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Abstract.
Objective. We propose a method to model families of distributions of particles

exiting a phantom with a conditional Generative Adversarial Network (condGAN)
during Monte Carlo simulation of SPECT imaging devices.
Approach. The proposed condGAN is trained on a low statistics dataset containing
the energy, the time, the position and the direction of exiting particles. In addition,
it also contains a vector of conditions composed of four dimensions: the initial energy
and the position of emitted particles within the phantom (a total of 12 dimensions).
The information related to the gammas absorbed within the phantom is also added in
the dataset. At the end of the training process, one component of the condGAN, the
generator (G), is obtained.
Main results. Particles with specific energies and positions of emission within the
phantom can then be generated with G to replace the tracking of particle within the
phantom, allowing reduced computation time compared to conventional Monte Carlo
simulation.
Significance. The condGAN generator is trained only once for a given phantom but
can generate particles from various activity source distributions.
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1 Introduction

Monte Carlo simulation in medical physics is widely used as it is the reference simulation
method of particle tracking in matter. It allows accurate modeling of the physical interactions
between particles and matter, such as Compton or Rayleigh scattering, photo-electric effect or
Bremsstrahlung radiation. This approach is thus heavily used in the design and development
of nuclear imaging systems such as Positron Emission Tomography (PET) or Single Photon
Emission Computed Tomography (SPECT). For example, the design of new SPECT imaging
devices [1–3] or the development of reconstruction algorithms require realistic Monte Carlo
simulations in various configurations. Such simulations create a mapping from a given activity
source distribution inside a patient or a phantom to a signal captured by the imaging device
outside of the patient/phantom by tracking particles one-by-one through the objects present
in the simulation.
The Monte Carlo simulation of a SPECT imaging device can be decomposed into two steps.
During the first step, gammas emitted from an activity distribution of a given radionuclide are
tracked in a medium (a phantom or a patient), potentially undergoing Compton scattering,
until they are absorbed or exit the medium. During the second step, the interactions of
the gammas within the detector are simulated. Decomposing a simulation is useful to avoid
redundancy in certain applications, as the computation time to perform such simulations
is generally high. For example, when studying different imaging systems, only the second
simulation step has to be repeated while the first step is unchanged. For the first step, particles
exiting the medium can be stored in a phase-space file and reused later. Depending on the
complexity of the simulated configuration, billions of particles should be tracked to reach an
acceptable statistical convergence, making the whole process usually very long. Indeed, the time
needed for the simulation of the transport and tracking of gammas in a phantom or a patient can
be long, due to the various possible interactions. Moreover, phase-space files are generally large
(up to several GB) and can be cumbersome to process, use and exchange. Several works [4–
6] provided methods to model radiotherapy Linac phase-space distributions analytically, but
they have never been investigated for SPECT simulations. For SPECT simulations, several
variance reduction techniques have been developed to improve the simulation efficiency, such as
the angular response function (ARF) [7–9], forced detection (FD) [10–12], fixed forced detection
(FFD) [13] or Geometrical Importance Sampling (GIS) [14]. GPU-based approaches were also
developed and implemented in softwares dedicated to speeding up the simulation of SPECT
devices [15; 16].
In previous works [17; 18], a method was proposed to model complex particles phase-space by
Generative Adversarial Network (GAN). The concept of GAN was proposed as a deep neural
network architecture [19] allowing to model multidimensional distributions. In particular,
in [17], the authors modeled the distribution of particles exiting a patient or a phantom during
Monte Carlo simulation of SPECT imaging devices. Once trained, one of the components
of the GAN, a neural network called generator (G), serves as a compact and fast source of
particles for the Monte Carlo simulation. This approach has several advantages. It allows
reduced computation time compared to conventional Monte Carlo simulation, as there is no
need to track the particles within the phantom or the patient. The file containing the GAN
parameters is small (few MB). However, this approach requires to train a new GAN each time
a parameter is modified, such as the energy of the emitted particles or the initial activity
distribution inside the phantom or patient. Note that the concept of exploiting GAN within
Monte Carlo simulations is also currently explored in the high energy physics community [20–
23]. For example, label conditioning using Auxiliary Classifier GAN (AC-GAN) was introduced
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in [24] and applied to Monte Carlo simulations of electromagnetic showers in [25].
In this paper, we first extend the architecture proposed in [17] such that the GAN has to be
trained only once on a dataset containing all the desired activity sources, for a given phantom.
This is achieved thanks to conditional GAN (condGAN) [19; 26] that allows to model families
of particle phase-space distributions. We also propose and evaluate a new parametrization of
the training dataset.
The structure of the paper is as follows. In section 2, we describe the Monte Carlo simulation
setup, the training dataset, the proposed parametrization, the condGAN architecture, and
the evaluation method. The experiments and their results are presented in sections 3 and 4.
Finally, sections 5 and 6 are left for discussion and conclusion.

2 Materials and methods

2.1 Overview

We focus on the first step of a Monte Carlo simulation of a SPECT imaging device: the
emission and transport of gammas in a phantom. In this step, the gammas emitted from a
source distribution are tracked until they are absorbed or exit the phantom. The gammas
exiting the phantom can be stored in a phase-space located on a spherical surface surrounding
the phantom. Following the approach described in [17; 18], the goal is to create a "forward
model", able to produce exiting gammas distributions from a user-defined source distribution,
for a given phantom. We split the work into 2 steps. In a first step, a training dataset
is obtained via a low statistics Monte Carlo simulation. In the second step, a condGAN is
designed to learn a family of distributions of gammas exiting a given phantom, whatever the
input source.

