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NON-CUTOFF BOLTZMANN EQUATION WITH SOFT POTENTIALS

IN THE WHOLE SPACE

KLEBER CARRAPATOSO AND PIERRE GERVAIS

ABSTRACT. We prove the existence and uniqueness of global solutions to the Boltzmann
equation with non-cutoff soft potentials in the whole space when the initial data is a
small perturbation of a Maxwellian with polynomial decay in velocity. Our method is
based in the decomposition of the desired solution into two parts: one with polynomial
decay in velocity satisfying the Boltzmann equation with only a dissipative part of the
linearized operator ; the other with Gaussian decay in velocity verifying the Boltzmann
equation with a coupling term.
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1. INTRODUCTION
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Consider the Boltzmann equation for the unknown F = F(t,x,v), with t > 0, € R?,

and v € R3:
(1.1) OF +v-V,F=Q(F,F)

complemented with an initial data Fy = Fy(x,v). The collision operator @ is bilinear and
acts only on the velocity variable v € R3, which represents the fact that collisions are

supposed to be localized in space, and it reads
12 QU@ = [ [ Br=0.0) [fegl) - fe)g(0)] dodo,

The pre- and post-collision velocities (v/,v}) and (v,v,) are given by

and v, = v+2v* — |v—2v*|

’U"‘U* ‘U—’U*|

2 2

(1.3) v =

which is one possible parametrization of the conservation of momentum and energy in an

elastic collision
v v =v4v, and VP4 oL2 = o]+ |l

Date: December 8, 2022.



2 K. CARRAPATOSO AND P. GERVAIS

The collision kernel B(v — v,, o) encodes the physics of the interaction between particles.

It is assumed to be nonnegative and to depend only on the relative velocity |v — v,| and
(v—v4)
[v—.]

the angle cosfd = o - as

B(v —vy,0) = |[v — vi|7b(cos 9),

where —3 < v < 1 and the angular part b is a smooth function (except maybe at 6§ = 0).
As it is standard now, we may suppose, without loss of generality, that 6 € [0, 7/2] by
replacing B by its symmetrized version if necessary.

In this paper we shall consider the case of non-cutoff soft potentials, more precisely
we assume that b is an implicit function that is locally smooth and has a non-integrable
singularity at 6 = 0 as

(1.4) sin 6 b(cos 0) 7 Cy6~ 7% with s€(0,1),
for some constant Cp, > 0, and

(1.5) —1<y+2s<0 and —-3/2—s<7vy<0.

Let p(v) = (27)3/2¢71V*/2 be the standard Maxwellian and define the perturbation
F=p+f

which satisfies

(1.6) {atf+v'fo=$f+Q(f,f)

Jit=o=Jfo=Fo—

where .Z is the linearized collision operator given by
Lf=Q f)+Q(f, 1)

We also denote by A the full linearized operator

A = g — V- Vg;-

It is well known (see for instance [40]) that £ is a nonnegative self-adjoint operator on
the space L2(u~! dv) with kernel given by

ker(£) = span{p, vp, [v[*pu}.
We define 7 to be the orthogonal projection onto ker(.#) so that we can decompose

f=rf+f" [fr=f-nxf

with
v|? —
(1.7 wf = o)+l v+ o D
where ( |2 3
)= [ rdo, s} = [ vpde ol = [ S

1.1. Main result. Before stating our main result we shall introduce the functional spaces
we work with. If X is a function space and w a non-negative function, we define the
weighted space X (w) as the space associated to the norm

£l x(w) = llwfllx-

In particular, for a weight function m = m(v), we consider the weighted Lebesgue space
L2L2(m) as the space associated to the inner product

<f7 g)L%L%(m) = <mfa mg>L§7U
and the corresponding norm
1flL2L2(my = Imfllzz

where (-,-);2 and || - [|;2 =~ denote the usual inner product and norm of L*(R} x R}).
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We consider polynomial weight functions m(v) = (v)* := (1 4 |v|?)*/2 with k > 0, and
we introduce the anisotropic dissipation space in velocity H;*(m), inspired from the one
presented in [28], as the space associated to the norm

A8) Uy = 102 12y + 11y
2 — ¥ o 1\ 2
(1.9) 11y /R3XR3XSQI)(COSH),LL(U*)<U*) (F -~ F)? do dv. du,

where we use the shorthand F = F(v) := m(v)(v)?/2f(v) and F' = F(v') recalling that v’
is defined in (1.3), and which satisfies the following bound (see Lemma 2.7):

1€YY" Fll s my S WF ey S I1€0Y2 £l -

For functions f = f(z,v) depending on the position = and velocity v variables, we also
define the polynomially weighted spaces X (m), X*(m) and Y (m) as the spaces associated
to the norms

(1.10) 1 my = IF Iy + [€0) " V2L T2 ()
(1.11) 1By 5= 112 sy + 1052 112 e s
and

(1.12) 113 my = 11 ey + (Vo £ 1212
respectively.

We can now state our main result:

Theorem 1.1. Assume (1.4)—(1.5) hold. Consider k > 13/2 + 7|y|/2 4+ 8s and define
the weight function m = (v)*. There exists ¢g > 0 small enough such that any initial
data fo € X(m) satisfying ||follxm) < €0 gives rise to a unique global weak solution
f€L®Ry;X(m))NL2(Ry;Y(m)) to (1.6), which satisfies the energy estimate

Sup L (0) ey + [ 1) ey 4 5 1ol

We now briefly review the known results for the Boltzmann equation near Maxwellian
in the torus T and the whole space R3.

We star by considering the case of cutoff potentials, which corresponds to angular kernels
b for which the singularity in (1.4) is removed by assuming b integrable. By working near
equilibrium, Grad [22] constructed in 1965 the first spatially inhomogeneous solutions for
short times. Ukai [37, 38] gave in the 1970’s a new impulse to the Cauchy problem and
established, in the case of hard potentials v € [0, 1], the existence of global solutions in
L HE ((v)*p~! dv), first in the periodic box T? in 1974 [37], then in the whole space R?
in 1976 [38], by relying on spectral studies of the linearized equation [37, 20, 40] (let us
mention also [32]). The case of soft potentials was then treated in 1980 by Caflisch [11],
then in 1982 by Asano and Ukai [40] only for v € (—1,0), but this approach was recently
extended to the full range v € (—3,0) by Sun and Wu [42] in 2021 and then Deng [16]
in 2022. These results were then proven using energy methods in spaces of the form
L2H: (pw'dvdz) by Kawashima [29], Liu, Yang and Yu [30], Guo [26] and Guo and
Strain [35, 36], as well as Duan [17].

Concerning the non-cutoff case, the first existence result near equilibrium attributed to
Ukai [39] ; he constructed local solutions for analytic initial data in (z,v) having Gaussian
decay using the Cauchy-Kowalewski theorem. Between 2011 and 2012, Gressman and Strain
[24, 23] (in the torus), and Alexandre, Morimoto, Ukai, Xu, Yang [6, 4, 7] (in the whole
space) constructed the first global solutions in spaces of the form Hj , ((v)rp=t dz dv)
by working with anisotropic norms. In the whole space framework, Strain [34] obtained
the optimal time-decay for solutions in the whole space. Later Sohinger and Strain [33]
extended these results to some Besov spaces in 2014, and Fang and Wang [41] relaxed
some technical regularity and integrability assumptions in 2022. Recently, in the case of
the torus, Duan, Liu, Sakamoto and Strain [18] obtained the existence of small-amplitude



4 K. CARRAPATOSO AND P. GERVAIS

solutions, that is, in the space L}L{°L2(u~! dz dv) where k denotes the Fourier variable in
space. Let us also mention two very recent works in the case of the whole space: Deng [15],
in the case of hard potentials, who worked with an anisotropic norm defined from the
pseudo-differential study of Alexandre, Hérau and Li [2]; and also Duan, Sakamoto and
Ueda [19] who constructed with small-amplitude solutions (as in [18]) in the case of hard
and moderately soft potentials.

All the above results concern solutions with Gaussian decay in velocity, that is, they
hold in functional spaces with a weight in velocity of the form p~!dv. In 2017, Gualdani,
Mischler and Mouhot [25], in the line of [31], constructed solutions with polynomial decay
in velocity. More precisely they relaxed the integrability conditions of previous results and
constructed solutions in W/ PW 54 (<v>k dv da:), in the case of hard spheres in the torus T?.
In the same framework, the case of non-cutoff hard potentials was treated in [28, 9], and
that of non-cutoff soft potentials in [13]. Very recently, still in the torus and also in spaces
with polynomial weights, the case of cutoff soft potentials was studied by Cao [12].

Our result in Theorem 1.1 gives then, up to our knowledge, the first result of existence
of global solutions with polynomial decay in velocity to the non-cutoff Boltzmann equation
in the whole space. Inspired by the strategy of [10], we shall construct a solution f to (1.6)
by considering a decomposition of the form f = h + g, where h(t) € X(m) has polynomial
decay in velocity and satisfies a “nice” semilinear equation in which only a dissipative
part of the linearized operator A is present, and g(t) has Gaussian decay in velocity and
evolves according to the Boltzmann equation plus some coupling term coming from h, with
convenient decay properties in time and velocity. This system will then be solved using an
iterative scheme and an energy method. In Section 2 we prove the necessary estimates on
@, and in Section 3 we prove the necessary coercive-type estimate on the linear part of the
equation for h and recall those related to the equation for g. We then proceed to prove the
existence of a global unique solution to (1.6) in Section 4.

1.2. Notations. The relation denoted A < B is to be understood as A < CB for some
uniform constant C' > 0, and A ~ B as both A < B and B < A.

When considering a function f(v) depending on the velocity variable, we shall use the
standard shorthand notations

(1.13) f=rfw), fr=Ff0) fi=fl), fi=f),
where we recall that the pre- and post-collision velocities (v/,v,) and (v, v,) are defined
n (1.3).

