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NON-CUTOFF BOLTZMANN EQUATION WITH SOFT POTENTIALS
IN THE WHOLE SPACE

KLEBER CARRAPATOSO AND PIERRE GERVAIS

Abstract. We prove the existence and uniqueness of global solutions to the Boltzmann
equation with non-cutoff soft potentials in the whole space when the initial data is a
small perturbation of a Maxwellian with polynomial decay in velocity. Our method is
based in the decomposition of the desired solution into two parts: one with polynomial
decay in velocity satisfying the Boltzmann equation with only a dissipative part of the
linearized operator ; the other with Gaussian decay in velocity verifying the Boltzmann
equation with a coupling term.
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1. Introduction

Consider the Boltzmann equation for the unknown F = F (t, x, v), with t > 0, x ∈ R3,
and v ∈ R3:
(1.1) ∂tF + v · ∇xF = Q(F, F )
complemented with an initial data F0 = F0(x, v). The collision operator Q is bilinear and
acts only on the velocity variable v ∈ R3, which represents the fact that collisions are
supposed to be localized in space, and it reads

(1.2) Q(f, g)(v) =
∫

R3

∫
S2
B(v − v∗, σ)

[
f(v′∗)g(v′)− f(v∗)g(v)

]
dσ dv∗.

The pre- and post-collision velocities (v′, v′∗) and (v, v∗) are given by

(1.3) v′ = v + v∗
2 + |v − v∗|2 σ and v′∗ = v + v∗

2 − |v − v∗|2 σ

which is one possible parametrization of the conservation of momentum and energy in an
elastic collision

v′ + v′∗ = v + v∗ and |v′|2 + |v′∗|2 = |v|2 + |v∗|2.

Date: December 8, 2022.
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2 K. CARRAPATOSO AND P. GERVAIS

The collision kernel B(v − v∗, σ) encodes the physics of the interaction between particles.
It is assumed to be nonnegative and to depend only on the relative velocity |v − v∗| and
the angle cos θ = σ · (v−v∗)

|v−v∗| as

B(v − v∗, σ) = |v − v∗|γb(cos θ),
where −3 < γ 6 1 and the angular part b is a smooth function (except maybe at θ = 0).
As it is standard now, we may suppose, without loss of generality, that θ ∈ [0, π/2] by
replacing B by its symmetrized version if necessary.

In this paper we shall consider the case of non-cutoff soft potentials, more precisely
we assume that b is an implicit function that is locally smooth and has a non-integrable
singularity at θ = 0 as
(1.4) sin θ b(cos θ) ≈

θ∼0
Cb θ

−1−2s with s ∈ (0, 1),

for some constant Cb > 0, and
(1.5) − 1 < γ + 2s < 0 and − 3/2− s < γ < 0.

Let µ(v) = (2π)−3/2e−|v|
2/2 be the standard Maxwellian and define the perturbation

F = µ+ f

which satisfies

(1.6)
®
∂tf + v · ∇xf = L f +Q(f, f)
f|t=0 = f0 = F0 − µ

where L is the linearized collision operator given by
L f = Q(µ, f) +Q(f, µ).

We also denote by Λ the full linearized operator
Λ := L − v · ∇x.

It is well known (see for instance [40]) that L is a nonnegative self-adjoint operator on
the space L2

v(µ−1 dv) with kernel given by
ker(L ) = span{µ, vµ, |v|2µ}.

We define π to be the orthogonal projection onto ker(L ) so that we can decompose

f = πf + f⊥, f⊥ := f − πf
with

(1.7) πf =
ß
ρ[f ] + u[f ] · v + θ[f ] (|v|

2 − 3)
2

™
µ

where
ρ[f ] =

∫
R3
f dv, u[f ] =

∫
R3
vf dv, θ[f ] =

∫
R3

(|v|2 − 3)
3 f dv.

1.1. Main result. Before stating our main result we shall introduce the functional spaces
we work with. If X is a function space and w a non-negative function, we define the
weighted space X(w) as the space associated to the norm

‖f‖X(w) := ‖wf‖X .
In particular, for a weight function m = m(v), we consider the weighted Lebesgue space
L2
xL

2
v(m) as the space associated to the inner product

〈f, g〉L2
xL

2
v(m) := 〈mf,mg〉L2

x,v

and the corresponding norm
‖f‖L2

xL
2
v(m) := ‖mf‖L2

x,v
,

where 〈·, ·〉L2
x,v

and ‖ · ‖L2
x,v

denote the usual inner product and norm of L2(R3
x ×R3

v).
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We consider polynomial weight functions m(v) = 〈v〉k := (1 + |v|2)k/2 with k > 0, and
we introduce the anisotropic dissipation space in velocity Hs,∗

v (m), inspired from the one
presented in [28], as the space associated to the norm

