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Robust Regulation of a Power Flow Controller
via Nonlinear Integral Action

Tanguy Simon, Student Member, IEEE , Mattia Giaccagli, Student Member, IEEE , Jean-François Trégouët,
Daniele Astolfi, Member, IEEE , Vincent Andrieu, Hervé Morel, Senior Member, IEEE and Xuefang Lin-Shi

Abstract— This paper considers a robust output set-
point tracking problem for a m-terminal power flow con-
troller (PFC) for meshed DC micro-grids. The PFC is a power
electronics device used to control the power flow at a node
in the meshed grid, and may act as a DC circuit breaker.
The system is modelled by state-space bilinear dynamics
coupled with a polynomial output. In the proposed design,
the plant is first extended with an integral action processing
the regulation error. The cascaded model composed of the
plant and the integrator is then stabilised using a saturated
state-feedback law, designed with a forwarding approach.
An anti-windup function is added to cope with transient
saturations. A tuning method is proposed to set the con-
troller gains along the available degrees of freedom with
respect to a cost function. The stability of the closed-loop is
guaranteed for any compact set of initial conditions and for
small parametric variations around the nominal set-point.
Experiments have been carried out and these properties are
successfully assessed on a tenth-scale experimental set-
up.

Index Terms— Bilinear systems, integral action, meshed
micro-grids, power flow controllers, robust control, for-
warding

I. INTRODUCTION

In the light of the current climate breakdown, it is of
paramount importance to cut global greenhouse gas emis-

sions. The access to electrical energy holds an important
place in these discussions, and direct current (DC) micro-grids
respond favourably to those issues. This type of electrical
power network enhances the penetration of small renewable
energy generators and lowers the energy losses, while helping
the clean access to electrical energy or the transition to a more
energy-frugal lifestyle (see, e.g., [1], [2] and references therein
for a broader discussion on the subject). The meshed structure
of micro-grids improves this result by reducing the amount of
copper needed (because there can be multiple paths between
two points and the average power in each line in a building
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Fig. 1. m-terminal PFC at a node in the grid.

is low), as well as improving the reliability, modularity and
efficiency of the system [3].

To control a meshed DC grid, a DC Power Flow Controller
(PFC) is required. It is a multi-terminal DC-DC converter
located at a node in the mesh, sometimes called a smart-node
[4]. Its objective is the regulation of the power in each line
of the node (see Fig. 1), despite the high intermittency of
renewable generators.

Although PFCs for high voltage DC applications (HVDC)
have received a strong academic interest (see, e.g., the recent
survey [5]) very little has been done for low-voltage appli-
cations (LVDC). The lower voltage rating leads to a com-
pletely different converter topology, and therefore to different
control schemes. Among them, recall a multi-terminal PFC
with a compensation node [6] improved by removing the
compensation node [7], a PFC made of two separate Split-
PI converters [8], and a three-terminal PFC [2], [9]. The main
shortcomings of [6]–[8] are the absence of dynamic model
and their control strategies, which fail to give any proof of
stability or robustness. No direct control of the power is
achieved, and the control laws are applied to two-terminal
devices, which do not constitute a node. In [6], the control
law is a constant ratio determined by a look-up table, based
on the knowledge of the voltage at the end of the line, an
uncertain parameter in practice. In [7], a PI controller is used
to regulate the current instead of the power, whose reference
is again computed using the voltage at the end of the line.
Moreover, the reservoir voltage, which is the voltage on a
capacitor inside the converter, is not controlled and can drift
outside the physical boundaries. Finally, in [8], the authors
propose a current-limited voltage controller using the RST
technique with hysteresis switching. The reservoir voltage is
properly controlled but power flow control is not achieved.

In this study, a m-terminal power flow controller is con-
sidered. Assume a synchronous PWM switching scheme on
each branch, and suppose that the grid’s dynamics are partially
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unknown to take into account its high variability. In this
context, the PFC in the grid has been recently modeled using
a state-space approach [2]. The resulting continuous-time and
finite-dimensional model is uncertain and bilinear. Moreover,
the output to be regulated is a second-order polynomial.
Indeed, this signal corresponds to the electrical power in all
the lines, and this quantity is the product of couples of state
variables, i.e. the voltage and current in each line.

The corresponding control problem is challenging as it is
associated with a system which in non-linear, uncertain and
with a non-linear output. While many papers dealing with
stabilisation problems for bilinear systems can be found in
the literature (see, for instance, [10]–[16]), very few addressed
the more general problem of output regulation, e.g., [17], and
more recently [18], [19], and all of them are focused on
control designs for systems having a pure linear output and
are therefore not directly applicable to the problem explained
above. Despite this lack of literature on output regulation,
bilinear systems are a class of systems commonly employed
to model physical systems, such as a heat exchanger [20],
hydraulic systems [21], power factor compensators and HVDC
converters [18], microbial cell growth [22] and many others
[23].

Nevertheless, direct power flow control is achieved in [2] on
a three-terminal PFC, using a state feedback on the linearised
dynamics after adding integrators. Yet, this first attempt only
gives local stability results in the state-space, and although
its robustness has been tested, no proofs are given for local
stability in the parametric space. Furthermore, the saturation
of the duty cycles is not taken into account when designing
the controller.

The authors’ contributions with respect to the literature are
the following. (i) The proposed controller achieves semi-global
asymptotic stability in the state-space and provides robustness
with respect to small parameter variations. To this end, model
uncertainties and non-linearities are directly taken into account
at the design step. In a nutshell, the PFC model is first extended
with an integral action processing the regulation error. Then,
a stabiliser for the extended system is derived following the
so-called “forwarding approach” (see, e.g., [24]–[26] or [27]–
[29] for an incremental version). This control law inherits
stability properties with respect to small parameter variations
as shown in [25], [30]. (ii) An arbitrary number of terminals
is considered, i.e. m ≥ 2 can be any integer. (iii) As the
control inputs are physically represented by the duty cycles of
each terminal, a saturation is applied to the control action to
meet such constraints. Comparing to the unconstrained case,
the closed-loop basin of attraction is preserved through the
implementation of an anti-windup correction term to deal with
(possible) unstable behaviours of the integrator dynamics with
such input saturation. (iv) A tuning procedure for the controller
gains is offered. (v) All these achievements are successfully
assessed on an real tenth-scale test-bench for m = 3, and via
simulations for a larger number of terminals.

A preliminary conference version of this paper was pre-
sented in [9]. Here, as compared with [9], 1) a controller for
the m-terminal PFC is proposed to improve the applicability
of the proposed method, whereas [9] is concerned with the

TABLE I
Symbols

Electrical

Cf Filter capacitance CR Reservoir capacitance
ik, ik Current in Lf iGk, iGk Grid current
Lf Filter inductance LGk Grid inductance
Pk Power in line k RGk Grid resistance

vk, vk Line voltage (on Cf ) VGk Grid voltage
vR, vR Reserv. volt. (on CR)

State-space

A, A Dynamic matrix B Input matrix
C, C Output matrix H, H Polynomial out. mat.

