated in §2.1. Another consequence of
Proposition 1 is the existence of an action of Gal(Q/Q) on E, of which the fixed points
are exactly the elements of EQ. For instance, with the notation of Corollary 3, we have
σ(ξ) = σ(ω1)ξ1 + . . .+ σ(ωd)ξd for any σ ∈ Gal(Q/Q). As a first application of this Galois
action, we explain in §6 why our proof of Theorem 1 is similar to Liouville’s proof that
Liouville numbers are transcendental. This makes sense because Theorem 1 is a gener-
alization of this result, since Q ⊂ E. We hope this action can have other Diophantine
applications.

The original definition of E-functions, given by Siegel [14], is slightly less restrictive:
instead of geometric bounds, he allowed growths bounded by n!ε (for any given ε > 0,
provided n is large enough with respect to ε). Shidlovskii’s Theorem A holds for E-
functions in Siegel’s sense, and Beukers’ Theorem B was later proved by André [2] in
this general setting, by a different method. All other results in Beukers’ paper [4] have
been adapted by Lepetit [10]. Therefore all the results of the present paper also hold for
E-functions in Siegel’s sense.

The structure of this paper is as follows. In §2 we prove the main tool of this paper,
namely Proposition 1, and use it to obtain a version of Beukers’ desingularization process
over a number field. This enables us to prove Theorem 1 in §3, and also to obtain in §4
a decomposition of an E-function over a number field, involving an E-function that takes
only transcendental values at non-zero algebraic points. At last we apply the previous
results in §5 to study the structure of EK and prove Theorem 2. We conclude in §6 with
the above-mentioned Galois action on values of E-functions.
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2 Main tools

2.1 Conjugates of E-functions

Let f(z) =
∑∞

n=0 anz
n be an E-function with coefficients an ∈ Q. For any σ ∈ Gal(Q/Q)

we let fσ(z) =
∑∞

n=0 σ(an)z
n. Then fσ is also an E-function, and if g is an E-function

then for any σ, τ we have (f + g)σ = fσ + gσ, (fg)σ = fσgσ and (fσ)τ = f τ◦σ. Moreover if
f has coefficients in a number field K, then fσ has coefficients in the number field σ(K).

Remark. Denoting by σ the complex conjugation, for any E-function f we can consider
1
2
(f + fσ) and 1

2i
(f − fσ). These E-functions have real coefficients, which are respectively

the real and imaginary parts of those of f . In particular, the real and imaginary parts of
any element of E belong to E.

The following result is central in the present paper; we refer to [5, Proposition 3.5] for
a similar result. Throughout this paper we agree that minimal polynomials of algebraic
elements have leading coefficient 1.

Proposition 1. Let f be an E-function with coefficients in a number field K, and z0 ∈ Q
∗
.

Then the following assertions are equivalent:

(i) f vanishes at z0.

(ii) There exists σ ∈ Gal(Q/Q) such that fσ vanishes at σ(z0).

(iii) For any σ ∈ Gal(Q/Q), fσ vanishes at σ(z0).

(iv) There exists an E-function g with coefficients in K such that

f(z) = D(z)g(z) where D is the minimal polynomial of z0 over K.

In particular, if z0 is rational and f vanishes at z0, then all conjugates fσ of f also
vanish at z0. Also, if an E-function f with rational coefficients vanishes at some z0 ∈ Q

∗
,

then it vanishes at all Galois conjugates of z0.

We remark that with z0 = 1, the implication (i) ⇒ (iii) is used already in the proof of
[4, Proposition 4.1], which is the main result Proposition 1 is based on.

Proof of Proposition 1. (iv) ⇒ (iii) Let σ ∈ Gal(Q/Q). Then fσ(z) = Dσ(z)gσ(z), and
Dσ(σ(z0)) = σ(D(z0)) = 0. Therefore fσ(σ(z0)) = 0.

(iii) ⇒ (ii) is trivial.

