
HAL Id: hal-03920431
https://hal.science/hal-03920431v2

Submitted on 22 Jan 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Identifiability of Causal-based ML Fairness Notions
Karima Makhlouf, Sami Zhioua, Catuscia Palamidessi

To cite this version:
Karima Makhlouf, Sami Zhioua, Catuscia Palamidessi. Identifiability of Causal-based ML Fairness
Notions. 14th International Conference on Computational Intelligence and Communication Networks
(CICN), IEEE, Dec 2022, Al-khobar, Saudi Arabia. �hal-03920431v2�

https://hal.science/hal-03920431v2
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Identifiability of Causal-based ML Fairness Notions
Karima Makhlouf

INRIA, Ecole Polytechnique
Palaiseau, France

makhlouf@lix.polytechnique.fr

Sami Zhioua
INRIA, Ecole Polytechnique

Palaiseau, France
zhioua@lix.polytechnique.fr

Catuscia Palamidessi
INRIA, Ecole Polytechnique

Palaiseau, France
catuscia@lix.polytechnique.fr

Abstract—Machine learning algorithms can produce biased
outcome/prediction, typically, against minorities and under-
represented sub-populations. Therefore, fairness is emerging as
an important requirement for the safe application of machine
learning based technologies. The most commonly used fairness
notions (e.g. statistical parity, equalized odds, predictive parity,
etc.) are observational and rely on mere correlation between
variables. These notions fail to identify bias in case of statistical
anomalies such as Simpson’s or Berkson’s paradoxes. Causality-
based fairness notions (e.g. counterfactual fairness, no-proxy
discrimination, etc.) are immune to such anomalies and hence
more reliable to assess fairness. The problem of causality-based
fairness notions, however, is that they are defined in terms of
quantities (e.g. causal, counterfactual, and path-specific effects)
that are not always measurable. This is known as the identifia-
bility problem and is the topic of a large body of work in the
causal inference literature. The first contribution of this paper
is a compilation of the major identifiability results which are of
particular relevance for machine learning fairness. To the best
of our knowledge, no previous work in the field of ML fairness
or causal inference provides such systemization of knowledge.
The second contribution is more general and addresses the main
problem of using causality in machine learning, that is, how
to extract causal knowledge from observational data in real
scenarios. This paper shows how this can be achieved using
identifiability.

Index Terms—Causality, Machine Learning, Fairness

I. INTRODUCTION

Machine learning is being used to inform decisions with
critical consequences on human lives such as job hiring,
college admission, loan granting, and criminal risk assessment.
Unfortunately, these automated decision systems have been
found to consistently discriminate against certain individuals
or sub-populations, typically minorities. Because the discrimi-
nation is very often unintentional, discovering and addressing
it is a challenging task. The most commonly used fairness
notions are observational and rely on mere correlation between
variables. For example, statistical parity [4] requires that the
proportion of positive outcome (e.g. granting loans) is the same
for all sub-populations (e.g. male and female groups). Equal
opportunity [7] requires that the true positive rate (TPR) is the
same for all sub-populations. The main problem of correlation-
based fairness notions is that they fail to detect discrimination
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in presence of statistical anomalies such as Simpson’s para-
dox [22] and Berkson’s paradox [1], [9]. A famous example
of the Simpson’s paradox is the gender bias in 1973 Berkley
admission [2], [11]. In that year, 44% of male applicants were
admitted against only 34% of female applicants. While this
looks like a bias against female candidates, when the same
data has been analyzed by department, acceptance rates were
approximately the same.

One way to address this limitation is to consider how data
is generated in the first place which leads to causal-based
fairness notions. Because this new breed of fairness notions
is immune to statistical paradoxes, it is now widely accepted
that causality is necessary to appropriately address the problem
of fairness [11]. Examples of causal-based fairness notions
include total effect [14], interventional fairness [17], coun-
terfactual fairness [10], counterfactual effects [29], and path-
specific counterfactual fairness [3], [28]. These notions are
defined in terms of non-observable quantities such as causal,
counterfactual, and path-specific effects. As they are non-
observable, these quantities cannot always be estimated based
on observable data. This is known as the identifiability problem
and is the topic of a large body of work in the causal inference
literature. For example, the identifiability of causal effects can
be decided using a set of three causal inference rules called
do-calculus [13], [14].

