
HAL Id: hal-03920430
https://hal.science/hal-03920430

Submitted on 21 Feb 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Middleware supporting PIS : requirements, solutions,
and challenges

Chantal Taconet, Thais Batista, Pedro Victor Borges Caldas da Silva,
Georgios Bouloukakis, Everton Cavalcante, Sophie Chabridon, Denis Conan,

Thierry Desprats, Denisse Muñante

To cite this version:
Chantal Taconet, Thais Batista, Pedro Victor Borges Caldas da Silva, Georgios Bouloukakis, Everton
Cavalcante, et al.. Middleware supporting PIS : requirements, solutions, and challenges. Manuele
Kirsch Pinheiro; Carine Souveyet; Philippe Roose; Luiz Angelo Steffenel. The Evolution of Per-
vasive Information Systems, Springer International Publishing, pp.65-97, 2022, 978-3-031-18175-7.
�10.1007/978-3-031-18176-4_4�. �hal-03920430�

https://hal.science/hal-03920430
https://hal.archives-ouvertes.fr


Middleware supporting PIS: Requirements,
solutions, and challenges

Chantal Taconet, Thais Batista, Pedro Borges, Georgios Bouloukakis, Everton
Cavalcante, Sophie Chabridon, Denis Conan, Thierry Desprats, and Denisse
Muñante

Abstract In this chapter, we consider the requirements for middleware to support
Pervasive Information Systems (PIS) in the context of the Internet of Things (IoT).
With the IoT, PIS architectures become more and more distributed and need to
be supported by middleware that provides applications with an easy integration
of contextual data collected from connected objects spread over the Internet. This
comes with new challenges and requirements for PIS middleware. In addition to
context-awareness, middleware should tackle scalability, security, privacy and inter-
operability and provide applications with new abstractions representing the physical
environment and ensuring the quality of the data that may be used for decision-
making, while keeping PIS sustainable. Through the study of the state of the art
regarding PIS middleware, we show in this chapter that the middleware community
still faces new challenges, such as providing high-level programming models for
PIS, supporting PIS dynamic adaptation, disseminating and filtering large volumes
of data, end-to-end privacy and interoperability handling, as well as enabling to
deploy sustainable applications.

Chantal Taconet, Pedro Borges, Georgios Bouloukakis, Sophie Chabridon, and Denis Conan
SAMOVAR, Télécom SudParis, Institut Polytechnique de Paris, Évry and Palaiseau, France
e-mail: firstname.lastname@telecom-sudparis.eu

Thais Batista and Everton Cavalcante
Federal University of Rio Grande do Norte, Natal, Brazil
e-mail: thaisbatista@gmail.com,everton.cavalcante@ufrn.br

Thierry Desprats
IRIT, Université de Toulouse, CNRS, Toulouse INP, UT3, Toulouse, France
e-mail: Thierry.Desprats@irit.fr

Denisse Muñante
SAMOVAR, ENSIIE, Évry, France
e-mail: denisse.munantearzapalo@ensiie.fr

1

firstname.lastname@telecom-sudparis.eu
thaisbatista@gmail.com, everton.cavalcante@ufrn.br
Thierry.Desprats@irit.fr
denisse.munantearzapalo@ensiie.fr


2 C. Taconet et al.

1 Introduction

Pervasive computing, the computing that disappears, has been introduced by Weiser
(1991). It has been followed by ubiquitous computing, the computing appearing
everywhere and anytime introduced by Satyanarayanan (2001a). They both have
profoundly changed Information Systems (IS1) in the three last decades. Those IS
are sometimes qualified as Pervasive Information Systems (PIS2) (Kourouthanassis
and Giaglis, 2007). With PIS, IS features are enriched while their architecture be-
comes more and more distributed. In addition to the traditional databases they were
built upon, they include data coming from the physical environment and should be
accessible anytime and from any (mobile) device.
To illustrate the complexity of PIS throughout this chapter, we consider the

case of a logistic chain traceability system related to the transport operations of
shipments (Ahmed et al., 2021). Each shipment transport involves at least three
types of stakeholders: (i) the shipper at the origin of the transport request; (ii) the
carriers in charge of transport operations; and (iii) the consignee that receives
the transported shipment. Other stakeholders can also be involved in this process,
e.g., logistic service providers, customs, insurance companies, and banks. These
traceability IS were centralized in the past, but next-generation IS in this domain are
going to be more and more distributed. The system is deployed at each stakeholder
infrastructure locally and in the cloud. IS includes data collected from the Internet
of Things (IoT) with wireless connected devices (such as a temperature sensor)
deployed on the shipment and in the stakeholders’ infrastructures. Furthermore,
traceability data may be used dynamically for decision-making purposes, e.g., a
change in a transport company, notification of transport delays to the consignee and
the carriers, and the early identification of transport default such as the non-respect
of temperature conditions.
PIS software architecture comprises several layers: a business layer, a ser-

vice/middleware layer, and context-management data layer (a.k.a. IoT layer). Each
layer might be composed of several software components provided by different
organizations and deployed on a large-scale, heterogeneous, and distributed infras-
tructure. A PIS may be abstracted by a distributed software architecture in which
data and actions are transmitted among components, both inside and between layers.
The so-called middleware is an essential part of the design and execution of this
software architecture.

In a distributed computing system, middleware is defined as the software layer
that lies between the operating system and the applications on each site of the
system. Its role is to make application development easier, by providing common
programming abstractions, by masking the heterogeneity and the distribution of the
underlying hardware and operating systems, and by hiding low-level programming
details (Krakowiak, 2009). Middleware has provided a key set of features enabling
distributed architectures to expand. In the 1990s, middleware started by offering the

1 The term IS will be herein interchangeably used to express both singular and plural.
2 The term PIS will be herein interchangeably used to express both singular and plural.



Middleware supporting PIS: Requirements, solutions, and challenges 3

basic client-server model that has been extensively used by IS. Since then, there
have been extensive innovations in middleware capabilities. We can mention the
persistence capability that enables transparent interactions between applications and
databases and the publish-subscribe interaction pattern that enables designers to
decouple system components.
PIS have specific requirements concerning middleware. Biegel and Cahill (2007)

have identified some of these requirements, such as loosely coupled communica-
tion and sensor and actuator abstractions. Raychoudhury et al. (2013) surveyed the
literature on middleware for pervasive systems and highlighted new requirements
for PIS, such as context management, i.e., how to consume high-level context infor-
mation obtained after processing, fusing, and filtering a large amount of low-level
context data collected from the environment. They also draw attention to the service-
oriented paradigm, the commonmiddleware abstraction in this decade, which comes
with service discovery and service composition issues. In this chapter, we focus on
presenting the state of the art on requirements concerning middleware for PIS in
the context of the IoT, i.e., the integration of connected devices that interact with
the environment into the Internet. As stated by Blair et al. (2016), the IoT ensues
with new requirements and challenges for PIS middleware such as scalability and
heterogeneity.
At the same time, as PIS grow in terms of complexity and distribution and become

ubiquitous, they raise a new concern in terms of energy consumption. According
to Ferreboeuf et al. (2021), the energy demand of Information Technology (IT) in
2019 was estimated to be 4,184 TWh (IT represents 4.2% of the energy consumption
and 3.5% of greenhouse gas in the world). If the energy consumption continues to
rise by 6.2% by year as it has had since 2015, both energy and greenhouse gas could
double in ten years, a non-sustainable scenario. As middleware has a central position
in IS and as it is used bymany of them, middleware platformsmight play a key role in
making systems developed atop of them become energy-aware and energy-efficient.
These requirements are even more relevant considering that programmers often have
limited knowledge on howmuch energy their software consumes and which parts use
most energy (Pang et al., 2016). Consequently, energy consumption is a first-class
concern for PIS middleware that we address in this chapter.
The remainder of this chapter is organized as follows. Section 2 describes the

requirements imposed by PIS to middleware. Section 3 presents how some of those
requirements are handled by middleware in the literature. Section 4 details how
platforms proposed in our research respond to some of the identified requirements
concerning PIS middleware. Next, Section 5 draws open challenges to be handled in
the future. Section 6 concludes the chapter with final remarks.

2 Requirements for PIS middleware

This section gives an overview of the requirements for PIS middleware in the con-
text of the IoT. As the aim of a middleware layer is to bridge the gap between



4 C. Taconet et al.

Table 1 Requirements for PIS in the context of the IoT

Requirement Type SotA𝑎 Proposals

Context data management
2.1 Sensing and actuation support FR𝑏 IoTvar (4.5)
2.2 Context-awareness FR
2.3 Dynamic adaptation capabilities FR
2.4 Quality of Context management NFR𝑐 3.1 QoCIM (4.1), QoDisco (4.4)

Application support
2.5 Application development support FR IoTvar (4.5)
2.6 Support for multiple interaction patterns FR 3.2

Exacerbated in IoT systems
2.7 Enabling interoperability NFR 3.3 DeX Mediators (4.3),

QoDisco (4.4), IoTvar (4.5)
2.8 Security and privacy FR/NFR 3.4 muDEBS (4.2), QoCIM (4.1)
2.9 Scalability NFR 3.5 muDEBS (4.2)
2.10 Energy efficiency and energy-awareness FR/NFR 3.6
𝑎 SotA = State of the Art
𝑏 FR = Functional Requirement
𝑐 NFR = Non-Functional Requirement

the pervasive elements spread over the physical environment and the applications,
the requirements for PIS middleware include the provision of several services to
allow applications to gather contextual information from heterogeneous distributed
devices. We present the main functional requirements (i.e., driven by application
constraints such as interacting with a given sensor or defining application adaptation
rules) and non-functional requirements essential in a PIS scenario (such as handling
interoperability, scalability, and the need for supporting energy-efficiency). Table 1
summarizes the presented requirements by organizing them in three categories: re-
quirements necessary for Context data management in the IoT, Application support,
and requirements Exacerbated in IoT systems. Table 1 also maps the middleware
proposals that will be presented in Section 4 with the requirements they tackle and
for which we discuss the state of the art in Section 3.

2.1 Sensing and actuation support

PIS middleware needs to deal with small, often battery-powered devices such as
sensors and actuators, the physical elements that the system needs to interact with
the environment. Sensors typically obtain information from entities of interest or
their environment, whereas actuators act on an entity or the environment or provide
feedback to the user. A relevant requirement for PIS middleware is to provide pro-
gramming abstractions that enable event-driven programming at a high level, thereby



Middleware supporting PIS: Requirements, solutions, and challenges 5

significantly simplifying the use of sensors and actuators by hiding the complexity
of accessing heterogeneous devices that use different communication protocols.
In the example of the logistic chain traceability related to the transport operations

of shipments, all the data collected by sensors providing the temperature in the com-
partments of a ship during the transportation need to be received by the application.
Similarly, the application needs to set the desired temperature remotely by send-
ing a message to some temperature actuators. The middleware layer should provide
programming abstractions for the communication with heterogeneous sensors and
actuators to support high-level interaction with them.

