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Abstract

When dealing with the detrended fluctuation analysis (DFA) and its variants

such as the higher-order DFA and the continuous DFA (CDFA), removing the

mean, integrating the signal and detrending it amount to applying an equiva-

lent linear filter characterized by its frequency response. The different variants

can hence be compared and their performances can be better understood by

looking at the differences between the frequency responses. In this paper, our

contribution is threefold: 1/ the higher-order CDFA is derived using two types

of approaches. 2/ we show that the frequency responses of two DFAs of different

orders can be expressed from each other. Moreover the frequency responses of

the CDFA and the DFA are also related to each other. 3/ we propose to combine

the global trends obtained with the DFA or the CDFA of different orders. Our

purpose is to show how the frequency responses are modified. Illustrations and

comments on ARFIMA processes and Weierstrass functions to evaluate their

long range dependence are also given.
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A great deal of interest has been paid to the detrended fluctuation analysis

(DFA) initially proposed by Peng in the 90ies [1] and whose purpose was to

characterize the long range dependence (LRD). This type of feature can be useful

in many applications, especially in the field of biomedical applications [2–9],

but not only. Indeed, many papers were published in the field of econometrics

[10, 11], meteorology [12, 13], or geophysics [14].

The DFA has been designed to estimate the LRD of signals exhibiting fluc-

tuations around a trend varying over time. Two main steps characterize this

approach: 1/ The estimation of the profile trend, i.e. the estimation of the

trend of the integrated centered signal. 2/ The estimation of the variance of

the detrended profile, decimated by a factor equal to N . This corresponds to

the definition of the square of the so-called fluctuation function. By selecting

several values for N , the estimated variances are combined to deduce the LRD

of the signal.

For the last years, several research works were conducted by various authors

having different skills in mathematics, statistics and signal processing. Some-

times, some of them have addressed the same type of problems independently

at the same period. First of all, various contributions were related to variants

of the DFA. Indeed, as one of the first steps of the DFA consists in estimating

the global trend of the profile, different authors have proposed an alternative

to the discontinuous piecewise linear function used in the standard DFA. Thus,

when dealing with the higher-order DFA, polynomials of degree larger than 1

are used to model the local trends. However, the latter may still be discontin-

uous. To avoid or to weaken the above feature, the adaptive fractal analysis

(AFA) [15], the regularized DFA (RDFA) [16] and the continuous DFA (CDFA)

[17] were developed. All these methods can hence belong to a first family of

methods characterized by an a priori model of the local trends. A second fam-

ily of approaches has been proposed and consists in using a low-pass linear

filter. This is the case of the detrending moving average (DMA) [18] if the

impulse response is finite but there are also some other methods like the back-

ward DMA (BDMA), the forward DMA (FDMA), the weighted DMA of order l
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(WDMA-l) or the centered weighted DMA (CWDMA) [19]. A third family

including the higher-order DMA [20], or equivalently the method based on the

scatterplot smoothing (LOESS), and the one based on the locally weighted scat-

terplot smoothing (LOWESS) [21] makes it possible to bridge the gap between

the above two families. See Figure 1.

It should be noted that proposing new variants of the DFA is not the only

aspect that has been addressed. Thus, the way to extend the approach to the

analysis of multifractal time series has been for instance studied in [22]. As the

computational cost may be of real interest in some applications, fast versions

have been developed [23]. Even if it is not easy to provide an exhaustive state

of the art on a method proposed thirty years ago, the reader can also refer

to various mathematical analyzes that were also led to better understand the

behavior of the DFA and its variants. Thus, the properties of the square of the

fluctuation function has been addressed by several authors in various papers

[24–37]. In [38], the distribution of a detrended integrated Gaussian white noise

is studied. When the DMA is used, the residue distribution is Gaussian whereas

it is not the case when the DFA is applied. Finally, in [39–41], complementary

analysis for short-memory processes were conducted.

In [16], when dealing with wide-sense-stationary processes, the first steps of

the DFA, from the integration step to the detrending one, can be modeled

by an ”equivalent” linear filter whose impulse response (and consequently the

frequency response) depend on the way to estimate the trend. Better under-

standing the properties and the performance of the variants of the DFA can

be done by looking at the frequency response of the equivalent filter. Thus,

for the DFA, the DMA and the CDFA, the null frequency is always rejected,

which is consistent with the purpose of detrending. Moreover, we showed that

when N = 3, the filters associated with the DFA and the DMA are high-pass

whereas they are band-pass for larger values of N . Regarding the CDFA, the

filter is always band-pass. For the three methods, we noticed that the larger

N , the smaller the -3dB bandwidth of the filter and the spikier the resonances

of the frequency responses. The resonances also move to low frequencies when
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N increases. For any value of N , the CDFA always provides the spikiest and

lowest resonance. In this new paper, our contribution is threefold. Firstly, as

done for the DFA a few years ago, the higher-order CDFA is derived. Two types

of approaches are proposed: the first one is based on a similar reasoning as the

one presented in [16], except that the degree of the polynomial is now larger

than or equal to 1. Then, an alternative way is presented based on Lagrange

multipliers. Secondly, we aim at searching if there is a link between two DFAs

of different orders. We analyze how the frequency responses of the equivalent

filters can be expressed from each other. Moreover we analyze if the frequency

responses of the CDFA and the DFA are also related to each other. Finally,

instead of a priori selecting the degree of the polynomial of the local trends and

estimating the corresponding model parameters in the LS sense, we propose to a

posteriori combine two global trends obtained with DFAs or CDFAs of different

orders. To this end, we analyze how the frequency responses of the equivalent

filter are modified. Illustrations on autoregressive fractionally integrated mov-

ing average (ARFIMA) processes and Weierstrass functions as well as comments

are also given. A presentation of the variants of the DFA and a summary of our

contributions are given Figure 1.

The remainder of this paper is organized as follows: Section 1 deals with the

main steps of the DFA using a matrix form. Then, links between two DFAs of

different orders is addressed. In Section 2, the higher-order CDFA is studied.

Two methods are proposed to derive the expression of the global trend. More

particularly, we reformulate the estimation of the parameters of the continuous

trend used in the CDFA in terms of optimisation under constraints using La-

grange multipliers. We will see that this makes it possible to create a direct

link between the CDFA and the DFA. The links between two CDFAs of differ-

ent orders is also presented. Then, in Section 3, combining the approaches is

analyzed. Finally, A comparison on a set of predefined signals is presented in

Section 4.
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Figure 1: Variants of the DFA and our contribution in this paper

1. Links between two DFAs of different orders

As the FA was sensitive to signals exhibiting fluctuations around a trend varying

over time, the detrended fluctuation analysis (DFA) was developed in [1]. Its

purpose is to estimate the trend of the integrated centered process, and then

to analyze the LRD of the process when the trend has been removed. In the

standard version of the DFA, the trend is defined as a piecewise linear approx-

imation of the integrated centered process while it is a polynomial of degree d

in the higher-order version.

1.1. Notations

• 1j×k and 0j×k are matrices of size j × k filled with 1s and 0s, respectively.

• diag([.], l) is a matrix whose elements are null except the lth diagonal which is

equal to [.].

• Jj = Ij − 1
j
1j×j with Ij the identity matrix of size j.

• Tl is a N × 1 vector storing the values of the lth local trend tl(n).

• Y and Yint are two column vectors storing respectively the samples {y(n)}n=1,...,M
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and {yint(n)}n=1,...,M that are related as follows:

Yint = [yint(1), yint(2), ..., yint(M)]T = HMJMY (1)

with HM =
∑M−1

r=0 diag(11×M−r,−r) a lower triangular matrix filled with 1s.

• A(i : j, k : l) is the part of the matrix A corresponding to the elements belonging

to the rows i to j and to the columns k to l.

• Given the following matrix of size j ×M :

Cj,k = [0j×k Ij 0j×(M−(j+k))] (2)

the first LN elements of the vector Yint can be expressed as follows:

Yint(1 : LN) = [yint(1), yint(2), ..., yint(LN)]T (3)

= CLN,0Yint =
(1)

CLN,0HMJMY

1.2. Steps of the DFA and its higher-order variant with some comments

The DFA and its higher-order variant operate with following steps when M

consecutive samples {y(m)}m=1,...,M are available.

Note that when the subscript 111,d is used in a notation, this means that the

quantity is related to the dth-order DFA method, also called DFAd.

• Step 1, preprocessing: The profile yint is obtained by centering and

integrating y:

yint(m) =

m∑
i=1

(y(i)− µy) (4)

with µy = 1
M

∑M
m=1 y(m) the mean of y.

• Step 2, profile trend estimation: The trend of the profile is estimated

by splitting the profile into L non-overlapping segments of length N , whose

samples are {yint,l(n)}l=1,...,L with n ∈ [[1;N ]]. Only the first LN samples

of the sequences are kept. Using a vector form, the dth-degree polynomial

trend of the lth segment can be expressed ∀l ∈ [[1;L]] by the following

product:

T111,d,l = A111,d,lθd,l (5)
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where the parameter vector is θd,l =
[
a0,l a1,l ... ad,l

]T
. When d = 1, the

local trend is a linear function, a1,l being the local slope and a0,l the vertical

intercept. In addition, A111,d,l is a N × (d+ 1) matrix defined as follows:

A111,d,l =


1 · · · ((l − 1)N + 1)d

...
...