2.2 Monte Carlo generated training datasets

Without loss of generality, we considered a Monte Carlo simulation of the NEMA IEC phantom
(see left image in figure 1 and detailed description in section 3) and of a 3D CT image of a
patient (right image in figure 1). The first training dataset was obtained considering gammas
that were emitted isotropically from a gamma source uniformly distributed within the NEMA
IEC phantom. We considered gammas emitted with 8 energies in the range 113-637 keV, that
corresponds to the principal gamma emission lines of 4 radionuclides commonly used in SPECT
imaging (99mTc, 111In, 131I, 177Lu) as shown in table 1. The second training dataset was
obtained considering gammas that were emitted isotropically from a gamma source uniformly
distributed within the patient contour in the 3D CT image (right image of figure 1). We
considered gammas emitted with an energy of 140.5 keV (99mTc).

Table 1: Initial energies (E0) considered for the Monte Carlo simulations of the sources emitting gammas within the
phantom. These energies correspond to the principal gamma emission lines of 4 radionuclides [27] commonly used in
SPECT imaging.

Radionuclide 99mTc 111In 131I 177Lu

Initial energy E0 (keV) 140.5 171.3, 245.4 284.3, 364.5, 637.0 112.9, 208.4

The simulations for the two training datasets were performed with a phase-space scorer
extension in GATE that records every gamma that reach the spherical surface surrounding
the phantom that was added to the simulation. The emitted gammas were tracked in the



Conditional GAN for Monte Carlo SPECT simulations 4

phantom and potentially underwent Compton scattering until they were absorbed or exited
the phantom. The gammas exiting the phantom and reaching the surface were stored in the
phase-space training dataset described with 12 dimensions. The first 8 dimensions correspond
to the parameters of the exiting gamma: kinetic energy Ekin, 3D positionP, 3D directionD and
time t (time elapsed between emission and arrival to the phase-space surface). The information
related to the gammas absorbed within the phantom that do not reach the surrounding spherical
phase-space volume was artificially added in the phase-space. Their kinetic energy was set to 0,
and 3D positions and time were obtained by projecting their trajectories on the spherical phase-
space volume considering their initial 3D positions and directions. Note that the time value
is not used in conventional SPECT systems because this value cannot be known. However,
it has been included here to facilitate the evaluation (see subsection 2.6). The additional 4
dimensions are the initial conditions of the emitted gammas: the energy at emission E0 and
the 3D position of emission within the phantom P0.

Figure 1: Left: Scheme of the NEMA IEC phantom composed of a water container (blue), 6 spheres of 10, 13, 17, 22, 28
and 37 mm diameter (orange) with outer shells made of plastic and filled with water, and a central cylinder (green) of
radius 2.5 cm and height 204 cm composed of the lung ICRP material and with outer shell made of plastic. Right: Slice
of the CT image with patient contour (in red).

2.3 Parametrization of the training dataset

We considered two parametrizations of the phase-space training datasets described previously.
Parametrization 1 is the one described in the previous section and used in the previous work [17].
We also proposed a different way to describe the particles by replacing the exiting positions P
by the so-called "ideal" positions of emission Pideal

0 within the phantom defined as follow:

Pideal
0 = P− c× t×D (1)

where c is the speed of light in vacuum (we neglected the difference of the speed of light in water
or other material). The computed Pideal

0 corresponds to the position in the phantom where
the exiting gamma would have been emitted if it did not undergo any interaction. It means
that Pideal

0 and P0 are identical for unscattered gammas but will be different for Compton
scattered gammas. The two parametrizations are strictly equivalent, there is no loss or creation
of information. Exiting position can be retrieved from ideal position with the reverse equation:
P = Pideal

0 + c× t×D. The figure 2 illustrates those parametrizations. As a conclusion, the
phase-space training dataset is thus still composed of gammas described with 12 dimensions:
Ekin, Pideal

0 or P, D, t, and 4 initial conditions: E0, P0.
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Scattered gamma Unscattered gamma 

Parametrization 2 Parametrization 1 

Figure 2: Scheme of the phantom (in blue), the phase-space surface surrounding the phantom and the phase-space
parametrization. Gamma sources within the phantom are represented by the initial energy and position of emission (E0,
P0). The 8 parameters of parametrizations 1 and 2 are shown. The "ideal" position of emission Pideal

0 is obtained via
equation 1.

In experiment 1 (subsection 3.2), we will compare two different condGANs optimized with the
parametrizations 1 and 2.

2.4 Conditional Wasserstein GAN with Gradient Penalty

Taking as input the previously described dataset, the goal of training the conditional GAN is
to train a generator G which, given a gamma source distribution described as initial conditions
(E0,P0), is able to generate gammas following the distribution of the emitted gammas in the
training dataset. This generator will hence replace the tracking of gammas inside the phantom.

Generative Adversarial Networks (GANs) is a well known concept of generative models,
first introduced in [19]. A GAN is composed of two adversarial networks, a generator G and
a discriminator D, competing against each other. The goal of this adversarial training is to
train a generator G to generate samples distributed similarly to the training data distribution.
The generator takes as input a random noise vector z, sampled from an uniform or normal
distribution, and produces a sample G(z) similar to real sample. The discriminator is trained
to distinguish between the distributions of generated samples G(z) (Pfake) and real samples x
(Preal). It takes as input a real sample x or a fake sample G(z) probability of the sample to be
real or fake (generated by G). The generator and discriminator are trained alternatively.
During the training process, the generator improves using the feedback provided by the
discriminator. However, the training process of a GAN tends to be unstable and hard to
monitor.