2. ESTIMATES ON THE COLLISION OPERATOR

This section is devoted to estimates on the collision operator (). We shall prove
homogeneous estimates in Section 2.2, and deduce from them inhomogeneous estimates in
Section 2.3

2.1. Auxiliary results. We state a few results that will be useful in the sequel. This first
lemma will be used to estimates integrals against the kinetic part |v — v,|” of the collision
kernel B(v — vy, 0).

Lemma 2.1. Let o € (0,3) and s € (0,1]. For any smooth enough function f = f(v) one
has:

(1) If0 < a< % then for any ¢ > % there holds, for any v € R3,

2.1 L, o=l 1wl dv S (@) @) flz.

(2) If0 < a < %+ s then for any { > %—I— s there holds, for any v € R3,

(2:2) /RB o= 0] 7| f(ve)| dve S () [1(0) F Il -
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Proof. From [14, Lemma 3.3] for instance one has, for any 0 < 8 < 3 and ¥ > 3,
(2.3) / v — v P 0) "V du, < ()P, Yo e R
R3

We now write for p € [1, o], thanks to Holder’s inequality,

p—1

—a o _yr P
[l dn < ([ o= vl 5 o) 5 du) T o) Sl
R3 R3
We then conclude by using (2.3) with: p=2if0<a<3;andp=35-if0<a<3+s
by using the Sobolev embedding H*(R3) — Lﬁ(R‘g). O

Lemma 2.2. Let ¢ = p(v) be a Schwartz function and « € (0,3). For any n € (0,1) and
¢ >0 there is C > 0 such that there holds, for any v € R3,

10— o) du < o)~ + Clo) ™.
R3
Proof. Let v € R? be fixed. We split the integral for some M > 1:
[ 1o = vl =elp() do.
R3

e R R R Ay B P R R P
|[v—vs| =M |[v—vs| <M
=11 + 5.

For I we write (v,) ™ < (v — v,)%(v)~* for some arbitrary £ > 0, thus

I S (o)~ {v) pllLg / [0 = 0 "0 = vi) v S (v) 7

[v—vs | <M

For I we take p > 3/(3 — ), so that p/(p— 1) < 3/a, and apply Hélder’s inequality to get

1
P

p=1
P P
h< </ |0 = 0u] 7T (v,) TP d“*) ’ (/ 1|v—v*\>M<v*>qplsD(v*)!pd“*)
R3 R3

1

P

S0 ([ Yemeonr (0Pl )

where g > 0 is such that g5 > 3. We now observe that for M > 2|v|, if [v —v.| > M
then |vi| = |v — vi| — |v] = M/2, and thus we get

[ tomaoar ) leloP dve S [ A oargo (o) Plio(o,) P o,
R? R3
M [ ), du,
R3
SMTP
We then conclude taking M > max(1,2|v|) large enough. O

Proposition 2.3. The following change of variables formulas hold:
(2.4) /b(cos 0) v — [ f(v, ', 8) do v,
_9_
7 /b (cos(m — 20)) |v — vi|7 sin (g - 0) ! f (v, v, ™ — 260) do do,

(2.

5) /b(cos ) |v — v |V f(V, vy, 0) do dv = /b(cos 20)|v — vi|7 f (v, v4,20) do do,
(2.6)

B(v —vs,0) f(v,vs,0",0),0) do dv, dv = /B(v — v, 0) f(V, 0L, 0,04, 0) do dvy do.
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Proof. The pre-post collisional change of variables (2.6) is known to be involutive with
Jacobian 1 and it is easy to check that |[v — v.| = [v — v]|. We only deal with the first two
change of variables. Recall the definition of v’:

;U U\U—v*]
2 2
Denote k := LU*’ and recall that 6 is the angle (k,o). The differentials of v' with
v — v

respect to v and v, writes in the basis (k, o, w) where w L k, o (at least when k and o are
not colinear)

dv' 1 (0 0
(2.7) — =—(Id+(-,k)o)== 1 14cosf 0 |,
dv 2 2
o 0 1
10 0
dv' 1 1
(2.8) S (@d—(-,ko)==[1 1-cosf O
dv, 2 2 0 0 1

Thus, the following identities hold:

' 1 1 2(0)
=20 _ = z

T 8( + cos ) 175 )
do’ 1 1. 2(0)
o —g(l—cosﬁ)—zsm 3)

Furthermore, the definition of v’ also implies

The angle ¢ formed by v — v, and o and the angle ¢ formed by v' — v and o are related
to 6 by

0 T—0

53 7/) - 9 )

thus the integrals are estimated as follows:

(p:

/b(cos 0)|v — vV f(v, 0, 0) do du,
~ /b (cos(m — 24))) |[v — v[" sin (g — w) o f (v, v, — 2¢0) do dv/,

/b(cos ) v — vi|T f(V, vs,0) do dv = /b(cos 20)|v — v f (V' 04, 2¢) dodv’.
We conclude to (2.5) and (2.4) by renaming the integration variables. O
We state the so-called Cancellation lemma from [1, Lemma 1].

Proposition 2.4 (Cancellation lemma). The following cancellation formula holds:

[ B = vo)(f = f)av.de = (£ )0,
where the function S = S(z) is defined as

/2 ) 1 |Z|
S(z) := 277/0 sin 0 (cos?’GB <COS(9/2),COS(9) - B(z|,cos0)> dé.

In the particular case of the collision kernel Bs(v — vx,0) = B(v — vx,0)1j9/<s, the corre-
sponding function Sy satisfies

Ss(z) ~ 6272 2]7.
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FIGURE 1. The changes of variables (v,v") — (v,v,) and (v, v4) = (v, 04).

The following lemma is from [3, Lemma 2.3].
Lemma 2.5. Let m = (v)* with k > 0, then there holds
(2.9) m(v) S m(v') +m(vl),
(2.10) m(v) = m()| S Om(v'){v.) + 6"m(v)),
where the pre- and post-collisional velocities (v',v,) and (v,v.) are defined in (1.3).

This lemma will serve to remove the kinetic singularity |v — v.|? in some integrals
involving the collision kernel B(v — vy, o).

Lemma 2.6. For anya > —3, b€ R, ¢ > 3+ 2s+ a+ b and any smooth enough function
f there holds

/b(cos 0) v — v, (v — v,)°(v,) "Uf (v,0") do duy dv
~ /b(cos 0) (v — v,) T (0,) "9 f (v,v") do dv, dv

Proof. As we cannot simply control |v — v,|%(v — v,)? by (v — v,)*+®

Carleman’s representation:

, we resort to using

/b(cos 0)|v — v |*(v — v,)2(0,) "9 f (v, 0") do dv o,

|y’1+23+a b
~ |, heRrs, W@) (v+y)"f(v,v + h)dydhdo,
y-Lh, [y[=[h]
flv,v+h)
_/Ksmg 0, )= dhde,

where we denoted the singular y-integral, which is well-defined because 14+2s+a+b—q < —2
and 1 4+2s+4+a > —2

Ksing(v,h) = [,1n ’y|1+25+a<y>b<v + )" 9dy
ly|=|h|
and aim to prove

Koing(v, h) % Kreg(v, ) = /M, [y () v+ y) "7 dy.
[y|=>|h|
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To do so, we split Kgng for |y| < e and |y| > € where € > 0 will be chosen later:

im0+ y) T dy
eIy

[ W) )y,
ly|>max{|h|,e}

Ksing(va h) =

Concerning the first part, if € is small enough, the assumption |y| < € implies (v + y) ¢ ~
(v)~? uniformly in y. Concerning the second part, the assumption |y| > € implies (y) ~ |y|
uniformly in y. Thus we have

King (v, h) =/ yih !y\1+25+“<y>b<v+y>‘qdy+/ yin TR 0+ y) T dy
e=ly|>|h| ly|Zmax{|hl.c}

)7 Ty [ T ) T 4 ) T dy
eIy jyl>max{|h] <}

)7 [ TP ) ey dy
jyl>max{{h].c}

With the same reasoning, we have

Kieg(v,h) = [ 1 W) oty 0dy+ [, W) e+ y) Ty

e>lyl>|h| lyl>max{|hl.c}
~ —q 1+2s a+b d 1+2s a+b -44
=) W)y [ W) T e+ y) T dy
e>lyl>|h) lyl>max{|hl.e}

)+ [ W)+ )Ty
jylzmax{{h].<}

We conclude that Kgng & Ko, which concludes this step. O

Lemma 2.7. For any v € (—00,2] and s € (0,1), the anisotropic norm defined as
11 (my = 1) 1132y + /b(COS 0)(1(v) ) (F' = F)* do du, dv,

where we denoted F = m<v>7/2f, s equivalent to the following norms involving a weight
function ¢ € L} ((v)) N Llog L:

(1) 1) 22y + / b(cos ). (F' — F)2do dv, dv, if also ¢ € L ((0)%%),
(2) 102 gy + [ leos D)) (7 — F)2do v,y if also o € L (1)),
(3) H(v)w2f||%g(m)+/ b(cos 0) (v—v,)Y o, (F'—F)*do dv, dv, if also p € L} (<v>4_7+|7|>,

where we denoted F = mf. Furthermore, the anisotropic norm can be compared to isotropic
Sobolev norms as follows:

(2.11) 1072 Pl my S WG gy S 1072525 sy
and we have the general bound
(2.12) /b(cos 0)(v) ou (F' — F)*do dv. dv < [[(v)* 7|l 1 Hf”%f;j’*(m)'

Proof. We first establish the comparison (2.11) followed by the equivalence || f||? o () (1),
then proceed to show (1) ~ (2) and (2) ~ (3).

Step 1: Proof of (2.11) and || f||? 5 () (1). From the proof of [6, Lemma 2.7, estimate
of AJ, for some constant c;, > 0 depending on [|¢)||L10g and [|¢][11 (), We have

11
(3

(2.13) H]—"HL2+/ (cos 0) oo (F' — F)2 dor v, dv > g FI4s,
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and from the proof of [6, Lemma 2.8], we also have
/b(cos 0) (n(w)™), (F' — F)*do dv, dv < ||<v>28]:||%[5.