This paper summarizes the main identifiability results as they
relate to the specific problem of discrimination discovery
with an emphasis on graphical criteria. These results fall into
two categories: causal effect (intervention) identifiability [6],
[8], [14], [19], [21], [23]–[25] and counterfactual identifia-
bility [18], [20], [21], [27]. Section II provides necessary
background concepts. Then, instead of repeating the definition
of identifiability (Definition 3.2.3 in [14]), Section III gives
an intuitive explanation of the identifiability problem through
the teacher firing example. Sections IV and V compile the
common identifiability results of causal and counterfactual
effects, respectively. Section VI concludes.

II. PRELIMINARIES AND NOTATION

Variables are denoted by capital letters. In particular, A is used
for the sensitive variable (e.g., gender, race, age) and Y is
used for the outcome of the automated decision system (e.g.,
hiring, admission, releasing on parole). Small letters denote



specific values of variables (e.g., A = a′, W = w). Bold
capital and small letters denote a set of variables and a set of
values, respectively.

A structural causal model [14] is a tuple M =
〈U,V,F, P (U)〉 where:

• U is a set of exogenous variables which cannot be ob-
served or experimented on but constitute the background
knowledge behind the model.

• V is a set of observable variables which can be experi-
mented on.

• F is a set of structural functions where each fi is mapping
U∪V→ V\{Vi} which represents the process by which
variable Vi changes in response to other variables in U∪
V.

• P (u) is a probability distribution over the unobservable
variables U.

Causal assumptions between variables are captured by a causal
diagram G which is a directed acyclic graph (DAG) where
nodes represent variables and directed edges represent func-
tional relationships between the variables. Directed edges can
have two interpretations. A probabilistic interpretation where
the edge represents a dependency among the variables such that
the direction of the edge is irrelevant. A causal interpretation
where the edge represents a causal influence between the corre-
sponding variables such that the direction of the edge matters.
Unobserved variables U, which are typically not represented
in the causal diagram, can be either mutually independent
(Markovian model) or dependent from each others. In case
the unobserved variables can be dependent and each Ui ∈ U
is used in at most two functions in F , the model is called semi-
Markovian. In causal diagrams of semi-Markovian models,
dependent unobservable variables (unobserved confounders)
are represented by a dotted bi-directed edge between ob-
servable variables. Graphs G5 (Table I) and G16 (Table II)
show causal graphs of Markovian and semi-Markovian models,
respectively.

(a) Markovian model. (b) Semi-Markovian
model.

(c) Intervention:
do(Z = z).

Fig. 1

An intervention, noted do(V = v), is a manipulation of the
model that consists in fixing the value of a variable (or a set of
variables) to a specific value regardless of the corresponding
function fv . Graphically, it consists in discarding all edges
incident to the node corresponding to variable V . Figure 1(c)
shows the causal diagram of the manipulated model after

intervention do(Z = z) denoted MZ=z or Mz for short. The
intervention do(V = v) induces a different distribution on
the other variables. Intuitively, while P (Y |Z = z) reflects the
population distribution of Y among individuals whose Z value
is z, P (Y |do(Z = z) reflects the population distribution of Y
if everyone in the population had their Z value fixed at z. The
obtained distribution P (Y |do(Z = z) can be considered as a
counterfactual distribution since the intervention forces Z to
take a value different from the one it would take in the actual
world. Such counterfactual variable is noted YZ=z or Yz for
short1. P (Y = y|do(Z = z)) = P (YZ=z = y) = P (Yz =
y) = P (yz) is used to define the causal effect of z on Y .
The term counterfactual quantity is used for expressions that
involve explicitly multiple worlds. In Figure 1(b), consider the
expression P (ya′ |Y = y,A = a) = P (ya′ |y, a). Such expres-
sion involves two worlds: an observed world where A = a and
Y = y and a counterfactual world where Y = y and A = a′