2.2 Context-awareness

Several works have defined the terms context and context-awareness. In this chapter,
we rely on a generic, well-known definition from Dey and Abowd (2000): Context
is any information that can be used to characterize the situation of an entity. An
entity is a person, place, or object that is considered relevant to the interaction
between a user and an application, including the user and applications themselves.
Context-awareness is one of the most notorious characteristics of PIS as it is related
to the pervasive capability of collecting, processing, storing, and reasoning about
environmental information on a real-time basis. This requirement is essential to
support PIS self-adaptation to any environmental condition. For instance, users’
mobility, or any environmental disruption, such as temperature increase, that can
impact the quality of the application.
In essence, middleware should provide a well-defined interface to generic context

management solutions to prevent PIS from dealing with the burden of context-
awareness management. Middleware for PIS typically should offer system-level
services to deal with context data acquisition, storage, reasoning, discovery, and
query processing, as well as automated context-aware adaptation.
In the logistic chain traceability system example, context-awareness is essential

to provide specific information to the different stakeholders involved. For instance,
the insurance companies do not need to receive the same information as the customs
services. Insurance companies are often interested only in information important to
the insurance context, which differs from the information of interest to the customs
services. Another example of context-awareness, is to automatically trigger alert and
reconfiguration in case of an inappropriate temperature detection.

2.3 Dynamic adaptation capabilities

PIS have to be dynamic for diverse reasons, such as failure management, energy
budget, network unavailability, user mobility, and unpredictable interactions. In the
face of these situations, PIS middleware should hence provide dynamic adaptation



6 C. Taconet et al.

capabilities to ensure the quality and availability of applications at runtime. Dynamic
adaptation means the ability of an application to reconfigure its structure, behavior,
protocols, etc. without interrupting its execution, ideally with minimal or no human
intervention or disruption.
PIS should possess inherent characteristics that make dynamic adaptation partic-

ularly relevant. Context-awareness is related to the ability of a system to perceive
information about the context where it is inserted into. By sensing environmental
conditions, the system can recognize the current context and adapt itself according
to changes in it. Another sort of dynamic adaptation in PIS is device mobility, e.g.,
a user with a mobile device in the environment at a given moment and leaving that
location at another, so that PIS needs to transparently discover and (un)link par-
ticipating devices into the network. Kourouthanassis and Giaglis (2015) also raises
opportunistic user interaction as a challenge to the development of PIS, in the sense
that it may not be possible to know in advance the users who will interact with the
system or the frequency of such interactions. All these features need to be adequately
supported by PIS middleware components to enable building applications atop them
that can have their structure and behavior adapted at runtime while maintaining their
availability and quality.
In the logistic chain traceability system example, dynamic adaptations may be

required due to communication latency issues (e.g., changing protocols for the sake
of reliability and performance), anomalous operation, unavailability of connected
devices due to a low power level or even failure, or measures to improve the accuracy
of gathered data. These scenarios point out PIS middleware to maintain availability
and work properly in such a dynamic environment while collecting, analyzing,
planning and reacting to changes.

2.4 Quality of Context Management

An important requirement concerns monitoring and managing the quality of the
context information received by applications. International standardization bodies
underline the importance of uncertainty in metrology (Joint Committee for Guides
in Metrology, 2008). When reporting the result of a measurement of a physical
quantity, some quantitative indication of the quality of the result should be given so
that those who use it can assess its reliability.
Regarding context information, Henricksen and Indulska (2004) acknowledge that

it may be inherently ambiguous, when two different sources provide contradictory
information, inaccurate, when too little information is available about a situation,
or even erroneous when it does not reflect reality. For information provided by open
data or human beings, e.g., data from social networks, the latter may be incomplete
or erroneous, whether voluntarily or not. In general, context information sources
are numerous and diverse. They do not all share the same formats or units of
measurement, which means that conversion operations are necessary and potentially
add new errors.



Middleware supporting PIS: Requirements, solutions, and challenges 7

Quality of Context (QoC) has first been defined by Buchholz et al. (2003) as
any information that describes the quality of information that is used as context
information and can be represented as a set of parameters that reflects the quality
of context data (Bellavista et al., 2012) We consider that QoC parameters, such as
accuracy or currentness as defined in ISO/IEC 25012 (2008), should therefore be
associated with context information in the form of metadata and be used to compute
the quality level of context information.
In the case of logistic chains, at least four quality parameters should be considered

in these metadata (Ahmed et al., 2021): (i) the accuracy, to ensure that the collected
data represent the reality of the shipment conditions, (ii) the completeness, to ensure
that there is no gap in the collected data, (iii) the consistency, to ensure the users’
agreement on the traceability data collected from multiple sources, and (iv) the
currentness, to ensure that the collected data are timely valid.
Information provided to context-aware applications is derived through analysis

operations and various transformations. However, if these operations are performed
on erroneous information, the new information produced is also erroneous. QoC
management must hence be carried out throughout the entire information life cycle,
from its collection to its dissemination to the applications through all the intermediate
transformation steps. Middleware should enable applications to become QoC-aware
and provide PIS developers with QoC management facilities.

2.5 Application development support

Middleware platforms are a key element in leveraging application development by
abstracting away the specificities of the underlying distributed components from
users and exposing valuable reusable services to applications. Besides an accessi-
ble programming model that adequately supports application developers by taking
advantage of abstractions exposed by PIS middleware, it is relevant to come up
with interoperable environments that could assist those developers to effortlessly
build their applications while orchestrating the diversity of existing devices, plat-
forms, and services. Inspired by a cloud-based IoT scenario (Truong and Dustdar,
2015), the life cycle of developing a PIS may comprise (i) selecting, composing, and
integrating components across the system for specifying and developing possible
governance and control operations, (ii) deploying several types of software com-
ponents at different levels of abstraction and capabilities to configure deployments
and continuous resource provisioning, and (iii) capabilities to monitor end-to-end
metrics and perform governance processes across the system. Transversally, it is nec-
essary to provide environments supporting the development of applications based on
data streams generated by devices and available through the underlying deployment
infrastructure (i.e., cloud, edge).



8 C. Taconet et al.

2.6 Support for multiple interaction patterns

To facilitate the development of applications that exchange data between devices
and services, PIS middleware platforms rely on IP-based protocols. These protocols
abstract distributed peers that interact with each other based on different interac-
tion patterns, such as request-reply, publish-subscribe and event-based. Middleware
protocols are typically available through an API, and each protocol supports sev-
eral characteristics (synchronous/asynchronous interactions, QoS guarantees, etc.).
In general, each interaction pattern can be characterized by (i) its semantics, which
expresses the different dimensions of coupling among interacting peers, and (ii) its
API, with a set of primitives expressed as functions provided by the middleware.
The request-reply pattern is commonly used for Web Services and followed by

popular middleware protocols such as HTTP, XMPP, etc. A client interacts directly
(without intermediate components) with a server either by direct messaging (one-
way) or through remote procedure calls (RPC). Request-reply protocols usually sup-
port both synchronous and asynchronous interactions. In turn, the publish-subscribe
pattern is commonly used for content broadcasting. Middleware protocols such as
MQTTandAMQP,APIs (e.g., JMS) andmessage brokers such asRabbitMQ,EMQx,
and Mosquitto follow this pattern. Multiple publisher-consumer peers interact via an
intermediate broker. Consumers subscribe to a specific filter (e.g., topic-based fil-
ters) on the broker while publishers produce events to that filter, whereas consumers
receive events in a FIFO order. Publish-subscribe protocols commonly support asyn-
chronous interactions. In Section 3.2, we provide an overview of existing protocols
that can be classified into the request-reply and publish-subscribe patterns.
PIS are characterized by diverse entities (devices, systems, users, etc.) that are

pervasively inserted into the environment and provide context information about
this environment. These entities are also inherently mobile, i.e., they may be present
in the surroundings at a given instant of time and no longer be there at another
one, and they may be unknown a priori at design time. Such characteristics lead
the communication in a PIS to be preferably loosely coupled due to the inherent
dynamicity of interaction among the system constituents and scale well upon the
many entities envisioned in PIS environments. In this perspective, Biegel and Cahill
(2015) especially advocate using an event-based pattern (Bacon et al., 2000) in PIS
middleware as a means of providing asynchronous communication in a many-to-
many, loosely-coupled interaction among the distributed application components.

2.7 Enabling interoperability

It is essential to tackle heterogeneity across multiple layers to enable interoperability
between IoT devices and other PIS components. For instance, in the logistic chain
traceability scenario, a shipment may provide information regarding its state through
the following application layer operation: get_shipment_state (id). However,
a carrier may require the shipment status via query_shipment (shipment_id,



Middleware supporting PIS: Requirements, solutions, and challenges 9

state). Such issues at the application layer can be qualified as semantic hetero-
geneity issues. Ensuring end-to-end data consistency is one of the goals of semantic
interoperability. There are two basic solutions for achieving semantic interopera-
bility between two IoT devices. The first solution is a one-to-one model mapping.
Another more suitable approach is to use shared data meta-models that can be used to
unambiguously define the meaning of terms in existing models, such as ontologies.
In Section 3.3, we discuss some existing semantic interoperability approaches in the
literature.
Semantic interoperability ensures mapping between diverse data models em-

ployed by IoT systems. However, this alone does not make the interacting devices
fully interoperable. Different APIs and data representations and primitives used by
IoT devices must be mapped with each other at the middleware layer. Solving the
middleware interoperability issue is challenging, mainly due to the fast develop-
ment of protocols and APIs. Existing efforts address the middleware interoperability
issue by relying on service-oriented architectures (SOA), IoT gateways, cloud com-
puting platforms, and model-driven engineering. In Section 3.3, we discuss some
middleware interoperability approaches in the literature.

2.8 Security and privacy

To promote the user acceptability of new IoT-enabled PIS applications, it is essential
to providemechanisms to ensure the privacy of users and the protection of the handled
data. With the heterogeneity and amount of connected things and the unprecedented
amount of collected data, security and privacy are no longer an option in PIS. They
should be enforced throughout the entire software life cycle. PIS middleware is the
right layer to intercept the information flow of applications and integrate security and
privacy mechanisms. Such mechanisms can then benefit all applications by default,
with the possibility to configure some specific business rules to take into account
applications needs.

Security corresponds to the degree to which a product or system protects informa-
tion and data so that persons or other products or systems have the degree of data
access appropriate to their types and levels of authorization (ISO/IEC 25010, 2011).
More specifically, cybersecurity is about ensuring three properties of information,
services, and systems, namely confidentiality, integrity, and availability. Securing an
information system means preventing an unauthorized entity from accessing infor-
mation, services, and systems, modifying them, or making them unavailable.Privacy
can be thought of as the confidentiality of the relationship between people and data.
Therefore, it is important to notice that privacy can be guaranteed only when a
security strategy is enforced in an end-to-end way. While relying on cryptographic
primitives and protocols, privacy protection involves its own properties, techniques,
and methodologies.
Cavoukian and Dixon (2013) recommend aligning seven principles for both

security-by-design and privacy-by-design. These principles are: (i) proactive and



10 C. Taconet et al.

preventative, not reactive and remedial, to anticipate and prevent invasive events
before they happen; (ii) default setting as no action should be required on the part
of individuals for their protection; (iii) embedded into the design, not bolt after the
fact; (iv) a positive-sum, not zero-sum but full functionality by accommodating all
legitimate interests and objectives; (v) an end-to-end approach, by ensuring secure
life-cycle management of information with confidentiality, integrity, and availability
of all information for all stakeholders; (vi) visibility and transparency, by keeping
IT systems’ internal parts transparent to users and providers and by following open
standards; and (vii) respect for the user in a user-centric approach to protecting the
interests of all information owners.
PIS technology is still in its infancy and does not have utterly standardized

security and privacy requirements (Chaudhuri and Cavoukian, 2018). Alhirabi et al.
(2020) recommend using threat modelling techniques during the design stage, like
STRIDE for security threats and LINDDUN for privacy threats. The STRIDE frame-
work (Howard and Lipner, 2006) is an acronym for Spoofing, Tampering, Repudia-
tion, Information Disclosure, Denial of Service, and Elevation of Privilege. The
LINDDUN framework (Deng et al., 2011) is an acronym for Linkability, Identifia-
bility,Non-repudiation,Detectability, information Disclosure, content Unawareness,
and policy and consent Non-compliance.
Even though PIS mainly rely on an event-driven data reporting method (see

Section 2.6), there may be situations when a query-driven approach is more relevant
to get insights about some phenomenon at a given time. For instance, a query
would get a particular set of sensor readings satisfying some condition. Data query
privacy (López et al., 2017) is hence an important requirement of PIS in order to
reduce the risk of exposing sensitive information to attackers when issuing queries.
In the logistic chain traceability system example, the collected data should be

kept confidential and not be transferred to or stored by untrustworthy third parties.
Anonymity or pseudonymity should also be enforced so that untrustworthy third par-
ties can distinguish location information from fake locations. These are just examples
of some issues. Many more security and privacy aspects should be considered in a
PIS middleware all along the data life cycle and at all the system architecture.