J ”Inertia” matrix N, N Bilinear input mat.
q Constant vector r Reference vector

u, u Input vector w, w Aug. state vector
x, x State vector y, y Output vector
z, z Integrator vector δ Set-point vector
θ Parameter vector ϕ(.) aug. cl.-loop dynamics
n number of states m number of inputs
p number of outputs nz number of integrators
ξ integral action α,ψ control laws
ζ anti windup P,Ω,M control actions
d, d A.W. tuning

Sets

D Possible set-points E(δ) Equilibrium points
R Possible references S Admissible set-points
U Admissible inputs Θ Possible parameters

Accents, indexes and exponents

˜ see Section IV-C r Reference
? Equilibrium nom On nominal set-point

bold absolute coordinates slim error coordinates

particular case of m = 3; 2) The saturation of the duty
cycles is taken into account, not only in the simulation but
also in the theoretical proofs, and an anti-windup design is
proposed; 3) Additional degrees of freedom are provided in
the control design, and a tuning procedure is proposed; 4)
All these extensions have been successfully implemented on
a real tenth-scale test-bench for m = 3 and via simulations
for a larger number of terminals, while in [9] only simulations
on a 3-terminal PFC have been implemented to validate the
proposed control design.

The paper is organised as follows. In Section II, the model
of the power flow controller is presented and the studied
control problem is formalised. In Section III, the forwarding
control approach is reviewed and specialised to the case of
bilinear systems having a second-order polynomial output.
Section IV contains the main theoretical results of the paper.
The control law design is presented and it is shown that such
a design guarantees global asymptotic stability of the nominal
equilibrium of the closed-loop system. Such design is proven
to be (locally) robust, i.e. it ensures that the regulation is
achieved even in the case of sufficiently small parameter
uncertainties. Finally, a tuning procedure is proposed for the
control law. In Section V, the experimental measurements are
presented on a 3-terminal PFC, along with simulations on a
5-terminal one. Finally, conclusions are given in Section VI.
Proofs of technical Lemmas are postponed to the Appendix.

Notation. The operator “diag {}” builds a diagonal matrix
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from entries of the input vector argument. Given a vector
a ∈ Rn, the notation ak refers to the k-th element of a,
with 1 being the index of the first element. The symbol Idm

stands for the identity matrix of size m ×m and 1m for the
column vector of size m in which each element is 1. The
null matrix of size m × n is denoted by 0m×n while 0m

denotes column vectors. Dimensions are omitted when obvious
from the context. Note J1,mK as every integer between 1
and m included, i.e. J1,mK = {1, . . . ,m}. Given a square
matrix A, det(A) indicates its determinant. Given a set S,
card(S) denotes its cardinality and int(S) its interior. Given
a set [a1, a2] ⊂ R, the notation [a1, a2]n denotes the set
[a1, a2]n := [a1, a2]×· · ·×[a1, a2] ⊂ Rn. Define the following
asymmetrical scalar saturation function sats̄s : R→ R as

sats̄s(s) =





s if s < s

s if s ≤ s ≤ s̄
s̄ if s > s̄

for some constants s ≤ s̄ ∈ R and the following scalar dead-
zone function dzd : R→ R as

dzd(s) = s− satd−d(s)

for some constant d > 0. Then, given any two vectors
s̄ =

[
s̄1 . . . s̄m

]ᵀ ∈ Rm, s =
[
s1 . . . sm

]ᵀ ∈ Rm

and any scalar d ∈ R, define the following (vector) saturation
function Sats̄s : Rm → Rm and the following (vector) dead-
zone function Dzd : Rm → Rm as

Sats̄s(s) =




sats̄1s1(s1)
...

sats̄msm(sm)


 , Dzd(s) =




dzd(s1)
...

dzd(sm)


 , (1)

for some vector s =
[
s1 . . . sm

]ᵀ ∈ Rm, i.e. as the
functions that implement element-wise, respectively, the sat
and dz function defined before. Note that the saturation
constants in Sats̄s are different element-wise. A summary of
the notation used in this article is given in Table I to aid the
reader.

II. PROBLEM STATEMENT

The Power Flow Controller (PFC) is an electrical device
whose objective is to control the electric power in the lines it
is connected to. As shown in Fig. 1, in this article, a general
m-terminal version is considered. The chosen electrical circuit
to achieve this function is made of m identical buck-boost
converters whose high-side are connected in parallel to a
unique reservoir capacitor noted CR. Each branch (buck-boost)
is depicted on the left of Fig. 2. The grid connected to terminal
k, as seen by the PFC, is modelled by a Thevenin equivalent
circuit, as drawn on the right-hand side of the same figure.
This equivalent circuit aims at capturing the dynamics of the
network, originating from the interplay between the impedance
of the conductors and the dynamics of the loads/generators
connected to the grid.

CR vR

Lfik

Cf vk

k
LGkiGk

RGk

VGk

PFC Gridk

Fig. 2. Detail of the k-th branch of the PFC (left) and the Thevenin grid
model as seen by this terminal (right)

This circuit cannot operate properly if the reservoir voltage
is not controlled1. This adds another control objective which
can be solved knowing that such a voltage is constant if
and only if the sum of average powers is equal to zero.
Consequently, if the reservoir voltage is regulated to a constant
value vR

r and all the lines but one are regulated to a constant
power reference Pr

k for k ∈ J1,m− 1K, the power in the last
line naturally converges to the overall power balance, i.e. Pr

m

tends to −∑m−1
k=1 Pr

k.
The problem tackled in this paper is the following: design

a state-feedback controller delivering the duty ratios for the
pulse-width modulation (PWM) switching of the transistors to
achieve power control in each line of the node, while main-
taining the reservoir voltage to a fixed given constant value,
despite the uncertainty of the parameters characterising the
grid. Moreover, to ensure flexibility and modularity, assume
limited knowledge on the grid model at the end of each line.

A. Model of The Power Flow Controller
In Fig. 2, the currents are denoted by i and measured in

Amps and the dynamic voltages by v and measured in Volts.
Note that the line voltage should be positive in a grid (more
specifically within a precise tolerance of the nominal voltage),
therefore every steady-state voltage v?

k will be considered non-
negative. The component parameters are denoted by Lf /LGk,
Cf /CR, RGk and VGk for, respectively, inductors (Henry), ca-
pacitors (Farad), resistors (Ohm) and constant voltages (Volts).
The dynamic model of the system can be derived by using
Kirchhoff’s and Ohm’s electrical laws, along with the dynamic
electrical laws for inductors and capacitors, while assuming
ideal components, see, [2] for a more detailed construction
of the PFC’s model. A synchronous PWM switching is im-
plemented, and the dynamics are averaged over a switching
period. The input vector u = [u1, . . . ,um]ᵀ ∈ Rm is made of
the duty ratio of each terminal and hence each of the ui(t)
must be included in the set [0, 1] ⊂ R for all t ≥ 0. Therefore,
the set of admissible inputs is defined as

U :=
[
0, 1
]m

(2)

The dynamic variables are all gathered in the state vector x ∈
Rn with n = 3m + 1, and the uncertain model parameters
are collected in the vector θ ∈ R3m, as shown in Table II.