Wasserstein GAN with Gradient Penalty (WGAN-GP) An alternative to GAN, called
Wasserstein GAN with gradient penalty (WGAN-GP) [19; 28] was recently proposed and has
several advantages. The training is, in general, more stable, leading to better quality gradients
to train the generator and it does not suffer from mode collapse. It also provides a meaningful
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loss whose convergence correlates with an improvement in the generated samples, which makes
the training much easy to monitor. In a Wasserstein GAN (WGAN), the Wasserstein metric
is used to measure the similarity between the distribution of generated samples G(z) (Pfake)
and real samples x (Preal). The Wasserstein metric is an approximation of the Earth’s Mover
Distance (EMD), which measures the distance between two distributions. EMD also defines the
cost of the optimal transport needed for moving a distribution (Pfake) onto a target distribution
(Preal). With this new cost function, the discriminator is no more bounded between 0 and 1,
and instead of a sigmoid activation function in the output layer, a linear activation function is
used. As the discriminator no longer classifies samples being real or fake, it is now called a critic
C, which has to be 1-Lipschitz continuous (the norm of its gradients is at most 1 everywhere).
Many strategies where proposed to enforce 1-Lipschitz continuity, such as weight clipping [29]
or gradient penalty (GP) [28; 30].

Conditional GAN (condGAN) In a conditional WGAN-GP (condGAN) architecture, the
vector of conditions is appended to the noise z, to the fake samples G(z) and to the real samples
x. We note y=(E0, P0) the four dimensional vector containing the initial conditions and x

the 8 dimensional real sample from the Monte Carlo phase-space file. The losses of the critic
and the generator can be written as:

LC = E[C(G(z|y))]− E[C(x|y)] + λE[(
∥∥∇x̂|yC(x̂|y)

∥∥
2
− 1)

2
]︸ ︷︷ ︸

GP regularization

(2)

LG = −E[C(G(z|y))] (3)

where C(G(z|y)) [C(x|y)] is the critic’s score on generated [real] samples, E is the expected
value and λ is a hyper-parameter used to scale the strength of the GP regularization. The
critic outputs any real number, which represents a score that can be interpreted as how real a
sample is. x̂ corresponds to a mix of real and generated samples:

x̂ = ε(x|y) + (1− ε)(G(z|y)) (4)

The mix term in equation 4 ensures that the 1-Lipschitz constraint is enforced by sampling on
straight lines between pairs of generated and real samples. The random sampling is obtained
by sampling ε from a uniform distribution.

2.5 Training the condGAN

The training of the condGAN alternates the interdependent training of the generator G and
the critic C into 2 steps. In step 1, G generates a fake sample G(z|y) and the critic gets
both fake and real x|y samples as input. In this step, the generator’s parameters are fixed,
only the critic’s parameters are updated by minimizing the loss in equation 2, as the critic
is trying to maximize its score on real sample C(x|y) and minimize its score on generated
sample C(G(z|y)). In step 2, G generates a fake sample and the critic gets only fake samples.
The critic’s parameters are fixed, only the generator’s parameters are updated by minimizing
loss in equation 3, as the generator tries to maximize the critic’s score on fake samples. At
the beginning of the training, the critic’s loss in equation 2 should be negative, as the critic’s
score on real samples should be higher than the critic’s score on fake samples. As the critic’s
loss converges toward 0, we should observe an improvement of the generated samples, because
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it means the critic’s score on generated samples is getting closer to the critic’s score on real
samples.

2.6 Evaluation

In order to evaluate the proposed method with the NEMA IEC phantom, we considered the
image representing the spatial distribution of ideal positions of emission, considering images
of 1283 voxels with size 23 mm3. This image was obtained considering the time at which the
gammas reached the surface surrounding the phantom, along with the 3D direction D and
position P. Taking the speed of light in vacuum, the ideal position of emission of the gammas
within the phantom was obtained with equation 1 (see figure 2). This method is useful as it
is very fast to compute and does not depend on the reconstruction method. It can be seen as
a worst case scenario. Notice that the absorbed gammas with kinetic energy equal to 0 are
removed before computing the image. In the image representing the spatial distribution of
ideal positions of emission, the calibration factor (used to convert a number of counts into an
activity concentration) is unknown, but identical for the condGAN and the reference Monte
Carlo simulation. Thus, we considered a relative activity recovery (rAR, rAR = AGAN/AMC)
defined as the activity ratio between the condGAN (AGAN ) and the reference Monte Carlo
simulation (AMC). The activity (AGAN and AMC) was estimated by summing the count
values of voxels in the considered volume (sphere or cylinder).
For the evaluation with the 3D CT image of a patient and 3D activity images, we considered
the simulation of a complete SPECT acquisition. The considered SPECT system was the
imaging head of the GE Discovery 670 with NaI(Tl) crystal. The real camera is composed of
two heads but four heads were considered here to speed up the simulation. The collimator used
for 99mTc was Low Energy High-Resolution (LEHR) with parallel-hole. The collimator holes
diameter was 1.5 mm with a septal thickness of 0.2 mm, a length of 35 mm and the crystal
thickness was 9.525 mm. The effect of the digitizer chain was modeled by applying an energy
resolution of 10 %.

3 Experiments

Three experiments were conducted: we considered the NEMA IEC phantom in the two first
experiments, and the 3D CT image in the last experiment. In experiment 1, we evaluated
the differences between the two proposed parametrizations. In experiment 2, we evaluated the
conditional generation capabilities of the trained condGAN. We considered several reference
phase-space files, and compared them with the condGAN-generated phase-space files using as
inputs the initial conditions of the reference phase-space files. In experiment 3, we evaluated
the performance of the condGAN in the simulation of a SPECT acquisition and reconstruction.
Before describing the experiments, we first detail the condGAN training parameters.