2.9 Scalability

The IoT paradigm calls for exchanging data among dynamic, heterogeneous sen-
sors and client applications at unprecedented scales. We follow the framework
from Duboc et al. (2007) for characterizing the scalability of PIS middleware. For
instance, when considering an IoT-based solution, the scaling dimensions, which
represent the scaling aspects, are the number of queries per second and the number
of machines in the cluster. The non-scaling variables are the network conditions (e.g.,
available bandwidth). The dependent variables, which represent the aspects of the
system behavior affected by changes in the scaling dimensions, are the response time
for a query, bandwidth usage, and cluster load. In this first example, the requirement



Middleware supporting PIS: Requirements, solutions, and challenges 11

can then be formulated as follows: “the studied system shall scale with respect to
latency” because it can maintain a maximum given response time as the number
of requests per second scales by varying the number of machines in the cluster. In
another architectural style, such as a highly-distributed publish-subscribe system for
the PISmiddleware, the scaling dimensions shall include the number of intermediary
entities (i.e., brokers of the overlay network) that route data from sensors to client
applications. We shall then measure the total resource consumption for filtering data
records through the multiple brokers from the sensor to the client application.
When considering the logistic chain traceability illustrative application domain,

architects may differentiate PIS systems deployed in relatively small areas mainly
managed by one administrative entity, such as merchandise warehouses or ocean
liners, from more extensive areas with many stakeholders, e.g., in port cities. In
the former scenario, IoT solutions, including ones enhanced with cloud computing,
may be appropriate. In the latter configuration, more distributed, decoupled solu-
tions involving several brokers along with distributed routing and filtering might be
required.

2.10 Energy efficiency and energy-awareness

Penzenstadler (2015) point out that new quality attributes have recently been studied
by the research community in the objective to keep systems sustainable. In the past,
resource utilization mainly referred to the efficiency of the use of the available
processing, storage, and network. For energy-efficiency purposes, the resource to be
monitored is the energy consumption.
While energy efficiencymeans using less energy to perform a given task, energy-

awareness represents knowing the energy consumption for a given task. The middle-
ware can use energy-awareness to reduce energy consumption through energy-saving
strategies, e.g., protocol, scheduling and the volume of exchanged data. Energy-
awareness can also be shared with upper layers of applications. Applications may
adjust their behavior for energy-saving purposes, e.g., reducing some requirements
to remain within the limits of a given energy budget. Applications can also share
energy consumption reports with end-users who could adapt their usage based on
energy consumption knowledge. Indeed, energy-awareness is expected to have a
positive impact in terms of energy efficiency (Hassan et al., 2009).
In the logistic chain traceability system example, to achieve energy efficiency,

the PIS middleware could: (i) at design time, choose the most energy-efficient con-
sensus algorithm for sharing securely and transparently data between the stakehold-
ers (Sedlmeir et al., 2020); (ii) at runtime, reduce the volume of exchanged data by
filtering data based on their content or minimizing the frequency of data transmis-
sions (de Oliveira et al., 2020). For energy-awareness, the middleware could adapt
the frequency of data transmissions to keep energy consumption above a certain
level of energy budget or transmit energy consumption information to the applica-



12 C. Taconet et al.

tion level, for example, to inform the end-user about the consumption of the energy
budget.
PIS middleware should integrate architectural tactics for energy efficiency, e.g.,

energymonitoring, resource allocation, and resource adaptation (Paradis et al., 2021).
It is reasonable seeing middleware as the good level for integrating energy manage-
ment strategies due to its operation at the protocol level and high reusability (Noured-
dine et al., 2013) Additionally, middleware should provide energy-awareness mech-
anisms (Verdecchia et al., 2021) that allow future PIS providers to master energy
consumption.

3 State of the art on middleware supporting PIS requirements

In Section 2, we have identified and defined the requirements for PIS middleware in
the context of the IoT. Context-awareness state-of-the-art is covered in Chapter of
this book. In this section, we present only the state of the art concerning the most
pregnant requirements in the context of the IoT.

3.1 QoC management

Even though the management of the quality of context data has long been recognized
as a requirement of PIS and context-aware applications (Buchholz et al., 2003), only
a few middleware actually provide the necessary support for QoC.We herein present
some recent initiatives and summarize the provided mechanisms.
TheContextNetmiddleware (Endler and Silva, 2018) integratesQoCmanagement

through the Context Data Distribution Layer (CDDL) (Gomes et al., 2017a). A
set of QoC parameters is available, including accuracy, measurement time, age,
completeness, and numeric resolution. ContextNet targets the Internet of Mobile
Things (IoMT) and takes dynamicity into account at different levels. QoC parameters
may also exhibit dynamic variability (they oscillate over time), and CDDL can
monitor the variation of a given QoC parameter. CDDL also offers filtering based
on context data and their QoC metadata.
The LAURA architecture (Teixeira et al., 2020) was designed to support the

deployment of decoupled IoT applications. LAURA provides a fog layer that plays
the role of an intermediate between applications and the network or sensor nodes and
can be regarded as a middleware. This fog layer, still under development, is designed
to filter or aggregate data received from the physical layer to prevent unnecessary or
poor quality data from being sent to upper layers. QoC parameters are associatedwith
the sensed data, allowing user applications to verify the context data’s usefulness
or temporal relevance. QoC-based filtering and aggregation are seen as important
features of LAURA.



Middleware supporting PIS: Requirements, solutions, and challenges 13

Jagarlamudi et al. (2021) proposed a Service Level Agreement (SLA) template
integrating a QoC-aware mechanism, called the Relative Reputation (RR), to select
context providers with high RR values. The QoC evaluator generates the RR unit
representing thematch betweenQoCoutcomes andQoC requirements. Amechanism
of penalties also exists to indicate the applicable penalties with each QoC indicator’s
degradation in the context response compared to its guarantees.

3.2 Protocols for multiple interaction patterns

As mentioned in Section 2.6, PIS middleware platforms leverage communication
protocols upon different interaction patterns. We herein provide an overview of exis-
ting middleware-based IoT protocols. These protocols offer middleware primitives
that aim to facilitate the development of IoT applications that include resource-
constrained IoT devices. Karagiannis et al. (2015) compare the most promising IoT
middleware protocols (more specifically, the ones mentioned here). Even though
there are multiple IoT protocols, no single protocol has been adopted yet for IoT sys-
tem development. This is mainly because the IoT is too diverse, including multiple
data formats and (possibly highly) resource-constrained devices.
Protocols such as DPWS, OPC UA, CoAP, and XMPP have been introduced to

support data exchange among peers based on the request-reply interaction pattern.
OASIS introduced DPWS (Zeeb et al., 2007) in 2004 as an open standard, and it is
suitable for supporting large-scale deployments and mobile devices. Nevertheless,
the induced protocol overhead is noticeable and requires a large amount of RAM. The
OPC Foundation designed OPCUA (Mahnke et al., 2009) in 2008 to target resource-
constrained devices, but it implies a large payload unsuitable for IoT applications.
IETF designed CoAP (Shelby et al., 2014), a lightweight protocol that supports
highly resource-constrained devices and the delivery of small message payloads.
Finally, XMPP (Saint-Andre, 2011) is now a suitable protocol for IoT real-time
communications, even though it uses XML data formats that create a significant
computational overhead.
The publish-subscribe interaction pattern is an alternative to request-reply and

offers time and space decoupled interactions. The Sun Microsystems’ JMS stan-
dard has been one of the most successful asynchronous messaging technologies
available by defining an API for building messaging systems. DDS (OMG, 2015)
is a messaging protocol designed for brokerless architectures and real-time appli-
cations. AMQP (OASIS, 2012) is another messaging protocol designed to support
applications with high message traffic rates. To support highly resource-constrained
devices, MQTT (Banks and Gupta, 2014) offers a publish-subscribe centralized ar-
chitecture, but its performance decreases significantly when sending large message
payloads. WebSockets (Fette, 2011) were introduced to support real-time full-duplex
interactions using only two bytes of overhead in message payloads.



14 C. Taconet et al.

3.3 Enabling Interoperability

Different data representations and APIs among IoT devices, platforms, and applica-
tions can be mapped with each other at the middleware layer. However, this alone
does not make the interacting peers fully interoperable. There are indeed incompat-
ibilities of IoT devices at the application layer, e.g., operation/resource names, data
semantics, etc.
Ontologies (Gruber, 1993) provide a common model for annotating content and

thus help systems to interoperate. We review well-known ontologies for general sen-
sor modeling. The W3C Semantic Sensor Network (SSN) ontology (Compton et al.,
2012) presents a vocabulary to describe sensors and their observations, actuators,
and their association to features of interest. Its central building block is the SOSA
(Sensor, Observation, Sample, and Actuator) ontology (Janowicz et al., 2019), a
standalone light-weight ontology that offers the core vocabulary for the descriptions.
The Smart Appliances REFerence (SAREF) ontology (Daniele et al., 2015) follows
a similar design to describe concepts required by smart applications. In SAREF, de-
vices make measurements related to properties of interest (similar to sensors making
observations in SSN). Depending on the application under development, developers
must use the appropriate ontology. For example, the SAREF ontology is commonly
used to model information of appliances in smart homes.
Several approaches to bridge middleware-based protocols have been proposed

concerning APIS, protocols, and data representations, e.g., the QEST broker for
CoAP and RESTful APIs (Collina et al., 2012), HTTP-CoAP proxy (Castellani
et al., 2012), and Ponte for REST, CoAP, andMQTT (Banks andGupta, 2014). These
approaches implement one-to-one mappings between existing protocols. Despite the
simplicity, this is highly inefficient due to the vast development of IoT protocols.
Negash et al. (2015, 2016) introduces the Lightweight Internet of Things Service
Bus (LISA) for tackling IoT heterogeneity. Derhamy et al. (2017) introduced a
protocol translator that utilizes an intermediate format to capture all protocol-specific
information. XWARE (Roth et al., 2018) implementsmediators to translatemessages
of IoT protocols by using an intermediate format. Finally, Georgantas et al. (2013)
extended the Bouloukakis et al. (2019)’s work to deal with IoT heterogeneity using
software abstractions and code generation.
While the above approaches considerably reduce the development effort, they do

not consider semantic layer incompatibilities prevalent in the IoT. IoT platforms such
as SemIoTic (Yus et al., 2019) provide end-to-end IoT interoperability in smart build-
ings by leveraging the SSN/SOSA ontologies and mediating adapters. In addition,
it leverages the middleware-based interoperability approach that is further presented
in Section 4.3.