and it reads “the probability of Y = y had A been a′ given
that we observed Y = y and A = a”. In the common example
of job hiring, if A denotes race (a :white, a′:non-white) and Y
denotes the hiring decision (y:hired, y′:not hired), P (ya′ |y, a)
reads “given that a white applicant has been hired, what is the
probability that the same applicant is still being hired had he
been non-white”. Nesting counterfactuals can produce complex
expressions. For example, in the relatively simple model of
Figure 1(b), P (ya,za′ |y′a′) = P (y(a, z(a′))|y′(a′)) reads the
probability of Y = y had (1) A been a′ and (2) Z been z
when A is a′, given that an intervention A = a′ produced y′.
This expression involves three worlds: a world where A = a,
a world where Z = za′ , and a world where A = a′. Such
complex expressions are used to characterize direct, indirect,
and path-specific effects.

III. EXPLAINING IDENTIFIABILITY THROUGH AN EXAMPLE

Consider the example of an automated system for deciding
whether to fire a teacher at the end of the academic year.
Deployed teacher evaluation systems have been suspected of
bias in the past. For example, IMPACT is a teacher evaluation
system used in the city of Washington, D.C., and have been
found to be unfair against teachers from minority groups [12],
[15], [16]. Assume that the system takes as input one feature,
namely, the initial2 average level of the students assigned to
that teacher (A). The outcome is whether to fire the teacher
(Ŷ ). Assume that these two variables are confounded by a third
unobservable variable U which represents a socioeconomic
status related to the school neighborhood.

Assume also that all 3 variables are binary with the following
values: If the initial average level of the students assigned to
the teacher is high, A = 1, otherwise (initial level is low),
A = 0. Firing a teacher corresponds to Ŷ = 1, while retaining
her corresponds to Ŷ = 0. If the school is located in a
high-income neighborhood, U = 1, otherwise (the school is

1The notations YZ←z and Y (z) are used in the literature as well.
2At the beginning of the academic year.



located in a low-income neighborhood), U = 0. The level of
students in a given class can be influenced by several variables,
but in this example, assume that it is only influenced by the
socioeconomic status of the school; students in high-income
neighborhoods are more advantaged and typically perform
better in school.

The relationships between the variables A,U, and Y can be
graphically represented using the causal directed acyclic graph
(DAG) in Figure 23. Notice that the edges U → A and U → Y
are dotted because they are emanating from an unobservable
variable (U ).

Fig. 2: Causal graph of the teacher firing example.

Assume that the automated decision system is suspected to be
biased by the level of students assigned to the teacher. That
is, it is claimed that the system is more likely to fire teachers
who have been assigned classes with low level students at the
beginning of the academic year, which is clearly unfair. The
bias in the outcome (Ŷ ) due to the sensitive variable A can be
assessed by computing the total variation:

TVa1,a0
(y) = P (y | a1)− P (y | a0) (1)

which coincides with statistical parity [4] and measures the
difference between the conditional distributions of Ŷ when we
(passively) observe A changing from a0 to a1 (e.g. from 0 to 1
in our example). The main limitation of TV is that it is purely
statistical and may be fooled by statistical anomalies such as
Simpson’s and Berkson’s paradoxes. Total effect (TE) [14]
is the causal version of TV and is defined in terms of
experimental probabilities as follows:

TEa1,a0(y) = P (Y = y|do(A = a1))− P (Y = y|do(A = a0))

= P (ya1)− P (ya0) (2)

While TV is expressed in terms of observable probabilites
(P (y|a1) and P (y|a0)) and hence can always be computed
from observable data, TE is not. The question is can TE
be expressed in terms of observable probabilities and hence
computed from observable data? If the answer is yes, TE
is said to be identifiable. Otherwise, it is not identifiable.
Pearl gives a formal definition of identifiability [14], Page
77, Definition 3.2.3. Intuitively, given a dataset D (which
can be generated by different causal models), a quantity (e.g.
P (YA=a1

= y)) is identifiable if it keeps the same value
regardless of the causal model which generated the dataset
D. For example, in the teacher firing scenario, P (ŶA=0 = 1)
is not identifiable since it is possible to come up with two
causal models that can generate the same data, and hence

3The structure of this graph is known as the bow structure in the literature.