The comparison (2.11) follows from these two bounds with ¢ = p(v)~7. Furthermore, it
was established in the proof of [28, Lemma 2.3-(4i), estimate of I{;] that

el
[0}~y

(2.14) + O (Il gaye 1113 ) -

Thus, interpolating this estimate with (2.13) with ¢» = ¢ as to absorb the O term, we
deduce ||f|\§{5,*(m) ~ (1).

Step 2: Proof of (1) = (2) and (2.12). On the one hand, we have

/ b(cos 0) . (F' — F)? do du, dv = (F{[F -

/b(cos ). (V) (F' — F)*do dv, dv
= / b(cos 0)p.(F' — F)*do dv, dv

+ / bleos B) . (F')? ()72 - (v>7/2>2 do o, dv
+2 / b(cosO)pu F'(F' — F) (/)72 = (0)"?) do dv. v,
thus, using Young’s inequality, we have
% / b(cos 0)p.(F' — F)*do dv, dv — / b(cosG)ga*(F/)Z((v’>7/2 _ <v>v/2>2 do dv, dv
< / b(cos 0)p () (F' — F)? do dv, d

2
<2 / b(cos 0)p.(F' — F)*do dv, dv + 2 / b(cos ), (F")? ((v')7/2 - (0)7/2) do do, dv.
Next, the inequality [28, (2.7)] valid for any o < 1:

[(0)* = ()] S sin (§) (V) (va)?7%,

used with a = /2 < 1 allows to tame the angular singularity, making it integrable:

< / b(cos0) sin (£)2 (p(v)™7) (F))? do d, dv

N/ V), F2 vy do = [[(0) 7l 1 [1F 32

where we used (2.5) and then integrated in o in the second inequality. In conclusion, we
have shown

/b(cos 0) s (v)Y (F’ )2 do dv, dv ~ /b (cos 0)px(F' — F)? do du, dv

(2.15) + O (Ile* ey 1 F 1) »

from which (1) ~ (2) follows. Combining (2.15) with (2.14), and observing that 2s < 4 — 1,
we obtain

/b(COS 0)ps(v)(F' = F)* do dv. dv & |||y 1 3700y + O (10)* 0013 |1 F )
from which we deduce (2.12) thanks to (2.11).
Step 3: Proof of (2) ~ (3). The equivalence is immediate thanks to the previous steps and

()0} < (o =0T < (o)),
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as it leads to the comparison

/b(cos 0) (cp(v>*|7|) ()7 (F' = F)*do dv, dv

*

< /b(cos 0) . (v — v)Y(F' — F)*do dv, dv
< / b(cos6) (p(0)"1)_ (v)(F' — F)* do du. do.
This concludes the proof. O
We have seen in Lemma 2.7 that only the strength of the angular singularity and the
growth of the weight in v (i.e. (v)Y or (v — v4)?) up to the change of weight F <+ F are

the defining features of the norm || - [| s.«. One could combine this result with Lemma 2.6
to show yet another equivalence:

£ 113230y 22 1002 £ 23 ) + /B(v — Vs, 0) i (F' = F)? dv,, do do,
which is the definition chosen in the series [6, 4, 5, 7, 8, 3].

2.2. Homogeneous estimates. We cite below the main nonlinear estimate of [7] estab-
lished by Alexandre-Morimoto-Ukai-Xu-Yang, in a slightly simplified version using the fact
that v + 2s < 0. In order to do this we shall first introduce the exponentially weighted
spaces used in [7], namely we define the spaces E and E* as the spaces associated to the
norms

(2.16) 1A% 2= 1712 umvse)
@A) I = 05 A1 sy + [ o= vb(e0s O)ue(F' — F)P dordv. dv,

where we denoted F := F(v) = p~/2(v)f(v) and F' = F(v'). Let us recall that this norm
can be compared to isotropic Sobolev norms [7, Proposition 2.2]:

1) 2 fll 12y S Wl S G0Y252 Ly umrr2y-

Lemma 2.8 ([7, Theorem 1.2]). For any smooth enough functions f = f(v), g = g(v) and
h = h(v) the following bound holds

(Q(f,9). 7 g S lInlle- ([ ellglle + I flle-llglle) -
In particular we have

(@9, 1) N p S Ngllell fl- + lglle-1Lf e £l

The goal of this section is to establish similar estimates in spaces with polynomial
weights, which we state below.

Proposition 2.9. Assume k > 9/2 — |y|/2 + 25 and consider m = (v)*. For any £ >
13/2 + 2|y| and smooth enough functions f, g, h there holds

(2.18) S (02 Fll 2y 9 0 qoyey + 1 ez oy 191 a2z oy ) 1072 R L2
+ 11122 oy 10> gl 1z oy |l 5 oy

Moreover there holds

(2.19) S Mallzz oy 1 135 oy + 19z ey 160D Fll 22 6y 1L 23 o
+ 1021 22 | | i1z oy oy 102 1| 22 -

These estimates will be proved by combining commutator estimates (Lemma 2.11) with
He’s estimates in L2 (Lemma 2.10, for (2.18)) or new anisotropic estimates in L?(m)
(for (2.19)). Let us start by recalling the estimate established in He [27].
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Lemma 2.10 ([27, Theorem 1.1]). Assume —1 < v+ 2s < 0. For any wi,w; = 0 such
that wy +wy = v+ 2s and a,b € [0,2s] such that a+ b = 2s, any by > 3/2+ |y + 2s|, there
holds

(Q(f.9), )2 S N fll L2 wyo) 19 ma (oyen) 1]l o oyws)-
Let us now state and prove the commutator estimates required to prove Proposition 2.9.

Lemma 2.11. Suppose k > 9/2 — |v|/2 + 2s and consider m = (v)*. For any smooth
enough functions f,g,h and any € > 13/2 + 2|v| there holds

|<Q(f7g)¢ h>L%(m) - <Q(f7 mg)? mh>L2|
S Y2l my (9 o I 2 oy + 72 gy 00772 3o
gl oy 220 ) -

Proof. We shall adapt the proof of [9, Proposition 3.1] where the hard potentials case
v € [0, 1] was considered. We start back from their decomposition:

6
(@) W) z20m) — QU mg).mbyz = [ Blo = ve,0)lg'H(m = m') dodv,dv = 3T,

j=1
where the terms I'; are defined in the proof of [9, Proposition 3.1] and, under the assumption
k>9/2—|v|/2 + 2s, were shown to satisfy

r, = k/b(cos 0)[v — v, (V)2 v — v,| (v - W) cos® (g) sin (g) feg (mh)" do dv, dv,

where "
o— (0 V — Uy
“Tlomead M TRl
as well as the bounds
Ty <1 (g: (mh)2) " x I (g: (mh)?).
/
P <1 (@) (00 14)") " % 1 (g (mm?)
Ty ST ) < I((0)2f; (mh)?),
) 1

where we have denoted for compactness

I(p; @) := / [v — 04| T ® dov dwy.

First, in virtue of (2.2), we have for ¢y > 4 + 3/2 + s the following estimate:

6
S T3 S 1Yl 12my (1 1oy 10) 7201 22y + 19 coy0y 1 007 FlL 2o ) -
j=2

It remains to estimate the term I'j. Still following the proof of [9, Proposition 3.1]), we
denote & = ﬁ, so that @ is orthogonal to v' — v, and thus we split 'y =T ; +T'12
with

1=k / b(cos ) cos” (g) sin (g) v — v, T2 (0, - w) fog (mh) do du, do,
and

I'io= k:/b cos ) cos” (g) sin? (g) v — v VT W) 2 (0, - @) fog (mh) do dv, dv.
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For the term I'; o we can then argue as for the terms (I'j)2<;<6 and we obtain
P12 ST ()25 () 1g)?) x I ((0)2f; (mh)?)
S 1210 2 my 1 s oy 20 10 2 9 | 220y

Moreover the term I'; ; is shown to satisfy, denoting G := (v)k—2g,
I1 < /b(cos 0)sin (§) [v — v |V (v.)?| fo]|G — G|} | do dv, dw.
Using Hoélder’s inequality for some n > 0 to choose later,
' < /b1/2(cos 0)|v — v,|7/? sin (%) (mh)’ ((’U)Zf)i/Q
b1/4(c059)<v — v, >'y/4 1/2 }g g |1/2 ( 2+nf)1/2
x b4 (cos 0)|v — v, |V ? (v — v,) VA (w)/? |g - g’}l/Q (v,) "2 do dv, dv

1/2
< </ b(cos 0)|v — v,|7 sin? (g) [(mh)'}2 (<U>2f)* do do, dv)
1/4
x (/ b(cos ) (v — v.) ()2 (G — G')? (> £)? do do, dv)

1/4
X (/ b(cos B)|[v — v, (v — v,) 77 (v)? (G — g’)2 (v,) 72" do dw, dv> .

The change of variable (2.5) followed by (2.2) in the first integral with ¢; > 2 +3/2 + s
gives

T1t S gy 1 0Y 7R 2
/4
X (/ b(cos 0) (v — v,)7(v)? (G- Q')2 ((v >2+"f) do du, dv)1

1/4
X (/ b(cos )|v — v (v — v,) 77 (v)? (G- g’)2 (v,) 72" do dw, dv) .

Next, using Lemma 2.6 in the third integral, taking 2n > 1 + 2s + 7 (note that 2y > —3),
we have

Tia S Iy 1) 2R 22
) 1/4
X (/ b(cos ) (v — v,) ()2 (G — G')* (V> £)? do do, dv)
1/4
X </ b(cos 0) (v — v,)7 (v)? (G- g’)2 (v,) 72" do du, dv) .