Middleware supporting PIS: Requirements, solutions, and challenges 15

3.4 Security and privacy

In a comparison of 50 context-aware computing research projects, Perera et al. (2014)
identified that only 11 projects (about 20%) provided security and privacy solutions.
More recently, Alhirabi et al. (2020) reviewed the evolution of design notations,
models, and languages that facilitate capturing the non-functional requirements of
security and privacy. The majority of the requirement engineering efforts are focused
on security. Among the 47 design notations analyzed in their study, security is
supported by more than half (32 notations out of 47), while only three notations
cover privacy. Even though a by-design approach has long been recommended for
both security and privacy Cavoukian and Dixon (2013), it is still not sufficiently
put into practice by developers. Aljeraisy et al. (2021) highlight that there is still a
relevant gap between legislation and design patterns that can help to translate and
implement them.
Aljeraisy et al. (2021) analyzed data protection laws used across different coun-

tries, namely the European General Data Protection Regulations (GDPR), the Cana-
dian Personal Information Protection and Electronic Documents Act (PIPEDA),
the California Consumer Privacy Act (CCPA), the Australian Privacy Principles
(APPs), and the New Zealand’s Privacy Act 1993. The authors then retained the
fundamental principles and individuals’ rights to define the Combined Privacy Law
Framework (CPLF) by eliminating duplication. Finally, they mapped CPLF with
privacy-by-design (PbD) schemes (e.g., privacy principles, strategies, guidelines,
and patterns) previously developed by different researchers to investigate the gaps in
existing schemes. The results of this extensive study helped to identify where new
privacy patterns should be defined. More than 70 privacy patterns have already been
proposed in the literature (Colesky et al., 2022; Kargl et al., 2022) and they are a
relevant, concrete mechanism to handle data usage and protection in a specific con-
text. However, some principles and rights of CPLF are not achieved by any existing
privacy pattern and call for further research.
While security and privacy research is very active, its integration into operational

middleware is still limited. Fremantle and Scott (2017) analysed 54 IoT middleware
frameworks and observed that they address security and privacy in very different
ways. A majority of these middleware frameworks provide access control and au-
thentication mechanisms, and others focus on providing protection for the content
shared on the network. However, very few middleware frameworks support a suffi-
cient coverage of the features required to support security and privacy for PIS.

3.5 Scalability

Without middleware, i.e., when applications directly obtain IoT data from sensors,
existing coupling significantly hampers the system’s scalability. Therefore, as for-
mulated by Bellavista et al. (2012), PIS middleware architectures are classically
first organized according to the following question: is the middleware centralized or



16 C. Taconet et al.

decentralized? The centralized approach includes deploying middleware on a single
host or cloud. The second approach has two subcategories depending on whether
the distribution is hierarchical or not. Consequently, the basic solutions for scaling
up follow these three classes of solutions.
The architectures of the first class of solutions have been referred to as Web of

Things (Delicato et al., 2013) or, more recently, Cloud of Things (Dias et al., 2020).
Scalability issues arising in these centralized architectures concern the complex
processing of a huge quantity of datawithmany clients either producing or requesting
data. Cugola and Margara (2012) surveyed solutions for complex event processing
and stream processing.
The second class of solutions dealing with scalability targets this requirement

at a local scale, a.k.a. localized scalability (Satyanarayanan, 2001b). A collection
of small clouds, i.e., cloudlets, typically are brought to lower latencies between
so-called co-located clients: these smaller clouds are physically distributed to form
smaller groups of clients. This architectural style corresponds to what we know as
fog computing. Perera et al. (2017) surveyed such solutions for smart cities.
To target scalability at a global scale, an architecture based on publish-subscribe

is preferred as it favors decoupling. Eugster et al. (2003) distinguish three forms
of decoupling, namely space, time, and synchronization decoupling. In this ap-
proach, some clients publish IoT data while others consume these data. As surveyed
by Bellavista et al. (2012), a first set of solutions organize an overlay of brokers re-
sponsible for routing IoT data from producers to subscribers. Producers push data to
their access broker, and brokers forward them to the consumers that have subscribed
to these data. A data model and a filtering model define the non-scaling variables of
publish-subscribe solutions: roughly speaking, topic-based filteringwith opaque data
scales better than content-based filteringwith structured data or semi-structured data.
In addition, the diameter of the overlay network of brokers is the other non-scaling
variable. Kermarrec and Triantafillou (2013) surveyed a second set of solutions tar-
geting non-broker-based routing and using topic-based filtering. These solutions are
constructed as peer-to-peer systems: peer nodes simultaneously play the three roles,
namely publishers, subscribers, and routers.
Finally, note that broker-based PIS middleware protocols such as AMQP and

MQTT are topic-based and cloud-based, but without complex event processing or
streaming. This is precisely the role of recent works such the one of Luckner et al.
(2014), and of industrial platforms such as AWS IoT Core3, Google IoT Core4,
Microsoft Azure IoT Hub5, and FIWARE6, to add complex event processing and
streaming to publish-subscribe middleware standards. These platforms are proof, if
any were needed, of the interest of major operators in working to integrate scalability
into PIS middleware.

3 https://aws.amazon.com/iot-core/
4 https://cloud.google.com/iot-core
5 https://docs.microsoft.com/azure/architecture/reference-architectures/iot
6 https://www.fiware.org/

https://aws.amazon.com/iot-core/
https://cloud.google.com/iot-core
https://docs.microsoft.com/azure/architecture/reference-architectures/iot
https://www.fiware.org/


Middleware supporting PIS: Requirements, solutions, and challenges 17

3.6 Energy efficiency and energy-awareness

Middleware has recently explored some strategies for the IoT for energy efficiency
and energy-awareness purposes. The most used strategy for energy efficiency is net-
work adaptation. Network adaptation refers to introducing new protocols, modifying
existing ones, and making network optimizations. Akkermans et al. (2016) proposed
adapting a publish-subscribe middleware by adding a layer between the broker and
the client applications to send notifications via IPv6 multicast rather than using
several point-to-point messages. Kalbarczyk and Julien (2018) proposed Omni, a
device-to-device middleware with periodic adaptive discovery of neighbor devices
using lightweight discovery mechanisms in wireless local area networks. Discovered
devices are only connected when data needs to be transferred, and the communi-
cation technology adapts both to the network energy efficiency and the volume of
data.
Task offloading stands for using the network to transfer software components to

other locations. For example, an application running on a mobile phone could send
data to a server in a cloud or to another computer in its vicinity for data processing
purposes. Several authors such as Aazam et al. (2020), Pasricha (2018), Song et al.
(2017), Ivarez-Valera et al. (2019), and Shekhar et al. (2019) proposed middleware
to offload software components to other nodes in the cloud or the fog as a means of
saving energy on the source nodes. All these proposals show that task offloading has
a benefit in terms of energy consumption for at least one of the nodes of the system.
The data filtering capability offered by somemiddleware proposes processing data

to reduce the number or the size of messages according to specific criteria. Adaptive
sampling and adaptive filtering (Giouroukis et al., 2020a) are two techniques that
have emerged over the last decade. These techniques dynamically reconfigure rates
and filter thresholds to trade-off data quality against resource utilization. de Oliveira
et al. (2020) proposed a data stream processing workflow to be deployed at the
network’s edge to perform data cleaning tasks.
Another strategy used by middleware is to temporarily reduce the activity of

some nodes to reduce the infrastructure energy consumption. This strategy is used
for a time in data centers. For example, Binder and Suri (2009) presented a dispatch
algorithm to concentrate services on a reduced number of servers so that they put
inactive servers in a sleeping mode to save energy in the data center. In the context
of the IoT, this strategy is used as well and is known as active node selection. For
example, Cecchinel et al. (2019) proposed determining an optimal configuration of
sensors towards extending their battery life. (Sarkar et al., 2016) proposed to reduce
interactions among the nodes of a wireless sensor network and hence the network’s
energy consumption. The data stream processing workflow proposed by de Oliveira
et al. (2020) also includes active node selection. Active node selection can hence
reduce energy consumption on some of the nodes of a PIS.
The second requirement concerning energy introduced in Section 2.10 is energy-

awareness. The energy-awareness may be provided at the middleware or the ap-
plication level (i.e., knowledge shared through middleware abstractions with the
application components). At the former level, energy-awareness may be used to con-



18 C. Taconet et al.

strain the system’s energy consumption through an energy budget configuration. For
example, (Padhy et al., 2017) proposed a middleware to minimize the total energy
consumption of an IoT application while ensuring that the requested accuracy is met.
The middleware intends to find the sensors that consume the minor energy while
satisfying the sensing requirements and maximizing the overall accuracy under an
energy budget. For the latter level, we found some examples where applications
express energy requirements (e.g. (Song et al., 2017)) for deployment purposes.
However, middleware does not usually expose energy consumption to upper layers.
Energy consumption is a recent concern for the community working on IoT mid-

dleware. Some middleware has mainly handled energy efficiency to reduce energy
consumption only on some systems parts. We noticed a few middleware proposals
providing energy-awareness to the upper layers.

4 PIS middleware proposals

We have been working on middleware for the IoT and PIS for some years. Different
software is available in open source (Conan et al., 2022; Bouloukakis et al., 2022;
Gomes et al., 2017b) and some of these proposals are presented below. Table 1
summarizes the requirements tackled by each of them.

4.1 QoC management with QoCIM and processing functions

Based on the QoC criteria most frequently mentioned in the literature, it is possible
to notice that no criteria can respond to all the needs of applications, each having its
own method for computing the quality of context information. We have then focused
our attention on realizing a model able to represent any type of QoC criteria. This
resulted in QoCIM7 (Quality of Context Information Model) (Marie et al., 2013),
a meta-model dedicated to modeling QoC criteria and enforcing expressiveness,
computability, and genericity ofQoCmanagement. QoCIMoffers a flexible ideology,
i.e., it defines a basis to design and represent any QoC criterion instead of providing
a predefined list of supported QoC criteria. With QoCIM, a given QoC criterion can
also be built upon other primitive or composed QoC criteria.
QoCIM is complemented with the specification and implementation of a set of

functions for processing context information and its QoC metadata. The goal of
these processing functions is to provide the developers of PIS with middleware
programming facilities to process context information together with its associated
QoC metadata efficiently. The functions manage three types of data: (i) context
information sensed and collected from different sources; (ii) QoC metadata modeled
with QoCIM, each piece of QoC metadata corresponding to an instance of a QoC

7 QoCIM is part of the M4IoT platform: https://www-inf.it-sudparis.eu/m4iot/

https://www-inf.it-sudparis.eu/m4iot/


Middleware supporting PIS: Requirements, solutions, and challenges 19

indicator, and (iii) message encapsulating a piece of context information associated to
a list of QoC metadata. There are functions for aggregation, filtering, inference, and
fusion of context information with QoCmetadata. These functions can be configured
to determine what computing method to use and to indicate the number of messages
to be taken as input. The configurability of the functions is based on a declarative
solution.
The aggregation function applies an aggregation operator onto a list of messages.