(ii) ⇒ (i) Enlarging K if necessary, we may assume the extension K/Q to be Galois and
to contain z0. Then fσ has coefficients in K, and σ(z0) ∈ K∗. Using [4, Proposition 4.1]
there exists an E-function g such that fσ(z) = (z − σ(z0))g(z). Then g has coefficients in
K; applying σ−1 yields f(z) = (z − z0)g

σ−1

(z) so that f(z0) = 0.
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(i) ⇒ (iv) Using [4, Proposition 4.1] there exists an E-function h such that f(z) =
(z − z0)h(z). Let σ ∈ Gal(Q/K), that is: σ is a field automorphism of Q such that
σ(x) = x for any x ∈ K. Then f(z) = fσ(z) = (z−σ(z0))h

σ(z) so that f vanishes at σ(z0).
Let z1 := z0, z2, . . . , zℓ denote the (pairwise distinct) Galois conjugates of z0 over K, i.e.
the elements of the form σ(z0) with σ ∈ Gal(Q/K); we have proved that f vanishes at z1,
. . . , zℓ. Applying [4, Proposition 4.1] yields, by induction on j ∈ {0, . . . , ℓ}, the existence
of an E-function gj such that f(z) = gj(z)

∏j
i=1(z − zi). Since D(z) =

∏ℓ
i=1(z − zi), we

have f(z) = D(z)gℓ(z). Now D(z) ∈ K[z] \ {0} so that all coefficients of gℓ belong to K.
This concludes the proof of Proposition 1.

2.2 Beukers’ desingularization process

In the proof of Theorem 1 we shall use the following version of Beukers’ desingularization
theorem (namely [4, Theorem 1.5]). The new point is that e1, . . . , eN and the coefficients
of B and M have coefficients in the number field K (whereas in [4, Theorem 1.5] these
coefficients are simply algebraic numbers).

Proposition 2. Let K be a number field, and f1, . . . , fN be E-functions with coefficients
in K, linearly independent over C(z). Assume that the vector f = t(f1, . . . , fN) satisfies a
first-order differential system f ′ = Af with A ∈ Mn(K(z)).

Then there exist E-functions e1, . . . , eN with coefficients in K, linearly independent
over C(z), a matrix B ∈ Mn(K[z, 1/z]) and a matrix M ∈ Mn(K[z]), such that with
e = t(e1, . . . , eN ):

e′ = Be and f = Me.

The proof follows [4, p. 378], using also the additional details given in [5]. Actually
Proposition 2 is already proved implicitly (for K = Q) by the implementation described in
[5].

In what follows we simply mention the parts of the proof where a special attention has
to be paid. Let α be a singularity of the differential system Y ′ = AY , and Q ∈ K[X ]
denote the minimal polynomial of α over K. Let k ≥ 1 be the maximal order of α as a
pole of a coefficient of A, and (i0, j0) be such that Ai0,j0 has a pole of order exactly k at
α. Then QkAf = Qkf ′ vanishes at α; the i0-th coordinate of this vector provides a linear
relation

N
∑

j=1

(QkAi0,j)(α)fj(α) = 0.

Note that for any j, the rational function Q(z)kAi0,j(z) ∈ K(z) is holomorphic at α, and
for j = j0 it does not vanish at that point. Multiplying by a suitable element of K[z] which
does not vanish at α, we obtain P1, . . . , PN ∈ K[z] such that

Pj0(α) 6= 0 and

N
∑

j=1

Pj(α)fj(α) = 0.
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Upon dividing by their gcd, we may assume the polynomials P1, . . . , PN to be coprime.
If N = 1 we let P1,1 = 1; otherwise there exist polynomials Pi,j ∈ K[z], for 2 ≤ i ≤ N
and 1 ≤ j ≤ N , such that letting P1,j = Pj , the matrix S = (Pi,j)1≤i,j≤N ∈ MN (K[z])
has determinant 1. Then Sf is a vector of E-functions, with coefficients in K, of which

the first coordinate
∑N

j=1 Pj(z)fj(z) vanishes at α. Using Proposition 1, we deduce that
∑N

j=1 Pj(z)fj(z) vanishes at σ(α) for any σ ∈ Gal(Q/K). Denoting by F a fundamental
system of solutions of which f is the first column, and considering the differential Galois
group as in [4], yields a matrix F1 with coefficients holomorphic at α, such that SF = DF1

where D is the diagonal matrix with diagonal coefficients Q(z), 1, . . . , 1. This concludes
the proof as in [4].