The inequality (v) < (v — v4)(vs) and the fact that v < 0 then imply
1/2
Sy 140072l 2y

1/4
x (/b(cc>s0)<u>2+7 (G-3) ({w)*- 7/Zf) do dv, dv)

1/4
X (/ b(cos ) (v)*T7 (G — Q’)2 (v,) 727 do du, dv) :
As 2+ v < 2, we may use (2.12) to bound these two integrals:
_ e 2 9
Trt S 1 e oy 10 2Rl 2y 9 gy 100277 ()2 472072 ) [ 58 ) =220

S Iy 1OV 2Rl 26 91 2o oy 002 £ 12

where we considered n > 7/2 + |y| and fo = 3+ n + |y| > 13/2 + 2|y|. Note that since
13/2 42y =11/2 = v/2 4+ s + (—y — 7£2 4+ 1) and v + 25 < 0, we have £y > £y + |7]/2.
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We conclude the proof by gathering previous estimates, using (2.11), and taking ¢ =
max(lo + |7[/2,41,l2) = L. O

We can now prove the main estimates of this subsection, that is to say those of Proposi-
tion 2.9.

Proof of Proposition 2.9. In this proof, we denote F' := mf, G := mg and H := mh.

Step 1: Proof of (2.18). The first estimate (2.18) is a combination of Lemmas 2.10 and 2.11.
We first observe that Lemma 2.10 with wy =k +7/24+2s, wa=k+~y/2anda=b=s
yields, for €y > 3/2 + |y + 2s|,

(QUF.G), HYrz S 1Nz qwyon 1€0) 72 gl b1 oy 1 €0) 2Bl 15 o

SN 22wy 20y 102 gl 2 oy e s

where we used (2.11) in the last line. We then deduce (2.18) by putting this estimate
together with Lemma 2.11 for £ > 13/2 + 2|y| > 4.

Step 2: Reductions for the proof of (2.19). First, we decompose the trilinear form using a
commutator:

<Q(g7f)7f>L%(m) = <Q(gaF)7F>L% +137
where we denoted
13 = <Q(97 f)7f>L12)(m) - <Q(97F)aF>L% :

Second, we decompose the remaining term as

<Q(g7 /B — U, 0 g*F/ — gx )FdO’ dv dw,
2/B — 04,0)(29LF'F — g*F —g*(F')Q)dadvdv*

+ §/B(U — 0y, 0)g:((F")? — F?) do dv dv,.

Using the change of variables (2.6) in the first term of the first integral and the cancellation
lemma 2.4 in the second integral, we obtain for some ¢ > 0

(Q(9,F), F)12(m) = —/B(v —0y,0)g+(F' — F)*do dv dv, — c/ v — v, |7 g F? do du,
=1 + 1,
To sum up, we have the decomposition

Qg /) Namy =0 + 12+ Is.
The term I satisfies by Lemma 2.1, for any ¢y > 3/2 + s,

I, S ||g||Hf)(<U>ZO)H<’U>,Y/2f||%2(m)7
and the term I3 satisfies by Lemma 2.11, for any ¢ > 13/2 4 2|y,

I < [(0)2 £l L2 (my (”f”H;j’*(m)Hg”H;j’*((v)Z) Al s ey 10) 2 g1l 12 my

11z gyl 2000 )

so that, since £ > ¢y + |v|/2, the sum I + I3 satisfies the same estimate as I.
Let us turn to I;. Using the Cauchy-Schwarz inequality with some positive ¢ > 0 to be
chosen later, we have

I :/b(cos 0)|v — v.[7gu(F' — F)? do dv du,
1/2
< (/ b(cos 0)|v — v. |V (v — v,) V()Y F' — F)*do dv dv*>

X (/ b(cos 0) (v — vy)7 ((1;)‘1/29)i (F' — F)?do dv dv*>1/2 .
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Assuming ¢ > 3+~+2s, we remove the singularity in the integral prefactor using Lemma 2.6,
and then use the inequality (v — v4)? < (v)?(v,)~7 in both integrals:

1< ([ beoso— v o 98— 2 ar v, )
(/b cos 0) (v — v,)7 (< )4/2g ) (F,_F)Qdadvdv*>l/2
< (f Moo -2 (8 - o aoae)

1/2
(/b cos 0) ((v)4/277/2 )*<U>7(F’—F)2dadvdv*> :
Using (2.12) and imposing ¢ > 7 — 27 so that (v)4~9727 is integrable, we then obtain

_ 2.1/2
T S 13 (o 1 0)* Y (0)%29) 7 11
S I oy (0 g 2,

where {1 = 2 — v/2 4 q/2 satisfies ¢1 > 11/2 + 2|y| and ¢; > 7/2 + 3|y|/2 + s. The
estimate (2.19) is then proved by putting together previous estimates and observing that
max (¢, ¢1) = 4. O

2.3. Inhomogeneous estimates in the non-cutoff case. We shall prove inhomoge-
neous nonlinear estimates for the collision operator ) by using the homogeneous estimates
proven in previous Subsection 2.2. More precisely we shall prove bilinear estimates (Proposi-
tion 2.12) and trilinear estimates (Proposition 2.13 and Proposition 2.14), for polynomially
weighted spaces X (m) as well as for exponentially weighted spaces E (defined below). It
is worth mentioning that, because of our strategy employed in Section 4, some of these
estimates are of mized type, that is, they involve one function in a polynomially weighted
space X(m) and another function in a exponentially weighted space E.

We introduce the exponentially weighted spaces E and E* as the spaces associated to
the norms

(2-20) Hf||12i: = ||f”ing(#—1/2) + ||v§f||i%[l%(u—l/2)
and, respectively,
(2.21) 11 = IVam 2 sy + I B2 e + V3£ B2 e

where we recall that E* is defined in (2.17), which are similar to those studied in [34].
We start by proving the estimates we will use to prove the stability of the iterative
scheme from Section 4.

Proposition 2.12. Assume k > 13/2 + 2|y| + 6s and consider m = (v)¥. For any
f,g € X(m)NX*(m) there holds

(2.22) (Q(a, 1), FYx(m) S I W (my 19115 my + 1 s |1 15 () 91 o)
Moreover for any f € X(m)NX*(m) and g € ENE* there holds
(2.23) (Qa, £), Frxm) S Iy | 91E + LF 5o 1 £ (o 1 9|

Proof. Let us start by expanding the inner product defining the norm of X(m) in (1.10)
Qg 1), [xmy = (@9, [)s Frzrzm) + (VaQ(g, £): Vi) 1212 (m(w) 65

thus we get

<Q(gvf)7f>X(m)
(2:24) S (QUg: £)s frzrz(m) ‘ +> ) ‘ (02729, 07 1), 05 F) 1212 (m(v)—2lale) |

|a|=3 0<BLa

and we shall estimate each term separately.
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We fix some ¢ > 13/2 + 2|~| such that k£ > ¢+ 6s, and observe that in particular we can
apply both estimates of Proposition 2.9 with the weight (v)*=%% in the sequel.

Step 1: General estimates of (2.24) in LE-norms. The first term in (2.24) is bounded by
integrating estimate (2.19) in space and using Hélder’s inequality L — L2 — L2, which
yields:

(Q(9, ), frr2r2(m)
S N9l zee 22y 1 I2 115 (o
+ 119l ze s (coye) 1€0) 2 Il 2 22y 1 F 1 2 115 (o
+ 1102 gl 22 22 6 1 F | oo £ (e 1€0) 72 Fll 22 £2 (-

We bound the second term in (2.24) depending on the value of 5. When § = a, we obtain
using (2.19) a similar estimate as before:

(Q(9,05 f), 0% ) 122 (m(v)—69)

S 9l e L2 () IV 2 F 12 115 () -5)

(2.25)

(2.26)
+ 19l £oe s ey I (v >’y/2v3f”L2L2(m(v)*65) V3 £l 2 113+ (g 52

+ 10) 291l e 12 (miwy-66) V2 F | 2 13+ 0y |1 €0) 2V F 12 12 (g6 -

When [ = 0, we use (2.18) that we mtegrate in space and using again Holder’s inequality
L — L2 — L2, which gives

(Q(079, 1), 07 f) 1212 (miv)—69)

S )2Vl 12 12 0wy o) | e e oy 002V F N 2222 0y -02)

(227) 'y/2v3

+ V29l 22 zr5 oy 1 F | oo 212 oy —oy 1 (0) 2V £l 2 12 (-6
+1IV39ll 222 ()0 1 2o 1137 (o) =15 IV F | 12 2150% a0
When |3| = 1, we we integrate estimate (2.18) using Hélder’s inequality L2 — L2 — L2:
(Q(0 9,00 £), 0% F) 1212 (m(w)-6)
SN2V 90 14 12 () -69) IV F 1 Lt s oy |02V £ 22 12 (509
+ V2l e o )||waHL4HS «(mwy-5) [ (0) 2V £l 12 12 (o) o)
+ Vgl rars )4)”vszLng,’*(m@)—“)Hv.?cfHL%Hi’*(m(v)—ﬁs)'

For |3| = 2 we integrate again (2.18) in space using Hélder’s inequality L° — L2 — L2,
which yields

<Q(5’37ﬁ97aff)ﬁ?f)Lng(m@)%s)
S 1)V agll s 2 my-o6) V2 N 221 (e 1002V 12 1259
+IVagll oo s ((uye \|V2f||L2HS ctmwy—) |10V 2 V3 £l 12 12 (w599
+ Va9l o2 (o HVQmeH; )1 IV £ 112 15 () —599 -

(2.28)

(2.29)

Step 2: Sobolev embeddings for (2.22). We first observe that
1 1lxm) = I F 2 pzom) + 100) "2 Va fll 212 (m)
+ [[(0) V2 Fll 2 r2(my + 10) "%V Fll 2 12 (m)

and )
[ fllxc(m) = N f 1 L2 5 my + 10" Va fll L2 55 (m)

+ 1) Ve fll 2 g omy + 1€0) ™V f Nl 12 3y

Moreover, since k > £ + 6s, we have

N9l z22 (wyey + IVagllarz ey + ||V3259||H;Lg )+ V3 9llr22(wyey S 119llx(m)
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and
19l 2 113 )0y + V29l 1 =y + 1V 291 1z (yey + 1V29M 22 13 0y 0) S 19l (m)
From (2.25), using the Sobolev embedding H2(R?) < L°(R?) we thus get
(Qa, £): Frzrzmy S 1F Iy 1915 (my + 1 o) [1£ = (my 191

Arguing similarly from (2.26) we obtain
Q9,05 1), 05 ) r212m) S I Ik (my 191l oy + 1 11y 111
For (2.27), we use again H2(R3?) < L°(R?) and

X * (m) .