1 · · · (lN)d

 =
[
C0,l · · · Cd,l

]
(6)

where Cc,l is the cth column of the matrix A111,d,l, with c = 0, ..., d.

Given the parameter vector Θ111,d =
[
θTd,1 . . . θ

T
d,L

]T
of size (d+ 1)L× 1, and

the following block diagonal matrix of size LN × (d+ 1)L:

A111,d = diag
[
A1,d,1 . . . A111,d,L

]
(7)

the parameters of the local trends can be deduced by minimizing the least-

square (LS) criterion
∣∣∣∣∣∣CLN,0Yint − A111,dΘ111,d

∣∣∣∣∣∣2. For d ≥ 1, the parameter

vector estimate has the following expression:

Θ̂111,d = (AT
111,dA111,d)

−1AT
111,dCLN,0Yint (8)

Therefore, combining (1) and (8), the global trend vector T111,d obtained

with the dth-order DFA is given by:

T111,d = A111,dΘ̂111,d = A111,d(A
T
111,dA111,d)

−1AT
111,dCLN,0HMJMY (9)

= P111,dCLN,0HMJMY

In the equation above, the trend vector T111,d is deduced from the orthogonal

projector:

P111,d = diag
([

P111,d,1, · · · ,P111,d,L

])
(10)

with {P111,d,l}l=1,...,L the orthogonal projectors onto the space spanned by

the column vectors of {A111,d,l}l=1,...,L defined as follows:

P111,d,l = A111,d,l

(
A111,d,l

TA111,d,l

)−1

A111,d,l
T (11)

Note that in a previous paper [16], we showed that ∀l ∈ [[1;L]]:

P111,d,l = P111,d,1 (12)
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• Step 3, computing the fluctuation function: Given (9), the residue

vector R111,d, i.e. the expression of the difference between the profile and

its trend storing discontinuous polynomials of degree d, can be expressed

from the signal vector Y as follows:

R111,d = CLN,0HMJMY− T111,d = B111,dY (13)

where:

B111,d =
(
ILN −A111,d(A

T
111,dA111,d)

−1AT
111,d

)
CLN,0HMJM (14)

=
(
ILN − P111,d)CLN,0HMJM

The next step is to define the square of the fluctuation function F 2
111,d(N)

which can be also interpreted as the power of the residue. By introducing

the matrix1 of size M ×M :

Γ111,d =
1

LN
BT

111,dB111,d (15)

F 2
111,d(N) can be written this way:

F 2
111,d(N) = Tr

(
Γ111,dY Y T

)
(16)

• Step 4, iterating over different values of N : Steps 2 and 3 are

repeated for different values of N , e.g. N1, N2, ..., Nmax usually selected

in the interval [3; ⌊M/2⌋] , where ⌊⌋ is the floor function. It should be noted

that each pair (log(F111,d(N)), log(N)) satisfies :

log(F111,d(N)) = b+ α log(N) + ϵ(N), for N = N1, ..., Nmax (17)

with b the vertical intercept and ϵ(N). the error variable.

• Step 5, estimation of the Hurst exponent H: The final step aims

at using the pairs (log (F111,d(N)) , log(N)) obtained in the previous step and

searching the straight line that fits them. Its slope α, which is no longer

equal to H but to H + 1 due to the integration, is estimated in the LS

sense.

1Note that the expression of Γ111,d could be simplified since (ILN − P111,d)
T (ILN − P111,d) =

(ILN −P111,d) due to the property of the orthogonal projector. However, we do not change this

expression as it will be useful to define of the equivalent filter in the rest of the document.
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Given the above description of the DFA and its higher-order variant, we pro-

posed in [16] to define the equivalent filter of the processing chain from the step

1 to step 3 when dealing with wide-sense stationary processes (w.s.s.). The lat-

ter can be defined by its frequency response2 Ψ111,d(fn), that can be deduced by

computing the Fourier transform of the sequence {Tr(Γ111,d, r)}r=−LN+1,...,LN−1,

where Tr(., r) denotes the sum of the elements of the rth sub-diagonal of the

matrix. Indeed, by taking the expectation of (16), one obtains:

E[F 2
111,d(N)] = FT −1

(( LN−1∑
r=−LN+1

Tr(Γ111,d, r)e
−j2πfnr)Syy(fn)

)∣∣
τ=0

= FT −1
(
Ψ111,d(fn)Syy(fn)

)∣∣
τ=0

(18)

where FT −1 is the inverse Fourier transform and Syy(fn) is the power spectral

density (PSD) of the signal under study at the normalized frequency fn.

This frequency response is of interest as it makes it possible to compare the

different variants of the DFA. We also analyzed the differences between our ap-

proach and the works done in [30] where the square of the fluctuation function

is approximated by a weighted sum of the estimates of the correlation function

of the signal and [29]. Although Kiyono’s approach [29] led to frequency re-

sponses the closest to ours for most of the values of N , the frequency responses

obtained by our colleagues are different from ours, especially in high frequency

and for small values of N . This is due to the fact that some approximations

are made by the authors in their mathematical developments while the expec-

tation is used in our case. When the process is no longer w.s.s., we suggested

expressing the fluctuation function as a 2D Fourier transform of the product of

two matrices: the first one defined from the instantaneous correlations of the

signal {y(k)y(k+ r)}r=−LN+1,...,LN−1 and the second defined from the element

of Γ333,d [16]. In that case, the comparison between the different methods can be

done by analyzing the properties of the 2D-FT of the second matrix.

In the next section, we propose to compare the frequency response of the equiv-

alent filters related to DFAs of different orders. To help the reader, we propose

2fn denotes the normalized frequency.
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to present the different results by using a proposition-proof structure.

1.3. Link between two frequency responses of the equivalent filters related to

DFAs of different orders

In this section, our purpose is to find a link between the DFA of order d1

and the DFA of order d2 > d1. More particularly, our goal is to find a relation

between the frequency responses of the equivalent filters related to the DFAs

of orders d1 and d2. To this end, we first show that the orthogonal projector

related to the DFA of order d2 is the sum of two projectors, one of which is the

orthogonal projector related to the DFA of order d1. Then, we deduce a relation

between the matrices Γ111,d2 and Γ111,d1 . At that stage, we will be able to find a

link between Ψ111,d2(fn) and Ψ111,d1(fn).

1.3.1. Relation between the orthogonal projectors

In the following, we propose to find a link between the orthogonal projector

P111,d2 and the orthogonal projector P111,d1 whose definition is given in (10). More

particularly, we propose the following theorem:

Theorem 1. The orthogonal projector P111,d2
can be expressed as the sum of two

terms: the orthogonal projector P111,d1
and a second term denoted as P111,d1⇒d2

,

where the subscript d1⇒d2 is used to show the transition from the order d1 to the

order d2.

Proof. As a preamble, let us consider the following block diagonal matrices

{A1,d}d=d1,d2 whose definition is given in (7). They are diagonal matrices respec-

tively defined by the set of matrices {A111,d1,l}l=1,...,L and {A111,d2,l}l=1,...,L. More

particularly, ∀l ∈ [[1;L]], one has:

A111,d2,l =
[
A111,d1,l Cd1+1,l · · · Cd2,l

]
=
[
A111,d1,l D111,d1⇒d2,l

]
(19)

where D111,d1⇒d2,l is the matrix storing the columns Cd1+1,l to Cd2,l.

Then, given the definition of the orthogonal projector (11), let us rewrite the

product AT
111,d2,l

A111,d2,l and give an expression of its inverse. Finally, the result will
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be pre- and post-multiplied by A111,d2,l and AT
111,d2,l

respectively.

Thus, given (19), one has ∀l ∈ [[1;L]]:

AT
111,d2,lA111,d2,l =

 AT
111,d1,l

DT
111,d1⇒d2,l

[A111,d1,l D111,d1⇒d2,l

]
(20)

=

 AT
111,d1,l

A111,d1,l AT
111,d1,l

D111,d1⇒d2,l

DT
111,d1⇒d2,l

A111,d1,l DT
111,d1⇒d2,l

D111,d1⇒d2,l


Then, let us take advantage of one result of the block matrix inversion3 one

gets:(
AT
111,d2,lA111,d2,l

)−1

= (23)(AT
111,d1,l

A111,d1,l

)−1
0(d1+1)×(d2−d1)

0(d2−d1)×(d1+1) 0(d2−d1)×(d2−d1)

+

− (AT
111,d1,l

A111,d1,l

)−1
AT
111,d1,l

D111,d1⇒d2,l

Id2−d1


×
[
DT

111,d1⇒d2,l
D111,d1⇒d2,l − DT

111,d1⇒d2,l
A111,d1,l

(
AT
111,d1,l

A111,d1,l

)−1
AT
111,d1,l

D111,d1⇒d2,l

]−1

×
[
−DT

111,d1⇒d2,l
A111,d1,l

(
AT
111,d1,l

A111,d1,l

)−1
Id2−d1

]

3Let us consider a matrix partitioned into four blocks denoted as A, B, C and D. In this

case, its inverse can be expressed as:A B

C D

−1

=

A−1 +A−1B(D − CA−1B)−1CA−1 −A−1B(D − CA−1B)−1

−(D − CA−1B)−1CA−1 (D − CA−1B)−1

 (21)

where (D−CA−1B)−1 is the Schur complement of the block A. The inverse can be rewrittten

as follows:A B

C D

−1

=

A−1 0

0 0

+

−A−1B

I

[
D − CA−1B

]−1 [
−CA−1 I

]
(22)
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The projection matrix P111,d2,l is given ∀l ∈ [[1;L]] by:

P111,d2,l =
[
A111,d1,l D111,d1⇒d2,l

](AT
111,d1,l

A111,d1,l

)−1
0(d1+1)×(d2−d1)

0(d2−1)×(d1+1) 0(d2−d1)×(d2−d1)

 AT
111,d1,l

DT
111,d1⇒d2,l


(24)

+
[
A111,d1,l D111,d1⇒d2,l

]− (AT
111,d1,l

A111,d1,l

)−1
AT
111,d1,l

D111,d1⇒d2,l

Id2−d1


×
[
DT

111,d1⇒d2,l
D111,d1⇒d2,l − DT

111,d1⇒d2,l
A111,d1,l

(
AT
111,d1,l

A111,d1,l

)−1
AT
111,d1,l

D111,d1⇒d2,l

]−1

×
[
−DT

111,d1⇒d2,l
A111,d1,l

(
AT
111,d1,l

A111,d1,l

)−1
Id2−d1

] AT
111,d1,l

DT
111,d1⇒d2,l


The above equality (24) can be simplified as follows:

P111,d2,l =A111,d1,l

(
AT
111,d1,lA111,d1,l

)−1

AT
111,d1,l (25)

+

(
−A111,d1,l

(
AT
111,d1,lA111,d1,l

)−1

AT
111,d1,lD111,d1⇒d2,l + D111,d1⇒d2,l

)
×
(
DT

111,d1⇒d2,l

(
IN − A111,d1,l

(
AT
111,d1,lA111,d1,l

)−1

AT
111,d1,l

)
D111,d1⇒d2,l

)−1

×
(
−DT

111,d1⇒d2,lA111,d1,l

(
AT
111,d1,lA111,d1,l

)−1

AT
111,d1,l + DT

111,d1⇒d2,l

)
As P111,d1,l = A111,d1,l

(
AT
111,d1,l

A111,d1,l

)−1
AT
111,d1,l

, (25) becomes:

P111,d2,l = P111,d1,l + (−P111,d1,lD111,d1⇒d2,l + D111,d1⇒d2,l) (26)

×
(
DT

111,d1⇒d2,l (IN − P111,d1,l)D111,d1⇒d2,l

)−1 (
−DT

111,d1⇒d2,lP111,d1,l + DT
111,d1⇒d2,l

)
or equivalently:

P111,d2,l = P111,d1,l + (IN − P111,d1,l)D111,d1⇒d2,l (27)

×
(
DT

111,d1⇒d2,l (IN − P111,d1,l)
T (IN − P111,d1,l)D111,d1⇒d2,l

)−1

DT
111,d1⇒d2,l (IN − P111,d1,l)

T

since P111,d1,l = PT
111,d1,l

and (IN − P111,d1,l)
T (IN − P111,d1,l) = (IN − P111,d1,l) due to the

property of the orthogonal projector P111,d1,l.

Therefore, the projector P111,d2,l can be expressed as the sum of two terms: the

first one is the projector P111,d1,l while P111,d1⇒d2,l is the orthogonal projection

onto the space spanned by the columns of (IN − P111,d1,l)D111,d1⇒d2,l. Hence (27)

becomes ∀l ∈ [[1;L]]:

P111,d2,l = P111,d1,l + P111,d1⇒d2,l (28)
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Let us now show that ∀l = 1, ..., L:

P111,d1⇒d2,l = P111,d1⇒d2,1 (29)

On the one hand, (IN − P111,d1,l)D111,d1⇒d2,l is a matrix equal to[
(IN − P111,d1,l)Cd1+1,l · · · (IN − P111,d1,l)Cd2,l

]
.

On the other hand, for k = d1 + 1, ..., d2, one has:

Ck,l =

k∑
q=0

(
k

q

)
((l − 1)N)k−qCq,1 (30)

Therefore, as ∀q ⩽ d1,Cq,1 ∈ Im(P111,d1,l), one can deduce that:

(IN − P111,d1,l)Ck,l =

k∑
q=d1+1

(
k

q

)
((l − 1)N)k−q (IN − P111,d1,1)Cq,1 (31)

This means that the columns of (IN − P111,d1,l)D111,d1⇒d2,l can be expressed as a lin-

ear combination of the columns of (IN − P111,d1,l)D111,d1⇒d2,1. As a consequence, the

orthogonal projection onto the columns of the matrix

(IN − P111,d1,1)D111,d1⇒d2,l is the same as the orthogonal projection onto the columns

of the matrix (IN − P111,d1,1)D111,d1⇒d2,1.

Introducing the block diagonal matrix:

P1,d1⇒d2 = diag ([P111,d1⇒d2,1, · · · ,P111,d1⇒d2,L]) (32)

and given (10) and (12), one obtains the following equality:

P111,d2
= P111,d1

+ P111,d1⇒d2
(33)

This means that the orthogonal projector related to the DFA of order d2 is the

sum of two projectors, one of which is the orthorgonal projector related to the

DFA of order d1.

1.3.2. Relation between the residue vectors and the frequency responses of the

equivalent filters

In the following, we propose to find a link between the frequency response

of the equivalent filter Ψ111,d2
(fn) and the frequency response of the equivalent

filter Ψ111,d1
(fn). More particularly, we propose the following theorem:
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Theorem 2. Ψ111,d2(fn) which is the frequency response of the equivalent filter

related to the DFA of order d2 can be expressed as the difference between two

terms: Ψ111,d1
(fn) which is the frequency response of the equivalent filter related

to the DFA of order d1 and a second term Ψ111,d1⇒d2
(fn) which is defined from

P111,d1⇒d2 .

Proof. Given the final result (33) of the previous Section 1.3.1, let us express

the residue vector B111,d2 as a function of the residue vector B111,d1 :

B111,d2
= (IN − P111,d2

)CLN,0HMJM (34)

= (IN − P111,d2 − P111,d1⇒d2)CLN,0HMJM

= (IN − P111,d1
)CLN,0HMJM − P1,d1⇒d2

CLN,0HMJM

= B111,d1
−B111,d1⇒d2

where B111,d1⇒d2 = P111,d1⇒d2CLN,0HMJM .

The next step consists in deducing the expression of the matrix Γ111,d2 . We will

see that it can be rewritten as a function of Γ111,d1 . Thus, taking advantage of

the idempotent property of the orthogonal projector and using (34), one gets:

Γ111,d2 =
1

LN
BT

111,d2B111,d2 (35)

=
1

LN
JT
MHT

MCT
LN,0(ILN − P111,d2)CLN,0HMJM

=
1

LN
JT
MHT

MCT
LN,0(ILN − P111,d1)CLN,0HMJM (36)

− 1

LN
JT
MHT

MCT
LN,0P111,d1⇒d2CLN,0HMJM

By introducing the matrix Γ111,d1⇒d2 equal to
1

LN
JT
MHT

MCT
LN,0P111,d1⇒d2CLN,0HMJM ,

one obtains:

Γ111,d2 = Γ111,d1 − Γ111,d1⇒d2 (37)

Given the definition of Ψ111,d2(fn) based on the Fourier transform of the traces of

the sub-diagonals of the matrix Γ111,d2 , one gets:

Ψ111,d2(fn) = Ψ111,d1(fn)−Ψ111,d1⇒d2(fn) (38)

where Ψ111,d1⇒d2(fn) is similarly deduced from Γ111,d1⇒d2 as Ψ111,d2(fn) and Ψ111,d1(fn)

are respectively obtained from Γ111,d2 and Γ111,d1 .
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1.3.3. Comments on the frequency responses of DFA of different orders

In the Figure 2, the frequency responses of the standard DFA and the 2nd-order

DFA for N = 4 , N = 10 , N = 30 and N = 100 are given.

As Γ111,d1⇒d2 is the result of a product by its transpose, Ψ111,d1⇒d2(fn) is always

positive or null. So, one has ∀fn ∈
[
0, 1

2

]
:

Ψ111,d1(fn) ⩾ Ψ111,d2(fn) (39)

Consequently, the larger the order of the DFA, the smaller the gain for a given

normalized frequency fn. This also means that the larger the order of the DFA

is, the smaller the square of the fluctuation function will be for a given value of

N . This result is not surprising. Indeed, when the order of the DFA increases,

the local trends are modeled by polynomials whose degree increases, necessarily

leading to a residue power that is smaller.

In addition, there may be frequencies for which the frequency responses are

equal. They can be easily obtained by searching the values of the normalized

frequency for which Ψ111,d1⇒d2(fn) is null.

(a) N = 4 (b) N = 10

(c) N = 30 (d) N = 100

Figure 2: Frequency responses of the DFA and the 2nd-order DFA (DFA2) for N = 4, N = 10,

N = 30 and N = 100
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Finally, we can notice that the frequency response of the equivalent filter is al-

ways null for the null frequency whatever the order of the DFA. This result is

consistent with the purpose of detrending.

For N > 4, for a given order, the equivalent filter is band-pass and its frequency

response exhibits a resonance. This phenomenon can be explained by the fact

that the equivalent filter is the combination of the integration step whose fre-

quency response is low-pass (and more and more low-pass when N increases)

and the detrending step which tends to reject more and more the low frequencies

when the order increases.