P (ŶA=0 = 1) cannot be uniquely computed based only on
observable data. For illustration, consider the two following
causal models (M1 and M2) expressed in terms of all three
variables A, Ŷ , and U 4:

Causal model M1

P (Ŷ = 1 | A = 0, U = 0) = 0.25 P (A = 0 | U = 0) = 0.6

P (Ŷ = 1 | A = 1, U = 1) = 0.25 P (A = 0 | U = 1) = 0.4

P (Ŷ = 1 | A = 0, U = 1) = 0.02 P (A = 1 | U = 0) = 0.4

P (Ŷ = 1 | A = 1, U = 0) = 0.02 P (A = 1 | U = 1) = 0.6

Causal model M2

P (Ŷ = 1 | A = 0, U = 0) = 0.24 P (A = 0 | U = 0) = 0.65

P (Ŷ = 1 | A = 1, U = 1) = 0.24 P (A = 0 | U = 1) = 0.35

P (Ŷ = 1 | A = 0, U = 1) = 0.01 P (A = 1 | U = 0) = 0.35

P (Ŷ = 1 | A = 1, U = 0) = 0.01 P (A = 1 | U = 1) = 0.65

It is easy to show that both causal models generate the same
joint distribution P (Ŷ , A). Using the chain rule,

P (A, Ŷ ) =
∑

u∈{0,1}

P (Ŷ | A,U = u)P (A| U = u)P (U = u)

(3)

both M1 and M2 generate the same observable distribu-
tion:

P (Ŷ = 1 , A = 1) = 0.079

P (Ŷ = 0 , A = 0) = 0.42

P (Ŷ = 1 , A = 0) = 0.079

P (Ŷ = 0 , A = 1) = 0.42

P (ŶA=0 = 1) is not an observable quantity. However, since
we assumed the existence of an oracle with knowledge about
all model parameters, it can be computed using the back-door
formula (Equation 6) as follows:

P (ŶA=0 = 1) =
∑

u∈{0,1}

P (Ŷ = 1| A = 0, U = u)P (U = u)

(4)

For causal model M1,

P (ŶA=0 = 1) = (0.25× 0.5) + (0.02× 0.5) = 0.135

whereas for causal model M2,

P (ŶA=0 = 1) = (0.24× 0.5) + (0.01× 0.5) = 0.125

Hence, M1 and M2 are two different causal models that
generate the same observable data but yield two different
values for the quantity P (ŶA=0 = 1) which is consequently
not identifiable from observational data. In other words, in this
situation, it is not possible to use observations to tell whether
A is actually a cause of Ŷ .

4U is an exogenous variable and it is not observable by definition. But to
illustrate the identifiability concept, assume there is an oracle with a knowledge
about all model parameters including U .



Since total variation TV is defined in terms of observable
probabilities, it can be computed based on the observable
data. Total effect TE, however, cannot be computed based on
observable data as P (ŶA=0 = 1) is not identifiable.

Notice that, in this example, both models M1 and M2 share
the same graph structure (Figure 2). This is not always the
case. That is, it is possible to have two causal models with
different graph structures coinciding on the observable joint
distribution. Hardt et al. [7] illustrate this case with an example.
Tikka [26] presents another non-identifiable example defined
using the XOR logic operator.

Based on the causal inference literature, the next sections
compile a list of identifiability criteria for the different types
of non-observable quantities: causal, counterfactual, direct,
indirect, and path-specific effects.

IV. IDENTIFIABILITY OF CAUSAL EFFECTS

The natural way to estimate the causal effect of a variable
(the sensitive attribute A) on another (the outcome variable
Y ) is to carry out real experiments using RCT (Randomized
Controlled Trial) [5]. If possible, RCT drops the need for
identiability altogether. However, in the context of machine
learning fairness, RCT is often not an option as experiments
can be too costly to implement or physically impossible to
carry out (e.g. changing the gender of a job applicant).