1If vR < vk for some k ∈ J1,mK, the current flows freely through the
diode in the upper transistor of the kth branch, which cannot be controlled
by the PWM switching (see Fig. 2)
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The output vector corresponds to the control objectives y =
[P1, . . . ,Pm−1,vR]ᵀ ∈ Rm, with Pk = iGkvk. A state-
space model can then be obtained for the PFC, following the
results in [2]. The system can be represented as a bilinear
system. The states are the currents ik, iGk and the voltages
vk for k ∈ J1,mK and vR. Additionally, the PFC is coupled
with a polynomial output on which the regulation task has to
be achieved. Such an output is composed by the powers Pk

for k ∈ J1,mK and the reservoir voltage vR. In details, it can
be described by a set of dynamical equations of the form

ẋ = A(θ)x + N(x)u + q(θ),

y = Cx + H(x)x,

u ∈ U ,
(3)

with

A(θ) = J(θ)−1




0 0ᵀ
m 0ᵀ

m 0ᵀ
m

0m 0 Idm 0
0m −Idm 0 Idm

0m 0 −Idm −diag {RG}


 (4a)

N(x)u =

m∑

j=1

(Njuj)x = J(θ)−1




0 uᵀ 0ᵀ
2m

−u 0 0
02m 0 0


x,

(4b)

q(θ) = J(θ)−1[0ᵀ
n−m, V

ᵀ
G ]ᵀ, (4c)

J(θ) = diag {CR, 1ᵀ
mLf , 1ᵀ

mCf , L
ᵀ
G} , (4d)

C =

[
0m−1 0

1 0ᵀ
n−1

]
, (4e)

H(x) =

[
0 1

2diag {iG1, . . . , iGm−1} 0m−1

0ᵀ
1+m 0ᵀ

m−1 0
1
2diag {v1, . . . ,vm−1} 0m−1

0ᵀ
m−1 0

]
(4f)

where, for each j = 1, . . . ,m, the Nj are constant n × n
matrices defined as Nj = J(θ)−1Nj where Nj are m different
matrices full of zeros with a 1 in the first row and j + 1
column and a −1 in the first column and j + 1 row, and
with LG = [LG1, . . . , LGm], RG = [RG1, . . . , RGm] and
VG = [VG1, . . . , VGm]. Let Θ ⊂ R3m be the non-empty set
of possible system parameters that are compatible with the
physics of the system. It is defined as

Θ :=
{
θ ∈ R3m : LGk > 0, RGk > 0, VGk ≥ 0, k ∈ J1,mK

}
.

(5)

There is no loss of generality in these constraints since LG,
RG represent physical properties (inductance and resistance)
which are always strictly positive. As shown later in (42a),
Pr

k = 0 implies limt→+∞ vk(t) = v?
k = VGk, i.e. when the

power reference is null, the line voltage tends to VGk. As stated
before, this line voltage should always be non-negative, then
so should VGk.

The vector of references corresponds to the control objec-
tives, i.e. r = [Pr

1, . . . ,P
r
m−1,vR

r]ᵀ, and the non-empty set

TABLE II
State vector and uncertain parameter vector.

x
x1 x2 . . . xm+1 xm+2 . . . x2m+1 x2m+2 . . . x3m+1

vR i1 . . . im v1 . . . vm iG1 . . . iGm

θ
θ1 . . . θm θm+1 . . . θ2m θ2m+1 . . . θ3m
LG1 . . . LGm RG1 . . . RGm VG1 . . . VGm

of possible references R ⊆ Rm is defined as

R :=
{
r = (Pr

1, . . . ,P
r
m−1,vR

r) ∈ Rm :

(Pr
1, . . . ,P

r
m−1, ) 6= (0, . . . , 0),vR

r > 0
}
. (6)

where, as stated before, vR
r should be sufficiently high for

the device to operate properly and hence only strictly positive
values have been taken into consideration. The case in which
all the reference powers Pr

j are null has not been taken in
consideration, as it makes the control objective structurally
impossible, as shown later on.

B. Control problem
This article focuses on a robust regulation problem for the

PFC represented by the model (3). Define beforehand the
compact notation δ := (θ, r) and D := Θ × R. The tackled
problem is stated as follows.

Problem. Given a nominal set of parameters D and δnom ∈
D, find functions ξ : Rn × Rnz → Rnz and α : Rn × Rnz →
U such that for any arbitrarily large compact set of initial
conditions X × Z ⊆ Rn × Rnz there exists δ̄ > 0 such that,
for any δ satisfying ‖δ− δnom‖ ≤ δ̄, the resulting trajectories
of system (3) in closed-loop with the regulator

ż = ξ(x, z),

u = α(x, z)

are bounded forward in time and limt→∞ y(t) = r.

Following an internal model based design (see, e.g., [25],
[31]), the system (3) is first extended with an integral action
processing the regulation error as follows

ż = y − r . (7)

Indeed, as shown in [25], the use of the integral action (7) is
necessary to achieve asymptotic tracking in the presence of
(sufficiently small) perturbations of the plant model in every
direction. The key feature of the integral action is that if
there exists an equilibrium for the closed-loop system, then the
regulation error is necessarily equal to 0 at this equilibrium.
Furthermore, the control law is saturated since u ∈ U , and
this physical constraint may lead to unstable behaviours in
the dynamics of the integrator. To deal with this issue, an
anti-windup design is implemented (see [32]–[34]) to mitigate
the effects of uncontrollable integral action. This leads to the
following integral dynamics

ż = ξ(x, z) := y − r + ζ(x, z) (8)

where the function ζ represents such an anti-windup. The
overall proposed control scheme is depicted in Fig. 3. The



SIMON et al.: ROBUST CONTROL OF A POWER FLOW CONTROLLER VIA FORWARDING DESIGN 5

design of the function α(·) that has been implemented, follows
the so-called forwarding approach. The next section specialises
and enriches such a technique to the class of bilinear systems
having a second-order polynomial output.

III. FORWARDING DESIGN FOR A CLASS OF BILINEAR
SYSTEMS WITH A POLYNOMIAL OUTPUT

Consider a system composed by a cascade of a bilinear
system having a second-order polynomial output feeding an
integrator of the form

ẋ = Ax+ (N(x) +B)u,

ż = Cx+H(x)x,
(9)

where (x, z) ∈ Rn+p is the state, u ∈ Rm is the control input,
A,B,C are matrices of suitable dimensions, and functions
H : Rn → Rp×n and N : Rn → Rn×m defined as H(x) =[
Hᵀ

1 x . . . Hᵀ
p x
]ᵀ

and N(x) =
[
N1x . . . Nmx

]
for

some n× n matrices H1, . . . ,Hp, N1, . . . , Nm.

Standing Assumption. The number of inputs is not smaller
than the number of outputs, i.e m ≥ p.

The following result specialises the forwarding control
design (see, e.g., [25]–[28], [30] and the references therein)
for systems of the form of (9).