The result is a message with the same abstraction level. The choice of the aggregation
operator (arithmetical average, for instance) is specified in a configuration file. There
is also a distinction between temporal aggregation and spatial aggregation. The
former handles information coming from a single context source and produced during
some time. The latter handles information coming from several context sources that
periodically produce the same type of context information. The filtering function
analyzes the message and decides to remove it or not, but the content of the message
itself is never modified. The inference function applies an inference operator onto
a list of messages. The result is only one message with a higher abstraction level.
The fusion function executes a set of functions sequentially. The result is a list of
messages with a higher abstraction level.
QoC management must take place throughout the whole chain of processing

context information. A declarative programming approach allows qualifying context
information and self-adapting QoCmanagement due to potential physical limitations
of the processing entities (Marie et al., 2016).

4.2 muDEBS

Distributed-based event systems (DEBS) for broad IoT face unprecedented scales
regarding the volume of exchanged data, number of participants, and communication
distance. As many brokers may be involved, a high amount of messages may be
exchanged when installing subscription filters and, most importantly, when routing
numerous events from producers to consumers. muDEBS8 (Conan et al., 2017) take
advantage of the inherently heterogeneous nature of broad IoT systems to control
and limit the amount of exchanged data. Some sources of heterogeneity, such as
geographical and group membership heterogeneity, may delimit visibility scopes
for data distribution, with notifications being visible only in certain scopes. More
precisely, Fiege et al. (2002) define scope as an abstraction that bundles a set of
clients (producers and consumers) in that the visibility of notifications published by a
producer is confined to the consumers belonging to the same scope as the producer; a
scope can recursively be a member of other scopes. InmuDEBS, filtering is impacted
by the visibility of notifications that are analyzed according to several dimensions
of scopes. A client advertises or subscribes by providing a filter tagged with a set of
scopes, with at most one scope per dimension, e.g., interest in geographical scopes

8 muDEBS is part of the M4IoT platform: https://www-inf.it-sudparis.eu/m4iot/

https://www-inf.it-sudparis.eu/m4iot/


20 C. Taconet et al.

or areas belonging to end-users scopes or groups. A notification is visible to a client
if it is visible in all the dimensions. In summary, muDEBS targets scalability by
scoping the distribution of data between producers and consumers.
IoT data can be exploited by pervasive applications to detect the users’ current

situation and provide them with the relevant services corresponding to their precise
needs. The threats to the users’ privacy appear more clearly and Chabridon et al.
(2014) have shown that QoC and privacy are closely related and must be addressed
together in order to find a workable solution. As a first step, Lim et al. (2015)
identified models for a first set of attributes to be specified in privacy policies,
namely purpose (intention of use), visibility (who has access), and retention (for
how long data may be retained). Following these models, IoT producers specify
privacy requirements and QoC guarantees in producer context contracts that are
then registered in muDEBS as XACML policies9. On their side, IoT consumers
express their QoC requirements and the privacy guarantees that they are committed
to fulfilling in consumer context contracts, mentioning at least for what purpose
they are requesting access to some specific IoT data. Privacy guarantees take the
form of ABAC information registered with the subscription filters. QoC guarantees
and requirements are expressed by following the QoCIM model (see Section 4.1).
As a second step, Denis et al. (2020) studied confidentiality under the semi-trusted
broker assumption in which brokers are considered honest-but-curious, i.e., brokers
route the publications to the interested consumers, but they can make use of the
data for their own interest. More precisely, confidentiality concerns encompass (i)
part or all of the constraints of the subscriptions, (ii) part or all the information in
the publication that is used for routing against subscriptions, and (iii) the payload
of the publications. The solution proposed in muDEBS adapts an existing attribute-
based encryption scheme and combines it with data splitting, a non-cryptographic
method called for alleviating the cost of encrypted matching. Data splitting enables
forming groups of attributes sent apart over several independent broker networks. It
also prevents the identification of an end-user, and only attributes are encrypted to
prevent data leakage.

4.3 DeX Mediators

IoT devices employ middleware-layer protocols such asMQTT, CoAP, ZeroMQ, and
more to interact with each other. These protocols support different Quality of Service
(QoS) semantics. They define multiple data-serialization formats (e.g., JSON, XML,
protobuf, etc.) and different payloads suitable for constrained or healthy devices and
follow different interaction patterns such as request-reply and publish-subscribe. IoT
systems include heterogeneous IoT devices employing any of those protocols. In
many cases, new heterogeneous IoT devices may be added to an IoT system in an on-
demand fashion. For instance, in the logistic chain traceability scenario, IoT devices

9 https://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.html

https://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.html


Middleware supporting PIS: Requirements, solutions, and challenges 21

Fig. 1 Enabling data exchange via mediators.

in the shipment must interact with the services of the IS that dynamically collect
information for decision-making purposes. Therefore, generic, automated solutions
must enable data exchange in such IoT systems.
The Data eXchange Mediator Synthesizer (DeXMS)10 (Bouloukakis et al., 2019)

addresses the heterogeneity of IoT devices and services by synthesizing software
mediators. As depicted in Fig. 1, DeXMS relies on the Data eXchange (DeX) API,
which implements POST and GET primitives for sending/receiving messages using
existing IoT protocols such as CoAP, MQTT, XMPP, etc. In the illustration, the
mediator converts temperature data from a package (in JSON format through the
HTTP protocol) to be received from an IS dashboard (in XML format through the
MQTT protocol). Considering a set of heterogeneous IoT devices that have to inter-
connect with devices deployed in an IoT system, DeXMS accepts their input/output
data representation models as input and synthesizes the required mediators. Based
on the requirements defined in Section 2, DeXMS provides a semi-automated man-
ner to tackle interoperability among devices employing middleware-layer protocols
(classified to diverse interaction patterns). Regarding the application-layer, DeXMS
enables developers to manually perform data mappings between applications se-
mantics. More details on DeXMS can be found in the work of Bouloukakis et al.
(2019).

4.4 QoDisco

A pervasive context encompasses a distributed plethora of heterogeneous resources
(sensors, actuators, services) with different functionalities and communication proto-
cols. In this scenario, a well-known challenge for both machines and users is finding,
selecting, and using these resources. Discovering services play a significant role in
addressing this issue by enabling clients (applications, middleware, end-users) to

10 https://gitlab.inria.fr/dexms

https://gitlab.inria.fr/dexms


22 C. Taconet et al.

retrieve available resources based on complex search criteria considering contextual
information essential in a pervasive environment.
QoDisco11 is a QoC-aware federated discovery service supporting multiple-

attribute searches, range queries, and synchronous/asynchronous operations. It en-
compasses an ontology-based information model for semantically describing re-
sources, services, and QoC-related information. QoDisco is structured upon a dis-
tributed architecture composed of a federation of autonomous repositories cooper-
ating with each other to perform data and service discovery tasks. It provides an API
to perform discovery tasks in such repositories, and each repository provides oper-
ations for querying and updating records. Clients are responsible for semantically
annotating resource data (such as the ones provided by sensors) by using the concepts
of the QoDisco information model. When receiving a discovery request, QoDisco
searches for resource descriptions or data stored in the available repositories, thereby
hiding the heterogeneity.
The semantic description of resources defined by the QoDisco information model

relies on: (i) the SANontology (Spalazzi et al., 2014), an extension of theW3C’s SSN
ontology (Barnaghi et al., 2011) that provides concepts, attributes, and properties
to model both sensors and actuators; (ii) part of the SOUPA ontology (Chen et al.,
2005) aiming at including location-related concepts to describe spatial locations
of entities in terms of latitude, longitude, altitude, distance, and surface, as well as
symbolic representations of space and spatial relationships; (iii) theOWL-S ontology
for semantically modeling services exposed by the resources; and (iv) part of the
QoCIM meta-model (Marie et al., 2013) to describe QoC-related concerns (see
Section 4.1). This information model supports the QoC management requirement
and tackles data format heterogeneity using ontologies.
Due to the dynamic context in which the IoT resources operate, QoDisco handles

both synchronous calls and asynchronous notifications. The former relies on request-
reply interactions towards providing resource information at the moment of the
search. The latter is based on publish-subscribe interactions to notify clients in case
of resource removal, insertion, or update. More details on QoDisco can be found in
the work of Gomes et al. (2019).

4.5 IoTVar

IoTVar12 is a middleware that provides developers with abstractions for IoT variables.
From a variable declaration, IoTVar automatically discovers matching data-producer
objects and transparently deals with updates to these variables thanks to transparent
interaction with IoT systems. IoTVar offers an abstraction level to interact with
virtualized sensors. It drastically minimizes the number of lines of code to be written

11 https://github.com/porfiriogomes/qodisco
12 IoTVar is part of the M4IoT platform: https://www-inf.it-sudparis.eu/m4iot/

https://github.com/porfiriogomes/qodisco
https://www-inf.it-sudparis.eu/m4iot/


Middleware supporting PIS: Requirements, solutions, and challenges 23

by the client application developer to obtain up-to-date sensor data from several
hundreds of lines of code to a single dozen.
The IoTVar architecture has been designed to integrate new IoT platforms and IoT

systems. For this purpose, it exposes an interface that can easily be implemented for
integrating with new platforms. The architecture was focused not only on developing
the IoT applications but also on expanding the middleware to support multiple
IoT platforms. IoTVar is currently integrated with FIWARE, OneM2M (oneM2M
Partners, 2019), and MuDEBS (Conan et al., 2017) IoT platforms. More details on
IoTVar can be found in the work of Borges et al. (2019).
IoTVar responds to some of the previously mentioned PIS requirements. The mul-

tiple IoT platforms supported by IoTVar have different data models and API access
and use different protocols to retrieve sensor data. For the sake of interoperability,
IoTVar includes data unmarshallers, IoT protocols handlers, and IoT API handlers,
as well as it supports both publish-subscribe and request-reply interaction patterns to
be chosen according to efficiency considerations. IoTVar also supports application
development by providing an API accessible through code in the Java programming
language and enabling IoT developers to access sensor data easily. The developer
will declare environment variables by providing a simple IoT variable declaration.
Those IoT variables will be automatically updated.

5 Open challenges for future PIS middleware

Next-generation PIS are deployed at an unprecedented scale with components on
connected mobile devices and remote servers in cloud and fog intermediaries. In
this context, handling requirements from an end-to-end perspective is challenging.
At the same time, mastering requirements such as privacy and sustainability become
essential and even more complex. This section highlights some open challenges that
can commission research on future PIS middleware.

5.1 Enabling end-to-end interoperability

As mentioned in Section 3.3, existing middleware approaches enable interoperabi-
lity at each layer (i.e., application, middleware, network) independently. However,
enabling IoT interoperability requires introducing end-to-end approaches. This is
challenging due to: (i) the difficulty to select a unique data model and IoT protocol
to develop cross-domain IoT applications, which results in composing multiple IoT
protocols and data models; (ii) the existence of numerous IoT protocols to sup-
port diverse types of devices (healthy/constrained/tiny in terms of resources); (iii)
the diversity of data models to cover multiple application domains (healthcare, au-
tonomous driving, etc.); and (iv) end-to-end approaches are usually developed for
specific application domains (e.g., smart buildings) and it is difficult to adapt them



24 C. Taconet et al.

to other domains. Therefore, advanced end-to-end interoperability approaches must
be introduced while considering those challenges.

5.2 PIS adaptive middleware

Previous research on the so-called adaptive middleware can indeed contribute to
support dynamic adaptation in PIS, including proposals on context-aware appli-
cations (Huebscher and McCann, 2006), ubiquitous computing (Yau and Karim,
2004), wireless sensor networks (Portocarrero et al., 2016), IoT (Cavalcanti et al.,
2021), cyber-physical systems (García-Vallis and Baldoni, 2015), and cloud com-
puting (Rafique et al., 2017). Adaptive middleware can be defined as a kind of
middleware that enables modifying the behavior of a distributed application in re-
sponse to changes in requirements or operating conditions (Sadjadi and McKinley,
2003). To the best of our knowledge, the literature has still not explored build-
ing adaptive middleware to support PIS and provide these systems with dynamic
adaptation capabilities.
Designing adaptive middleware needs to consider some 5W1H (What? Who?