‖f‖2Hs,∗
v (m) := ‖〈v〉γ/2f‖2L2

v(m) + ‖f‖2
Ḣs,∗
v (m),(1.8)

‖f‖2
Ḣs,∗
v (m) :=

∫
R3×R3×S2

b (cos θ)µ(v∗)〈v∗〉γ
(
F − F ′

)2 dσ dv∗ dv,(1.9)

where we use the shorthand F = F(v) := m(v)〈v〉γ/2f(v) and F ′ = F(v′) recalling that v′
is defined in (1.3), and which satisfies the following bound (see Lemma 2.7):

‖〈v〉γ/2f‖Hs
v(m) . ‖f‖Hs,∗

v (m) . ‖〈v〉γ/2+sf‖Hs
v(m).

For functions f = f(x, v) depending on the position x and velocity v variables, we also
define the polynomially weighted spaces X(m), X∗(m) and Y(m) as the spaces associated
to the norms
(1.10) ‖f‖2X(m) := ‖f‖2L2

x,v(m) + ‖〈v〉−6s∇3
xf‖2L2

x,v(m),

(1.11) ‖f‖2X∗(m) := ‖f‖2L2
xH

s,∗
v (m) + ‖〈v〉−6s∇3

xf‖2L2
xH

s,∗
v (m),

and
(1.12) ‖f‖2Y(m) := ‖f⊥‖2X∗(m) + ‖∇xπf‖2H2

xL
2
v
.

respectively.
We can now state our main result:

Theorem 1.1. Assume (1.4)–(1.5) hold. Consider k > 13/2 + 7|γ|/2 + 8s and define
the weight function m = 〈v〉k. There exists ε0 > 0 small enough such that any initial
data f0 ∈ X(m) satisfying ‖f0‖X(m) 6 ε0 gives rise to a unique global weak solution
f ∈ L∞(R+; X(m)) ∩ L2(R+; Y(m)) to (1.6), which satisfies the energy estimate

sup
t>0
‖f(t)‖2X(m) +

∫ ∞
0
‖f(t)‖2Y(m) dt . ‖f0‖2X(m).

We now briefly review the known results for the Boltzmann equation near Maxwellian
in the torus T3 and the whole space R3.

We star by considering the case of cutoff potentials, which corresponds to angular kernels
b for which the singularity in (1.4) is removed by assuming b integrable. By working near
equilibrium, Grad [22] constructed in 1965 the first spatially inhomogeneous solutions for
short times. Ukai [37, 38] gave in the 1970’s a new impulse to the Cauchy problem and
established, in the case of hard potentials γ ∈ [0, 1], the existence of global solutions in
L∞v H

s
x

(
〈v〉kµ−1 dv

)
, first in the periodic box T3 in 1974 [37], then in the whole space R3

in 1976 [38], by relying on spectral studies of the linearized equation [37, 20, 40] (let us
mention also [32]). The case of soft potentials was then treated in 1980 by Caflisch [11],
then in 1982 by Asano and Ukai [40] only for γ ∈ (−1, 0), but this approach was recently
extended to the full range γ ∈ (−3, 0) by Sun and Wu [42] in 2021 and then Deng [16]
in 2022. These results were then proven using energy methods in spaces of the form
L2
vH

s
x

(
µ−1 dv dx

)
by Kawashima [29], Liu, Yang and Yu [30], Guo [26] and Guo and

Strain [35, 36], as well as Duan [17].
Concerning the non-cutoff case, the first existence result near equilibrium attributed to

Ukai [39] ; he constructed local solutions for analytic initial data in (x, v) having Gaussian
decay using the Cauchy-Kowalewski theorem. Between 2011 and 2012, Gressman and Strain
[24, 23] (in the torus), and Alexandre, Morimoto, Ukai, Xu, Yang [6, 4, 7] (in the whole
space) constructed the first global solutions in spaces of the form Hs

x,v

(
〈v〉kµ−1 dx dv

)
by working with anisotropic norms. In the whole space framework, Strain [34] obtained
the optimal time-decay for solutions in the whole space. Later Sohinger and Strain [33]
extended these results to some Besov spaces in 2014, and Fang and Wang [41] relaxed
some technical regularity and integrability assumptions in 2022. Recently, in the case of
the torus, Duan, Liu, Sakamoto and Strain [18] obtained the existence of small-amplitude
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solutions, that is, in the space L1
kL
∞
t L

2
v(µ−1 dx dv) where k denotes the Fourier variable in

space. Let us also mention two very recent works in the case of the whole space: Deng [15],
in the case of hard potentials, who worked with an anisotropic norm defined from the
pseudo-differential study of Alexandre, Hérau and Li [2]; and also Duan, Sakamoto and
Ueda [19] who constructed with small-amplitude solutions (as in [18]) in the case of hard
and moderately soft potentials.