Proposition 1. Consider system (9). Suppose that A is Hurwitz
and that the matrix CA−1B is full rank. Select P = P ᵀ � 0
and Mi = Mᵀ

i such that

PA+AᵀP ≺ 0, (10)
MiA+AᵀMi = 1

2 (Hi +Hᵀ
i ) , ∀i ∈ J1, pK, (11)

and let M0 = CA−1. Then, for any matrix Ω = Ωᵀ � 0, the
origin of system (9) in closed-loop with u = ψ(x, z), with the
function ψ : Rn+p → Rm defined as

ψ(x, z) = −
(
xᵀP (N(x) +B)

− (z −M(x))ᵀΩ (M0 + 2R(x)) (N(x) +B)
)ᵀ
, (12)

with

R(x) :=
[
M1x . . . Mpx

]ᵀ
(13)

M(x) := M0x+R(x)x , (14)

is globally asymptotically stable and locally exponentially
stable.

Proof. The proof is based on a Lyapunov function construction
which follows the results presented in [26]. In particular, let
W : Rn+p → R be defined as

W (x, z) = 1
2x

ᵀPx+ 1
2 (z −M(x))ᵀΩ(z −M(x)) , (15)

with P and M defined respectively by (10) and (14) as in
the statement of the proposition. Note that W is proper and

positive definite. By construction, the function M satisfies

∂M

∂x
(x)Ax = M0Ax+



xᵀ(M1A+AᵀM1)x

...
xᵀ(MpA+AᵀMp)x


 ,

= Cx+
1

2



xᵀ(H1 +Hᵀ

1 )x
...

xᵀ(Hp +Hᵀ
p )x




= Cx+H(x)x . (16)

Hence, the time derivative of W along the solutions of
system (9) satisfies

Ẇ (x, z) = xᵀ(PA+AᵀP )x+ [xᵀP (N(x) +B)

− (z −M(x))ᵀΩ (M0 + 2R(x))(N(x) +B)]u ,

where the relation (16) has been used. Using again the
definition of M in (14) and the definition of ψ in (12) yields

Ẇ (x, z) = xᵀ(PA+AᵀP )x− ψᵀ(x, z)ψ(x, z) ≤ 0 .

Furthermore, note that

{(x, z) : Ẇ (x, z) = 0} = {(x, z) : x = 0, ψ(x, z) = 0}.
(17)

Moreover, using the definition of M0, ψᵀ(0, z) = zᵀΩCA−1B
is obtained. Since by assumption, CA−1B and Ω are full rank,
the set {(x, z) : Ẇ (x, z) = 0} coincides with the origin and
therefore (x, z) 7→ Ẇ (x, z) is negative definite. Consequently,
W is a Lyapunov function of the closed-loop system and the
origin is globally asymptotically stable. Finally, employing the
same method, note that the quadratic function

W0(x, z) = 1
2x

ᵀPx+ 1
2 (z −M0x)ᵀΩ(z −M0x),

is a Lyapunov function for the first-order approximation

ẋ = Ax+Bψ0(x, z), ż = Cx,

with ψ0(x, z) being the first-order approximation of ψ. Hence,
local exponential stability of the equilibrium is obtained.

IV. MAIN RESULTS

In this section, the main theoretical results of the paper are
stated. Given the PFC model (3), a first detailed analysis of
the set of solutions that solve the problem is given. Then, the
controller design shown in Fig. 3 is presented. It is defined as
an integral action processing the tracking error implemented
with an anti-windup design, and a state-feedback stabiliser
for the closed-loop based on forwarding design. It will also
be shown that the presented design is able to achieve output
regulation even in the case of (sufficiently small) parameter
uncertainties. Moreover, a tuning procedure for the control
gains is provided.
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r
+

∫−

ζ(·)

+

z

α(·)
ż y

PFC

saturation

anti-windup

ẋ = A(θ)x + N(x)u + q(θ)

y = Cx + H(x)x
x

Fig. 3. Proposed control structure for the PFC

A. Set of solutions

The considered problem may not be solvable for all δ =
(θ, r) ∈ D since for some values of δ there may not exist
an equilibrium pair (x?,u?) satisfying y = r within the input
constraints. Therefore, for a given δ ∈ D, let E(δ) be the set of
admissible equilibrium points, namely the set of steady-state
solutions on which output regulation is achieved, i.e.

E(δ) :=
{

(x?,u?) ∈ Rn × U : A(θ)x?

+ N(x?)u? + q(θ) = 0, Cx? + H(x?)x? = r
}
. (18)

The set S is then defined as the set of admissible parameters
and references δ for which there exists such equilibrium points:

S :=
{
δ ∈ D : card(E(δ)) > 0

}
. (19)

A characterisation of S can then be provided through model
inversion as shown below, whose proof has been postponed to
the appendix.

Proposition 2. Consider system (3). Then

S =
{
δ ∈ D : ∆k(δ) ≥ 0,

0 ≤ 1
2vR

r

(
VGk ±

√
∆k(δ)

)
≤ 1, k ∈ J1,mK

}
, (20)

where
∆k(δ) := V 2

Gk − 4RGkP
r
k (21)

with Pr
m := −∑m−1

k=1 Pr
k. Moreover, for a given δ ∈ S, there

exists from one to 2m pairs (x?,u?) ∈ E(δ).

B. Controller design

This section aims to solve the regulation problem presented
in Section II-B for the PFC (3) following the control structure
presented in Fig. 3. The controller is designed for some known
nominal parameters and references δnom := (θnom, rnom).
Furthermore, it is assumed that this pair belongs to int(S).
This allows to prove that output set-point tracking is still
achieved for δ distinct from δnom but sufficiently close to it,
as specified later on. The main result of the paper is stated as
follows.

Theorem 1. Consider the set S defined in (19). Select any
δnom = (θnom, rnom) ∈ int(S) and any corresponding

(x?
nom,u

?
nom) ∈ E(δnom). Then, for d > 0 sufficiently high,

the Problem for system (3) is solved by the control law

ż = ξ(x, z) := y − r−Dzd(z−M(x− x?
nom))

u = α(x, z) := u?
nom + Sat

1−u?
nom

−u?
nom

(ψ(x− x?
nom, z))

(22)

where the functions Sat and Dz are defined in (1), the function
ψ is chosen as (12) with the matrices A,B,C and functions
N,H defined as

A := A(θnom) +

m∑

j=1

Nju
?
nom,j, B := N(x?

nom)

C := C + 2H(x?
nom), N(x) := N(x),

H(x) := H(x), P,M defined as in (10), (14) and any Ω =
Ωᵀ � 0.

Remark 1. Note that the integral action dynamics is designed
in the form of (8) with the anti-windup term that takes the
form of a dead-zone function. The function α is selected as a
first (nominal) feed-forward action u?

nom plus a second term
made by saturating the function ψ derived from the forwarding
approach in Proposition 1. Thanks to the saturation, the
stabiliser satisfies the input constraints as α takes only values
in U , ensuring the validity of the control law with respect to
the model (3). Indeed the following holds

0 ≤ u = u?
nom + Sat

1−u?
nom

−u?
nom

(ψ(x, z)) ≤ 1

In this sense, note that the control law ψ in Proposition 1 is
of infinite gain margin, i.e. κψ(·) is still a stabiliser for (9)
for all gains κ > 0, and hence the saturation does not restrict
the set of solutions. To this end, recall the well-known link
between forwarding and small-input control ([35]) .