3 Proof of Theorem 1

The proof of Theorem 1 falls into 3 steps.

Step 1. Let us prove Theorem 1 in the special case where K = Q (i.e., d = 1). In other
words, we assume that z0 ∈ Q, λ1, . . . , λN ∈ Z, and f1, . . . , fN have coefficients in Q.

If z0 = 0 then f1(z0), . . . , fN(z0) are algebraic numbers, so the conclusion follows from
Schmidt’s subspace theorem (see for instance [6, Chapter 1, §8.2, Theorem 1.37]).

Therefore we assume z0 6= 0, and even z0 = 1 by considering the E-functions fj(z0z)
instead of fj(z).

Recall that we do not assume that f1(1), . . . , fN(1) are linearly independent over Q.
Denoting by N ′ the maximal number of linearly independent numbers among them, we may
assume (up to a permutation of the indices) that f1(1), . . . , fN ′(1) are linearly independent
over Q, and fN ′+1(1), . . . , fN (1) belong to the Q-vector space they span. There exist

rational numbers ̺i,j such that fj(1) =
∑N ′

i=1 ̺i,jfi(1) for any 1 ≤ j ≤ N , so that

Λ =

N
∑

j=1

λjfj(1) =

N ′

∑

i=1

µifi(1) with µi :=

N
∑

j=1

λj̺i,j ∈ Q. (3.1)

Observe that the E-functions f1, . . . , fN ′ are linearly independent over C(z). Indeed,
otherwise they would be linearly dependent over Q(z) (since they have coefficients in Q),

and a relation
∑N ′

j=1 Sj(z)fj(z) = 0 would exist with S1, . . . , SN ′ ∈ Q(z) not all zero. Upon

multiplying by (z − 1)k for a suitable k ∈ Z, we may assume that none of the Sj has a
pole at 1, and that at least of them does not vanish at 1. This provides a non-trivial linear
relation

∑N ′

j=1 Sj(1)fj(1) = 0, which contradicts the definition of N ′.
Therefore f1, . . . , fN ′ are linearly independent over C(z). Denote by N ′′ the dimension

of the vector space generated over C(z) by f1, . . . , fN ; we have N ′ ≤ N ′′ ≤ N . Notice
that it could happen that N ′′ > N ′, for instance if fN ′+1(1) = 0. Up to a permutation of
the indices, we may assume that f1, . . . , fN ′′ are linearly independent over C(z), and that
fN ′′+1, . . . , fN belong to the vector space they span over C(z).
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Since f1, . . . , fN ′′ are linearly independent over C(z), and satisfy a linear differential
system of order 1 by definition of N ′′, Proposition 2 (applied with K = Q) provides
E-functions e1, . . . , eN ′′ with rational coefficients and matrices B and M = (Pi,j) with

Pi,j ∈ Q[z] such that fi(z) =
∑N ′′

j=1 Pi,j(z)ej(z). Since N ′ ≤ N ′′, Eq. (3.1) yields

Λ =

N ′′

∑

j=1

νjej(1) with νj :=

N ′

∑

i=1

µiPi,j(1) ∈ Q. (3.2)

Now Shidlovskii’s lower bound stated as Theorem A in the introduction applies to the
E-functions e1, . . . , eN ′′ with rational coefficients, which are linearly independent over
C(z) and solution of a linear differential system of order 1 of which 1 is not a singularity.
Denoting by δ a common denominator of the rational numbers Pi,j(1) and ̺i,j (appearing
in Eqns. (3.1) and (3.2)), we obtain that δ2Λ is a Z-linear combination of e1(1), . . . , eN ′′(1)
with coefficients bounded (in absolue value) by cH , where c > 0 and δ depend only on f1,
. . . , fN . For any ε > 0, Theorem A yields |δ2Λ| > c0H

−N ′′+1−ε ≥ c0H
−N+1−ε for some

c0 > 0 which depends only on f1, . . . , fN . This concludes the proof of Theorem 1 in the
case where K = Q.