1N 2 25 gy 25y S N llxem)
to deduce
(Q(979..1), 02 F) 22 (m) S IF e oy 19115y + 1LF 3oy 1F 1) 191 5
For |B| = 1, from (2.28) and the Sobolev embedding H}(R?) <+ L%(R3), we remark that
Ve f L ms mewy-1s) S ILF 115 (m)

hence we get

(Q027Pg,00 1), 05 F) r2120m) S I Iy 19115y + 1 1 o) 1 1505 () 1 9]
Finally, for the case |3| = 2, estimate (2.29) together with H2(R3) — L°(R?) yields

(QO279,000), 0% F 12 r2m) S I Iy 1915 my + 1L 3oy 11 oy 19
This concludes the proof of (2.22).

X * (m) .

X * (m) .

Step 2: Proof of estimate (2.23). We first remark that

M9l 2 ez ey S Imgllmzez + 9 zas oy S l9lle + llglle-,
and that
1€0) 2411 2 £ (m) + 140} 29l 22301 -%) S 9 llE-
Moreover
160) 2 1l 2 L2 gmy + 160) 2V Fll 2 13 mwy-o5) S min{ | Fllxcmy s [1F |5 (m) -
Therefore from (2.25) we get
(Q(g: £), Frzrzimy S 1y gl + 111l | 1l )
and furthermore, for the case 5 = 0, we deduce from (2.26)
Q9,02 1), 05 ) r2 12 (miwy-o) S I f113

For all the other cases |f| = 1, |5| = 2 and 5 = «, we can argue as in Step 1 by observing
that

x+(m) 19118 + [1F1x m) 1.f 1x* (m)

IVedll mzmz ooy + 1Vl m s (oo + 11Vedl 2 ms ooy S llglle-,
which thus implies from (2.27)7(2.28)7(2.29) that

<Q(8§_ﬁga8§f)>8gf>L§L%(m(v)*65) S ||f”§(*(m)||g||E + Hf”X(m)”f”X*(m)”gHE*-
This concludes the proof of (2.23). O

We now prove the estimates which we will use to prove the convergence of the iterative
scheme in Section 4.
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Proposition 2.13. Assume k > 13/2 + 5|v|/2 + 6s and consider m = (v)¥. For any
fyg,h € X(m)NX*(m) there holds

(2.30) (Q(f.9)s W)x(my S IFllxc () 915 oy el oy + [1F e oy 11 0) 2 g 5= o 12| 55 (-
Moreover for any f,h € X(m)NX*(m) and g € ENE* there holds
(2.31)
(Q(f,9) M) x(m)
S 1=y gl Allx () + ([ [1x ) 1911 12l () + ([ F 1 o) gl = 12 3 )

and

(2.32)  (Q(g, ) hyxmy S 0% Flix oy gl 7]
Proof. By expanding the inner product of X(m), we are led to estimate

Y QU029 02h) 21t

|a|=3 0<B<La
The proof of each one of the estimates (2.30), (2.31) and (2.32) then follows the same
approach: For each term appearing in (2.33) we integrate in space the corresponding
homogeneous estimate and then use Holder’s inequality and Sobolev embeddings arguing
similarly as in Step 1 of the proof of Proposition 2.12.
We fix some ¢ > 13/2 + 2|vy| such that k > £+ 6s + |y|/2, and remark that we can apply
estimate (2.18) of Proposition 2.9 with the weight (v)*~%% in the sequel.

x+(m) T 1 fllx @) 191l 1Rl x (m)

(2.33)

Step 1: General estimates of (2.33) in LP-norms. The first term in (2.33) is estimated
using (2.18) and Hélder’s inequality L — L2 — L2, which yields

(QUf,9), h) 12 2(m)
S Y2 £ p2 22 (m) 191l oo m15* () 1(0)2 R 12 12 (1)
+ (1l 2o rr oy 191122 212 oy 10 2Bl 22 )
+ 1l e 22 (o) 10 2 9l 22 113 o) 1 22 112 (-

The second term in (2.33) is then estlmated depending on the value of 3. For the case
B =0, we also have by using (2.18) and Hélder’s inequality L — L2 — L2 that

(Q(O3 1.9): O h) 12 L2 (mv)—69)
SN2V Fll 2 n2 (moy-59) 191 Lo 13 (coyey | (0) 2V 3R 12 L2 (509
V3 Fll 2 15 g0y ey 191 o 113 (mwy -5y [ €0) TP V3R 12 12 gy ~6)
+ IVl ez 20 10201 oo 113 (mgoy—59) I VPl L2 115 oy 609 -
When |5| = 1 we use Holder’s 1nequahty Li— L3 — L2 to get
(QOS™ £,079), 03 1) 12 L2 () ~o%)
S ||<v>ﬂ//2v925fHL§:L%(m(v)*6s)HVQ:QHL‘éHﬁ’*(@)Z)H<v>7/2vihHL%L%(m<v)*63)

(2.34)

(2.35)

23 + HVQfHL4H5 * HVxQHLgH;j’*(m@)—es)H<v>7/2V§hHL%L5(m<v>,65)
+ HV f||L4L2 ||< > :c9||L;%H3’*(m(v>—65)HVEhHLgH;’*(m@yes).
and for || = 2:
QO £,009), 03 ) 12 12 (m(w)—6%)
(2.37) S )2V fllazzmiy o9 Va0l s arze o 10) VRN L3 3 gy o0

Ve fllrams (o IVa9ll a o mo )—65)H<U>’Y/2v§chHL%L%(m(v)*65)
+IVa flla 22 (o) 10V Vgl a s gy | Va2 mr2* (m oy o)
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Finally, for 8 = o we get, using again Holder’s inequality L° — L2 — L2,
(Q(f,079), 03 h) 12 12 (m(v)-55)
S Fll e 2 mewy-o) V391 12 112 1oy | (0) 2V 3R 12 12 (-9
1Al oo mrs oy V29 22 213 oy -0y [ €0) P V3B 12 12 gy -6
1 pse 220y 102 V291 L2 115 (o) —59) I V2Pl 12 115 (o )65 -
We now split the proof into three steps.

(2.38)

Step 2: Sobolev embeddings to prove (2.30). It follows from estimates (2.34)—(2.35)—(2.36)—
(2.37)—(2.38) by using the Sobolev embeddings H2(R?) — L(R?) and H}(R?) — Li(R?)
as in Step 1 of Proposition 2.12.

Step 3: Proof of (2.31). We first observe that

9l 212+ (wyey S I1gllmzez + 197 L2z ey S lglle + lglle-,

and
)91l 2 13 my S 179112222 + 1109 | L2 12 oy S Nl
Moreover
1) Fll L2 220m) S min {11F | xcmy s 1F e ) }
and

160D 2 2wy S min {11l 1]
since k > ¢ 4 6s. Therefore from (2.34) we get

(Qf,9), M) 1212 (m)
S Il lgNElRllx (m) + 1 F 1) |9 1Bl 5= () + [1F 1= () 91T [ ]I () -

X*(m) }

For the case = 0 we remark that, similarly as above, we have

o) 9l 213 om0y S |79l m2ez + 100)*° 0 | 212 * gy o) S gl + llglle--

moreover
1(0)Y2V3 Fll 22 L2 (mwy -6y < min { || Fl1xmys 11 |5 (m) } »
as well as
IVafll 2 2wy S min {1f sy 1l oy }
since k + v/2 > ¢ + 6s. Hence we deduce from (2.35)
(Q(O3 f19): 05 h) 12 L2 () —69)
S I llx=amy gl Al x ) + 1 ) gl N1

For all the other cases |3| =1, || = 2 and 8 = «, we can argue as in Step 1 by observing
that

x+(m) + 1 Fllx ) 191l 1]l x m) -

Vgl Lo prs ey + V20l s ey + Vol e ey S llglles
as well as
Vgl Lt s nwy-15) + V290 2 12 (mgy -1y + V291 L2 12 oy -10) S N9l
which thus implies from (2.36)—(2.37)—(2.38) that

QO P £,099), 09h) L2 12 (mewy-5¢) < NgllEs (I1f Il 1l omy + 11 gy |l 50 () ) -

Step 4: Proof of (2.32). It follows similarly as in Step 2 above, so we omit the proof. [J

We now introduce an equivalent norm || - |g ~ || - ||g induced by the scalar product

(2.39) (f,9)g = (f,9)e + V[, 4],
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for some bilinear form ¥ which is defined in [34, Lemma 2.1] and is of the form, recalling
the definition of the projection w[f] as well as p[f], u[f] and O[f] in (1.7),

[f.g) = m (Vablf]. Alg™]) ., +m <A[fﬂ,vme[g1>,,g
+772 <v:1:u[f] + vxu[f] +IS >
+ 112 (O] + I30[f], Voulg] + Vaulg) )

+ 13 (Vap[f], ulg]) g2 + ns (ulf], Vaplgl) g
with 0 < 13 K 2 K 1 < 1, I3 the identity matrix and

A[f]:/Rsv(\v\Q—@fdv, G[f]:/ftgj(v@v—lg)fdv.