As an alternative, intervention using the do-operator can be
used to compute the causal effect. Without loss of generality,
this section focuses on the identifiability of P (Y = y|do(A =
a)) = P (ya), that is, the causal effect of the sensitive attribute
A on the outcome variable Y . The computation of P (ya) uses
a “surgically altered” graph in which all arrows into A are
deleted and the value of A is fixed at a, but the rest of the
graph remains unchanged.

Whether it is possible to express P (ya) only in terms of ob-
servable probabilities (identifiability) depends on the structure
of the causal graph (which captures how data is generated).
A first important result is that any causal effect is identifiable
in a Markovian model (where all unobservable variables are
independent). In semi-Markovian models, however, the causal
effect is not always identifiable.

Table I shows different Markovian models involving various
patterns of causal relationships along with the corresponding
expression in terms of observable probabilities.

Graphs G1 − G5 illustrate the simplest cases where no con-
founding between A and Y exists. In that case, the causal effect
matches the conditional probability regardless of any mediator
M as follows:

P (ya) = P (y|a) (5)

1) Back-door adjustment: In case there are confounders
involving A and Y , the causal effect can be identified by
finding a set of variables C that block all back-door paths

Causal graph P (ya)
G1

G2

P (y|a)
G3

G4

G5

G6 ∑
C P (y|a, c) P (c)

G7

G8

G9

G10 ∑
C1C2

P (y|a, c1, c2) P (c1, c2)

G11

P (y|a)∑
C1

P (y|a, c1) P (c1)∑
C2

P (y|a, c2) P (c2)∑
WC1

P (y|a,w, c1) P (w, c1)∑
WC2

P (y|a,w, c2) P (w, c2)∑
WC1C2

P (y|a,w, c1, c2) P (w, c1, c2)

G12

∑
C2

P (y|a, c2) P (c2)∑
WC1

P (y|a,w, c1) P (w, c1)∑
WC2

P (y|a,w, c2) P (w, c2)∑
WC1C2

P (y|a,w, c1, c2) P (w, c1, c2)

TABLE I: P (ya) of some Markovian models.

from A to Y . This is called the back-door criterion5. This
criterion necessitates the existence of a set of covariates C
which blocks all the indirect paths from A to Y , but keeps
all the direct paths open. C satisfies the back-door criterion
when (1) C blocks every back-door path between A and Y ,
and (2) no node in C is a descendant of A. Graphs G6 − 12
illustrate examples where C (or {C1,C2}) meets the back-door
criterion. In presence of an observable confounder C, P (ya) is
identifiable by adjusting6 on that confounder using back-door

5Called also adjustment formula or stratification.
6The terms adjusting, controlling, and marginalizing are used interchange-

ably.



formula:

P (ya) =
∑
C

P (y|a, c) P (c) (6)

where the summation is on values c in the domain (sample
space) of C denoted as dom(C). Note that G4 and G5
contain a collider (W ). Marginalizing over the collider variable
disproves the equality in Eq. 6 as it might open back-door
paths between A and Y and consquently create a dependency
between these two variables. Despite the fact that G11 involves
two confounders C1 and C2, no adjustment is required because
of the presence of the collider W . Hence P (ya) can be
computed using Eq. 5. Alternatively, controlling on: C1, C2,
{W,C1},{W,C2} or {W,C1, C2} is possible using Eq. 6.
Table I shows all possible formulas that can be used to
calculate P (ya) for G11. G12 presents another case with
two confounders (C1 and C2) and the two following back-
door paths between A and Y : A ← W ← C2 → Y and
A ← C1 → W ← C2 → Y . The former must be blocked
by either W or C2 or both while the latter doesn’t need any
controlling because of the presence of the collider: W . Thus,
the set of variables sufficient to control for confounding are:
C2, {C1,W}, {W,C2} or {W,C1, C2} but not W or C1 (the
minimum to control for is: C2). That is, any one of these
equations can be used to calculate the causal effect of A on
Y . As a summary, the only type of variables that have an
impact on the identifiability of P (ya) in Markovian models is
the confounder. To compute the causal effect in presence of
confounding, adjusting using the back-door formula (Eq. 6) is
required. However, adjusting should not be used in presence of
a collider variable since this might open back-door paths be-
tween A and Y and hence, create a dependency between them.
Mediator variables, on the other hand, have no impact on the
identifiability of causal effects in Markovian models.