Where? When? Why? How?) issues typically associated with self-adaptive software
systems (Salehie and Tahvildari, 2009). It is necessary to understand (i) the need
for adapting the middleware to changes in application requirements and context,
(ii) the time at which the adaptation needs to be triggered, whether proactively or
reactively, (iii) the extent of the adaptation in terms of howmany components should
be subjected to the adaptation, and (iv) how the adaptation actions can be executed
and implemented (Rosa et al., 2020). Designing PIS middleware with adequate
support for dynamic adaptation should hence cope with these issues.

5.3 Support to develop PIS relying on middleware

Middleware platforms are well-acknowledged to leverage the development of dis-
tributed applications, but this does not seem to be the case for PIS yet. Indeed, there
is still no available programming model for PIS relying on middleware while coping
with the characteristics of this class of systems. (Biegel and Cahill, 2015) highlight
that existing solutions and approaches in the literature are not currently able to ad-
dress the requirements for PIS middleware comprehensively, but rather only a subset
of them. The authors also point out the significant effort necessary from application
developers to deal with these requirements, an issue that hampers a broader adoption
of PIS middleware in industrial settings. Therefore, a programming model able to
ease the development of PIS relying on middleware is desirable.
The development of PIS relying on middleware faces other challenges. On the

one hand, the proliferation of physical devices and platforms to support PIS may lead
these systems to become primarily vendor/platform- and hardware-specific (Taival-



Middleware supporting PIS: Requirements, solutions, and challenges 25

saari and Mikkonen, 2017). This may also pose difficulties in finding the most
suitable solution (or set of solutions) for a specific application and deepen users’
lack of experience and knowledge on understanding the implications for current and
future needs. PIS middleware should hence enable applications to benefit from using
different devices and platforms while relieving developers from dealing with their
specificities through proper high-level abstractions.

5.4 Privacy and security

Security for PIS is still a significant challenge as attacks are relatively easy in an
open, connected world. Many devices were not designed for security, and their high
number increases the attack surface, as well as their integration within the Internet
that exposes them to numerous potential attackers. We underline some specific
areas where research challenges need to be addressed by PIS middleware in the
short term: (i) the need for low-cost cryptography primitives suitable for devices
with limited resources; (ii) security analysis of new low-power wireless wide area
network technologies; and (iii) the need for frameworks and protocols to facilitate
the development of devices where security is considered from the design stage.
Considering privacy, our connected world has allowed unprecedented growth in

personal data collection practices, with intrusion in our private life. The lack of trans-
parency, the fact that many services and devices behave like black boxes, and the
lack of user control raise major research challenges to enable PIS middleware to en-
force data protection and privacy patterns. In addition, robust anonymization, which
effectively resists deanonymization attacks while preserving data utility, remains an
open research topic.
With resource-constrained devices and sustainability objectives, resource con-

sumption of security and privacy solutions is gaining importance. We consider that
this also opens some new research directions where concerns for security, privacy,
and sustainability can be addressed jointly in PIS middleware.

5.5 Context data sampling and filtering

As discussed in Section 3.5, many contributions exist that enable scaling PIS so-
lutions deployed in Clouds. Among the next challenges, for scaling PIS deployed
in highly distributed environments such as connected mobile devices and with fog
intermediaries, the contextual data filtering module of a PIS middleware should
strive to increase the system’s scalability by controlling and reducing the amount
of transmitted data. Giouroukis et al. (2020b) classify filtering techniques into (i)
time-based, i.e., sending data is suppressed until certain time conditions become
true, and (ii) change-based, i.e., sending data is suppressed as long as the contextual
data are equal or similar to that previously transmitted. Of course, any combination



26 C. Taconet et al.

of time-based and change-based filtering techniques is possible. For example, in
the illustrative logistic chain traceability system, some applications may request to
receive location updates only if the new location is not identical to the previous one
and if an interval of at least ten minutes has elapsed.
Adaptive sampling is, of course, closely related to adaptive filtering. For instance,

tuning sensor sampling frequency enforces network usage optimization and can be
performed according to the frequency of requests from deployed software appli-
cations. As another significant outcome, PIS middleware obtains a self-adaptive
platform with an extended sensor battery life while ensuring good data quality and
freshness.
Put together, selection-based filtering of publish-subscribe systems enables the

system to limit dissemination to some scopes, contrary to system-wide scoping.
Context-based filtering uses context data of different context dimensions to route
IoT data at the application layer. In contrast, adaptive filtering enables the system to
decide whether some IoT data are worth passing on intermediaries, depending on
whether a sensor value is similar to previous values or evolves predictably. These
issues are still not solved and are certainly a very fruitful area for future research.

5.6 PIS sustainability

In the last decade, the number of existing PIS has grown, coming with new facilities
for the end-users and rising computer power demand. However, sustainability in IT
is from now on a first-class concern for enterprises. This demand has to be taken
into account by PIS middleware designers.
As seen in Section 3.6, many strategies have been proposed so far by middle-

ware targeting energy efficiency. However, those strategies mainly target one of the
components of the system. Considering energy efficiency at the scale of the whole
system is still a challenge.
Even though middleware eases the task of application developers when dealing

with energy efficiency, a developer may face difficulties in evaluating the energy con-
sumption of the system. An important research direction to foster energy efficiency
in PIS is providing energy-awareness at the middleware level. Some techniques such
as static code analysis (Vekris et al., 2012) and profilers to detect software energy and
performance bugs (Nistor and Ravindranath, 2014) have been proposed in the last
years aiming at statically easing the identification of energy-consuming components.
Energy awareness may also be provided at runtime through abstractions expressing
energy requirements and evaluating energy consumption. These abstractions based
on measures and energy consumption models have yet to be integrated in middle-
ware. We believe that energy-awareness may significantly increase the efficiency of
the systems as the awareness brings a broader view of where and how the many
resources (CPU, network, energy, etc.) used by an application are behaving in terms
of energy consumption.



Middleware supporting PIS: Requirements, solutions, and challenges 27

6 Conclusion

In this chapter, we have considered PIS middleware in the context of the IoT. This
middleware provides applications with an easy integration of context data collected
from connected objects spread over the Internet. This context comes with new
challenges and requirements. In addition to context-awareness, middleware should
tackle scalability, privacy and interoperability and provide applications with new
abstractions representing the physical environment and ensure the quality of the data
that may be used for decision-making.
We have shown through the state of the art that middleware has proposed seman-

tic interoperability for handling heterogeneities and large-scale publish-subscribe
architectures to tackle scalability. However, while middleware has already enabled
new kinds of PIS in various domains such as transport traceability, healthcare, and
smart cities, the middleware community still faces new challenges, such as providing
high-level programming model for PIS, supporting PIS dynamic adaptation, dissem-
inating and filtering large volumes of data, end-to-end privacy and interoperability
handling, as well as enabling the deployment of sustainable applications.

Acknowledgments

This work is a contribution to the Energy4Climate Interdisciplinary Center (E4C) of
IPParis andÉcole des Ponts ParisTech, supported by 3rdProgrammed’Investissements
d’Avenir [ANR-18-EUR-0006-02]. It has been partially funded by the “Futur & Rup-
tures” program from Institut Mines-Télécom, FondationMines-Télécom, and Institut
Carnot.

References

AazamM, Islam SU, Lone ST, Abbas A (2020) Cloud of things (cot): Cloud-fog-iot
task offloading for sustainable internet of things. IEEETransactions on Sustainable
Computing pp 1–1, DOI 10.1109/TSUSC.2020.3028615

Ahmed M, Taconet C, Ould M, Chabridon S, Bouzeghoub A (2021) IoT Data
Qualification for a LogisticChainTraceability Smart Contract. Sensors 21(6):2239

Akkermans S, Bachiller R, Matthys N, Joosen W, Hughes D, Vučinić M (2016)
Towards efficient publish-subscribe middleware in the iot with ipv6 multicast. In:
2016 IEEE International Conference on Communications (ICC), pp 1–6

Alhirabi N, Rana O, Perera C (2020) Security and Privacy Requirements for the
Internet of Things: A Survey. ACM Trans Internet Things 2(1):6:1–6:37

Aljeraisy A, Barati M, Rana O, Perera C (2021) Privacy Laws and Privacy by Design
Schemes for the Internet of Things:ADeveloper’s Perspective.ACMComput Surv
54(5):102:1–102:38



28 C. Taconet et al.

Bacon J,MoodyK,Bates J,MaC,McNeilA, SeidelO, SpiteriM (2000)Generic sup-
port for distributed applications. Computer 33(3):68–76, DOI 10.1109/2.825698

Banks A, Gupta R (2014) Mqtt version 3.1. 1
Barnaghi P, et al. (2011) Semantic Sensor Network XG Final Report. Tech. rep.,
W3C, URL http://www.w3.org/2005/Incubator/ssn/XGR-ssn-20110628/

Bellavista P, Corradi A, Fanelli M, Foschini L (2012) A Survey of Context Data
Distribution forMobileUbiquitous Systems.ACMComputing Survey 44(4):24:1–
24:45

Biegel G, Cahill V (2007) Requirements for middleware for pervasive information
systems. In: Pervasive Information Systems, M.E. Sharpe, Armonk, NY, pp 102–
118

Biegel G, Cahill V (2015) Requirements for middleware for pervasive informa-
tion systems. In: Kourouthanassis PE, Giaglis GM (eds) Pervasive information
systems, Routledge, USA, pp 86–102

Binder W, Suri N (2009) Green computing: Energy consumption optimized service
hosting. In: 35th Conference on Current Trends in Theory and Practice of Com-
puter Science (SOFSEM), Spindleruv Mlýn, Czech Republic, Springer, Lecture
Notes in Computer Science, vol 5404, pp 117–128

Blair GS, Schmidt DC, Taconet C (2016) Middleware for Internet distribution in the
context of cloud computing and the Internet of Things - Editorial Introduction.
Ann des Télécommunications 71(3-4):87–92

Borges PV, Taconet C, Chabridon S, Conan D, Batista T, Cavalcante E, Batista
C (2019) Mastering Interactions with Internet of Things Platforms through the
IoTVar Middleware. In: 13th Int. Conf. on Ubiquitous Computing and Ambient
Intelligence (UCAmI), MDPI Proceedings, vol 31, p 78

Bouloukakis G, Georgantas N, Ntumba P, Issarny V (2019) Automated Synthesis
of Mediators for Middleware-layer Protocol Interoperability in the IoT. Future
Generation Computer Systems 101:1271 – 1294

Bouloukakis G, et al. (2022) DeXMS, The Data eXchange Mediator Synthesizer
Framework. https://gitlab.inria.fr/dexms

Buchholz T, Kupper A, Schiffers M (2003) Quality of context information: What it
is and why we need it. In: 10th Int. Workshop of the HP OpenView University
Association (HPOVUA), Geneva, Switzerland

Castellani AP, Fossati T, Loreto S (2012) HTTP-CoAP cross protocol proxy: an
implementation viewpoint. In: 9th IEEE Int. Conf. on Mobile Ad-Hoc and Sensor
Systems, (MASS)