3.1 Detailed parameters of the condGAN training

The NEMA IEC phantom (left image of figure 1) is composed of 6 spheres of radius 10, 13, 17,
22, 28 and 37 mm, with outer shells made of plastic and filled with water, a central cylinder
of radius 2.5 cm and height 204 cm composed of the lung ICRP material and with outer shell
made of plastic. The first training dataset was generated with an uniform activity concentration
of 0.06 kBq/mL everywhere during 1 second, corresponding to 3.3 × 107 emitted and stored
gammas (the absorbed events are also stored). The second training dataset was generated
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with an uniform activity of 10 MBq everywhere inside the countour of the 3D CT image of the
patient (right image of figure 1) corresponding to ∼ 107 emitted and stored gammas. CT and
activity images were resampled to 43 mm3 voxel size.
For both training datasets (and parametrizations 1 and 2), the condGAN was trained with
batches of 2 × 104 gammas, for 105 iterations (59 epochs for the first training dataset and
199 for the second training dataset). For the critic, we used 2 hidden layers with 500 neurons
and LeakyReLU activation. The weight of the gradient penalty λ (equation 2) was set to
10, as recommended in [28], and the critic was updated 4 times for 1 generator update. For
the generator, we used 3 hidden layers with 500 neurons with LeakyReLU activation and the
dimension of the noise vector z was set to 15. The learning rate for the generator and the critic
was set to 4× 10−4. The inputs from the two training datasets and the initial conditions from
the reference phase-space files were normalized (mean to 0 and standard deviation of 1), and
the condGAN-generated phase-space distributions were denormalized.
PyTorch [31] with CUDA GPU acceleration was used. All Monte Carlo simulations were
performed with Gate version 9.2 [32], using Geant4 version 11 [33]. All experiments used the
Geant4 physics list “standard electromagnetic option 4”. Production cuts were set to 1 mm.
Computations were performed on an Intel® Core™ i9-10900K CPU @ 3.70GHz with NVIDIA
Quadro RTX (4000/PCIe/SSE2, 8 GB memory) and on the Jean Zay CNRS computing center
(IDRIS, GENCI, Orsay, France).

3.2 Experiment 1: comparing the parametrizations

For the reference phase-space file of experiment 1, the gamma source distribution was located
in the 6 spheres, the cylinder and with background activity (left image in figure 1). Gammas
were emitted with 8 energies in the range 113-637 keV (see table 1). The activity concentration
in the spheres and in the cylinder was 50 times higher than the background, for an activity
of 1 kBq/mL. A total of 2.7 × 107 gammas were emitted and stored in the phase-space file.
Using the generators of two condGANs trained with parametrizations 1 and 2, we generated
two phase-space files containing 2.7 × 107 gammas and compared the marginal distributions
of the 8 parameters (Ekin, P, D, t). We also compared correlation matrices, the proportions
of absorbed and Compton scattered gammas at each energy, the spatial distribution of ideal
positions of emission and the relative activity recovery. Note that Rayleigh scattering was
included in the Monte Carlo simulation, but was not included in the analysis because it is
negligible for SPECT imaging.

3.3 Experiment 2: conditional generation

In experiment 2, we illustrate that the condGAN can generate gammas corresponding to
different gamma source distributions than the one used for training. Three tests were
conducted. We first consider that only 3 of the six spheres (10, 17 and 37 mm) and the
central cylinder were filled with activity. The activity was set to 50 kBq/mL with the principal
gamma emission lines of 177Lu, taking into account the branching ratios of the emitted gammas:
6.2% of 112.9 keV and 10.3% of 208.4 keV [27]. The activity concentration in the three spheres
was 3 times higher than the one in the cylinder, and 20 times higher than the background (left
image of figure 3). A total of 3.4 × 107 gammas were emitted and stored in the phase-space
file.
For the second test, the activity was set to 10 kBq/mL with the principal gamma emission
lines corresponding to 131I: 6.1% of 284.3 keV, 82% of 364.5 keV and 7.2% of 637 keV [27]. The
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activity concentration in the 10 mm sphere was respectively 2, 4, 6, 8 and 10 times higher than
the spheres of 13, 17, 22, 28 and 37 mm diameter, and 20 times higher than the background
(middle image of figure 3). No activity was set within the cylinder. A total of 3.3×107 gammas
were emitted and stored in the phase-space file.
For the third test, we considered six spherical activity sources of 12, 20, 30, 35, 40 and 45 mm
diameter (red spheres in the right image of figure 3). The activity was set to 2 kBq/mL with
140.5 keV gammas (99mTc). The activity concentration in the spheres and cylinder was 10
times higher than in the background. A total of 1.8× 107 gammas were emitted and stored in
the phase-space file. The activity spheres do not correspond to realistic sources and cannot be
reproduced with a real IEC NEMA phantom, they are used to evaluate the genericity of the
proposed condGAN.

Figure 3: From left to right: schemes of the gamma sources within the NEMA IEC phantom for the first (left), second
(center) and third (right) tests of experiment 2. Left image: activity concentration in the 3 spheres (orange) was 3
times higher than in the cylinder (green), and 20 times higher than the background (blue). Middle image: the activity
concentration in the 10 mm sphere was respectively 2, 4, 6, 8 and 10 times higher than the spheres of 13, 17, 22, 28 and
37 mm diameter, and 20 times higher than the background. Right image: the activity concentration in the 6 artificial
spherical sources of 12, 20, 30, 35, 40 and 45 mm diameter (red) and cylinder was 10 times higher than the background.
White areas correspond to the absence of gamma sources.

In order to evaluate the conditional generation properties of the proposed method, we generated
3 phase-space files with the condGAN trained with parametrization 2, containing 3.4 × 107,
3.3 × 107 and 1.66 × 107 gammas. We compared the proportions of absorbed and Compton
scattered gammas with respect to the initial energy E0, the spatial distribution of ideal positions
of emission and the relative activity recovery.