Causal effects are not always identifiable in semi-Markovian
models. This subsection focuses on causal models where the
causal effect of A on Y is identifiable. The following subsec-
tion gives a graphical criteria of causal models where the causal
effect is not identifiable. In the causal model, the measurement
of causal effects is assisted by interventions following a set
of inference rules introduced by Pearl [14] known as: do-
calculus. These rules tend to link the interventional quantities
of causal effects to simple statistical distributions based solely
on observational data. As an alternative way of assessing causal
effects, relevant graphical patterns will be presented in the
remainder of this section.
2) do-calculus inference rules: do-calculus [13], [14] is a
set of three inference rules that can be used to express
an interventional expression of the form P (ya) in terms of
subscript-free (observable) quantities. The rules are:

• Rule 1 (Insertion/Deletion of Observations):
P (ya|c, w) = P (ya|c) provided that the set of variables
C blocks all back-door paths from W to Y after all arrows
leading to A have been deleted.

• Rule 2 (Action/Observation Exchange):
P (ya|c) = P (y|a, c) provided that the set of variables C
blocks all back-door paths from A to Y .

• Rule 3 (Insertion/Deletion of Actions):
P (ya) = P (y) provided that there are no causal paths
between A and Y .

Causal graph P (ya)

G13
P (y|a)

G14 ∑
C P (y|a, c) P (c)

G15

G16

∑
c1,c2

P (y|a, c1, c2) P (c1, c2)

G17

∑
m1,m2

P (y|m1,m2, a) P (m1|a)

×
∑

a′ P (m2|m1, a′) P (a′)

G18

∑
w1

∑
w2

∑
a′ P (y|w1, w2, a′)

× P (a′|w2) P (w1|w2, a)P (w2)

G19
M YA

∑
m P (m|a)

∑
a′ P (y|m,a′) P (a′)

TABLE II: P (ya) of some semi-Markovian models.

As an example, consider the graph G18. The causal effect
P (ya) can be identified as follows:

P (ya) =
∑
w1

∑
w2

∑
w3

P (y|w1, w3) P (w2) P (w1, y| do(a))

(7)

=
∑
w1

∑
w2

P (y|w1, w2) P (w2) P (w1, y| do(a)) (8)

=
∑
w1

∑
w2

P (y|w1, w2) P (w2) P (w1| a,w2)

×
∑
a′

P (y| w1, a
′) P (a′| w2) (9)

=
∑
w1

∑
w2

∑
a′

P (y|w1, w2, a
′) P (w2) P (w1| a,w2)

× P (a′| w2) (10)

The term P (w1, y| do(a)) in (8) is replaced by
P (w1| a,w2)

∑
a′ P (y| w1, a

′) P (a′| w2) after applying
Rule 2 followed by Rule 3 of do-calculus (symbolic



derivation of Causal Effects: Eq. 3.43 [14]). Since W2 blocks
all back-door paths between A and Y , we apply the back-door
formula (Eq. 6) to adjust on W2 in (10).
3) C-component factorization: C-component factoriza-
tion [21] aims to express the observational distribution P (v)
as a product of factors Pv\s(s), where each s represents the
set of vertices included in a c-component. A c-component is
a set of vertices in the graph such that every pair of vertices
are connected by a confounding edge. The c-components are
very important in measuring the causal effect of A on Y
since they help in decomposing the identification problem into
smaller sub-problems. In other words, variables in the graph
can be partitioned into a disjoint set of c-components in order
to calculate P (ya). For example, the graph G17 is partitioned
into two c-components: S1 = {A,M2} and S2 = {M1, Y }
while the c-components of G18 are: S1 = {A,W2, Y,W3}
and S2 = {W1}.