Cavalcanti D, Carvalho R, Rosa N (2021) Adaptive middleware of things. In: Pro-
ceedings of the 2021 IEEE Symposium on Computers and Communications,
IEEE, USA

Cavoukian A, Dixon M (2013) Privacy and security by design: An enterprise archi-
tecture approach. Tech. rep., Information and Privacy Commissioner of Ontario,
Canada, https://www.ipc.on.ca

Cecchinel C, Fouquet F, Mosser S, Collet P (2019) Leveraging live machine learning
and deep sleep to support a self-adaptive efficient configuration of battery powered
sensors. Future Generation Computer Systems 92:225–240

http://www.w3. org/2005/Incubator/ssn/XGR-ssn-20110628/
https://gitlab.inria.fr/dexms


Middleware supporting PIS: Requirements, solutions, and challenges 29

Chabridon S, Laborde R, Desprats T, Oglaza A, Marie P, Machara Marquez S
(2014) A Survey on Addressing Privacy together with Quality of Context for
Context Management in the Internet of Things. Annals of Telecommunications
69(1):47–62

Chaudhuri A, CavoukianA (2018) The Proactive and Preventive Privacy (3P) Frame-
work for IoT Privacy by Design. EDPACS 57(1):1–16

Chen H, Finin T, Joshi A (2005) The SOUPA ontology for Pervasive Computing.
In: Ontologies for agents: Theory and experiences, Whitestein Series in Software
Agent Technologies, Switzerland, pp 233–258

ColeskyM, Hoepman JH, Boesch C, Kargl F, Kopp H, Mosby P, Métayer DL, Drozd
O, del Álamo JM,Martín YS, Caiza JC, GuptaM, Doty N (2022) Privacy Patterns.
https://privacypatterns.org

Collina M, Corazza GE, Vanelli-Coralli A (2012) Introducing the QEST broker:
Scaling the iot by bridging MQTT and REST. In: 23rd IEEE Int. Symposium on
Personal, Indoor and Mobile Radio Communications (PIMRC)

Compton M, Barnaghi P, Bermudez L, García-Castro R, Corcho O, Cox S, Graybeal
J, Hauswirth M, Henson C, Herzog A, Huang V, Janowicz K, Kelsey WD, Le
Phuoc D, Lefort L, Leggieri M, Neuhaus H, Nikolov A, Page K, Passant A, Sheth
A, Taylor K (2012) The SSN ontology of the W3C semantic sensor network
incubator group. Journal of Web Semantics 17

Conan D, Lim L, Taconet C, Chabridon S, Lecocq C (2017) A Multiscale Approach
for a Distributed Event-Based Internet of Things. In: Proc. of 15th IEEE Int. Conf.
on Pervasive Intelligence and Computing (PICOM), Orlando, USA, pp 844–852

Conan D, et al. (2022) M4IoT Frameworks, Middleware for the Internet of Things.
https://www-inf.it-sudparis.eu/m4iot/

Cugola G, Margara A (2012) Processing Flows of Information: From Data Stream
to Complex Event Processing. ACM Computing Survey 44(3):15:1–15:62

Daniele L, den Hartog F, Roes J (2015) The Smart Appliances REFerence (SAREF)
Ontology. In: Proc. of InternationalWorkshop Formal OntologiesMeet Industries

Delicato F, Pires P, Batista T (2013)Middleware Solutions for the Internet of Things.
Springer Briefs in Computer Science, Springer

Deng M, Wuyts K, Scandariato R, Preneel B, Joosen W (2011) A privacy threat
analysis framework: Supporting the elicitation and fulfillment of privacy require-
ments. Requirements Engineering 16(1):3–32

Denis N, Chaffardon P, Conan D, Laurent M, Chabridon S, Leneutre J (2020)
Privacy-preserving Content-based Publish/Subscribe with Encrypted Matching
andData Splitting. In: 17th Int. Joint Conf. on e-Business andTelecommunications
(SECRYPT), INSTICC, SciTePress, Paris, France, pp 405–414

Derhamy H, Eliasson J, Delsing J (2017) Iot interoperability—on-demand and low
latency transparent multiprotocol translator. IEEE Internet of Things Journal 4(5)

Dey A, Abowd G (2000) Towards a better understanding of context and context-
awareness. In: Proceedings of the PrCHI 2000 Workshop on the What, Who,
Where, When and How of Context-Awareness

https://privacypatterns.org
https://www-inf.it-sudparis.eu/m4iot/


30 C. Taconet et al.

Dias D, Delicato F, Pires P, Rocha A, Nakagawa E (2020) An Overview of Reference
Architectures for Cloud of Things. In: Proc. of the 35th ACM Symposium on
Applied Computing, New York, NY, USA, pp 1498–1505

Duboc L, Rosenblum D, Wicks T (2007) A Framework for Characterization and
Analysis of Software System Scalability. In: Proceedings of the the 6th Joint
Meeting of the European Software Engineering Conference and the ACM SIG-
SOFT Symposium on The Foundations of Software Engineering, Dubrovnik,
Croatia, pp 375–384

Endler M, Silva F (2018) Past, Present and Future of the ContextNet IoMT Mid-
dleware. Open Journal of Internet Of Things (OJIOT) 4(1):7–23, Special Issue:
Int. Workshop on Very Large Internet of Things (VLIoT), in conjunction with the
VLDB Conference in Rio de Janeiro, Brazil

Eugster P, Felber P, Guerraoui R, Kermarrec AM (2003) The Many Faces of Pub-
lish/Subscribe. ACM Computing Survey 35(2)

Ferreboeuf H, Efoui-Hess M, Verne X (2021) Impact environnemental du
numérique : Tendances à 5 ans et gouvernance de la 5G. Tech. rep., The Shift
project

Fette I (2011) The websocket protocol
Fiege L, Mezini M,Mühl G, Buchmann A (2002) Engineering Event-Based Systems
with Scopes. In: Magnusson B (ed) Proc. 16th European Conference on Object-
Oriented Programming, Springer, Málaga, Spain, Lecture Notes in Computer
Science, vol 2374, pp 309–333

Fremantle P, Scott PJ (2017) A survey of secure middleware for the internet of things.
PeerJ Comput Sci 3:e114

García-Vallis M, Baldoni R (2015) Adaptive middleware design for CPS: Con-
siderations on the OS, resource managers, and the network at run-time. In:
14th Int. Workshop on Adaptive and Reflective Middleware, ACM, USA, DOI
10.1145/2834965.2834968

Georgantas N, Bouloukakis G, Beauche S, Issarny V (2013) Service-oriented dis-
tributed applications in the future internet: The case for interaction paradigm
interoperability. In: Lau K, Lamersdorf W, Pimentel E (eds) 2nd European Conf.
on Service-Oriented and Cloud Computing, ESOCC, vol 8135

Giouroukis D, Dadiani A, Traub J, Zeuch S, Markl V (2020a) A Survey of Adaptive
Sampling and Filtering Algorithms for the Internet of Things. In: Proceedings of
the 14th ACM International Conference on Distributed and Event-Based Systems,
Association for ComputingMachinery, NewYork, NY, USA, DEBS ’20, p 27–38,
DOI 10.1145/3401025.3403777, URL https://doi.org/10.1145/3401025.3403777

Giouroukis D, Dadiani A, Traub J, Zeuch S, Markl V (2020b) A Survey of Adaptive
Sampling and Filtering Algorithms for the Internet of Things. In: Proc. 14th ACM
International Conference onDistributed Event-Based Systems,Montreal, Quebec,
Canada, pp 27–38

Gomes B, Muniz LCM, da Silva e Silva FJ, dos Santos DV, Lopes RF, Coutinho LR,
Carvalho FO, Endler M (2017a) A Middleware with Comprehensive Quality of
Context Support for the Internet of Things Applications. Sensors 17(12):2853

https://doi.org/10.1145/3401025.3403777


Middleware supporting PIS: Requirements, solutions, and challenges 31

Gomes P, Cavalcante E, Batista T, Taconet C, Conan D, Chabridon S, Delicato
F, Pires P (2019) A semantic-based discovery service for the internet of things.
Journal of Internet Services and Applications 10

Gomes P, et al. (2017b) QoDisco. https://github.com/porfiriogomes/qodisco
Gruber TR (1993) A translation approach to portable ontology specifications. Know-
ledge Acquisition 5(2)

HassanMG,Hirst R, SiemieniuchC,ZobaaA (2009)The impact of energy awareness
on energy efficiency. Int Journal of Sustainable Engineering 2(4):284–297

Henricksen K, Indulska J (2004)Modelling and using imperfect context information.
In: Pervasive Computing and Communications Workshops, 2004. Proceedings of
the Second IEEE Annual Conference on, pp 33–37

Howard M, Lipner S (2006) The Security Development Lifecycle. Microsoft Press,
USA

Huebscher MC, McCann JA (2006) An adaptive middleware framework for context-
aware applications. Pervasive and Ubiquitous Computing 10:12–20

ISO/IEC 25010 (2011) Systems and software engineering - Systems and software
Quality Requirements and Evaluation (SQuaRE) - System and software quality
models. Tech. rep., ISO

ISO/IEC 25012 (2008) Data Quality model. URL https://iso25000.com/index.php/
en/iso-25000-standards/iso-25012

Ivarez-Valera HH, Dalmau M, Roose P, Herzog C (2019) The architecture of kali-
green V2: A middleware aware of hardware opportunities to save energy. In:
Alsmirat MA, Jararweh Y (eds) Sixth International Conference on Internet of
Things: Systems, Management and Security, IOTSMS 2019, Granada, Spain,
October 22-25, 2019, IEEE, pp 79–86

Jagarlamudi KS, Zaslavsky A, Loke SW, Hassani A, Medvedev A (2021) Quality
and Cost Aware Service Selection in IoT-Context Management Platforms. In: Int.
Conferences on Internet of Things (iThings), Green Computing & Communica-
tions (GreenCom), Cyber, Physical & Social Computing (CPSCom), Smart Data
(SmartData) and Congress on Cybermatics (Cybermatics), IEEE, pp 89–98

Janowicz K, Haller A, Cox SJ, Le Phuoc D, Lefrançois M (2019) SOSA: A
lightweight ontology for sensors, observations, samples, and actuators. Journal
of Web Semantics 56

Joint Committee for Guides in Metrology (2008) Evaluation of measurement data
- guide to the expression of uncertainty in measurement. https://www.bipm.org/
documents/20126/2071204/JCGM_100_2008_E.pdf

Kalbarczyk T, Julien C (2018) Omni: An Application Framework for Seamless
Device-to-Device Interaction in the Wild. In: 19th Int. Middleware Conf., ACM,
Rennes, France, p 161–173

Karagiannis V, et al. (2015) A Survey on Application Layer Protocols for the Internet
of Things. Transaction on IoT and Cloud Computing 3:11–17

Kargl F, Métayer DL, Gupta M, Colesky M, Hoepman JH, del Álamo JM, Martín
YS, Boesch C, Kopp H, Mosby P, Doty N, Drozd O (2022) Privacy Patterns,
Collecting Patterns for Better Privacy. https://privacypatterns.eu

https://github.com/porfiriogomes/qodisco
https://iso25000.com/index.php/en/iso-25000-standards/iso-25012
https://iso25000.com/index.php/en/iso-25000-standards/iso-25012
https://www.bipm.org/documents/20126/2071204/JCGM_100_2008_E.pdf
https://www.bipm.org/documents/20126/2071204/JCGM_100_2008_E.pdf
https://privacypatterns.eu