3.4 Experiment 3: simulation of a complete SPECT acquisition

In experiment 3, we evaluated the condGAN trained with an uniform activity source in a
3D patient CT image (right image of figure 1). We considered an artificial 99mTc source of
activity composed of a large background area and 3 spheres of 52, 36 and 30 mm diameter
with respective activity of 50, 20 and 40 times higher than the background. The sources
were positioned in different regions (lung and soft tissues) in the CT image to obtain various
attenuation conditions. CT and activity images were resampled to 43 mm3 voxel size. From this
activity source, we first generated a reference phase-space file containing 107 stored gammas
and compared it with the condGAN generated gammas using the conditional information of
this phase-space file, in order to evaluate the proportions of absorbed and Compton scattered
gammas. Then, two complete SPECT acquisitions were simulated: the reference one with the
CT image and the artificial source described previously, the second one with the condGAN. In
both acquisitions, 120 SPECT projections over 360° were generated with 1× 109 gammas per
rotation angle. The four heads acquired incoming gammas for 30 seconds in order to create
projection images with two channels for the peak energy window (126-154.55 keV) and the
scatter energy window (114-126 keV). Gantry rotation was performed with a constant distance
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of 40 cm between the rotation center and the detector. The SPECT images were reconstructed
with the RTK software [34; 35] using OSEM algorithm with 10 iterations, 15 subsets and 4.418
mm voxel size. Scatter correction was taken into account through the Double Energy Window
method [36], attenuation and point spread function correction were performed through the
method described in [37]. We also computed the relative activity recovery for the 3 spheres,
between the SPECT images reconstructed from projections obtained with the reference Monte
Carlo simulation and from projections obtained with condGAN generated events. We only
considered the condGAN trained with parametrization 2.

4 Results

4.1 Experiment 1

Figure 4 depicts the evolution of the critic’s loss as a function of the epochs during the training of
the condGAN with the first training dataset described in subsection 2.2 with parametrization
1. We observe the expected behavior described in subsection 2.5: at the beginning of the
training, the critic’s loss is negative and slowly converges towards 0.

0 10 20 30 40 50 60
Epochs

0.24

0.22

0.20

0.18

0.16

0.14

0.12

0.10
Critic Loss

Figure 4: Critic’s Wasserstein loss as a function of the epochs during the training of the condGAN with parametrization
1. The evolution of the critic’s loss during the training with parametrization 2 is similar.

The top eight and bottom eight histograms of figure 5 depict the marginal distributions for the
eight dimensions (Ekin, P, D, t), obtained from the reference phase-space file of experiment 1
(blue) and generated by the generator G of both condGAN (green with parametrization 1 and
orange with parametrization 2).



Conditional GAN for Monte Carlo SPECT simulations 11

0 200 400 600
0.0

0.2

0.4

0.6

0.8

1.0
1e 2 Ekin (KeV)

GAN
MC

400 200 0 200 400
0.0

0.5

1.0

1.5

1e 3 X (mm)
GAN
MC

400 200 0 200 400
0.0

0.5

1.0

1.5

2.0
1e 3 Y (mm)

GAN
MC

400 200 0 200 400
0.0

0.5

1.0

1.5

2.0

1e 3 Z (mm)
GAN
MC

1 0 1
0

1

2

3

4

5

1e 1 dX
GAN
MC

1 0 1
0

1

2

3

4

5

1e 1 dY
GAN
MC

1 0 1
0

1

2

3

4

5

1e 1 dZ
GAN
MC

0 2 4 6 8
0.0

0.5

1.0

1.5
t (ns)

GAN
MC

0 200 400 600
0.0

0.2

0.4

0.6

0.8

1.0
1e 2 Ekin (KeV)

GAN
MC

400 200 0 200 400
0.0

0.5

1.0

1.5

1e 3 X (mm)
GAN
MC

400 200 0 200 400
0.0

0.5

1.0

1.5

2.0
1e 3 Y (mm)

GAN
MC

400 200 0 200 400
0.0

0.5

1.0

1.5

2.0

1e 3 Z (mm)
GAN
MC

1 0 1
0

1

2

3

4

5

1e 1 dX
GAN
MC

1 0 1
0

1

2

3

4

5
1e 1 dY

GAN
MC

1 0 1
0

1

2

3

4

5

1e 1 dZ
GAN
MC

0 2 4 6 8
0.0

0.5

1.0

1.5
t (ns)

GAN
MC

Figure 5: Marginal histograms obtained from the reference phase-space file of experiment 1 obtained in Monte Carlo
simulation (blue) and generated from the generator G of the condGAN with parametrization 1 (green in top eight
histograms) and parametrization 2 (orange in bottom eight histograms). Input conditions (E0,P0) were taken from the
reference phase-space. The peak at 0 keV represents the absorbed gammas. Positions X, Y and Z for the condGAN-
generated phase-space in parametrization 2 were obtained from the ideal positions Xideal

0 , Y ideal
0 and Zideal

0 .

Figure 6 illustrates the correlations between the pairs of parameters for the reference
phase-space file obtained in Monte Carlo simulation and generated with both condGAN
parametrizations.
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Figure 6: Correlation matrices between all pairs of parameters, for the reference phase-space file of experiment 1 obtained
in Monte Carlo simulation (left) and generated from the condGAN with parametrizations 1 (middle) and 2 (right).