Proof. The proof is divided in three parts. It is first shown
that the origin of the closed-loop system (3), (22) is globally
asymptotically stable for δ = δnom. Then, it is proven that for
d sufficiently large, the anti-windup effect disappears in the
target equilibrium (and so regulation is achieved). Finally it is
shown that the proposed design is robust to sufficiently small
model parameter variations and semi-global asymptotic stabil-
ity on an equilibrium is guaranteed (on which the regulation
objective is satisfied).
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Part 1: Global output regulation. Consider δ = δnom ∈
int(S) and (x?,u?) ∈ E(δ). Define the following change of
coordinates:



u
x
z


 7→



u
x
z


 :=



u− u?

nom

x− x?
nom

z− z?nom




in which z?nom = 0. In these coordinates, system (3) reads

ẋ = A(θ)(x+ x?
nom) + N(x+ x?

nom)(u+ u?
nom) + q(θ),

=
(
A(θ) +

m∑

j=1

Nju
?
nom,j

)
x+ N(x+ x?

nom)u (23)

while the z-dynamics reads

ż = (C + 2H(x?
nom))x+ H(x)x,

for which the relations Cx?
nom + H(x?

nom)x?
nom = r and

H(x)x?
nom = H(x?

nom)x have been used. By selecting the
matrices A,B,C and the functions N,H as in the statement
of the theorem, a system of the form of (9) is obtained.
The following two technical lemmas show that A is Hurwitz
and that the non-resonance condition CA−1B full rank holds.
Their proofs are postponed to the Appendix.

Lemma 1. Pick any δ ∈ int(S). Then for all (x?,u?) ∈ E(δ),
the matrix A = A(θ) +

∑m
j=1 Nju

?
j is Hurwitz.

Lemma 2. Pick any δ ∈ int(S). Then for all (x?,u?) ∈ E(δ)
the matrix CA−1B is full rank.

Remark 2. Lemma 1 can be understood as the natural
stability of the system: in practice, for any constant duty
ratio, the system stabilises to a steady-state equilibrium point.
Concerning Lemma 2, it has been shown in [25] that such
condition is necessary to achieve output set-point tracking in
case of (sufficiently small) parametric uncertainties in every
direction. Since the linearized model around the equilibrium
point is stabilizable, this condition implies controllability of
the extended (plant and integral action) linearised system and
it is commonly referred to as “non-resonance condition” It
follows from the proof of Lemma 2 that the points δ ∈ ∂S :=
S \ int(S) do not satisfy such a condition.

Following the proof of Proposition 1, consider the Lyapunov
function W (x, z) = 1

2x
ᵀPx + 1

2 (z −M(x))ᵀΩ(z −M(x))
where P = P ᵀ � 0 verifies PA + AᵀP ≺ 0, the function
M is defined as in (14) and Ω is any symmetric positive
definite matrix. Note that P always exists in view of Lemma
1. Computing the time derivative and following the same steps
of the proof of Proposition 1, it follows that

Ẇ (x, z) = − 1
2x

ᵀ(PA+AᵀP )x−Ψ(x, z)

− (z −M(x))ᵀΩ Dzd(z −M(x)) (24)

with
Ψ(x, z) := ψ(x, z)ᵀ Sat

1−u?
nom

−u?
nom

(ψ(x, z))

with ψ defined as in the statement of the theorem, i.e. in (22).
The function Ψ verifies

Ψ(x, z) > 0 ∀ (x, z) 6= (0, 0). (25)

To show the previous inequality, let ψi(x, z) denote the i-th
element of ψ(x, z). By definition of the saturation function in
(1),

Ψ(x, z) =

m∑

i=1

Ψi(x, z) =

m∑

i=1

ψi(x, z) sat
1−u?

nom,i

−u?
nom,i

(ψi(x, z))

and, for any i ∈ J1,mK, the following conditions hold:
1) if ψi(x, z) < −u?

nom,i, then
Ψi(x, z) = −ψi(x, z)u

?
nom,i ≥ 0;

2) if −u?
nom,i ≤ ψi(x, z) ≤ 1− u?

nom,i, then
Ψi(x, z) = ψi(x, z)

2 ≥ 0;
3) if ψi(x, z) > 1− u?

nom,i, then
Ψi(x, z) = ψi(x, z)(1− u?

nom,i) ≥ 0,
proving (25) since each element of the sum is positive.
Moreover, since sDzd(s) ≥ 0 for any s, d, it follows from
(24) that Ẇ (x, z) ≤ 0. Since this derivative is a sum of non-
negative terms, Ẇ (x, z) = 0 if and only if each term is null.
Moreover, xᵀ(PA + AᵀP )x = 0 if and only if x = 0. It
follows that

Ψ(0, z) = 0 ⇐⇒ ψi(0, z) sat
1−u?

nom,i

−u?
nom,i

(ψi(0, z)) ∀i ∈ J1,mK

⇐⇒ ψ(0, z) = 0 ⇐⇒ z = M(0) = 0,

hence that Ẇ (x, z) = 0 ⇐⇒ (x, z) = (0,0) and that the
origin of the closed-loop system is globally asymptotically
stable.Following the proof of Proposition 1, it is possible to
show that it is also locally exponentially stable.
Part 2: Anti-windup function design. The dead-zone function
Dzd has been introduced to implement an anti-windup in
the integral action. It follows from the Lyapunov analysis
that such function does not compromise the stability of the
nominal closed-loop. However, the constant d must be chosen
sufficiently large so that when trajectories are close to the
equilibrium point for which y = r, the anti-windup has
no effect (i.e. the dead-zone is equal to zero) and set-point
tracking is achieved. The dead-zone constant d must therefore
satisfy

d ≥ d, d := sup
(x,z)∈Dz×DM

{||z −M(x)||}

where Dz,DM are defined as the sets containing all possible
equilibrium of (x, z). On one hand, when δ = δnom, i.e.
the system converges to the nominal equilibrium, d can be
taken equal to 0 as the feed-forward action u = u?

nom

is sufficient to bring the system to the equilibrium where
regulation is achieved. On the other hand, when δ 6= δnom,
d must be sufficiently high: the dead-zone constant must be
chosen with respect to the plant’s uncertainties, so that the
anti-windup effect vanishes on the (new) equilibrium point.
Giving a detailed formulation of d is cumbersome and out
of the scope of the paper, as its value affects the largest
admissible bounds on the set-points δ̄ (see Part 3 of the
proof of this Theorem) and reciprocally. Its computation has
therefore been omitted. For practical implementations, once
a bound on the possible uncertainties for the parameters
and references is known (and hence a neighbourhood of the
nominal equilibrium), taking d sufficiently high will guarantee
that the anti-windup disappears on the new target equilibrium.
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Such aspects have been remarked also in the experimental
part in Section V. Taking d too high will not compromise the
stability or the regulation, but will simply result in a delay of
the effect of the anti-windup.
Part 3: Robustness analysis. To conclude the proof of the
theorem, we aim to show that for every compact set of initial
conditions, there exists a bound of the parameters’ uncertainty
δ̄ such that, if |δ − δnom| ≤ δ̄, then the following can still be
guaranteed: i) that an equilibrium point for the closed-loop
system exists; ii) that such an equilibrium is asymptotically
and locally exponentially stable; iii) that the regulation task is
still achieved. In this aim, let w := (x, z) and let the nominal
closed-loop (3), (22) be defined by