Step 2. Let us prove Theorem 1 for any number field K, in the case where λj ∈ Z for any
j. As announced in the introduction (after the statement of Theorem 1), we shall refine
the lower bound H−dd+1Nd+1−ε to H−dNd+1−ε in this case.

For simplicity of the exposition, we assume K to be a Galois extension of Q; see the
end of Step 2 for the general case. We denote by G the Galois group of K/Q, and consider
the complex number

̟ =
∏

σ∈G

(

N
∑

j=1

λjf
σ
j (1)

)

. (3.3)

To begin with, let us prove that ̟ 6= 0. Indeed, consider the E-function g(z) =
∑N

j=1 λjfj(z); it has coefficients in K (because f1, . . . , fN do), and g(1) = Λ 6= 0. For any

σ ∈ G, Proposition 1 yields gσ(1) 6= 0. Now gσ(1) =
∑N

j=1 λjf
σ
j (1) since λj ∈ Z, so that

̟ =
∏

σ∈G gσ(1) 6= 0.
Now we are going to expand the product in the definition (3.3) of ̟. Denote by N

the set of all tuples n = (n1, . . . , nN) of non-negative integers such that n1 + . . .+ nN = d.
For any n ∈ N , we denote by I(n) the set of all families i = (iσ)σ∈G consisting in integers
iσ ∈ {1, . . . , N} such that for any j ∈ {1, . . . , N} we have:

Card{σ ∈ G, iσ = j} = nj.

Then Eq. (3.3) yields

̟ =
∑

n∈N

λn1

1 · . . . · λnN

N ϕn(1) upon letting ϕn(z) :=
∑

i∈I(n)

∏

σ∈G

fσ
iσ(z). (3.4)
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Let us prove that ϕn(z), which is an E-function with coefficients in K, actually has
coefficients in Q for any n ∈ N . For any τ ∈ G we have:

ϕτ
n =

∑

i∈I(n)

∏

σ∈G

(

fσ
iσ

)τ

=
∑

i∈I(n)

∏

σ∈G

f τ◦σ
iσ

=
∑

i∈I(n)

∏

σ′∈G

fσ′

i
τ−1

◦σ′
by letting σ′ = τ ◦ σ

=
∑

i′∈I(n)

∏

σ′∈G

fσ′

i′
σ′

where the last equality comes from letting i′σ = iτ−1◦σ for any σ ∈ G; indeed this defines a
bijective map I(n) → I(n). Therefore ϕτ

n = ϕn for any τ ∈ G, and the E-function ϕn(z)
has coefficients in Q.

We denote by E the vector space spanned over Q(z) by the functions
∏

σ∈G fσ
iσ for all

families i = (iσ)σ∈G consisting in integers iσ ∈ {1, . . . , N}. There are Nd such families, so
dim E ≤ Nd. Moreover we have g′ ∈ E for any g ∈ E .

Let δ denote the dimension of the vector space spanned over Q(z) by the functions ϕn

for n ∈ N . We can choose δ functions h1, . . . , hδ among the ϕn which are linearly indepen-
dent, and span the same Q(z)-vector space. Choosing among the successive derivatives of
h1, . . . , hδ it is possible to find an integer δ′ ≥ δ and functions hi, for δ + 1 ≤ i ≤ δ′, such
that h1, . . . , hδ′ are linearly independent over Q(z) and satisfy a linear differential system
of order 1. Since they have rational coefficients, they are also linearly independent over
Q(z); now they all belong to E , so we have δ′ ≤ dim E ≤ Nd.