Proposition 2.14. The following estimates holds for the new scalar product (-, -)g on E:
For any f,g,h € ENE* one has

(2.41) (Q(f,9), Mg < Ikl (IfIellglle + 1f e lglle) -

Furthermore, for any bounded compactly supported function x = x(v), we also have for
any £ >0

(2.42) (9. x e < Ngllell fllxwo
(2.43) (g:x e < Nglle 1 lIxwyey + 7l 2 | FlIx= (o))

Proof. We start by proving (2.41) then comment on how to prove (2.42) and (2.43).
Step 1: Bound of (-,-)p for (2.41). First, since @ is E-orthogonal to 7h, we have

<Q(f7 g)? h>E = <Q(f> g): hL)L%L%(y—l/Q) + <V§Q(f7 g)? vih‘L>L§L%(‘u—1/2)'

The proof of Proposition 2.13 can then be adapted (and simplified) to get from the
homogeneous estimate of Lemma 2.8 in the current setting

(Q(f,9), g S lIblle- (Ifellgle- + 11fle-llgle) -

A detailed proof is given in [34, Section 3.1 (note that the authors require more derivatives
because of their homogeneous nonlinear estimates).

Step 2: Bound of V[-,-] for (2.41). In this step, we use the notation from the definition
(2.40) of W. Before considering any estimate, note that because Q is L2 (/fl/ 2)—orthogonal
to ker(.Z), we have

H

80

(2.40)

810

plQ(f, 9)] = u[Q(f, 9)] = 0[Q(f, 9)] = 0,

which leaves us with fewer terms that we estimate using the Cauchy-Schwarz inequality:
VQ(F,9), 1] = m (AIQU,9)]. Vablh]) o + 2 (OQUS. )], Vaulh] + Voulh]T)

S IMQ D a2 lIV=0[h] [ 52 + 1O1Q(S DUl a2 IV zulh]] 12

Using Lemma 2.8 and the fact that v;(Jv|? — 5)p, (v;vj; — &;j)u € E* for any 1 < i,j < 3,
we have

IMQU DB HIORUEDIE: S Y [ {IVEAIEIVigle + V7 - IV 15} o
0<p+g<2

Combined with the embedding H2(R?) < L(R3) or H}(R3) — L(R?) and arguing as

in Step 2 of Proposition 2.13, this yields

IAQUf 97z + 1OIQ(S, )72 < I flellgler + 11f e llgle-

Finally we get
IVa0[h]|| gz + | Veul]l|gz S [[Varhllmze S |hle--

To sum up, we have shown

vQ(f;9), h] < lIblle- (1flellglle- + 1 Flle-llglle)-
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Step 3: Proof of and (2.42) and (2.43). Brutal bounds lead to (2.42). The proof of (2.43)
is immediate from (2.11) which implies

(9. xHE S 1) gllelx@) fle S (llle- + Imgllzz2) 1Fllxwo-
Similar arguments from the previous step also lead to

g, xf1 < llgllell fllx(wye)s
which completes the proof. ]

3. LINEAR THEORY
3.1. Estimates on .Z. The goal of this subsection is to prove the following proposition.

Proposition 3.1. Let k > 7/2 — |y|/2 + 2s and denote the weight function m = (v)*. For
any smooth enough function f there holds

(3.1) [ 28112 dvdv < —elF13s gy + €I I3,
for some positive constants ¢, C > 0.

We introduce a splitting of the angular cross section b(cosf) so as to decompose the
linearized operator .Z as a singular regularizing part and a weakly coercive non-singular
part, namely we define for any § € (0, 1]

b(cos ) = b(cos 0)1jg/<sr/2 + b(cos 0)1jg|55x/2 =: bs(cos O) + b§(cos 0),
which induces the following splitting of the linearized operator:
L =L+ %5

Denote vs the approximate collision frequency defined as
vs(v) = / |v — vi| 705 (cos ) u(vy) do du,
R3xS2

which satisfies, according to the cutoff case (see for instance [21]), for some positive
constants vg, 1 > 0

(3.2) vod 2 (0)T < ws(v) < 1o ()7, Vo € R,

The cutoff part of the linearized collision operator then splits
(3.3)

L5f=—vsf + /R3 |v — v.| 765 (cos ) [f(vi),u(v') — flve)pu(v) + ,u(v;)f(v')] do dv,.

xS2

Lemma 3.2 (Non-grazing collisions). Suppose k > 3/2+ |y|/2 + s and let m = (v)¥. For
any 0,¢ € (0,1] there holds

/(iﬂacg) gm® dv < —05_%”@)7/29”%3(771) + el (0) 2 gl Frs oy + Cscllgllze,

for some positive constants c,Cs. > 0.

Proof. Firstly we consider
/("%Cg) gm® dv = = 175923 ) + / [0 — 005 (cos 0) gl gm? dor dw, dv
- / |v — v, [76$(cos ) guprgm? do dv,, dv
+ / v — .| b5 (cos ) pl.g’gm? do du. do,
so that, using the bounds (3.2) on vs, we have

[ (Z5g) gm? dv + w062 0 g3y ST+ T2 + T
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with, denoting G = mg,
I, := / |v — v, 76§ (cos 0) gl.p' Gm do dv, dv,
I, := / |v — vy |7b5 (cos 0) gxuGm do dv, do,
I3 := / |v — v, |05 (cos O) ul.g' Gm do dv, do.
In Step 1, we prove that the terms I; and I3 satisfy the bound
(3.4) I+ 13 <o 10/22 / v — v |7 G 0 dv du,

where ¢ denotes a Schwartz function (typically of the form u®(v)?) from which we will
deduce using Lemma 2.2 with 1 = 6'77/2 that there holds

(3.5) I+ T3 <26 2 (0)/?gl[72(n) + Cesllgl72-
In Step 2, we will prove that I satisfies
Lo < e[ (v)?gll g (m) + CesllgllZs,

so that taking ¢ small enough, we obtain
Vo .
Li+L+Is <50 1) 9172 (my + € 110) 913y + Cellal T,
where ¢’ is arbitrarily small. This will indeed prove the lemma by taking ¢’ small enough.
Step 2: Proof of (3.4) for I} and Is. We start by splitting I using (2.9):

I :/ |v — v, |05 (cos 0) gi.p'mG do dv, dv
,S/ |v — v, |70S (cos 0) ((v)g). (um)' G do dv, dv

+ / |v — v, |05 (cos 0) G’ G do dv, dv =: I11 + Lyo,

Rewriting I;; thanks to (2.6), using the Cauchy-Schwarz inequality, then integrating in o
one obtains

I :/ |v — v, b5 (cos 0) ((v)g), (um)G" do dv, dv
1/2
< (/ v — v, 7b§(cos 0) ((v)g)? (um) do du, dv)

1/2
X (/ |v — v, |75 (cos ) (um) (G')? do do, dv) .

Using the change of variables (2.4) in the post-factor, then integrating in o we get
1/2
1 5 ([ 05(cos )l — wal? ((0)9)? (um) o v )
1/2
X (/ b§(cos(m — 20)) v — v.|7 (7 — 20) 277 (um)G? dw, dv)

< 5-1-v/2-2s / v — v, |7 (em) G2 dv, dv.
To bound the part 112, we start again with the Cauchy-Schwarz inequality:
I, = / v — 0,70 (cos ) G4/ G do d, do

1/2
< (/ [v — v.| b5 (cos 0)(G)* 1 do du, dv)

1/2
X (/ [v — v, |75 (cos 0) ' G2 do du, dv> .
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Up to the pre-post change of variables (2.6) in the prefactor, this term is dealt with in the
same way as I11. Similar computations (using (2.5) this time) lead to

I3 <62 / [v — v, |7 (pm) G2 do, dv.

This concludes this step.

Step 2: Proof of (3.5) for Is. For Iy, we integrate in o to get the factor §~2¢, then in v,
using the estimate (2.1) with the power § = k + /2 > 3/2 + s, which yields

I, = /bg(cos 0)|v — vs|7 g puG dvy dv

S8 gl [ (@) G o
S €67 (1(0) gl mgm) + Ces 912
where the last line comes from Young’s inequality. O

Lemma 3.3 (Grazing collisions). Let k > 13/2 + 2|y| and define m = (v)*. There exists
some ¢ > 0 such that for any e >0 and § > 0

(3.6) (Lo f, D) eaimy < el e + Cell W) F 132 m)
(3.7) (L P am) < —ellflfse gy + Clw) 1122y
for some C. > 0.

Proof. We start by splitting the Dirichlet form using commutators:

(Zsf, P2y = (Qs(is 1), Fr2my +(Qs(fs 1)s £ r2(m)
= <Q5(M7F)7F>L% +R1 +R2 +R3,

where we denoted

= <Q(5(f7mlu’)vF>L%7
2 = <Q5(M, f),f>L%(m) - <Q(5(:U’a F)7F>L%7
=(Qs(fs11)s [ r2(m) — (Qs(fymp), F) 2

The first term is estimated using Lemma 2.10 (where we choose w; = /2 + 2s, wy = v/2
for the weights, a = 2s and b = 0 for the derivatives):

R1 S ||<U>7/2f\|%g(m)
and the two other ones using Lemma 2.11 and Young’s inequality:
Ry+R3 < C (H<v>”/2fH%g(m) + H<v>’y/2fHL%(m)HfHHZ’*(m))
< Cell ) 1 my + <l s (o

We then focus on the first term which provides the anisotropic dissipation Hj’*(m)
(Qs(u, F), F /35 — Vs, 0) (U F' — ps F)F do dvy dv
/35 — 0y, 0)(2ULF'F — 1, F? — i F?) do dv, dv
/B5 — Uy, 0 ,u*)F2 do dv, dw.