Consequently, for a given order, when N increases, the resonance frequency be-

comes smaller and smaller and spikier and spikier. When comparing the stan-

dard DFA and the 2nd-order DFA, one can see that the resonance frequency

of the filter associated with the DFA of higher order is always higher than the

resonance frequency of the filter associated with the DFA of lower order.

Let us now start a short discussion when applying these approaches on autore-

gressive fractionally integrated moving average (ARFIMA) process of order4

(p, δ, q). This process is a generalization of the ARIMA process where δ is no

longer an integer but can take a real value. It can be seen as the output of a

linear filter whose input is a fractionally integrated (FI) white noise. Its main

properties are the following: If W (z) denotes the z-transform of the FI white

noise wn and U(z) the z-transform of the driving process un, assumed to be a

zero-mean white noise with variance σ2
u, one has:

W (z)(1− z−1)δ = U(z) (40)

Thus, given (40), the PSD Sfi(fn) of the FI white noise can be expressed as

follows :

Sfi(fn) = σ2
u|2sin(πfn)|−2δ (41)

Therefore, the PSD tends to infinity (resp. 0) when fn tends to 0 if δ > 0 (resp.

δ < 0). For any δ, when fn = 1
πasin(

1
2 ), Sfi(fn) = σ2

u. In addition, when fn

4In this paper δ is the differencing order. A more usual notation is d but this is already

used for the degree of the polynomial used in the DFA, in this paper.
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tends to ± 1
2 , the PSD of the FI white noise tends to

σ2
u

22δ
. For a given normalized

frequency 0 < fn < 1
πasin(

1
2 ) (resp.

1
πasin(

1
2 ) < fn < 1

2 ), the larger δ > 0, the

larger (resp. the smaller) Sfi(fn). In Figure 3, a time representation of a FI

white noise, its power spectrum (in blue) as well as its PSD (in red) are given

where δ = 0.2.

Figure 3: Time representation of a FI white noise, its power spectrum and the corresponding

PSD

Using the inverse Fourier transform of (41), the correlation function of the FI

white noise satisfies [42] when − 1
2 < δ < 1

2 :

Rfi,τ =
Γ(τ + δ)Γ(1− 2δ)

Γ(τ + 1− δ)Γ(1− δ)Γ(δ)
σ2
u (42)

where Γ is the Gamma function.

Consequently,
Rfi,τ

Rfi,0
= Γ(1−δ)

Γ(δ)
Γ(τ+δ)

Γ(τ+1−δ)
≈ Γ(1−δ)

Γ(δ)
τ2δ−1 for large values of τ by taking

advantage of Stirling formula. As it decays at a hyperbolic rate for 0 < δ < 1
2
,

it is a long-memory process. When − 1
2
< δ < 0, the process is anti–persistent

with Rfi,τ < 0 for τ > 0.

For this type process, there is a theoretical relationship between the differencing

order δ and the Hurst exponent H:

H = δ + 0.5 (43)
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Taking into account the above properties and introducing the sets of poles

{pi}i=1,...,p whose modulus are smaller than 1 and the sets of zeros {zi}i=1,...,q

of the transfer function of the linear filter whose input is the FI white noise and

the output is the ARFIMA process, the PSD of the ARFIMA process satisfies:

Sxx(fn) = Sfi(fn)
∣∣∣∏q

i=1(1− ziz
−1)∏p

i=1(1− piz−1)

∣∣∣2
z=exp(j2πfn)

(44)

= σ2
u|2sin(πfn)|−2δ

∣∣∣∏q
i=1(1− ziz

−1)∏p
i=1(1− piz−1)

∣∣∣2
z=exp(j2πfn)

In Figure 4, a time representation of a realization of an ARFIMA process, its

power spectrum (in blue) as well as its PSD (in red) are given. This 1024

sample-realization of a real ARFIMA(2, 0.2, 2) process, whose corresponding

transfer function is defined by the two complex conjugate non-unit poles equal

to 0.9e±
2π
3 and by the two complex-conjugate zeros equal to 0.7e±

π
3 , is deduced

from the previous FI white noise.

Figure 4: Time representation of a ARFI MA process, its power spectrum and the correspond-

ing PSD

Finally, if the ARFIMA process evolves around a trend that is independent

from the driving process u of the FI noise, the PSD of the resulting data is
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the sum of Sxx(fn) and the spectral contribution of the trend. In Figure 5, a

time representation of a realization of an ARFIMA process evolving around its

exponential trend and its spectrogram are given.

Figure 5: Time representation of an ARFIMA process evolving around its additive exponential

trend and its spectrogram

According to (18), E[F 2
111,d(N)] depends on the product between Sxx(fn) and

Ψ111,d(fn).

When δ > 0 becomes larger and larger, Sfi(fn) exhibits a resonance around

the null frequency that becomes spikier and spikier. In addition, from a fil-

tering point of view, the zeros {zi}i=1,..,q tend to create rejections. If one of

the zeros has its modulus equal to 1 and its argument equal to 2πfn,z, the

frequency component fn,z of the FI noise is totally rejected. Regarding the

poles {pi}i=1,..,q, they tend to create ”resonances”. More particularly, if one

of the poles has its modulus close to 1 and its argument equal to 2πfn,p, the

frequency components of the FI white noise around fn,p are amplified by the

filter whose transfer function is
∏q

i=1(1−ziz
−1)∏p

i=1(1−piz−1)
, and so all the more as the mod-

ulus is close to 1. Consequently, the power of the ARFIMA process is rather

located in low-frequencies when δ increases. When N is small, as shown in

Figure 2, the frequency responses Ψ111,1(fn) and Ψ111,2(fn) are rather band-pass
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in the medium and high-frequencies. Consequently, for these small values of N ,

there may be a high risk that the product Ψ111,1(fn)Sxx(fn) or Ψ111,2(fn)Sxx(fn)

can take small values whatever the normalized frequency fn. We have also to

take into account the influence of the signal trend on the value taken by the

fluctuation function. Even if the profile trend is removed in the DFA or its

higher-order variant, E[F 2
111,d(N)] also depends on the spectral properties of the

trend around which the ARFIMA process evolves. If the trend was a constant

or slowly changes overtime, its power would be mainly located in the very-low

frequencies. Therefore, depending on the shape of the signal trend spectrum,

E[F 2
111,d(N)] can be very small for some small values of N . In practice, the fluctu-

ation function F111,d(N) should be small and we can guess that the result cannot

be reliable. This problem was also pointed out by [26] where the authors sug-

gested introducing a correction function, but not justified by considering the

frequency response of the equivalent filter. Given Figure 2, this unwanted phe-

nomenon is probably more noticeable with the 2nd-order DFA due to the shape

of Ψ111,2(fn). When N increases, due to the evolution of the shapes of Ψ111,1(fn)

and Ψ111,2(fn) which are more and more low-frequency, the influence of Sxx(fn)

becomes more and more important in the definition of the fluctuation function.

Due to the difference between Ψ111,1(fn) and Ψ111,2(fn) shown in Figure 2, we may

guess that larger values of N will be necessary.

The discussion will go further in Section 4. In the next section, let us address a

variant where there is no discontinuity between local trends.

2. Higher-order CDFA: two types of derivations, links between two

CDFAs of different orders and link with the DFA

In this section, after briefly recalling what the CDFA is all about, our purpose

is to find connections between the CDFA and the DFA in its standard version,

but also for a higher order. As the higher-order CDFA has not been presented

yet, we propose to derive it by first following the reasoning we initially proposed

in [16] and then by using Lagrange multipliers. These derivations will be useful
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to deduce some links between two frequency responses of the equivalent filters

related to CDFA of different orders and then between the CDFA and the DFA

of different orders. Note that subscript 222,d will be used to refer to the d-order

CDFA, also called CDFAd.

2.1. Recalling what CDFA is all about

In [16], the CDFA was presented by first expressing the criterion to be mini-

mized and the constraints to be followed. It was shown that the joint estimation

of the 2L parameters defining the global trend, i.e. the slope and the vertical

intercept of each local trend, reduced to the joint estimation of L+1 parameters

due to the L − 1 constraints of continuity between the local trends. Thus, one

has either:

tl+1(1) = a1,l+1(lN + 1) + a0,l+1 = tl(N + 1) = a1,l(lN + 1) + a0,l (45)

or

tl+1(0) = a1,l+1(lN) + a0,l+1 = tl(N) = a1,l(lN) + a0,l (46)

where tl(n) is the nth sample of the lth local trend.

A matrix form was then deduced. This led to the following criterion:

J(a1,1, .., aL,1, a1,0) =
∣∣∣∣∣∣CLN,0Yint −A222,1Θ222,1

∣∣∣∣∣∣2 (47)

= [CLN,0Yint −A222,1Θ222,1]
T [CLN,0Yint −A222,1Θ222,1]

where the (L+1)×1 column parameter vector Θ222,1 is defined by [a1,1, .., aL,1, a1,0]
T

and the LN × (L+ 1) matrix A222,1 is given by:

A222,1 =


B1,1 1N×1

...
...

BL,1 1N×1

 (48)

where:

B1,1 =



1 0 · · · 0

2
...

...
...