Figures 7 shows slice of the images that represent the spatial distribution of ideal positions of
emission from the reference phase-space file (blue) and from the condGAN-generated phase-
space with parametrizations 1 (green) and 2 (orange). The horizontal and vertical lines are used
for the profiles in the bottom panels. Despite the good agreement of the marginal distributions
shown in the top eight histograms of figure 5, there is a visible discrepancy between the image
obtained from the reference phase-space file (blue) and generated with the condGAN with
parametrization 1 (green). In the top middle panel of figure 7, the image appears blurry and
the three smallest spheres (10, 13 and 17 mm) are not clearly visible. It is also confirmed in the
profiles. In contrast, the parametrization 2 (orange) leads to better agreement, clearly visible
both on images and profiles.
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Figure 7: Top panels: slice of the spatial distributions of ideal positions of emission from the reference phase-space file of
experiment 1 (left panel) and from the condGAN-generated phase-space, with parametrizations 1 and 2 (middle and right
panel). The horizontal and vertical lines are used for the profiles. Bottom panels : vertical (left panel) and horizontal
(right panel) profiles extracted from the top left image (blue) and the top middle and right image (green and orange).
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Quantitatively, table 2 depicts the relative activity recovery for both parametrizations. The
relative activity recovery for the condGAN-generated phase-space in parametrization 1 is much
lower than in parametrization 2, especially for the small spheres. Indeed, in the rest of this
paper, we will only consider the condGAN trained with parametrization 2.

Table 2: Relative activity recovery computed between the reference phase-space file of experiment 1 and the condGAN-
generated phase-space for parametrizations 1 and 2.

Object GAN parametrization 1 GAN parametrization 2
Sphere 10 mm 0.23 0.78
Sphere 13 mm 0.26 0.85
Sphere 17 mm 0.28 0.92
Sphere 22 mm 0.36 0.93
Sphere 28 mm 0.49 0.94
Sphere 37 mm 0.61 0.97

Cylinder 0.75 0.96

The table 3 depicts detailed information about the gamma distributions in the bottom eight
histograms of figure 5. Indeed, the distributions of the kinetic energy was in good agreement
for the Compton scattered gammas, but we noticed some differences for the unscattered and
absorbed gammas corresponding to the peaks. We observed, as expected, more Compton
scattered gammas at low energies (between 113 and 364 keV) than at higher energy (637 keV
peak). We considered that all gammas with kinetic energies below 15 keV were absorbed. To
separate the Compton scattered gammas from the unscattered, we defined a threshold for each
energy, and all the gammas with kinetic energy lower than the threshold but higher than 15
keV were considered as Compton scattered gammas. The threshold, the mean and the standard
deviation for the 8 energy peaks are shown in the table 3. Overall, the condGAN manages to
reproduce the main energy peaks within ≈ 4 keV, except for two peaks corresponding to the
principal gamma emission lines of 131I (284.3 and 637 keV).

Table 3: Threshold, mean and standard deviation for the 8 peaks in kinetic energy distribution (top left panel in the
bottom eight histograms of figure 5) for the gammas generated with the condGAN with parametrization 2. The gammas
with kinetic energy lower than the threshold but higher than 15 keV were considered as Compton scattered gammas,
while gammas with kinetic energies below 15 keV were considered as absorbed gammas.

Energy peak (keV) 112.9 140.5 171.3 208.4 245.4 284.3 364.5 637.0
Threshold (keV) 110 139 168 206 243 281 362 635

Mean (keV) 115.1 143.3 174.5 212.4 249.9 289.2 368.5 645.5
Std (keV) 2.4 2.1 2.8 2.9 2.8 3.12 3.0 2.71

The proportions of absorbed and Compton scattered gammas at each energies are summarized
in figure 8 for both reference phase-space file (blue) and condGAN-generated phase-space with
parametrization 2 (orange). For the reference phase-space file, the proportions were computed
considering that gammas with zero kinetic energy were absorbed, and gammas with kinetic
energy lower than the initial energy were scattered. For the condGAN-generated phase-space
with parametrization 2, the proportions were estimated using the thresholds shown in table 3.
As expected, the proportions decrease when the initial energy increases.
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Figure 8: Evolution of the proportions of absorbed (left) and Compton scattered (right) gammas as a function of the
initial energy E0 for the reference phase-space file of experiment 1 (blue) and the one generated with the condGAN in
parametrization 2 (orange). For the reference phase-space, the proportions were computed considering that gammas with
zero kinetic energy were absorbed, and gammas with kinetic energy lower than the initial energy were scattered. For the
condGAN, the proportions were computed using the thresholds shown in table 3.

4.2 Experiment 2

The proportions of Compton scattered and absorbed gammas with respect to the initial energy
for the three reference and condGAN-generated (with parametrization 2) phase-space files of
experiment 2 are shown in table 4.

Table 4: Proportions (%) of Compton scattered and absorbed gammas with respect to the initial energy for the first
(112.9 and 208.4 keV), second (284.4, 364.5 and 637 keV) and third (140.5 keV) reference and condGAN-generated (with
parametrization 2) phase-space files of experiment 2. The proportions were computed using the thresholds shown in
table 3.

Compton Absorption
Initial energy E0 (keV) MC GAN MC GAN

112.9 61.5 58.0 10.2 8.2
208.4 59.9 58.4 9.4 7.4
284.3 59.6 54.7 3.4 6.4
364.5 57.4 55.4 3.4 6.2
637.0 51.4 47.8 3.3 6.1
140.5 60.9 61.16 10.9 7.9

Figures 9, 10 and 11 show a slice of the images representing the spatial distribution of ideal
positions of emission from the 3 reference phase-space (blue) and the condGAN-generated
phase-spaces with parametrization 2 (orange). The horizontal and vertical lines are used for
the profiles in the bottom panels. In tables 5, 6 and 7, we show the relative activity recovery
computed between the 3 reference phase-space files and the condGAN-generated phase-spaces.
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Figure 9: Top panels: slice of the spatial distribution of ideal positions of emission from the first reference phase-space
file of experiment 2 (left panel) and from the condGAN-generated phase-space with parametrization 2 (right panel). The
horizontal and vertical lines are used for the profiles. Bottom panels : vertical (left panel) and horizontal (right panel)
profiles extracted from the top left image (blue) and the top right image (orange). Relative activity recovery is shown in
table 5.