We use (2.6) to change the term g/, F'? of the first integral into . (F’)?, and the cancellation
lemma (Proposition 2.4) in the second integral:

<Q5(/L7 ) L2(m = _7/35 — VU4, 0 (F,—F)QdO'd’U*dU

—}—C’g/\v—v*P,u*Fde* dv,
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where C5 < 1. We thus have in virtue of (2.1)

(@(1s F), F) oy + 5 [ Bo(o = 00, Wi (B = F)? dor v dv S 1072
Next, using (2.6), and then |v — v.| < (v)(v.) combined with the fact that v < 0, we have
/35 — v, 0)p(F' — F)?do dv, dv
- /bg(cos 0)|v — vs|" pu (F' — F)? do dw, dv
/b(; cos0)(v)7 (u{v) "), (F' — F)*do dv, dv.
One shows as in the proof of (1) ~ (2) from Lemma 2.7 that
/35 — o, o) (F — F)? do dv, dv + % /bg(cos 8) (u(v)"), (F — F)2do du, dv
U2 112 (my-
Together with the previous estimates, we conclude that
(L5t ) - = /b(; cos ) (u(v)?), (F' — F)*do dv, dv

el f s my + Ce\|<v>7/2f|!%g(m)-

The second term being non-positive, we conclude that (3.6) holds.
Furthermore, this proof works when replacing bs by b (which corresponds, in a way, to
taking ¢ large), thus for . we get

1
(L1, Przomy < = 5 [ Weos®) (ulo)), (F' = F)* do dv. do
+ell £ 5= oy + Cl@) 2 £117 2y

Recalling the definition of the norm H%*(m) in (1.9), we therefore deduce that (3.7) also
holds by taking ¢ small enough. O

We are now able to complete the proof of Proposition 3.1.
Proof of Proposition 3.1. We get from Lemmas 3.2 and (3.6) that for ¢ small enough
(Zf, Dz = (&5 Dz + (L f Fram)
< 1y + Coll 072l 2m) — 872 (02 22y + CII I
< el gy = 102 F 2y + CU 2o
We interpolate this estimate with (3.7): for any 6 € [0, 1]
(L1 P izom < 02— 0= OBy
104 (L= O] ) Fll 3y + OCU 1.

We deduce (3.1) by taking 6 close enough to 1, € small enough, and integrating in space. O
3.2. Estimates on A. We already know from [34, (2.20)] that in the gaussian space E,

the full linearized operator A = .2 — v - V,, dissipates the E*-norm. We recall here this
result.

Proposition 3.4 ([34]). The equivalent scalar product defined in (2.39) satisfy the coercive-
type estimate:

(Af e S —IflE-
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Concerning the polynomial space X(m), we will rely on the following splitting of the
linearized operator A:

A=A+B,
A:=Mygr, B:=A-A,
with constants M, R > 0 and xg(v) = x(v/R), where x € C2°(R3) is a smooth function

satisfying 1},j<1 < X < 1jy<2- The parameters M, R > 0 will be tuned later (to be chosen
large enough) in order to make B dissipative.

Proposition 3.5. Assume k > 13/2 + 2|y| and define m = (v)¥. There are My, Ry > 0
large enough such that for any M > My and R > Rg there holds, for any smooth enough
function f,

(Bf, Pz ym) S =IF 172 15
Proof. We write
Bf ez m) = (&L = Af, Pz omy) = (0 Vaf, iz, om)-

The second term vanishes in virtue of its gradient structure (V,f) f = V. (|f]?), thus by
Proposition 3.1, we have for some constants ¢, C' > 0

Bf, iz ,m) < =l Z2 s my + CUIZ202 = MIIXR@) 72 L2 0n)
C

c 2 -2 )
< —§||f”LgHg’*(m) - / <§<U>7 —Cm +MXR(U)> |f]*m* dvdx,

by using that | f[|p2 557 m) = ||<U>7/2f||L§L%(m)' For large values of |v|, we have that

£(v)? — Cm~% > 0 by the assumption k > |y|/2, thus there are My, Ry > 0 large enough
such that for all M > My and R > Ry we have

g<v>7 —Cm™ + Mxg(v) >0,

from which we deduce the desired estimate. OJ

As an immediate consequence of Proposition 3.5 and the fact that B commutes with V,,
we obtain the following dissipative estimate for B in spaces of the type X(m) and X*(m),
recalling the definition in (1.10) and (1.11), respectively:

Corollary 3.6. Assume k > 13/2 + 2|y| + 6s and define m = (v)*. There are My, Ry > 0
large enough such that for any M > My and R > Ry there holds, for any smooth enough
function f,

4. PROOF OF THEOREM 1.1

This section is devoted to the proof of Theorem 1.1. Recall that we assume non-cutoff
soft potentials (1.4)—(1.5). We fix

k> 13/247|v|/2 + 8s
and define the weight function m = (v)*. We also consider 6, kg > 0 such that
2(k — ko)
vl
and define the weight function mg = (v)¥. Finally we define the weight functions
m =m(v)~2 = (v)F725 as well as my = mo(v) "2 = (v)¥0~25. Observe that we have
ko —2s > 13/2 + 5|v|/2 + 6s
so that we may apply in the sequel Propositions 2.12 and 2.13 as well as Corollary 3.6 with

the weight function mg, and consequently also with the weights m, mg and m.
Drawing inspiration from [10], we seek a solution to (1.6) of the form

f(t) =h(t) +g(t) € X(m) + E

2<0< and ko > 13/2 + 5|y|/2 + 8s
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where the two parts evolve according to the differential system

8th = Bh + Q(h’ h) + Q(gv h) + Q(h,g),
(4.1) Org = Ag + Q(g,9) + Ah,
h(O,iL‘,’U) = fo(l’,@), 9(07157@) =0.

We will construct a solution to this system by building a sequence of approximate solu-
tions (hyn, gn )R, initialized as (ho, go) = 0 and defined inductively by

Ohny1 = Bhnir + Q(hn, hni1) + Q(gn, hvi1) + Q(hnt1, 9N),
(4.2) Otgn+1 = Agn41 + Q(gn, gn+1) + Ahn,
h‘N+1(O¢$7’U>:fO(x7U)7 gN+1(O7$>’U):O'

To do so, we introduce the functional spaces 2 (m), % (mp) and & as the spaces associated
to the norms, respectively:

(4.3) 172 1% my := 0P 1) 5 (m) +/ 1() 15 AL
=0 0
(4.4) 1% (o) == sup (L + ) IR [Semoy + [ L+ O N5 (mo) A,
>0 0
(4.5) lgll% = sup lg(®)lIE +/ lg(®) 1%~ dt,
=0 0
where we recall that the norm ||| - |||g is defined in (2.39) and it is equivalent to || - ||g, and

that the spaces X(m), X*(m), Y(m), E and E* are defined respectively in (1.10), (1.11),
(1.12), (2.20) and (2.21). Similarly, we also consider the spaces 2 (m) and % (mg) defined
respectively by (4.3) and (4.4) but with the weights m and my.

4.1. Stability of the scheme. In this subsection, we will show by induction that if the
initial data satisfies

| follxx(m) < €0
with €9 > 0 small enough, then the following bound holds for all N > 0:

(4.6) IAN Nl 27 (m) + 1N 12 (mo) + llgnlle S 1 follxm) < 0-

This is of course true for N = 0. Assume this bound for some N
for N + 1.

A\VARV/AN

and let us deduce it

4.1.1. Stability of hy41 in norm 2 (m). We start with the first equation of (4.2). The
weak coercivity estimate on B from Corollary 3.6 gives for some A > 0

(Bhav 11, An1)x(m) < =Ahv1ll % (my»

and the nonlinear terms are estimated using Proposition 2.12:

(QUhn s hv1)s hv 1) xm) SNl () 1N [ x )
+ [[hn41

% (m) 1A N+ 115 () 1A (|5 () »

(Qgns 1), hv1)x(m) SIhv+1 1%y 19 &
+ 1Nt 1 115 m) N1 1% (m) 9 1B+,
as well as the bound (2.31):

(Q(hn41,98), hv1)x(m) SNl %e(my ll9v &
+ 1At 1llx m) vl xom) L9 |-
To sum up, we have the following energy estimate for hn41:

1d
iaHhN'f‘lH%((m) F AN ) SN2 1%y (l93 18 + 1Al x(m))

+ |hns1llx ) 1hnvs1llxomy (1A 115 (m) + llgnlles) -
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2 (m), We obtain using the bounds (4.6)

Ihn+1ll 27 om) S €ollbn+1ll 2 (m) + 1 follx(m)

which, assuming g9 > 0 small enough, simplifies as
(4.7) IAn+1ll2 m) S Ifollxm) < €o-
This concludes this step.

4.1.2. Stability of hx+1 in norm % (myg). As for the estimates with the weight m, we have
for some A > 0

1d
o 10+ gy + Av+1 1

S a1 X o) (lan e + 1nllx (mo))

+ h v 1l (mo) 1w+ 11 (mo) (12N 1x(me) + Nlgn IlE#) 5

which, using the bounds (4.6) and assuming ¢ > 0 small enough in order to absorb the
first term in the right-hand side by the left-hand side, simplifies as

1d
5 el ) + 5 111k (o)

S 1N+ 1l mo) 1AN+1lx+ (me) (1A x5 (o) + lgnv %)

Moreover, since we have H<v>7/2hHX(m0) < |||
holds for any R > 0:

(RY ey < 10y + (B2

X*(mp)» the following interpolation inequality

thus, taking (R) = (29) 1 (1+ )17, we have

20 20 _q_20=kg)
I L YR ) ST w1 Y

We now plug this control in the energy estimate:

1d 0
2dt||hN+1HX(mo)+ ||h’N+1HX*(m0)+ (148" v 1l (mo)

_1_2(k=kg)
S(1+1) l

+ |hn 411X (mo) 1N+ 1l (mo) (1aN |l x(me) + 19N |+

1841 1 ()

and then multiply both sides by (1 +¢):

d A
SHavy? HhNHHX(mO } + 20+ 6 1 e o)
g—1-2k=ko)
S (141 HhN+1Hx
+(1+ t)eHhNJrIHX(mO)HhN+1||X*(m0) (17 [ x- B*) -
Integrating in time and using (4.6), we get
1A+l o) S WhN-+111% ) + 0llan-+111Z mg) + [1foll (o)
2(k—kq)

ko) o—1—

where we used the fact that § — 1 — Z(ﬁ;‘ < —1 so that (1 +1¢)
Assuming €g > 0 small enough and plugging in (4.7), we finally get

(4.8) 1hn+1ll2 (o) S 1 follx(mo) < €0-

This concludes this step.