Proposition 2 with K = Q yields a vector of E-functions e1, . . . , eδ′ with rational co-
efficients, solution of a first-order differential system with no finite non-zero singularity,
such that each hi is a linear combination of e1, . . . , eδ′ with coefficients in Q[z]. There exist
Rn,i, Sn,i ∈ Q(z) for n ∈ N and 1 ≤ i ≤ δ′ such that, for any n,

ϕn(z) =
δ′
∑

i=1

Rn,i(z)hi(z) =
δ′
∑

i=1

Sn,i(z)ei(z).

If no Sn,i has a pole at z = 1, we can take z = 1 in this equation. To deal with the
general case, we expand the right hand side as a polynomial in 1/(z−1), up to an additive
term which is holomorphic and vanishes at z = 1. Since ϕn(z) is holomorphic at 1, all
polar contributions cancel out and the value at z = 1 is given by the constant term of the
above-mentioned polynomial. This provides an expression of the form

ϕn(1) =
δ′
∑

i=1

J
∑

j=0

an,i,je
(j)
i (1)
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with an,i,j ∈ Q. Since t(e1, . . . , eδ′) is solution of a first-order differential system with
coefficients in Q[z, 1/z], hence with no finite non-zero singularity, we obtain finally

ϕn(1) =

δ′
∑

i=1

bn,iei(1) (3.5)

with bn,i ∈ Q (where simply bn,i := Sn,i(1) in the “no pole at z = 1” case considered above).
Using Eq. (3.5) into Eq. (3.4) yields

̟ =
δ′
∑

i=1

µiei(1) with µi =
∑

n∈N

λn1

1 · . . . · λnN

N bn,i ∈ Q.

This enables us to apply the special case of Theorem 1 where K = Q, proved in
Step 1, with N replaced with δ′ ≤ Nd. Indeed we denote by α ∈ Z a common positive
denominator of the rational numbers bn,i; then we have αµ1, . . . , αµδ′ ∈ Z. Since ̟ 6= 0

we obtain |α̟| > cH ′−Nd+1−ε where

H ′ = max
1≤i≤δ

|αµi| ≤ βmax
n∈N

λn1

1 · . . . · λnN

N ≤ βHd

where β > 0 depends only on f1, . . . , fN and K. Now Eq. (3.3) yields |̟| ≤ c′Hd−1|Λ| by
bounding trivially the factors corresponding to all σ 6= Id; here c′ is a positive constant that
depends only on f1, . . . , fN and K. Combining these estimates yields |Λ| > c′′H−dNd+1−dε

for some constant c′′; this concludes Step 2 in the case where K is a Galois extension of Q.
If K/Q (of degree d) is not assumed to be Galois, we consider a finite Galois extension

L of Q such that K ⊂ L. We let G0 = Gal(L/Q) and H = Gal(L/K). In the definition
of ̟, namely Eq. (3.3), the product is now taken over the d cosets σ ∈ G0/H ; indeed fσ

j

is the same for all σ in a given coset, because fj has coefficients in K. The same remark
holds with Eq. (3.4). Then we have ϕτ

n = ϕn for any τ ∈ G0, so that ϕn has coefficients in
Q. The other parts of the proof of Step 2 remain unchanged.

Step 3. Let us conclude the proof of Theorem 1.
Let (ω1, . . . , ωd) be a Z-basis of OK. Each λj may be written as

∑d
t=1 λj,tωt with

λj,t ∈ Z such that |λj,t| ≤ c1 λj ≤ c1H , where c1 depends only on K (see [13, Chapter 3,

Lemma 12]). Then Λ =
∑N

j=1

∑d
t=1 λj,tωtfj(1), and the conclusion of Theorem 1 follows

from the special case proved in Step 2, applied to the dN E-functions ωtfj(z) with λj,t ∈ Z.

4 Decomposition of E-functions over a number field

In the same spirit as Proposition 2, it is possible to prove the following result. The weaker
version with K replaced by Q was first proved in the unpublished note [12], and the special
case K = Q in [5].
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Proposition 3. Let f be an E-function with coefficients in a number field K. Then there
exist polynomials P,Q ∈ K[z], and an E-function g with coefficients in K, such that

f(z) = P (z) +Q(z)g(z) and g(z0) is transcendental for any z0 ∈ Q
∗
.