N 0 · · · 0︸ ︷︷ ︸
L−1


(49)
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and ∀l ∈ [2;L]:

Bl,1 =



β(1) N · · · N (l − 1)N + 1− β(l − 1) 0 · · · 0

β(1) N · · · N (l − 1)N + 2− β(l − 1)
...

...
...

...
...

β(1) N · · · N︸ ︷︷ ︸
l−2

lN − β(l − 1) 0 · · · 0︸ ︷︷ ︸
L−l


(50)

with β(l) = lN + 1 (resp. lN) if the first constraint (45) (resp. the second

constraint (46)) is taken into account. Note that the first and the second value

in the subscript l,1 respectively refer to the the local trend (but also the position

of the matrix in the block matrix A222,1 along the rows) and the degree here equal

to 1. This notation will be useful when extending the CDFA to an order larger

than 1.

Consequently, the trend vector T222,1 = A222,1Θ̂222,1 was expressed this way:

T222,1 = A222,1[A
T
222,1A222,1]

−1AT
222,1CLN,0Yint = A222,1[A

T
222,1A222,1]

−1AT
222,1CLN,0HMJMY (51)

= P222,1CLN,0HMJMY

The trend vector was hence seen as the orthogonal projection of CLN,0HMJMY

onto the space spanned by the columns of A222,1. It is given by P222,1 in the equation

above.

In the next subsection, the standard CDFA is extended to the higher-order

and then we address the derivation of the trend differently using the Lagrange

multipliers.

2.2. Derivations of the higher-order CDFA

2.2.1. Formulation of the higher-order CDFA following previous contributions

In this section, the formulation of the higher-order CDFA following the rea-

soning proposed in [16] is presented. Similarly to the standard CDFA, the

higher-order CDFA consists in building a continuous global from local trends

modeled by polynomials of degree d. The continuity between locals trend is

ensured if one of the following equality holds ∀l ∈ [[0;L− 1]]:

td,l+1(1) =
d∑

k=0

ak,l+1(lN + 1)k = td,l(N + 1) =
d∑

k=0

ak,l(lN + 1)k (52)
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or

td,l+1(0) =

d∑
k=0

ak,l+1(lN)k = td,l(N) =

d∑
k=0

ak,l(lN)k (53)

where td,l(n) is the nth sample of the lth local trend modeled by a dth-degree

polynomial.

One can rewrite the constraint as follows:

a0,l+1 = a0,l +

d∑
k=1

(ak,l − ak,l+1)β
k(l) (54)

with β(l) = lN + 1 (resp. β(l) = lN) using the first equality (52) (resp. the

second equality (53)). Then, by induction, one can show that:

a0,l+1 = a0,1 +

l∑
j=1

d∑
k=1

(ak,j − ak,j+1)β
k(j) (55)

and by interchanging both sums, this leads to:

a0,l+1 = a0,1 +

d∑
k=1

βk(1)ak,1 +

l∑
j=2

(βk(j)− βk(j − 1)︸ ︷︷ ︸
:=∆βk(j)

)ak,j − βk(l)ak,l+1

 (56)

The joint estimation of the (d+1)L parameters, {ak,l}l=1,...,L and k=0,...,d consists

in minimizing a LS criterion under the L − 1 constraints (55). It can hence be

rewritten as follows:

J =

N∑
n=1

(yint(n)−
d∑

k=0

ak,1n
k)2

+

L∑
l=2

N∑
n=1

(
yint((l − 1)N + n)−

d∑
k=1

ak,l((l − 1)N + n)k

−a0,1 −
d∑

k=1

[
βk(1)ak,1 −

l−1∑
j=2

∆βk(j)ak,j + βk(l − 1)ak,l

])2

(57)

Let us express this criterion in a matrix form. To this end, let us introduce the

set of matrices {Bl,k} of size N × L. For l ≥ 2 and k ≥ 1, one has:

Bl,k =



βk(1) ∆βk(2) . . . ∆βk(l − 1) ((l − 1)N + 1)k − βk(l − 1) 0 · · · 0

βk(1)
... ((l − 1)N + 2)k − βk(l − 1)

...

...
...

...
...

βk(1) ∆βk(2) . . . ∆βk(l − 1)︸ ︷︷ ︸
l−2

(lN)k − βk(l − 1) 0 · · · 0︸ ︷︷ ︸
L−l


(58)
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Note that ∆β(j) = N ∀j ∈ [2; l − 1]. In addition, one special case is given by:

B1,k =



1k 0 · · · 0

2k
...

...
...

Nk
0 · · · 0︸ ︷︷ ︸

L−1


(59)

Given Θ222,d the parameter vector of size dL+ 1× 1 defined by:

Θ222,d = [ad,1, .., ad,L, ad−1,1, .., ad−1,L, ..., a1,1, .., a1,L, a0,1]
T (60)

T222,d,l =
[
Bl,d Bl,d−1 . . . Bl,1 1N×1

]
Θ222,d (61)

By defining the block matrix A2,d of size LN × (dL+ 1) by:

A222,d =


B1,d B1,d−1 . . . B1,1 1N×1

...
...

...
...

BL,d BL,d−1 . . . BL,1 1N×1

 (62)

the optimization problem in its matrix form can be expressed this way:

argmin
Θ

||CLN,0Yint −A222,dΘ222,d||2 (63)

This minimization gives the parameter vector Θ̂222,d:

Θ̂222,d = (AT
222,dA222,d)

−1AT
222,dCLN,0Yint (64)

The global trend T222,d = A222,dΘ̂222,d can be deduced as follows:

T222,d = A222,d(A
T
222,dA222,d)

−1AT
222,dCLN,0Yint = P222,dCLN,0Yint. (65)

where P222,d is the orthogonal projector on the space generated by the column of

A222,d. This is hence the generalization of (51) to the degree d.

In the Figure 6, examples are given of trends and residues obtained using the

2nd-order DFA and the 2nd-order CDFA.

Let us give some comments on Figure 7: once again, the frequency response

of the equivalent filter is always null for the null frequency whatever the order

of the CDFA. In addition, the shape of the frequency response of the equiv-

alent filter associated with the CDFA always exhibits a resonance. When N
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Figure 6: Estimated trends using the 2nd-order DFA and 2nd-order CDFA (CDFA2) and the

corresponding residues

increases, the resonance frequency becomes smaller and smaller and spikier and

spikier. Finally, when comparing Figure 2 and Figure 7, one can notice that the

frequency response of the 2nd-order CDFA is more ”low-frequency” than the

frequency response of the 2nd-order DFA.

In the next subsection, let us present an alternative way to obtain this trend

using Lagrange multipliers.

2.2.2. Formulation of the higher-order CDFA with Lagrange multipliers

Let us now introduce the formulation of the higher-order CDFA by using the

Lagrange multipliers. This will enable us to find a link between the trend vector

obtained with the higher-order DFA and the one deduced from the higher-order

CDFA.

Theorem 3. The trend vector T222,d deduced from the dth-order CDFA can be

expressed as the difference between two terms: The trend vector T111,d deduced

from the dth-order DFA and a corrective term denoted as T111⇒222,d, which can be

interpreted as the result of an orthogonal projection.
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(a) N = 4 (b) N = 10

(c) N = 30 (d) N = 100

Figure 7: Frequency responses of the CDFA and the 2nd-order CDFA for N = 4, N = 10,

N = 30 and N = 100

Proof. Given Hd,l =
[
1 β(l) . . . βd(l)

]
, the constraints (52) and (53) can be

written in a matrix form as follows:

[
1 β(l) . . . βd(l)

]

a0,l+1

a1,l+1

...

ad,l+1

 = Hd,lθd,l+1 (66)

= Hd,lθd,l =
[
1 β(l) . . . βd(l)

]


a0,l

a1,l

...

ad,l+1


The above equality (66) can be rewritten ∀l ∈ [[1;L− 1]] this way:

Hd,l(θd,l+1 − θd,l) = 0 (67)

Therefore, the LS criterion to be considered is the following:

||CLN,0Yint −A111,dΘ||2 (68)
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in which Θ =
[
θTd,1 . . . θTd,L

]T
and the L − 1 constraints (67) are going to be

included by considering L − 1 Lagrange multipliers {λi}i=1,...,L−1 stored in one

vector λ. This can be rewritten as follows:

||CLN,0Yint −A111,dΘ||2 + λKT
d Θ (69)

where KT
d is a block matrix defined by:

KT
d =



−Hd,1 Hd,1 01×(d+1) . . . . . . 01×(d+1)

01×(d+1) −Hd,2 Hd,2 01×(d+1)

...

...
. . .

. . .
. . .

. . .
...