Table 5: Relative activity recovery computed between the first reference phase-space file of experiment 2 and the
condGAN-generated phase-space with parametrization 2. Images and profiles are shown in figure 9. Proportions of
Compton scattered and absorbed gammas at the considered energies (112.9 and 208.4 keV) are shown in table 4.

Object GAN parametrization 2
Sphere 10 mm 0.89
Sphere 17 mm 0.94
Sphere 37 mm 1

Cylinder 0.99
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Figure 10: Top panels: slice of the spatial distribution of ideal positions of emission from the second reference phase-space
file of experiment 2 (left panel) and from the condGAN-generated phase-space with parametrization 2 (right panel). The
horizontal and vertical lines are used for the profiles. Bottom panels : vertical (left panel) and horizontal (right panel)
profiles extracted from the top left image (blue) and the top right image (orange). Relative activity recovery is shown in
table 6.

Table 6: Relative activity recovery computed between the second reference phase-space file of experiment 2 and the
condGAN-generated phase-space with parametrization 2. Images and profiles are shown in figure 10. Proportions of
Compton scattered and absorbed gammas at the considered energies (284.4, 364.5 and 637 keV) are shown in table 4.

Object GAN parametrization 2
Sphere 10 mm 0.68
Sphere 13 mm 0.78
Sphere 17 mm 0.86
Sphere 22 mm 0.92
Sphere 28 mm 0.91
Sphere 37 mm 0.95
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Figure 11: Top panels: slice of the spatial distribution of ideal positions of emission from the third reference phase-space
file of experiment 2 (left panel) and from the condGAN-generated phase-space with parametrization 2 (right panel). The
horizontal and vertical lines are used for the profiles. Bottom panels : vertical (left panel) and horizontal (right panel)
profiles extracted from the top left image (blue) and the top right image (orange). Relative activity recovery is shown in
table 7.

Table 7: Relative activity recovery computed between the third reference phase-space file of experiment 2 and the
condGAN-generated phase-space with parametrization 2. Images and profiles are shown in figure 11. Proportions of
Compton scattered and absorbed gammas at the considered energy (140.5 keV) are shown in table 4.

Object GAN parametrization 2
Sphere 12 mm 0.97
Sphere 20 mm 0.95
Sphere 30 mm 1.01
Sphere 35 mm 1.02
Sphere 40 mm 0.98
Sphere 45 mm 0.98

Cylinder 1

4.3 Experiment 3:

The proportions of Compton scattered and [absorbed] gammas for the reference and condGAN-
generated phase-space files of experiment 3 were very close, respectively 66.4% [20.1%] and
67.1% [20.9%]. Figure 12 shows CT slices with reconstructed events from the reference
Monte Carlo simulation and from the condGAN (with parametrization 2). The relative
activity recovery (computed between the images reconstructed from the reference Monte Carlo
simulation and from condGAN generated events) for the 52, 36 and 30 mm spheres was
respectively 1.03, 0.98 and 0.96.
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Figure 12: Reconstructed events overlaid on patient CT slices. Left: reconstruction performed with the projections
obtained from the reference Monte Carlo simulation. Right: reconstruction performed with the projections obtained
from condGAN generated events with parametrization 2.

5 Discussion and prospects

Training a condGAN. The training of the condGAN depends on a large number of parameters.
We observed that gradient penalty was necessary, we tested several penalty weights and
obtained the best results with λ = 10. The number of layers did not have a large influence
on the results. We also obtained better results with 4 updates of the critic, and the learning
rate of the generator and the critic was set to 4 × 10−4. We noticed that a large batch size
(2 × 104) is required to learn the 8 dimensional distribution. The set of hyperparameters
used in this work has been chosen according to the literature and leads to good results, but
further exploration of the hyperparameter space could lead to better results. Notice also that
slight differences were observed between two training datasets. The influence of the size of the
training dataset was also important. The size of the two low statistics training datasets was
empirically chosen in order to speed up the training while preserving the performance. For
example, the training datasets described in subsection 3.1 were obtained in about 10 minutes
using GATE. Additional experiments were performed with larger datasets but no improvement
was obtained. The training time using GPU was about 6 hours for 105 iterations, longer
training or larger batch size did not significantly improved the results. We observed that with
larger dataset (∼ 108 gammas), the accuracy of the condGAN appears unchanged.
For the NEMA IEC phantom, we also tested a training dataset with non uniform gamma
sources (not reported in this paper), with an activity concentration much higher in the spheres
and cylinder than in the background, and similar statistics (∼ 3 × 107 gammas). This led to
similar results compared to those presented in experiments 1 and 2. We also tested a training
dataset with only one initial energy (140.5 keV, corresponding to 99mTc). In that case, a bet-
ter modeling of the peaks was observed (at 0 and 140.5 keV for the absorbed and unscattered
gammas) in the kinetic energy distribution.

Parametrization. We showed that the parametrization of the position P has a strong impact
on the quality of the image representing the spatial distribution of ideal positions of emission
for a phase-space generated with the condGAN. Indeed, the parametrization 2 leads to much
better agreement between images and profiles, as well as better relative activity recovery for
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the spheres and cylinder. We conjecture that this is related to a more homogeneous uncertainty
in the GAN predicted gammas, as the condGAN learns the correlation between Pideal

0 and P0.
This leads to a lower uncertainty in the predicted positions P and thus a better estimation
of the spatial distribution of ideal positions of emission. Further experiments are needed to
better understand it.

Modeling families of particle phase-space distributions. In experiment 1, using the condGAN
trained with parametrization 2, we were able to generate gammas emitted from activity distri-
butions within a NEMA IEC phantom, with good agreement with the reference phase-space
file, for marginal distributions, correlation matrices, images of the spatial distribution of ideal
position of emission, and relative activity recovery.