In this setting, the non-zero algebraic numbers z at which a transcendental f takes an
algebraic value are exactly the roots of Q. Moreover, replacing P with its remainder in its
Euclidean division by Q, we may assume deg P < degQ provided Q 6= 0 (i.e., when f is
not a polynomial); see [5, Proposition 3.3].

Proposition 3 is a generalization of the following result, which will be used in the proof.
It is stated as [8, Theorem 4] and its proof is due to the referee of [7]:

Lemma 1. Let f be an E-function with coefficients in a number field K, and α ∈ Q be
such that f(α) is algebraic. Then f(α) ∈ K(α).

For the convenience of the reader, let us deduce this lemma from Proposition 1. Let
β = f(α), and L be a finite Galois extension of K(α) such that β ∈ L. Since f(z) − β
vanishes at α, Proposition 1 shows that for any σ ∈ Gal(L/K(α)) the E-function f(z) −
σ(β) = fσ(z) − σ(β) vanishes at σ(α) = α, so that σ(β) = f(α) = β. This concludes the
proof of Lemma 1.

Proof of Proposition 3. To prove Proposition 3, we first remark that the result is obvious
if f is algebraic, hence a polynomial: we simply take P = f and Q = 0. Let us now assume
that f is transcendental. We argue by induction on the number of non-zero algebraic points
α such that f(α) ∈ Q; this number is finite because f is transcendental and of Beukers’
theorem: any such α is a singularity of the first-order differential system satisfied by 1, f ,
f ′, . . . , f (µ−1) (where µ ≥ 1 is the minimal order of an inhomogeneous linear differential
equation with coefficients in K(z) satisfied by f).

If this number is 0, one may choose P = 0 andQ = 1. Now if f(α) ∈ Q, Lemma 1 proves
that f(α) belongs to K(α): there exists P0 ∈ K[X ] such that f(α) = P0(α). Therefore the
E-function f−P0, with coefficients in K, vanishes at α. Proposition 1 yields an E-function
g0 with coefficients in K such that f = P0 +Dg0 where D is the minimal polynomial of α
over K. If g0(α) ∈ Q, the same procedure can be carried out with g0, leading to P1 ∈ K[z]
and an E-function g1 with coefficients in K such that g0 = P1 +Dg1. After finitely many
steps, this procedure terminates and provides gℓ such that gℓ(α) 6∈ Q (see the proof of [5,
Theorem 3.4]). This concludes the proof of Proposition 3.

5 Structure of EK

Let K be a subfield of Q. As in the introduction, we denote by EK the ring of all values
f(1) where f is an E-function with coefficients in K; in particular EQ = E.

The following result contains Theorem 2 stated in the introduction (as a special case
K = Q).
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Theorem 3. Elements of EK are linearly independent over Q if, and only if, they are
linearly independent over K. In other words, the K-algebras EK and Q are linearly disjoint,
and the natural map EK ⊗K Q → E is a K-algebra isomorphism.

This result implies EK ∩Q = K, which is an equivalent form of Lemma 1 stated in §4.

Proof of Theorem 3. Let f1, . . . , fN be E-functions with coefficients in K. If f1(1), . . . ,
fN(1) are linearly independent over Q, then obviously they are linearly independent over
K. Conversely, let us assume that they are linearly independent over K. Let λ1, . . . ,
λN be algebraic numbers, not all zero, such that λ1f1(1) + . . . + λNfN(1) = 0. Up to a
permutation of the indices we may assume that λ1 6= 0; then dividing by λ1 we assume
that λ1 = 1. Let us consider a finite Galois extension L of K that contains λ2, . . . , λN .
Then g(z) =

∑N
i=1 λifi(z) is an E-function with coefficients in L, and it vanishes at z = 1.