... 01×(d+1) −Hd,L−1 Hd,L−1 01×(d+1)

01×(d+1) . . . . . . 01×(d+1) −Hd,L Hd,L


(70)

After expressing the derivative of (69) with respect to Θ, one obtains:

−2AT
111,dCLN,0Yint + 2AT

111,dA111,dΘ+Kdλ
T = 0 (71)

which can be rewritten as:

Θ = (AT
111,dA111,d)

−1AT
111,dCLN,0Yint −

1

2
(AT

111,dA111,d)
−1Kdλ

T (72)

Let us now take into account the constraint (67) ∀l ∈ [[0;L − 1]] which, by con-

struction of the matrix KT
d , is equivalent to:

KT
d Θ = 0(L−1)×1 (73)

Then using (72), this amounts to writing:

KT
d Θ = KT

d (AT
111,dA111,d)

−1AT
111,dCLN,0Yint −

1

2
KT

d (AT
111,dA111,d)

−1Kdλ
T (74)

= 0(L−1)×1

or equivalently:

KT
d (AT

111,dA111,d)
−1Kdλ

T = 2KT
d (AT

111,dA111,d)
−1AT

111,dCLN,0Yint (75)

As KT
d (AT

111,dA111,d)
−1Kd is invertible, one has:

λT = 2
(
KT

d (AT
111,dA111,d)

−1Kd

)−1

KT
d (AT

111,dA111,d)
−1AT

111,dCLN,0Yint (76)
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Combining (72) and (76) leads to:

Θ = (AT
111,dA111,d)

−1AT
111,dCLN,0Yint (77)

− (AT
111,dA111,d)

−1Kd

(
KT

d (AT
111,dA111,d)

−1Kd

)−1

KT
d (AT

111,dA111,d)
−1AT

111,dCLN,0Yint

Consequently, the trend satisfies:

T222,d = A111,d(A
T
111,dA111,d)

−1AT
111,dCLN,0Yint (78)

−A111,d(A
T
111,dA111,d)

−1Kd

(
KT

d (AT
111,dA111,d)

−1Kd

)−1

KT
d (AT

111,dA111,d)
−1AT

111,dCLN,0Yint

By introducing the following matrix:

WT
d = KT

d (AT
111,dA111,d)

−1AT
111,d (79)

and as one can notice that:

WT
d Wd = KT

d (AT
111,dA111,d)

−1AT
111,dA111,d(A

T
111,dA111,d)

−1Kd (80)

= KT
d (AT

111,dA111,d)
−1Kd

one can rewrite the trend given in (78) as follows:

T222,d = A111,d(A
T
111,dA111,d)

−1AT
111,dCLN,0Yint −Wd(W

T
d Wd)

−1WT
d CLN,0Yint

= P111,dCLN,0Yint − P111⇒222,dCLN,0Yint (81)

= T111,d − P111⇒222,dCLN,0Yint = T111,d − T111⇒222,d

where T111⇒222,d is a correction term.

Therefore, the global trend obtained with the dth-order DFA is the result of two

orthogonal projections of CLN,0Yint on two different subspaces: one spanned by

the columns of A222,d and the other spanned by the columns ofWd = A111,d(A
T
111,dA111,d)

−1Kd.

It is the sum of the global trend obtained with the dth-order CDFA and a cor-

rective term.

2.3. Links between two approaches

2.3.1. Link between the frequency responses of two equivalent filters: the first

one related to a higher-order CDFA and the second related to the higher-

order DFA
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Theorem 4. Ψ222,d(fn) which is the frequency response of the equivalent filter re-

lated to the dth-order CDFA can be expressed as the sum of two terms: Ψ111,d(fn)

which is the frequency response of the equivalent filter related to the dth-order

DFA and a second term denoted as Ψ111⇒222,d(fn) which depends on the projector

P111⇒222,d.

Proof. One can express the matrix Γ222,d from the matrix Γ111,d. To this end, one

just has to define the residue and the matrix B222,d from B111,d.

B222,d = CLN,0HMJM − T222,d (82)

= (I − (P111,d − P111⇒222,d))CLN,0HMJM

= B111,d + P111⇒222,dCLN,0HMJM︸ ︷︷ ︸
=B111⇒222,d

Then one has:

Γ222,d =
1

LN
BT

222,dB222,d =
1

LN
(B111,d +B111⇒222,d)

T (B111,d +B111⇒222,d)

= Γ111,d +
1

LN
BT

111,dB111⇒222,d +
1

LN
BT

111⇒222,dB111,d +
1

LN
BT

111⇒222,dB111⇒222,d (83)

By developing the third term BT
111⇒222,dB111,d in (83) and as PT

111⇒222,d = P111⇒222,d, one

gets:

BT
111⇒222,dB111,d = (P111⇒222,dCLN,0HMJM )T (I − P111,d)CLN,0HMJM

= JT
MHT

MCT
LN,0P

T
111⇒222,d(I − P111,d)CLN,0HMJM (84)

= JT
MHT

MCT
LN,0(P111⇒222,d − P111⇒222,dP111,d)CLN,0HMJM

However, given the expressions of the two projectors, one can check that:

P111⇒222,dP111,d = A111,d(A
T
111,dA111,d)

−1Kd (85)

×
(
KT

d (AT
111,dA111,d)

−1Kd

)−1

KT
d (AT

111,dA111,d)
−1AT

111,dA111,d(A
T
111,dA111,d)

−1AT
111,d

= A111,d(A
T
111,dA111,d)

−1Kd

(
KT

d (AT
111,dA111,d)

−1Kd

)−1

KT
d (AT

111,dA111,d)
−1AT

111,d

= P111⇒222,d

Finally, (84) becomes:

BT
111⇒222,dB111,d = BT

111,dB111⇒222,d = 0M×M (86)
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Consequently, (83) can be rewritten:

Γ222,d = Γ111,d +
1

LN
BT

111⇒222,dB111⇒222,d (87)

= Γ111,d + Γ111⇒222,d

By linearity of the Fourier transform, one can deduce the link between the

frequency responses of the equivalent filters related to the dth-order CDFA of

order and the dth-order DFA:

Ψ222,d(fn) = Ψ111,d(fn) + Ψ111⇒222,d(fn) (88)

The CDFA was introduced to correct the discontinuity between each local trend

by introducing a constraint in the minimization of the first-order DFA. We have

seen that this method can be extended to a higher order and that the orthogonal

projector related to the CDFA can be expressed from the orthogonal projector

related to the DFA.

2.3.2. Link between the frequency responses of two equivalent filters related to

CDFA of different orders

Theorem 5. Ψ222,d2(fn) which is the frequency response of the equivalent filter

related to the CDFA of order d2 can be expressed as the difference between two

terms: Ψ222,d1
(fn) which is the frequency response of the equivalent filter related

to the CDFA of order d1 and a second term Ψ222,d1⇒d2
(fn) which is defined from

P222,d1⇒d2 .

First of all, given the definition (62), one can rewrite A222,d2 as a function of

A222,d1 as follows:

A222,d2 =
[
D222,d1⇒d2 A222,d1

]
(89)

As we did in a previous section, let us express the orthogonal projector related
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to the CDFA of order d2. To this end, let us start by the following product:

AT
2,d2A2,d2 =

DT
222,d1⇒d2

AT
2,d1

[D222,d1⇒d2 A2,d1

]
(90)

=

DT
222,d1⇒d2

D222,d1⇒d2 DT
222,d1⇒d2

A2,d1

AT
2,d1

D222,d1⇒d2 AT
2,d1

A2,d1


Using the same type of inverse of block matrix based on the Schur complement5

of the block located located at the bottom right of the matrix, one gets:

(AT
222,d2A222,d2)

−1 =

0L(d2−d1)×L(d2−d1) 0L(d2−d1)×(Ld1+1)

0(Ld1+1)×L(d2−d1) (AT
222,d1

A222,d1)
−1

+

 IL(d2−d1)

−(AT
222,d1

A222,i)
−1AT

222,d1
D222,d1⇒d2


(92)

× [DT
222,d1⇒d2D222,d1⇒d2 −DT

222,d1⇒d2P2,d1D222,d1⇒d2 ]
−1
[
IL(j−i) −D222,d1⇒d2A222,d1(A

T
2,d1

A222,d1)
−1
]

After pre and post-multiplying by A222,d2and AT
222,d2

respectively and some simpli-

fication, one can deduce that:

P222,d2 = P222,d1 + (ILN − P222,d1)D222,d1⇒d2 (93)

× (DT
222,d1⇒d2(ILN − P222,d1)

T (ILN − P222,d1)D222,d1⇒d2)
−1

×DT
222,d1⇒d2(ILN − P222,d1)

T

or equivalently:

P222,d2 = P222,d1 + P222,d1⇒d2 (94)

where P222,d1⇒d2 is the orthogonal projection onto the space spanned by the

columns of (ILN − P222,d1)D222,d1⇒d2 . Then, following the same reasoning as the

one presented for the DFA for different orders, one obtains:

Ψ222,d2(fn) = Ψ222,d1(fn)−Ψ222,d1⇒d2(fn) (95)

where Ψ222,d1⇒d2 is the Fourier transform of the sequence defined by the traces of

the sub-diagonal of the matrix Γ222,d1⇒d2 that is deduced from P222,d1⇒d2 .

5One has now:A B

C D

−1

=

0 0

0 D−1

+
 I

−D−1C

 (A−BD−1C)−1
[
I −BD−1

]
(91)
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2.4. Summary

The higher-order CDFA has been derived using two different methods. Both

methods make it possible to define the link between the frequency responses

of the equivalent filters related to the CDFA of different orders but also those

related to the CDFA and the DFA of different orders.

By now, when dealing with the DFA or its variants, the global trend consisted

in assuming that each sub-part of length N was modeled by a polynomial of a

predefined degree. Then, depending on the variant -DFA or CDFA-, there was

a continuity between the local trends or not. In the next section, we propose

to a posteriori combine two global trends obtained with different orders and to

analyze the equivalent filtering by looking at its frequency response. The results

derived in Sections 1 and 2 will be useful.