32 C. Taconet et al.

Kermarrec AM, Triantafillou P (2013) XL Peer-to-Peer Pub/Sub Systems. ACM
Computing Survey 46(2):16:1–16:45

Kourouthanassis PE, Giaglis GM (2007) Pervasive Information Systems. Advances
in Management Information Systems (AMIS) Vol. 10:. M.E. Sharpe, Armonk,
NY

Kourouthanassis PE, Giaglis GM (2015) Toward pervasiveness: Four eras of infor-
mation systems development. In: Kourouthanassis PE, Giaglis GM (eds) Pervasive
information systems, Routledge, USA, pp 3–25

Krakowiak S (2009) Middleware Architecture with Patterns and Frameworks. https:
//lig-membres.imag.fr/krakowia/Files/MW-Book/Chapters/Preface/preface.html

Lim L, Marie P, Conan D, Chabridon S, Desprats T, Manzoor A (2015) Enhanc-
ing context data distribution for the internet of things using qoc-awareness and
attribute-based access control. Annals of Telecommunications pp 1–12

López J, Rios R, Bao F, Wang G (2017) Evolving privacy: From sensors to the
internet of things. Future Gener Comput Syst 75:46–57

Luckner M, Grzenda M, Kunicki R, Legierski J (2014) IoT Architecture for Urban
Data-Centric Services and Applications. ACM Transactions on Internet Technol-
ogy 20(3):29:1–29:30

MahnkeW, Leitner SH, DammM (2009) OPC unified architecture. Springer Science
& Business Media

Marie P, Desprats T, Chabridon S, Sibilla M (2013) QoCIM: A meta-model for
Quality of Context. In: Modeling and Using Context, LNCS, vol 8175

Marie P, Desprats T, Chabridon S, Sibilla M (2016) Enabling Self-
Configuration of QoC-Centric Fog Computing Entities. In: Intl IEEE
Conf. on Advanced and Trusted Computing, Smart World Congress
(UIC/ATC/ScalCom/CBDCom/IoP/SmartWorld), Toulouse, France

Negash B, Rahmani AM, Westerlund T, Liljeberg P, Tenhunen H (2015) Lisa:
Lightweight internet of things service bus architecture. Procedia Computer Sci-
ence 52

Negash B, Rahmani AM, Westerlund T, Liljeberg P, Tenhunen H (2016) Lisa 2.0:
lightweight internet of things service bus architecture using node centric network-
ing. Journal of Ambient Intelligence and Humanized Computing 7(3)

Nistor A, Ravindranath L (2014) SunCat: Helping developers understand and predict
performance problems in smartphone applications. In: Int. Symp. on Software
Testing and Analysis, ACM, USA, p 282–292

Noureddine A, Rouvoy R, Seinturier L (2013) A review of middleware approaches
for energymanagement in distributed environments. Softw Pract Exp 43(9):1071–
1100

OASIS (2012) Advanced Message Queuing Protocol (AMQP) version 1.0. http:
//docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-complete-v1.0-os.pdf

de Oliveira EA, Delicato F, Mattoso M (2020) An energy-aware data cleaning
workflow for real-time stream processing in the internet of things. In: Anais do
IV Workshop de Computação Urbana, SBC, Porto Alegre, RS, Brasil, pp 71–83

OMG (2015) Data Distribution Service, v. 1.4. https://www.omg.org/spec/DDS/

https://lig-membres.imag.fr/krakowia/Files/MW-Book/Chapters/Preface/preface.html
https://lig-membres.imag.fr/krakowia/Files/MW-Book/Chapters/Preface/preface.html
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-complete-v1.0-os.pdf
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-complete-v1.0-os.pdf
https://www.omg.org/spec/DDS/


Middleware supporting PIS: Requirements, solutions, and challenges 33

Padhy S, Chang HY, Hou TF, Chou J, King CT, Hsu CH (2017) A Middleware So-
lution for Optimal Sensor Management of IoT Applications on LTE Devices.
In: Quality, Reliability, Security and Robustness in Heterogeneous Networks
(QSHINE), vol 199, Springer, pp 283–292

Pang C, Hindle A, Adams B, Hassan AE (2016) What do programmers know about
software energy consumption? IEEE Software 33(03):83–89

Paradis CV, Kazman R, Tamburri DA (2021) Architectural tactics for energy effi-
ciency: Review of the literature and research roadmap. In: 54th Hawaii Interna-
tional Conference on System Sciences (HICSS), pp 1–10

oneM2M Partners (2019) oneM2M Services Platform. Release 3
Pasricha S (2018) Overcoming Energy and Reliability Challenges for IoT andMobile
Devices with Data Analytics. In: 31st Int. Conf. on VLSI Design (VLSID)

Penzenstadler B (2015) From requirements engineering to green requirements engi-
neering. In: Calero C, Piattini M (eds) Green in Software Engineering, Springer

Perera C, Zaslavsky AB, Christen P, Georgakopoulos D (2014) Context aware
computing for the internet of things: A survey. IEEE Commun Surv Tutorials
16(1):414–454

PereraC,QinY, Estrella J, Reiff-Marganiec S,VasilakosA (2017) FogComputing for
Sustainable Smart Cities: A Survey. ACM Computing Survey 50(3):32:1–32:43

Portocarrero JMT, Delicato FC, Pires PF, Rodrigues TC, Batista TV (2016) SAM-
SON: Self-adaptive middleware for wireless sensor networks. In: 31st Annual
ACM Symposium on Applied Computing, ACM, USA

Rafique A, Van Landuyt D, Reniers V, Jossen W (2017) Towards an adaptive mid-
dleware for efficient multi-cloud data storage. In: 4th Workshop on CrossCloud
Infrastructures & Platforms, ACM, USA

Raychoudhury V, Cao J, Kumar M, Zhang D (2013) Middleware for pervasive
computing: A survey. Pervasive Mob Comput 9(2):177–200

Rosa N, Cavalcanti D, Campos G, Silva A (2020) Adaptive middleware in Go -
a software architecture approach. Journal of Internet Services and Applications
11(3), DOI 10.1186/s13174-020-00124-5

Roth FM, Becker C, Vega G, Lalanda P (2018) XWARE - A customizable inter-
operability framework for pervasive computing systems. Pervasive Mob Comput
47

Sadjadi SM, McKinley PK (2003) A survey of adaptive middleware. Tech. rep.,
Michigan State University, USA

Saint-Andre P (2011) Extensible messaging and presence protocol (xmpp): Core
Salehie M, Tahvildari L (2009) Self-adaptive Software: Landscape and Research
Challenges. ACM Transactions on Autonomous and Adaptive Systems 4(2)

Sarkar C, Rao VS, Venkatesha Prasad R, Das SN, Misra S, Vasilakos A (2016)
Vsf: An energy-efficient sensing framework using virtual sensors. IEEE Sensors
Journal 16(12):5046–5059, DOI 10.1109/JSEN.2016.2546839

Satyanarayanan M (2001a) Pervasive computing: vision and challenges. Personal
Communications, IEEE 8(4):10–17, DOI 10.1109/98.943998

Satyanarayanan M (2001b) Pervasive Computing: Vision and Challenges. IEEE
Personal Communications 8(4):10–17



34 C. Taconet et al.

Sedlmeir J, Buhl HU, Fridgen G, Keller R (2020) The energy consumption of
blockchain technology: beyond myth. Business & Information Systems Engineer-
ing 62(6):599–608

Shekhar S, Chhokra A, Sun H, Gokhale A, Dubey A, Koutsoukos X (2019) UR-
MILA: A Performance and Mobility-Aware Fog/Edge Resource Management
Middleware. In: 22nd IEEE Int. Symposium on Real-Time Distributed Comput-
ing (ISORC), pp 118–125

Shelby Z, et al. (2014) The constrained application protocol (coap)
Song Z, Le M, Kwon YW, Tilevich E (2017) Extemporaneous micro-mobile service
execution without code sharing. In: 2017 IEEE 37th International Conference
on Distributed Computing Systems Workshops (ICDCSW), pp 181–186, DOI
10.1109/ICDCSW.2017.70

Spalazzi L, Taccari G, Bernardini A (2014) An internet of things ontology for
earthquake emergency evaluation and response. In: Proceedings of the 2014 In-
ternational Conference on Collaboration Technologies and Systems (CTS 2014),
pp 528–534

Taivalsaari A, Mikkonen T (2017) A roadmap to the ProgrammableWorld: Software
challenges in the IoT era. IEEE Software 34(1):72–80, DOI 10.1109/MS.2017.26

Teixeira S, Agrizzi BA, Filho JGP, Rossetto S, Pereira ISA, Costa PD, Branco AF,
Martinelli RR (2020) LAURA architecture: Towards a simpler way of building
situation-aware and business-aware IoT applications. Journal of Systems and Soft-
ware 161:110494

Truong HL, Dustdar S (2015) Principles for engineering IoT cloud systems. IEEE
Cloud Computing 2(2):68–76, DOI 10.1109/MCC.2015.23

Vekris P, Jhala R, Lerner S, Agarwal Y (2012) Towards verifying Android apps for
the absence of no-sleep energy bugs. In: Proceedings of the 2012 Workshop on
Power-Aware Computing and Systems, USENIX Association, USA

Verdecchia R, Lago P, Ebert C, de Vries C (2021) Green it and green software. IEEE
Software 38(6):7–15, DOI 10.1109/MS.2021.3102254

Weiser M (1991) The Computer for the 21st Century. Scientific American, Special
Issue on Communications, Computers, and Networks 265(3):66–75

Yau SS, Karim F (2004) An adaptive middleware for context-sensitive communica-
tions for real-time applications in ubiquitous computing environments. Real-Time
Systems 26:29–61

Yus R, Bouloukakis G, Mehrotra S, Venkatasubramanian N (2019) Abstracting in-
teractions with iot devices towards a semantic vision of smart spaces. In: 6th ACM
Int. Conf. on Systems for Energy-Efficient Buildings, Cities, and Transportation,
BuildSys

Zeeb E, Bobek A, Bohn H, Golatowski F (2007) Service-oriented architectures for
embedded systems using devices profile for web services. In: 21st International
Conference on Advanced Information Networking and Applications Workshops
(AINAW’07), IEEE, vol 1, pp 956–963


	Middleware supporting PIS: Requirements, solutions, and challenges
	Chantal Taconet, Thais Batista, Pedro Borges, Georgios Bouloukakis, Everton Cavalcante, Sophie Chabridon, Denis Conan, Thierry Desprats, and Denisse Muñante
	Introduction
	Requirements for PIS middleware
	Sensing and actuation support
	Context-awareness
	Dynamic adaptation capabilities
	Quality of Context Management
	Application development support
	Support for multiple interaction patterns
	Enabling interoperability
	Security and privacy
	Scalability
	Energy efficiency and energy-awareness

	State of the art on middleware supporting PIS requirements
	QoC management
	Protocols for multiple interaction patterns
	Enabling Interoperability
	Security and privacy
	Scalability
	Energy efficiency and energy-awareness

	PIS middleware proposals
	QoC management with QoCIM and processing functions
	muDEBS
	DeX Mediators
	QoDisco
	IoTVar

	Open challenges for future PIS middleware
	Enabling end-to-end interoperability
	PIS adaptive middleware
	Support to develop PIS relying on middleware
	Privacy and security
	Context data sampling and filtering
	PIS sustainability

	Conclusion
	Acknowledgments
	References
	References