ẇ = ϕ(w, δnom) . (26)

From the Lyapunov analysis in Part 1, there exist a radially
unbounded Lyapunov function W and a positive definite
function V such that

∂W

∂w
(w)ϕ(w, δnom) ≤ −V (w) < 0

where w = (x − x?
nom, z − z?nom), for which the origin of

the closed-loop is globally asymptotically stable and locally
exponentially stable . Therefore, for each compact set D, there
exists two compact sets of initial conditions containing the
origin and denoted C and C̄, both in X × Z , such that C̄ is
forward invariant2 for the closed-loop system (26). Therefore,
by [36, Lemma 5] there exists ρ > 0 such that, for each C1

vector field ϕp satisfying

|ϕp(w, δ)− ϕ(w, δnom)| ≤ ρ, ∀ w ∈ C̄, (27)
∣∣∂ϕp

∂x (w, δ)− ∂ϕ
∂x (w, δnom)

∣∣ ≤ ρ, ∀ w ∈ C, (28)

there exists an exponentially stable equilibrium of

ẇ = ϕp(w, δ) ,

whose basin of attraction contains the compact set C̄. Let us
define now the function ρ̄ : D → R>0 as

ρ̄(δ) := max
w∈C̄,

{
|ϕ(w, δ)− ϕ(w, δnom)| ,

∣∣∂ϕ
∂x (w, δ)− ∂ϕ

∂x (w, δnom)
∣∣
}
.

Such a function is continuous and satisfies ρ̄(δnom) = 0. Any
positive real number δ̄ > 0 can now be selected such that,
|δ − δnom| ≤ δ̄ implies ρ̄(δ) ≤ ρ. This parameter δ̄ > 0 is a
solution to the third part of the proof. Indeed, for each δ such
that |δ − δnom| ≤ δ̄, then the closed loop system

ẇ = ϕ(w, δ) ,

satisfies (27) and (28) and consequently admits an exponen-
tially stable equilibrium with a basin of attraction containing
D × {0}. Thanks to the integral action, the output set-point
tracking is achieved on this equilibrium, which concludes the
proof.

Remark 3. A more precise characterisation of the robustness
bound δ̄ can be given by explicitly computing its value. Indeed

2Simply pick C̄ = {(x, z) : W (x, z) ≤ c0} for sufficiently large c0.

the closed-loop is a polynomial system, hence computation
solvers or polynomial optimisation tools (see [37], [38]) could
be used.

C. Tuning of the control gains
The proposed control law α(x, z) in (22) admits some free-

to-choose parameters. In particular, any matrices P = P ᵀ

satisfying (10) and Ω = Ωᵀ � 0 could be selected. The aim
of this section is to give guidelines for choosing the matrices
P and Ω with regard to some cost function around the nominal
equilibrium point. Consider the nominal system (3), (22) with
δ = δnom. Since only local performance is sought around the
nominal equilibrium, the tuning procedure is designed without
taking into account the saturation function and the dead-zone
anti-windup, as these functions have no effect sufficiently close
to the equilibrium point. Taking the nominal error coordinates
(x, z) 7→ (x, z) = (x − x?

nom, z − z?nom), the closed-loop
system writes

ẋ = Ax+ (N(x) +B)u

ż = Cx+H(x)x

u = ψ(x, z)

(29)

where u = u − u?
nom, A,B,N,C and H are taken as in

Theorem 1 and ψ(·) is taken accordingly to Proposition 1.
Consider the cost function J : Rn×Rm → R>0 defined as

J :=

∫ ∞

0

[
wᵀ(t)Q̃w(t) + uᵀ(t)R̃u(t)

]
dt (30)

for some given matrices Q̃ = Q̃ᵀ � 0 and R̃ = R̃ � 0, where
w(t) = (x(t), z(t)) is the trajectory of the closed-loop at time
t for some initial conditions. Consider the linearisation of the
closed-loop system (29) around w = (x, z) = (0, 0):

˙̃w = Ãw̃ + B̃ũ

ũ := K̃w̃
(31)

where w̃ ∈ Rn+m, ũ ∈ Rm and

Ã :=

[
A 0
C 0

]
, B̃ :=

[
B
0

]

K̃ := −
[
BᵀP +BᵀMᵀ

0 ΩM0 −BᵀMᵀ
0 Ω
]

(32)

For a linear system of the form (31), a linear state-feedback
optimal control law ([39, Section 3.12]) is given by

ũ = K̃optw̃ = −R̃−1B̃ᵀS̃w̃ (33)

where S̃ = S̃ᵀ � 0 is the solution of the algebraic Riccati
equation

S̃Ã+ ÃᵀS̃ − S̃B̃R̃−1B̃ᵀS̃ = −Q̃ (34)

The idea is to choose the control law degrees of freedom such
that its linearisation K̃ is as close as possible to the optimal
control law for linear systems K̃opt. In this sense, it can be
rewritten as an optimisation problem of the form

min
P,Ω,ε

ε

s.t. (K̃ − K̃opt)(K̃ − K̃opt)
ᵀ − εIdm � 0

P � 0, Ω � 0, ε ≥ 0

AᵀP + PA ≺ 0

(35)
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where K̃ depends on P and Ω, as seen in (32). This problem
can be expressed in LMI form using the Schur complement:

min
P,Ω,ε

ε

s.t.
[
−εIdm (K̃ − K̃opt)

(K̃ − K̃opt)
ᵀ −Id

]
� 0

P � 0, Ω � 0, ε ≥ 0

AᵀP + PA ≺ 0

which is a semi-definite program for which efficient solvers
exist, see for instance [37], [38], [40].

Remark 4. As the system’s dynamics involve the plant and the
integrator, in most applications there is no interest in choosing
the cost function to be dependent on the full state space, i.e.
Q̃ is generally positive semi-definite. Hence one can select
Q̃ := C̃ᵀC̃ for some matrix C̃ of appropriate dimensions,
where (Ã, C̃) is assumed to be detectable to still provide
convergence of the closed-loop system towards an equilibrium
point. Moreover, note that the plant’s uncertainties play a role
in this tuning, suggesting that more advanced techniques could
be used, such as robust optimal control or stochastic optimal
control. As this focus is out of the main scope of this work, the
details will not be explained, and the interested readers may
refer for instance to [41]–[43] and the references therein.

V. EXPERIMENTATIONS

This section presents tenth scale experimental measurements
of the PFC in closed-loop with the proposed controller. The
experimental setup is presented in Fig. 4 and 5. A dSPACE
MicroLabBox rapid prototyping system (µLB) is used to
control the PFC. A voltage-controlled electronic load in series
with a resistor (EL+R) is connected to the first terminal of
the PFC through thirty metres of standard U1000 RV2 cable
(LG). The two other terminals are connected to a resistor (R)
and a power supply (PS), also through thirty metres of the
same cable.