3. A posteriori combining the global trends of different variants

In many fields where the development of statistical signal processing based

on a priori models is required, using a single model is not necessarily relevant

Despite the efforts made to select an appropriate model based on different cri-

teria, the most popular of which are the Akaike information criterion (AIC) or

the Bayesian information criterion (BIC), this type of approach is most of the

time reliable when the number of samples is large enough. Moreover, as men-

tioned by Yang in [43], the model selection is not necessarily robust to a small

perturbation in the data. When the regression function estimation is one of the

main goal, a priori selecting a single model is one solution, but taking advantage

of different models can be an alternative. Thus, when dealing with time-series

forecasting, both strategies are used. We speak of forecasts model selection and

forecast model averaging [44]. In the field of target tracking, when dealing with

the estimation of position from radar measurements, Kalman filtering based on

a a priori assumption of a motion model can be considered. However, as there

can be maneuvering targets and as some model parameters can be unknown, in-

teractive multiple model (IMM) approaches based on different models [45] can
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be considered. In what follows, we propose to take into account this idea of

combining different models in the framework of the DFA. More particularly, we

suggest a posteriori combining two trends obtained with two DFA of different

orders.

3.1. Linear combination of DFA of different orders (LC-DFA)

In this section, we suggest a posteriori combining the global trends of the

DFA of orders d1 et d2 > d1. Thus, by introducing the weight µ ∈ [0, 1], we

propose to analyze the following projection matrix which is a linear combination

of the orthogonal projector related to the DFA of order d1 and d2:

P111,equ(µ) = (1− µ)P111,d1 + µP111,d2 (96)

Thus, the resulting trend satisfies:

T111,equ(µ) = P111,equ(µ)CLN,0HMJMY (97)

= ((1− µ)P111,d1 + µP111,d2)CLN,0HMJMY

= (1− µ)T111,d1 + µT111,d2

Our purpose is to characterize the equivalent filter by means of its frequency

response denoted as Ψ111,equ,µ(fn). To this end, one must first find the expression

of B111,equ(µ) similarly defined as B111,d1 and B111,d2 :

B111,equ(µ) = (ILN − (1− µ)P111,d1 − µP111,d2)CLN,0HMJM (98)

= (1− µ)B111,d1 + µB111,d2

Then, given (98), the matrix Γ111,equ(µ) can be deduced this way:

Γ111,equ(µ) =
1

LN
BT

111,equ(µ)B111,equ(µ) (99)

=
1

LN
((1− µ)B111,d1 + µB111,d2)

T ((1− µ)B111,d1 + µB111,d2)

=
1

LN

(
(1− µ)2BT

111,d1B111,d1 + (1− µ)µ(BT
111,d1B111,d2 +BT

111,d2B111,d1) + µ2BT
111,d2B111,d2

)
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As P111,d1P111,d2 = P111,d2P111,d1 = P111,d1 for d1 ⩽ d2, the matrix product BT
111,d1

B111,d2 can

be rewritten as follows:

BT
111,d1B111,d2 = JT

MHT
MCT

LN,0(ILN − P111,d1)(ILN − P111,d2)CLN,0HMJM (100)

= JT
MHT

MCT
LN,0(ILN − P111,d2 − P111,d1 + P111,d1P111,d2)CLN,0HMJM

= JT
MHT

MCT
LN,0(ILN − P111,d2)CLN,0HMJM

= BT
111,d2B111,d2

Thus, combining (99) and (100), Γ111,equ(µ) can be written as a linear combination

of Γ111,d1 and Γ111,d2 :

Γ111,equ(µ) = (1− µ)2Γ111,d1 + (2µ− µ2)Γ111,d2 (101)

= (1− µ)2Γ111,d1 + (1− (1− µ)2)Γ111,d2

Consequently, the frequency responses satisfy:

Ψ111,equ,µ(fn) = (1− µ)2Ψ111,d1(fn) + (2µ− µ2)Ψ111,d2(fn) (102)

= (1− µ)2Ψ111,d1(fn) + (1− (1− µ)2)Ψ111,d2(fn)

However, in Section 2, we found links between the frequency responses of DFA

of different orders. Therefore, using (38), one obtains:

Ψ111,equ,µ(fn) = (1− µ)2Ψ111,d1(fn) + (2µ− µ2)(Ψ111,d1(fn)−Ψ111,d1⇒d2)(fn) (103)

= Ψ111,d1(fn)− (1− (1− µ)2)Ψ111,d1⇒d2(fn)

It should be noted that when µ = 0, Ψ111,equ,µ(fn) = Ψ111,d1(fn) whereas when µ = 1,

Ψ111,equ,µ(fn) = Ψ111,d1(fn)−Ψ111,d1⇒d2(fn) = Ψ111,d2(fn).

In addition, taken into account the fact that the function x 7→ 2x− x2 increases

when x ∈ [0, 1] , and that ∀fn,Ψ111,d1⇒d2(fn) ⩾ 0 , one has if µ1 > µ2:

Ψ111,equ,µ1(fn) ⩾ Ψ111,equ,µ2(fn) (104)

In Figure 8, six frequency responses are provided to show how the frequency

responses evolve when the weight µ varies, for N = 4, N = 10, N = 30 and

N = 100.

The frequency response of the equivalent filter of the LC-DFA with orders equal

to 1 and 2 is upper-bounded by the frequency response of the DFA and lower-

bounded by the frequency response of the 2nd-order DFA.
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(a) N = 4 (b) N = 10

(c) N = 30 (d) N = 100

Figure 8: Frequency responses of the LC-DFA with orders 1 and 2 for different values of the

weight, for N = 4, N = 10, N = 30 and N = 100

In the remainder, let us address the linear combination of trends obtained with

CDFA of different orders.

3.2. Linear combination of CDFA of different order (LC-CDFA)

We propose to follow a similar reasoning for the combination of CDFA of

different orders as the one presented in the previous section for the LC-DFA.

Thus, using the same type of notation, one has:

P222,equ = (1− µ)P222,d1
+ µP222,d2

(105)

The trend hence satisfies:

T222,equ = (1− µ)T222,d1 + µT222,d2 (106)

and following the same reasoning and mathematical development as the one

presented for the DFA, the frequency response is given by:

Ψ222,equ,µ(fn) = Ψ222,d1
(fn)− (1− (1− µ)2)Ψ222,d1⇒d2

(fn) (107)
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with Ψ222,d1⇒d2(fn) similarly defined Ψ111,d1⇒d2(fn). In addition, the same type of

comments as the ones for the DFA made can be made. In Figure 9, six frequency

responses are provided to show how the frequency responses evolve when the

weight µ varies, for N = 4, N = 10, N = 30 and N = 100.

(a) N = 4 (b) N = 10

(c) N = 30 (d) N = 100

Figure 9: Frequency responses of the LC-CDFA with orders 1 and 2 for different values of the

weight, for N = 4, N = 10, N = 30 and N = 100

4. Illustrations

In this section, we propose to first analyze the relevance of the linear combi-

nation on the ARFIMA process we introduced above. The purpose of this part

will be to better understand the type of results one can obtain especially in the

Step 5 of the DFA and its variants, which is dedicated to the estimation of the

Hurst exponent. Then, we propose to study other signals, namely Weierstrass

signals.

4.1. Comparison on an ARFIMA process

As described in Section 1.2, the last step of the DFA or one of its variants is

to represent the logarithm of the fluctuation function as a function of logarithm
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of N and to estimate the slope of the regression line. As our analysis is based

on the expectation of the square of the fluctuation function, we propose to

operate as follows: we suggest using a sliding rectangular window of length 800

on the realization of the ARFIMA process varying along an exponential trend

in order to create a set of different data. Each resulting ”frame” is processed

by using the DFA, the 2nd-order DFA, the LC-DFA, the CDFA, the 2nd-order

DFA, the LC-CDFA. Then, the fluctuation functions are averaged. See Figure

10. We follow the same type of approaches as the Welch periodogram that is

used to estimate the power spectral density of a random process. Note that

some authors operate differently by first analyzing the first LN samples and

then the last LN samples.

Figure 10: Proposed process based on a windowing of the profile to get an estimation of the

expectation of the square of the fluctuation function
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(a) When dealing with the first frame

(b) When dealing with the last frame (c) When averaging

Figure 11: Estimation of the LRD with the DFA, the 2nd-order DFA and the LC-DFA with

µ = 0.4

When looking at Figures 11 and 12, averaging makes it possible to smooth

the curves and reduce the data spread. In addition, it is no coincidence that

if the data associated with the DFA (resp. CDFA) are located above the data

associated with the 2nd-order DFA (2nd-order CDFA). This phenomenon is the

consequence of the shapes of the frequency responses of the equivalent filters

(See properties (39) and (104)). When N is small, it is confirmed that we

cannot trust the results obtained when the DFA is used. Consequently these

values do not have to be considered to deduce the regression line. This is less

the case of the CDFA as the frequency response of the latter is rather band-pass

in the low frequency even for N small. Regarding the large values of N , one can

notice that depending on the frame, the behavior is not necessarily the same.