For any σ ∈ Gal(L/K), Proposition 1 yields gσ(1) = 0, that is
∑N

i=1 σ(λi)fi(1) = 0 since
all fi have coefficients in K. Summing these relations, as σ varies, yields

N
∑

i=1

TrL/K(λi)fi(1) = 0

with TrL/K(λi) =
∑

σ∈Gal(L/K) σ(λi) ∈ K and TrL/K(λ1) = TrL/K(1) = [L : K] 6= 0. This

is a non-trivial linear relation, with coefficients in K, between f1(1), . . . , fN(1). This
contradiction concludes the proof that elements of EK are linearly independent over Q if,
and only if, they are linearly independent over K.

What remains of Theorem 3 follows directly from this property (see [3, Chapter V, §2,
No. 5]).

6 A Galois action on values of E-functions

In this section we define and study an action of the absolute Galois group of Q, namely
Gal(Q/Q), on the set E of values of E-functions.

The definition is as follows: given σ ∈ Gal(Q/Q) and ξ ∈ E, there exists an E-function
f such that ξ = f(1). Then we let σ(ξ) = fσ(1). The crucial point is to prove that σ(ξ)
depends only on σ and ξ, not on the choice of f . Indeed if g is another E-function such
that ξ = g(1), then f−g vanishes at the point 1. Proposition 1 shows that fσ−gσ vanishes
at 1 too, so that gσ(1) = fσ(1): this concludes the proof.

Proposition 4. Let K be a number field, and ξ ∈ E. Then ξ belongs to EK if, and only
if, σ(ξ) = ξ for any σ ∈ Gal(Q/K).

In other words, the fixed points of E under Gal(Q/K) are exactly the elements of EK.
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Proof of Proposition 4. If ξ ∈ EK and σ ∈ Gal(Q/K) then σ(ξ) = ξ by definition, since
fσ = f for any E-function f with coefficients in K.

Now let ξ ∈ E be such that σ(ξ) = ξ for any σ ∈ Gal(Q/K). Let f be an E-
function such that f(1) = ξ, and L denote a finite Galois extension of K that contains all
coefficients of f . Let σ ∈ Gal(L/K); then σ is the restriction to L of an element, again
denoted by σ, of Gal(Q/K). We have σ(ξ) = ξ by assumption, and also σ(ξ) = fσ(1)
by definition. Summing the identity ξ = fσ(1) over all σ yields ξ = g(1) where g(z) =

1
[L:K]

∑

σ∈Gal(L/K) f
σ(z) is an E-function with coefficients in K. Therefore ξ ∈ EK; this

concludes the proof of Proposition 4.

This Galois action sheds a new light on the proof of Theorem 1 (see §3): it is very
similar to Liouville’s proof that irrational algebraic numbers are not too well approximated
by rationals (i.e., are not Liouville numbers).

Indeed let us recall briefly Liouville’s proof, stated in terms of Galois action. Let ξ
be an algebraic number of degree d ≥ 2, and assume (for simplicity) that the extension
Q(ξ)/Q is Galois. To bound from below |qξ − p| for (p, q) ∈ Z2 \ {(0, 0)}, consider

̟ :=
∏

σ∈Gal(Q(ξ)/Q)

(

qσ(ξ)− p
)

.

Then ̟ 6= 0 (since σ(ξ) is irrational for any σ), and ̟ ∈ Q (since it is the norm of qξ − p
with respect to the extension Q(ξ)/Q). Letting δ ∈ Z denote a positive integer such that
δξ is an algebraic integer, we have δd̟ ∈ Z\ {0} since OQ(ξ)∩Q = Z. Therefore |δd̟| ≥ 1
so that

δ−d ≤ |̟| ≤ |qξ − p|( ξ + 1)d−1Hd−1

by bounding |qσ(ξ)− p| trivially for σ 6= Id, where H = max(|p|, |q|). Dividing by q yields
|ξ − p/q| ≥ cH−d where c > 0 depends only on ξ.

Step 2 of the proof of Theorem 1 is very similar, except that elements of K ⊂ Q are
replaced with values of E-functions in EK; the lower bound used by Liouville (namely,
δd̟ ∈ Z \ {0} implies |δd̟| ≥ 1) is replaced accordingly by Shidlovskii’s lower bound
recalled in Theorem A.
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