Note that as long as there is no confounding path connecting
A to any of its direct children, P (ya) is identifiable and can
be computed as [24]:

P (ya) =
P (y)

QA

∑
a′

QA (11)

where QA is the c-factor of the c-component containing A
(SA) computed as follows:

QA =
∏

v∈SA

P (v|v−1) (12)

where v−1 is the set of values of all previous variables to V ,
assuming a topological order V1 ≺ V2 ≺ . . . ≺ Vn over all
variables. For instance, in G17, W2 ≺ A ≺M1 ≺M2 ≺ Y is
a valid topological order. This criterion can be slightly gener-
alized to be: P (ya) is identifiable if there is no confounding
path connecting A to any of its children in GAn(Y ) which is
the subgraph of G composed only of ancestors of the outcome
variable Y .

To illustrate the c-component factorization property, consider
the causal graph G17. Hence, applying Eq. 11 to G17 leads
to:

P (ya) =
P (y)

P (a)P (m2| a,m1)

∑
a′

P (a′)P (m2| a′,m1) (13)

4) Front-door adjustment: In case a bi-directed edge between
the sensitive attribute A and the outcome Y exists, all the
above approaches will fail. However, P (ya) can still be mea-
sured using another criterion called the front-door criterion.
The graph G19 satisfies this criterion. In fact, the back-door
criterion cannot be used because of the unobserved confounder
(impossible to control for) however, due to the presence of the
mediators M , the front-door criterion can be applied to identify
the causal effect as follows:

P (ya) =
∑
m

P (m|a)
∑
a′

P (y|m, a′) P (a′) (14)

More generally, the front-door adjustment can be applied if the
the following conditions hold:

1) all of the direct paths from A to Y pass through M .

2) there are no back-door paths from A to M ,

3) all back-door paths from M to Y are blocked by A.

Back-door and front-door adjustments are the main ingredients
of the do-calculus(Section IV-2).

V. IDENTIFICATION OF COUNTERFACTUAL EFFECTS

While causal effects (Section IV) interpret the effect of ac-
tions as downward flow, counterfactual effects require more
complex reasoning. Basically, counterfactual effects measure
fairness based on multiple worlds: the actual world and other
hypothetical (or counterfactual) worlds. The actual world is
represented by a causal model M in its actual (normal) state
without any interventions, while the counterfactual worlds are
represented by sub-models: Ma where the intervention do(a)
forces the actual state to change to an alternative state.

Note that in Markovian, as well as semi-Markovian models, if
all parameters of the causal model are known (including P (u)),
any counterfactual is identifiable and can be computed using
the three steps abduction, action, and prediction (Theorem
7.1.7 in [14]). However, this method is usually infeasible in
real-world scenarios due to the lack of the complete knowledge
of the causal model (more specifically the knowledge of the
background variables U ).

Given a causal graph G of a Markovian model and a coun-
terfactual expression γ = va|e with e some arbitrary set of
evidence, measuring P (γ) requires to construct a counterfac-
tual graph which combines parallel worlds. Every world is
represented by a counterfactual sub-model Ma. For example,
Figure 3 shows a causal graph for the firing example (Fig-
ure 3(a)) along with its corresponding counterfactual graph
(Figure 3(b)). Thus, Figure 3(b) combines two worlds: the
actual world where the teacher has actually A = a0 and
the counterfactual world where the same teacher is assigned
A∗7 = a1. As shown in the figure, the two worlds share
the same unobserved background variable: UY that highlights
the interaction between these worlds. Note that no bi-directed
edges are connected to the node A∗ = a1. The reason for that
is that the intervention do(a∗ = a1) removes all the incoming
arrows to A∗. Thus, in order to calculate the counterfactual
expression P (Y ∗a∗=a1

| A = a0) of the simple Markovian graph
in Figure 3(a), we need to construct the semi-Markovian graph
in Figure 3(b). The make-cg algorithm [21] automates this
procedure. Basically, make-cg algorithm starts by combining
the two causal graphs (actual and counterfactual) and makes
them share the same background variable U (as shown in
Figure 3(b)). Then, it discards the duplicated endogenous nodes
which are not affected by do(a).