The proposed controller is tested through different sce-
narios. First, it is verified that the control objectives can
be properly reached, despite perturbations of the uncertain
parameters. Second, a test is performed to show the efficiency
of the anti-windup function. Third, an experiment illustrates
the effect of the proposed tuning of the parameters. Finally,
the generalisation to m-terminal is illustrated by a simulation
on MATLAB Simulink, for m = 5.

Unless otherwise stated, the parameters of control law (22)
are selected as follows: the matrices P and Mi, i ∈ J1, pK are
computed using CVX, a package for specifying and solving
convex programs [44],[45], such that

A(θnom)ᵀP + PA(θnom) � −Idn,

MiA(θnom) +Aᵀ(θnom)Mi = 1
2 (Hi +Hᵀ

i ),

the function ψ in (22) is multiplied by a scalar positive gain
κ = 0.01 inside the saturation (see Remark 1) and the tuning
matrix Ω is chosen equal to diag {[1, 1, 5]}. These values have
been found by experimentally tuning the parameters to reach
satisfactory dynamics.

µLB

PFC

PS

LG1,2,3

R

EL+R

Fig. 4. Picture of the experimental setup

PFC

R

EL
+R

PS

µLB LG2

LG1LG3

Fig. 5. Drawing of the experimental setup

A. Robust Regulation

The system is initialised on the nominal set-point δnom =
(θnom, rnom), whose numerical values are displayed in Table
III. At t = 21 ms, the reference is changed to ra, and at
t = 61.5 ms, the system is perturbed with a voltage step on
the electronic load, from 2 V to 10 V, so that θ = θa (see Table
III). From Fig. 6, it can be concluded that the objectives are
properly reached in 20 ms, so that modelling and measurement
errors are properly compensated for. Moreover, observe that
although no reference is tracked on the third line, a constant
power value is asymptotically reached. This asymptotic value
is determined by the total power balance, so that it equals
−Pr

1 −Pr
2 plus the power losses in the converter.

B. Saturation and anti-windup

Since the control law does not exhibit large oscillations with
the proposed tuning, it not possible to illustrate the effect of
transient saturations and of the anti-windup term. Moreover,
it is assumed in the theoretical developments that all given
references are reachable (i.e. belong to S). However,bearing
in mind that in practice the power references are given by
a higher-layer control algorithm, observe that if a constant
perturbation occurring on a line makes the given reference
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Fig. 6. Experimental measurements of the PFC in closed-loop with control (22). Reservoir voltage and power in each line with their references

TABLE III
Set-point numerical values

Parameter Test value Unit
k = 1 k = 2 k = 3

θnom

LGk 18 18 18 µH
RGk 21.7 24.5 1.2 Ω
VGk 2 0 40 V

θa

LGk 18 18 18 µH
RGk 21.7 24.5 1.2 Ω
VGk 10 0 40 V

Parameter Test value Unit

rnom
Pr

1 -50 W
Pr

2 -50 W
vR

r 50 V

ra

Pr
1 -60 W

Pr
2 -60 W

vR
r 50 V

unreachable, it will induce a saturation of the duty cycle and
lead to an integral wind-up, until the higher-layer controller
is able to deliver a new attainable reference. This scenario
has been tested and the most relevant signals are displayed
in Fig. 7. Pr

1 is set to −85 W, which is attainable when
VG1 = 2 V, but not when VG1 = 10 V. Such a step on
VG1 is implemented via the electronic load at t = 0.1 s. This
prevents the power reference to be reached due to duty cycle
constraints. Assume that the higher-layer controller delivers
a new reachable reference Pr

1 = −75 W at t = 0.5 s.
Without anti-windup action, i.e. ζ = 0 on (8), the value of
z1 increases continuously, and the integral wind-up problem
is clearly illustrated as the tracking capability is only recovered
after 600 ms (in blue). This is in contrast with z1,AW which
saturates around 0.2 J, leading to a much faster recovery of
the tracking capability (in red).

0 0.5 1

-90

-85

-80

-75

-70

0 0.5 1

0

0.5

1

1.5

2

Fig. 7. Experimental measurements illustrating the efficiency of the
dead-zone function method to prevent an integral wind-up when the set-
point is unreachable. Power on the first line with its reference (top) and
corresponding integrator (bottom)
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Fig. 8. Experimental measurements of the startup of the converter
on the nominal set-point for different values of Ω = εId3. Only vR is
shown, but the same behaviour is observed on the other outputs

C. Evaluation of the tuning method

In Section IV-C, a procedure is given to assist the tuning
of the control parameters: define a cost function in (30), solve
the Riccati equation in (34) and deduce the control gain using
(33). Then, chose P and Ω along the optimisation problem
(35). This procedure has been followed: for simplicity, the
cost function is chosen using the matrices Q̃ = Id13 and
R̃ = 0.01 × Id3. Indeed, since the inputs are saturated duty
cycles, there is no need to minimise their magnitude, so the
associated cost is small. The Riccati equation has been solved
using the icare(·) function in MATLAB.

In order to evaluate the impact of Ω, matrix P is kept
unchanged while different values for Ω are tested with the
optimisation problem. One then notices that for Ω = εId3,
smaller values of ε lead to a smaller ε, i.e. K̃ is closer to K̃opt.
This is verified during a startup test on the nominal system.
Considering (θnom, rnom) given by Table III at t = 2 ms, the
reservoir voltage transients are displayed in Fig. 8 for different
ε. It can clearly be noticed that decreasing the value of Ω
improves the dynamics on the nominal set-point. However,
note that this matrix multiplies the integral part z of the current
law (see (12)). Therefore, the selection of Ω appears to be a
trade-off between nominal performance, suggesting Ω = 0,
and accuracy of the steady-state, requiring Ω � 0.

D. Simulation of a 5-terminal PFC

This paper generalises the control law from [9] to m
branches. A MATLAB-Simulink simulation validates this ex-
tension for m = 5. The two new branches have the same
parameters and references as branches one and two and have
been inserted between the second and the third ones, i.e.
they are numbered 3 and 4. Thus, the numerical values are
LG1,2,3,4,5 = 18 µH, RG1,3 = 21.7 Ω, RG2,4 = 24.5 Ω,
RG5 = 1.2 Ω, VG2,4 = 0 V and VG5 = 40 V. VG1,3 is initially
set to 2 V and changed to 10 V at t = 61.5 ms. The power
references are all initially at Pr

1,2,3,4 = −50 W, and stepped
to −60 W at t = 21 ms. The reservoir voltage reference vR

r

remains at 50 V.
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Fig. 9. Simulation of the PFC model (3) form = 5, in closed-loop with
control (22). Reservoir voltage and power in the m − 1 first lines with
their references

The resulting reservoir voltage and power signals are drawn
in Fig. 9. Their comparison to those of Fig. 6, shows that the
proposed model is able to accurately capture the dynamics
of the system. Furthermore, this simulation suggests that the
generalisation of the control law to more than three terminals
maintains both the stability and the performance of the system.