This is due to the exponential trend of the signal under study. As shown in

Figure 13, the resulting profile can be poorly approximated by using a linear-

piecewise trend, which leads to these large variations of the logarithm of the

square of the fluctuation function when N is large in Figures 11b and 12b. This

is really different when increasing the degree of the polynomial. Moreover, in
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(a) When dealing with the first frame

(b) When dealing with the last frame (c) When averaging

Figure 12: Estimation of the LRD with the DFA, the 2nd-order CDFA and the LC-CDFA

with µ = 0.4

this example, the DFA tends to overestimate the Hurst exponent H (between

0.7 to 0.85) whereas the DFA tends to underestimate it (between 0.6 to 0.7).

Therefore, the LC-DFA with µ = 0.4 can provide an interesting compromise

leading to an estimation close to the true value, i.e. 0.7.
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Figure 13: Zoom on the profile and the estimation of the profile trend using the DFA, the

2nd-order DFA and the LC-DFA

4.2. Comparison on a set of Weierstrass signals

In this section, we propose to analyze if the combination of the trends of

different orders can be of interest to analyze the LRD. To this end, a set of

Weierstrass functions6 of length 500 whose Hurst coefficient H is predefined is

considered. H varies from 0.2 to 0.8 with a step equal to 0.2. The estimation

of H is based on the selection of the values of N . For this reason, two different

strategies have been considered. The details will be given in Section 4.2.1.

Finally, the linear combination of the trends of different orders is defined by

the weight µ. When µ = 0, this corresponds to the first method whereas when

µ = 1, the combination of the two methods reduces to the second method.

The rest of this section is organized as follows. First, the linear combination of

DFA of different orders is addressed. Then, the results for a linear combination

of CDFA of different orders are presented.

6Weierstrass (WEI) functions are continuous functions that can be derived from nowhere

[46]. Each WEI is constructed as a sum of damped sinusoids with increasing frequencies.
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4.2.1. Estimation of the Hurst exponent with a linear combination of trends

obtained with DFA of different orders: LC-DFA

Two strategies have been considered for the estimation of H.

• Strategy 1: Consider all the values N ∈ Jd + 2,M/2K = Jd + 2, 250K with d

the order of the method.

• Strategy 2: Consider a sub-sample of the values of N depending of the

total size of the signal. Here, N ∈ JM/8,M/2K = J62, 250K.

The purpose of the second strategy is to avoid selecting too small values of N

since the fluctuation function is a priori known to be underestimated in this

case. This underestimation can tend to overestimate the value of the slope α

and consequently the Hurst exponent.

Given Tables 1 and 2, one can first notice that the estimation of the Hurst

exponent is slightly overestimated whatever the method chosen. For this set

of signals and these simulations, if we only look at the results of the DFA and

its higher-order variants, the DFA is the most accurate. If one compares these

results with the ones obtained for the combinations of methods, one can see that

the larger H is, the larger the weight µ must be when combining the standard

DFA and the 2nd-order DFA in order to get the smaller error mean. This

combination seems to be relevant for both strategies.

4.2.2. Estimation of the Hurst exponent with a linear combination of trends

obtained with CDFA of different orders: LC-CDFA

The two strategies to select N that are presented in the DFA are still consid-

ered for the combination of the trends obtained with CDFA of different orders.

Given Tables 3 and 4, and looking at the CDFA or its higher-order variants

only, the 2nd-order CDFA is always the most accurate approach. However, when

choosing the first strategy, this method can be outperformed by the combination

of CDFA of different orders. More particularly, the combination of CDFA of

order 1 and 2 provides the most accurate results when H = 0.4, H = 0.6 and

H = 0.8. For H = 0.2, even if the combination of CDFA of order 2 and 3 provides
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Weight µ and methods H = 0.2 H = 0.4 H = 0.6 H = 0.8

0.2 (DFA of orders 1 and 2) -0.010 -0.005 -0.007 -0.030

0.2 (DFA of orders 1 and 3) -0.013 -0.009 -0.012 -0.037

0.2 (DFA of orders 2 and 3) -0.034 -0.030 -0.025 -0.020

0.4 (DFA of orders 1 and 2) -0.010 -0.003 -0.003 -0.025

0.4 (DFA of orders 1 and 3) -0.014 -0.009 -0.011 -0.036

0.4 (DFA of orders 2 and 3) -0.032 -0.029 -0.024 -0.018

0.6 (DFA of orders 1 and 2) -0.013 -0.004 -0.001 -0.016

0.6 (DFA of orders 1 and 3) -0.017 -0.010 -0.010 -0.033

0.6 (DFA of orders 2 and 3) -0.032 -0.030 -0.026 -0.020

0.8 (DFA of orders 1 and 2) -0.021 -0.012 -0.003 -0.005

0.8 (DFA of order 1 and 3) -0.025 -0.019 -0.013 -0.027

0.8 (DFA of order 2 and 3) -0.035 -0.035 -0.033 -0.030

DFA of order 1 -0.012 -0.008 -0.011 -0.034

DFA of order 2 -0.028 -0.025 -0.019 -0.013

DFA of order 3 -0.038 -0.041 -0.043 -0.043

Table 1: Mean of the difference between the true Hurst coefficient and the estimated one for

different values of the weight µ. Strategy 1 for the selection of N . Bold values correspond to

the most accurate results

the most accurate results, the combination of CDFA of order 1 and 2 remains

among the most accurate solutions.

When opting for the second strategy, it is more difficult to draw some conclu-

sions. The combination of CDFA of order 1 and 2 or of order 2 and 3 are of

interest. For a predefined value H, when combining CDFA of order 1 and 2 or

2 and 3, the error decreases when the weight increases.

Depending on the signal under study and the selection of the values of N , we

can see that it is always easy to draw some definitive conclusions. In practice,

one has to pay attention to the spectral properties of the signal, the overall

temporal representation of the signal, but also the log/log plot.
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Weight µ and methods H = 0.2 H = 0.4 H = 0.6 H = 0.8

0.2 (DFA of orders 1 and 2) -0.011 -0.011 -0.025 -0.060

0.2 (DFA of orders 1 and 3) -0.018 -0.018 -0.032 -0.066

0.2 (DFA of orders 2 and 3) -0.037 -0.027 -0.018 -0.010

0.4 (DFA of orders 1 and 2) -0.009 -0.005 -0.016 -0.051

0.4 (DFA of orders 1 and 3) -0.022 -0.020 -0.032 -0.067

0.4 (DFA of orders 2 and 3) -0.042 -0.032 -0.022 -0.013

0.6 (DFA of orders 1 and 2) -0.011 -0.002 -0.006 -0.035

0.6 (DFA of orders 1 and 3) -0.033 -0.028 -0.035 -0.067

0.6 (DFA of orders 2 and 3) -0.051 -0.044 -0.034 -0.025

0.8 (DFA of orders 1 and 2) -0.022 -0.009 0.001 -0.011

0.8 (DFA of order 1 and 3) -0.054 -0.048 -0.047 -0.067

0.8 (DFA of order 2 and 3) -0.066 -0.064 -0.060 -0.054

DFA of order 1 -0.016 -0.017 -0.032 -0.066

DFA of order 2 -0.035 -0.026 -0.017 -0.011

DFA of order 3 -0.076 -0.081 -0.086 -0.091

Table 2: Mean of the difference between the true Hurst coefficient and the estimated one for

different values of the weight µ. Strategy 2 for the selection of N .

5. Conclusions and perspectives

The purpose of this paper was to analyze a new class of variants of DFA.

Indeed, we suggest using a linear combination of the trends obtained with the

DFA and the CDFA in their standard formulations with a higher-order variant.

To this end, our main concern was to analyze how the frequency response of the

equivalent filter representing the centering, integration and detrending steps

could evolve. Illustrations on an ARFIMA process show that the proposed

combination can lead to a good compromise. The a priori choice of the weight

remains an open topic and will be probably addressed in future works. This

will probably depend on the type of profile trend and the number of samples

available.
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Weight µ and methods H = 0.2 H = 0.4 H = 0.6 H = 0.8

0.2 (CDFA of orders 1 and 2) -0.089 -0.086 -0.081 -0.085

0.2 (CDFA of orders 1 and 3) -0.092 -0.090 -0.085 -0.088

0.2 (CDFA of orders 2 and 3) -0.074 -0.073 -0.071 -0.069

0.4 (CDFA of orders 1 and 2) -0.083 -0.081 -0.078 -0.076

0.4 (CDFA of orders 1 and 3) -0.089 -0.088 -0.083 -0.087

0.4 (CDFA of orders 2 and 3) -0.072 -0.072 -0.070 -0.069

0.6 (CDFA of orders 1 and 2) -0.077 -0.074 -0.069 -0.072

0.6 (CDFA of orders 1 and 3) -0.085 -0.085 -0.081 -0.085

0.6 (CDFA of orders 2 and 3) -0.072 -0.073 -0.073 -0.071

0.8 (CDFA of orders 1 and 2) -0.073 -0.069 -0.063 -0.061

0.8 (CDFA of order 1 and 3) -0.078 -0.080 -0.078 -0.080

0.8 (CDFA of order 2 and 3) -0.074 -0.079 -0.081 -0.083

CDFA of order 1 -0.093 -0.090 -0.085 -0.088

CDFA of order 2 -0.074 -0.074 -0.072 -0.071

CDFA of order 3 -0.076 -0.084 -0.091 -0.098

Table 3: Mean of the difference between the true Hurst coefficient and the estimated one for

different values of the weight µ. Strategy 1 for the selection of N .
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