I is integrable.
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4.1.3. Stability of gn+1 in norm &. We now turn to the second equation of (4.2). The
weak coercivity estimate from Proposition 3.4 gives us for some A > 0

(Agn+1, 984108 < —Algn1ll5--

The nonlinear term is estimated using (2.41):

(Qan,an+1), gn+1)g S llanvlEllgni B + llanvtilleslgn+1lEllgn |-

The coupling term is estimated using (2.42):

(Ahn, gv+1)E S 1PN mo) 9N +11E-

Putting these bounds together et recalling that || - ||g and || - |g are equivalent, we obtain
the following energy estimate for gy 1:

1d
2 dt

g+l + Mov+1lg Sllonllellgn+ilg + lgv+ile llgnllelonle
+ (1 [ x(mo) lgn+1ll 2,

which, using (4.6) and assuming g > 0 small enough in order to absorb the first term in
the right-hand side by the left-hand sid, simplifies into

L analld + 2lgnl
5 di IN+1l|lE 9 gN+1

B S lgnrille-llonillelon e + 1Anlxome lon+ille.

Integrating in time and using (4.6) and simplifying by ||gn+1|e, we finally get

% S ||9N||£’”9N+1

lgn+1 %+ 1Bl 2 (me) lgn 41l

7+

< €ollgn+1 follxm)llgn+1lle,

which implies, assuming ¢ > 0 small enough, that

(4.9) lgntalle < [l follxm) < €0
This concludes this step.

We therefore deduce (4.6) for N + 1 by gathering estimates (4.7), (4.8) and (4.9), which
completes the stability part of the proof.

4.2. Convergence of the scheme. Consider the successive differences of (hy)3_, de-
noted by dy41 := hn41 — hy, that of (gn)F—g by env+1 := gn+1 — gn, and consider the
equation satisfied by dy41

Ordn 1 = Bdyy1 + Q(hn,dny1) + Q(dn, hy)
+ Q(gn,dn+1) + Qlen, hn)

+ Q(dN+1,9n) + Q(hn,en),
dN+1 (0, xT, ’U) = 0,

(4.10)

as well as the one satisfied by eny1:

(4.11) {3teN+1 = Aent1 + Q(gn, en+1) + Qlen, gn) + Adn,

en+1(0,z,v) =0.

In this subsection, we shall establish that for €y > 0 small enough the following bound
holds, for some Cy > 0 and all N > 0:

(4.12) lenlle + ldnll 2 m) + ldn o (mg) S (Cogo)™2.
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4.2.1. Recursive estimates for dny1 in norm 2 (m). Let N € N. We start by considering
the first equation (4.10). The estimates of Proposition 2.12 give the following control:

(Q(hw, dn 1), AN 1) X (m) SN2 s () 1PN [ X (0)
+ 1N [l (m) AN +1 | (m) AN +1 155 (m)
and also
(Q(gn s dn1)s AN 1)x () SIAN-411% (19 ][
+ lgn B |dn-+1 1% (m) AN -+1 1% () -
Moreover, estimate (2.31) gives
(Q(AN-41,98)s AN+ 1)x () SN 4115y 19 ][
+ [l[dn+1llx+ (m) 9N B [|[dN 11| X (m)

as well as

(Q(hn, en)s dn+1)x(m) SIAN1llx ) 1 [1x= oy llen |

+ lldn+1llx+m) len e 1Al x (m)

+ ldns1llx () llen |2 A |5 (m) -

Finally, estimates (2.32) and (2.30) give respectively the following bounds, which force to
work in the larger space X(m) instead of X(m):

(Qen; hn), dn+1)x(m) SllAN+1llxsm)llenlle [1hn [l x m)
+ ANt 1llx+ m) 1PN %+ (m) llen | &,
and
(QUAN, hn)s dN+1)x(m) SIAN+1lIx(m) [1AN 155 (m) 1N |
+ AN+ 1llx (m) 1PN 15 () AN | x ()

X*(m)

As in the step of stability in section 4.1.1, we put these bounds together and integrate the
resulting energy estimate to obtain the following control:

ldn 1% () S €0lldn 11115 () + €0lldn11ll 27 llenlls + €olldnr1ll 2 ) AN 2 ()

where we used the stability estimates (4.6). Assuming 9 > 0 small enough, this simplifies
as

(4.13) ldn+1ll 2 (m) < €ollenlle + eolldnl 2 (m)

4.2.2. Recursive estimate for dyy1 in norm % (mg). Let N € N. Arguing as in the step
of stability in section 4.1.2, we have

S0 Nl | + 50+ 01
< (U1 sl o gy (vl + o )
+ (14 )7 ldn 1 - o) | 12 (moy (len e + 1| x (o))
(1 v e I ) (e + )
(40 N1 g Il g e

)617

+ 1+t ldn+1 1 () -

After integrating and using the bounds (4.6) from the stability estimate, we are left with
ﬂy(@)) + N1l % ()
Y mg)) T NN 111% ()

ldN+1115 ng) S olldn-+11l% (mg) + S0lldn+1l (mo) (

S colldn 4113 (mg) + 20 (
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where we used Young’s inequality in the last line. Assuming ey > 0 small enough and
plugging (4.13) in, this bound simplifies as

(4.14) ldn+1ll2(mo) < €ollenlle + eolldn 2 (mo) + €olldn |2 (mg)-

4.2.3. Recursive estimates for ey in norm &. Let N € N. We now considering the second
equation (4.11). Using (2.41) we have

(Qan,ent1),en+1)r S llgnlellens1lli- + llensillellen+illellgn e

as well as

(Qlen,gn),ent1)g S llevtilles (lenllellgnlle + llen|lellgnlle)

and using (2.42) we get

(Adn,enii)e S ldnlxme)llen+1lle-

Arguing as in section 4.1.3, we gather these estimates and integrate the resulting energy
estimate in time to obtain the following bound:

len+ille < lgnllellentille + llanllellenlls + lldnllo mg)-

which, using the stability estimates (4.6) and assuming €9 > 0 small enough, simplifies as

(4.15) lentalle < ollenlles + ldnlla me)-

4.2.4. Proof of convergence. We first prove (4.12) by using previous estimates. It is clearly
true for N = 0, so we assume that (4.12) holds for all integers up to some N > 0, and we
shall deduce it for N + 1. Thanks to estimates (4.13), (4.14) and (4.15) we have obtained,
forall N >0,

ldn+1ll 2 (m) S €0 (ANl 2 (m) + llenlls)

AR A

ldn+1ll (mg) < €0 (Illelgz'(m) + ldn |9 (mg) + ||€NH£)
lent1lle S eollenlle + ldn o (mg)-

This implies that

ldn+1ll 2 (m) + [l[dN+1ll2 (mo) + len+1lle S eo(lldn-1ll 2-@my + lldn-1ll (mg) + llen—1lls)

and thus, using (4.12) for N — 1, we deduce

No1 N1
ldn+1ll 27 (m) + ANt 112 (me) T llen+ille S c0(Cogo) 2 S (Cogo) 2,

which proves (4.12).

Therefore, assuming g9 > 0 small enough, the sequence (hy, gn)n>0 is a Cauchy sequence
in 2 (m) x & and thus converges to some limit (h,g) in 2 (m) x &. In virtue of the
stability estimates, the limit thus satisfies the bounds

sup [10) ey + [ IOy 5 1y

sup (1+)°[|4(t) | (mo) +/O L+ IR 1% (moy A < I follm)»

>0
2 o 2 2
sup lg@®)lE + /0 lg(®)ll&- dt < [[follx(m)-

The solution thus constructed to the original perturbation equation (1.6) is given by letting
fi=h+ge L®Ry;X(m)) N L3(Ry; Y (m)), which thus satisfies

sup |70y + [ (L0 ey + 19577 2) @t S 1ol
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4.3. Uniqueness of the solution. Consider two solutions f,f € L®(R.y;X(m)) N
L?*(Ry;Y(m)) to (1.6) with the same initial condition f; and verifying

up Oy + | 170y 5 ol < 5,
s 17O ey + [ 1Ty 2t S ol < <5

with €9 > 0 small enough. Denote d := f — f the difference of these solutions, which
satisfies

Od = Bd+ Ad + Q(d, ) + Q(f, d).
Arguing as in the previous steps, one gets for some A > 0 the control

HdHX(m + Ml ) SNl + N5 o) 1 1 m) + bl () e o 1 1

13 () 113 oy - el o 1l o 1T o

which, once integrated from ¢t =0 to t =T < oo, gives (with obvious notation)

2dt

) S <T+HfHLoo 0,7):x(m)) T I f1l L2 (j0,77:%* (m))

17l o myxmy + 122 g0 21 o ) 161 sy
Observing that
16llxxm) S 17Dl sz + 107 Ixxm) S 1mllrzrz + 1Dlvmy S NSlxm) + 16llvm)

we have
£ 2o 1% (m)) S VTN o o.11:xmy) + 1 2(0,77v0m)) S V€0 + €0

and similarly for f . Using the uniform bounds on f and f , this becomes
1l ey S (T + 20 + VT2 )l iy

Assuming 7' > 0 small enough and €g > 0 small enough, we have (for instance)

1

which means that d = 0, or equivalently f = f~‘, on interval [0,7]. By continuing this
argument, we deduce that fy gives rise to a unique (global) solution, namely, f. This
concludes the proof of Theorem 1.1.
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