7The subscript ∗ is added to nodes belonging to the counterfactual world
for graph legibility.



(a) (b) (c)

Fig. 3: (a) A causal graph for the firing example (b) A corre-
sponding counterfactual graph for the query P (Y ∗a∗=a1

| A =
a0)(c) Zig-zag pattern.

One typical unidentifiable counterfactual quantity is P (ya′ , y′a)
which is called the probability of necessity and sufficiency.
The corresponding counterfactual graph is the W-graph that
has the same structure as to Figure 3(b). This simple criterion
can be generalized to the zig-zag graph (Figure 3(c)) where
the counterfactual P (ya, w1, w2, z

′
x) is not identifiable.

A. C-component factorization

To illustrate how counterfactual quantities are measured, con-
sider the same firing example (Figure 2 where the latent
variable U is now replaced with an observable variable C.
Consider the counterfactual query: P (ya1 |a0) which reads the
probability of firing a teacher who is assigned a class with
a high initial level of students (a0) had she been assigned a
class with a low initial level of students (a1). Figure 4(a) shows
the two parallel-worlds graph8 for the query while Figure 4(b)
presents the final constructed counterfactual graph using make-
cg algorithm. Note that in Figure 4(b), C and C∗ are merged
as a single node C (by applying Lemma 24 [21]). The main
reason for that is that these nodes are not descendants of A.
Then, C inherits all the children of both nodes C (the old node
in the previous graph) and C∗. Finally, UC is omitted since
any unobserved variable that possesses a single child should
be removed [21].

(a) (b)

Fig. 4: (a) Parallel worlds graph for P (ya1
|a0) (b) Counter-

factual graph for P (ya1
|a0).

Now, having constructed the counterfactual graph for the
counterfactual expression P (ya1 |a0), we can turn to the
identifiability of this expression. Note that the obtained
counterfactual graph (Figure 4(b)) has three c-components:
{C}, {A}, {Y, Y ∗a1

} thus:

P (ya1
|a0) =

∑
y,c Q(c) Q(a0) Q(y, ya1)

P (a0)
(15)

8This graph is called twin network graph since it includes only two
hypothetical graphs [21].

where Q(v) = P (v|pa(V)) in the counterfactual graph.
Hence,

P (ya1
|a0) =

∑
y,c P (c) P (a0|c) P (y, ya1 |c)

P (a0)

=

∑
c P (c) P (a0|c) P (ya1

|c)
P (a0)

(16)

=

∑
c P (c) P (a0|c) P (y|a1, c)

P (a0)
(17)

Table III presents various examples of identifying the coun-
terfactual quantities (column 3) of some causal graphs (first
column) after obtaining their corresponding counterfactual
graphs (column 2).

For example, G33 includes in addition to the confounder C
a mediator M . As shown in the corresponding counterfactual
graph, the nodes M and M∗a1

are not merged as they differ on
their A-derived parents by contrast to the node C. Similarly, in
G34, the pair of nodes M , M∗a1

and W , W ∗a1
are not merged

for the same reason.

VI. CONCLUSION

A typical goal of causal inference in the context of discrimina-
tion discovery is establishing the causal effect of the sensitive
attribute A on the outcome Y . Unfortunately, this may not be
possible due to the identifiability problem. This paper studied
the problem of identifiability as it relates to discrimination
discovery. We made use of the large-scale body of work on
identifiability theory to summarize the main results found in the
literature. Based on various graphical patterns, we discussed
and assessed whether the causal effect of A on Y is identifiable.
The main identifiability results fall into two types, namely
the causal effect (intervention) and the counterfactual effect.
Finally, we note that in the case when identification is not
possible, it may still be possible to bound causal effects. The
development of bounds for non-identifiable quantities is called
partial identifiability.
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