Conditional generation. In experiment 2, we were able to generate gammas emitted from
gamma sources with various initial energies and position of emissions within the NEMA IEC
phantom. We obtained a good agreement with the 3 reference phase-space files for images of
the spatial distribution of ideal position of emission, relative activity recovery and the ratio of
Compton scattered and absorbed gammas. Especially, in the third test of experiment 2, we
considered positions and sizes of gammas sources that were not in the expected volumes in
the training dataset, illustrating the genericity of the proposed condGAN. In experiment 3, we
generated gammas emitted from sources with various initial position of emissions within the
3D CT image of a patient. We obtained a good agreement with the reference Monte Carlo sim-
ulation for reconstructed SPECT images, relative activity recovery and the ratio of Compton
scattered and absorbed gammas.

Computational speed-up. The computational speed-up compared to Monte Carlo simulations
depends on several considerations as detailed in [17]. Here, 8× 105 particles per second (PPS)
can be generated with the condGAN, while it is, in Monte Carlo simulation, 3×104 and 7×103

PPS, respectively for an analytic or a voxelized phantom. In voxelized phantom, the tracking
time within the phantom dramatically increases as the voxel’s size decreases (PPS close to
2 × 103 for 2mm size voxel). The GAN speedup is thus larger for complex simulations. The
condGAN model was implemented in GATE, is open-source, and will be available in the next
release. Once trained, the model can be used in two modes. In the first mode, the condGAN
generates a NumPy array [38] of particles, outside GATE. The generated NumPy arrays can
be written on disk (.npy standard binary file format) or processed on the fly by a python
script, e.g. sent to ARF (Angular Response Function) detector modeling, as shown in [17].
The second mode directly operates in GATE, using the condGAN as a source, generating new
Geant4 particles from the gammas properties (Ekin, P, D, t). In this second mode, additional
time is needed by the Geant4 engine to create the particles, which limits the computational
speed-up. Indeed, in the simulation of a SPECT acquisition in experiment 3, the condGAN
was used directly as a gamma source in GATE, PPS was around 1.2 × 105 using GPU and
around 8× 104 using CPU, against ∼ 7× 103 PPS for the voxelized CT and activity images.

Comparison with other methods. Several other methods have been proposed to improve simu-
lation efficiency for SPECT devices. Indeed, ARF [7–9] (Angular Response Function) models
detector response according to gamma angles and energies, either by look-up-tables or neural
networks. This method provides about ×20 speedup, by assigning to every gamma reaching
the detector the probability to be detected in a given energy window. In the (Fixed) Force De-
tection (FD) methods [10–13], the gamma is directed towards the detector for every interaction
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and is weighted according to the probability that a gamma with such direction would exist and
is detected. This method does not require dividing the simulation into two parts. Reported
speed-up varies but can reach ×100. However, for a complete 360◦ tomographic simulation,
still a large number of particles must be tracked within the phantom. It would be interesting
to combine FD with GAN generated particles in order to potentially synergize the speedups.
Also, it is envisioned to investigate the possibility for the condGAN to generate gammas with
their corresponding likelihood of being detected and participate to the image formation. The
computational speed-up of our approach is still far from GPU-based Monte Carlo code capable
of generating 3200 × 106 gammas per seconds [15], combined with FD methods and adjusted
cross-sections. But again, GAN approach may also be integrated in a GPU framework. It
should be emphasised that the proposed approach is more general and can also be useful for
other simulations, not only for SPECT systems.

Limitations. Without the condGAN modeling, the phase-space approach is practically in-
tractable because billions of gammas would be needed in the file. Training the condGAN still
requires an initial phase-space but of limited size (few tens of millions of particles, around 3
GB). As shown in the results of experiment 1, the condGAN did not perfectly reproduce the
kinetic energy distribution. Indeed, the energy peaks (corresponding to unscattered gammas)
were spread around the value of the initial energies (E0). However, the standard deviations
were lower than 4 keV and is sufficient regarding most of current SPECT acquisition systems.
In experiments 1 and 2, the condGAN did not perfectly reproduce the ratio of absorbed and
Compton scattered gammas. This means that the condGAN may slightly over or under es-
timate the attenuation at each energy, leading to an uncertainty on the estimated activity,
especially in small spheres. This may explain why, in tables 2 and 6, the relative activity
recovery was lower for the smaller spheres, especially the 10 mm sphere. Indeed in that case,
several initial energies were considered with an overestimation of the proportion of absorbed
gammas (see figure 8 and table 4). It should be however noted that the evaluation method using
the image representing the spatial distribution of ideal positions of emission can be viewed as a
worst case bound on the quality of the results. Indeed, real SPECT reconstruction cannot use
the time information and will depict a much higher uncertainty. Finally, while being generic
for a family of source distributions, the condGAN is still specific for a given phantom. A
different condGAN must be trained for each phantom. In a future work, we will investigate to
extend the proposed method so that the condGAN is trained only once for a family of phantoms.

6 Conclusion

In this paper, we presented a method to model families of distributions of particles exiting a
phantom during Monte Carlo simulation of SPECT imaging devices. The method extended
and improved the one proposed in [17] using a conditional GAN (condGAN) and an optimized
parametrization. Our results show that with a condGAN trained only once for a given phantom,
particles with various energies and positions of emission within the phantom can be generated,
illustrating the genericity of the proposed condGAN. The generation is fast, around 8 × 105

particles per second, and can be used to speed up the development of SPECT imaging systems.
In the condGAN-generated particle distributions, sharp features, such as the energy peaks, are
still imperfectly reproduced. The proposed concept is shown here for SPECT imaging with
gamma emission but could, in principle, be extended to other types of simulations.
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