VI. CONCLUSION

A robust controller has been designed for an m-terminal
PFC ensuring the regulation of the electrical power in each line
of the node, while explicitly taking into account the saturation
constraints of the duty cycles. The control law is made of an
integral action processing the regulation error, and a stabiliser
for the resulting cascade system is designed via forwarding
techniques. An input saturation function is included to meet
the physics of the system and an anti-windup design is added
to prevent a possible instability caused by this saturation. A
procedure to tune the controller with respect to a cost function
is then presented. An experimental setup for a 3-branch PFC
has been built to show the validity of the proposed control law.
The experiments show the robustness of the proposed design,
as well as the performance of the anti-windup action and the
tuning method. Moreover, simulations on a 5-branch PFC have
been implemented to shown the validity of the extension of
the control law to any m-terminal PFC.
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The application of the control problem requires a stability
of the closed-loop system for a very large domain in the
parametric and references spaces. Future studies will involve
finding other methods to enhance the robustness of the pro-
posed design, involving the choice of an optimal nominal set-
point and numerical simulations.

APPENDIX

A. Proof of Proposition 2

By considering (3) and posing ẋ = 0, the following set of
equations is found





m∑

k=1

i?ku
?
k = 0, (36a)

v?
k − vR

?u?
k = 0, (36b)

−i?k + i?Gk = 0, (36c)
−v?

k −RGki
?
Gk + VGk = 0, (36d)

where k ∈ J1,mK, and
{
v?
ki

?
Gk = Pr

k, k ∈ J1,m− 1K (37a)
vR

? = vR
r. (37b)

Solving (36b) and (36c) results in

u?
k =

v?
k

vR
? and i?k = i?Gk (38)

where vR
? = vR

r > 0. Hence the first condition for the
existence of solutions is 0 ≤ v?

k

vR
? ≤ 1. Feeding (36c) into

(36a) leads to

1

vR
?

m∑

k=1

i?Gkv
?
k = 0. (39)

Taking (37) in (39) results in

1
vR

r

(
m−1∑

k=1

Pr
k + iGm

?vm
?

)
= 0, (40)

from which Pr
m := −∑m−1

k=1 Pr
k = iGm

?vm
? is defined.

Then, multiplying (36d) by v?
k and using (37a), it follows

that

−(v?
k)2 + VGkv

?
k −RGkP

r
k = 0 (41)

hence the second condition for the existence of real solutions
is ∆k(δ) = V 2

Gk − 4RGkP
r
k ≥ 0. If ∆k(δ) ≥ 0, the

characterisation of E(δ) can be given using (36) and (37) as

E(δ) =





v?
k = 1

2

(
VGk ±

√
∆k(δ)

)
(42a)

i?k = i?Gk = 1
RGk

(VGk − v?
k) (42b)

vR
? = vR

r (42c)

u?
k =

v?
k

vR
r (42d)

with k ∈ J1,mK and vR
r > 0 by definition of R.

B. Proof of Lemma 1
To show that A is Hurwitz, it is sufficient to show that the

origin of the system ẋ = Ax is globally asymptotically stable.
Taking the quadratic Lyapunov function VJ(x) = xᵀJ(θ)x
yields

V̇J(x) = xᵀ(AᵀJ(θ) + J(θ)A)x

= −xᵀdiag
{
0ᵀ
n−m, RG1, . . . , RGm

}
x ≤ 0

by definition of Θ. By applying LaSalle’s invariance principle,
the system converges to the following set {x : V̇J(x) = 0} =
Im{[Idn−m 0(n−m)×m]ᵀ}. Pick any element x so that iGk ≡
0, for all k ∈ J1,mK. Plugging it in the iGk-dynamic, see (4a)
resuts in

0 ≡ d
dt iGk = − 1

LGk
vk,

which leads to vk ≡ 0. From the vk-dynamic this means

0 ≡ d
dtvk = − 1

C ik,

and so ik ≡ 0. Finally, by looking at the ik-dynamic, the
following holds

0 ≡ d
dt ik = − 1

Lu
?
kvR.

Before concluding that vR ≡ 0, it is necessary to prove that
(u?

1, . . . ,u
?
m) 6= (0, . . . , 0). From (42d) and the definition of

R, a necessary and sufficient condition is (v1
?, . . . ,vm

?) 6=
(0, . . . , 0). From (42a), and the definition of Θ, v?

k equals
zero on two conditions: The first one is VGk = 0 and ∆k = 0,
which is excluded by taking (δ) ∈ int(S). The second one
is VGk −

√
V 2
Gk − 4RGkPr

k = 0, which occurs if and only if
Pr

k = 0, by definition of Θ. Yet, the definition of R ensures
that (Pr

1, . . . ,P
r
m−1) 6= (0, . . . , 0), meaning there is at least

one u?
k 6= 0 and so vR ≡ 0 for all (θ, r) ∈ int(S), which

concludes the proof.

C. Proof of Lemma 2
As the number of inputs equals the number of outputs,

CA−1B is full rank if and only if the following matrix is
injective:

T =

[
A B
C 0

]

Let us show that T [xᵀ, uᵀ]ᵀ = 0 ⇐⇒ [xᵀ, uᵀ]ᵀ = 0

Ax+Bu = 0 ⇐⇒





1
CR

m∑

j=1

u?
j ij + i?kuk = 0 (43a)

1
L (−u?

kvR + vk − vR
ruk) = 0 (43b)

1
C (−ik + iGk) = 0 (43c)

1
LGk

(−vk −RGkiGk) = 0 (43d)

Cx = 0⇔
{

2(
i?Gk

2 vk +
v?
k

2 iGk) = 0, k ∈ J1,m− 1K (43e)
vR = 0 (43f)

Using (43b),(43c),(43d) and (43f), one gets

vk = vR
ruk, ik = iGk and vk = −RGkiGk. (44)

Placing the latter in (43e) yields

(−RGki
?
Gk + v?

k)iGk = 0, k ∈ J1,m− 1K.
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Using (36d): −RGki
?
Gk = −VGk + v?

k then gives

(−VGk + 2v?
k)iGk = 0, k ∈ J1,m− 1K

and, from (42a): v?
k = 1

2

(
VGk ±

√
∆k(δ)

)
, one finds

±iGk

√
∆k(θ, r) = 0, k ∈ J1,m− 1K.

In int(S), ∆j(θ, r) > 0, hence iGk = 0. Remembering that by
definition of Θ and R, RGk > 0 for k ∈ J1,mK and vR

r > 0
and using (44), it can be concluded that vk = ik = uk = 0,
k ∈ J1,m− 1K. Using (43a), yields

1
CR

(u?
mim + i?mum) = 0, (45)

(44)⇐⇒ u?
mim − i?m

RGm

vR
r im = 0, (46)

(42d),(42b)⇐⇒ v?
m

vR
r im − 1

vR
r (VGm − v?

m)im = 0, (47)
(42a)⇐⇒ 1

vR
r

(√
∆k(δ)

)
= 0. (48)

Again, since vR
r > 0 and ∆k(δ) > 0 ∀δ ∈ int(S), it follows

that im = 0, hence that iGm = vm = um = 0 by (44), and
[xᵀ, uᵀ]ᵀ = 0. It can therefore be concluded that T is full
rank for all (θ, r) ∈ int(S).
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