All the above results concern solutions with Gaussian decay in velocity, that is, they
hold in functional spaces with a weight in velocity of the form µ−1 dv. In 2017, Gualdani,
Mischler and Mouhot [25], in the line of [31], constructed solutions with polynomial decay
in velocity. More precisely they relaxed the integrability conditions of previous results and
constructed solutions in W `,p

v W s,q
x

(
〈v〉k dv dx

)
, in the case of hard spheres in the torus T3.

In the same framework, the case of non-cutoff hard potentials was treated in [28, 9], and
that of non-cutoff soft potentials in [13]. Very recently, still in the torus and also in spaces
with polynomial weights, the case of cutoff soft potentials was studied by Cao [12].

Our result in Theorem 1.1 gives then, up to our knowledge, the first result of existence
of global solutions with polynomial decay in velocity to the non-cutoff Boltzmann equation
in the whole space. Inspired by the strategy of [10], we shall construct a solution f to (1.6)
by considering a decomposition of the form f = h+ g, where h(t) ∈ X(m) has polynomial
decay in velocity and satisfies a “nice” semilinear equation in which only a dissipative
part of the linearized operator Λ is present, and g(t) has Gaussian decay in velocity and
evolves according to the Boltzmann equation plus some coupling term coming from h, with
convenient decay properties in time and velocity. This system will then be solved using an
iterative scheme and an energy method. In Section 2 we prove the necessary estimates on
Q, and in Section 3 we prove the necessary coercive-type estimate on the linear part of the
equation for h and recall those related to the equation for g. We then proceed to prove the
existence of a global unique solution to (1.6) in Section 4.

1.2. Notations. The relation denoted A . B is to be understood as A 6 CB for some
uniform constant C > 0, and A ≈ B as both A . B and B . A.

When considering a function f(v) depending on the velocity variable, we shall use the
standard shorthand notations

(1.13) f = f(v), f ′ = f(v′), f∗ = f(v∗), f ′∗ = f(v′∗),

where we recall that the pre- and post-collision velocities (v′, v′∗) and (v, v∗) are defined
in (1.3).

2. Estimates on the collision operator

This section is devoted to estimates on the collision operator Q. We shall prove
homogeneous estimates in Section 2.2, and deduce from them inhomogeneous estimates in
Section 2.3

2.1. Auxiliary results. We state a few results that will be useful in the sequel. This first
lemma will be used to estimates integrals against the kinetic part |v − v∗|γ of the collision
kernel B(v − v∗, σ).

Lemma 2.1. Let α ∈ (0, 3) and s ∈ (0, 1]. For any smooth enough function f = f(v) one
has:
(1) If 0 < α < 3

2 then for any ` > 3
2 there holds, for any v ∈ R3,

(2.1)
∫

R3
|v − v∗|−α|f(v∗)|dv∗ . 〈v〉−α‖〈v〉`f‖L2

v
.

(2) If 0 < α < 3
2 + s then for any ` > 3

2 + s there holds, for any v ∈ R3,

(2.2)
∫

R3
|v − v∗|−α|f(v∗)| dv∗ . 〈v〉−α‖〈v〉`f‖Hs

v
.
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Proof. From [14, Lemma 3.3] for instance one has, for any 0 < β < 3 and ϑ > 3,

(2.3)
∫

R3
|v − v∗|−β〈v∗〉−ϑ dv∗ . 〈v〉−β, ∀v ∈ R3.

We now write for p ∈ [1,∞], thanks to Hölder’s inequality,∫
R3
|v − v∗|−α|f(v∗)| dv∗ 6

Å∫
R3
|v − v∗|−α

p
p−1 〈v∗〉−`

p
p−1 dv∗

ã p−1
p

‖〈v〉`f‖Lpv .

We then conclude by using (2.3) with: p = 2 if 0 < α < 3
2 ; and p = 6

3−2s if 0 < α < 3
2 + s

by using the Sobolev embedding Hs(R3) ↪→ L
6

3−2s (R3). �

Lemma 2.2. Let ϕ = ϕ(v) be a Schwartz function and α ∈ (0, 3). For any η ∈ (0, 1) and
` > 0 there is C > 0 such that there holds, for any v ∈ R3,∫

R3
|v − v∗|−αϕ(v∗) dv∗ 6 η〈v〉−α + C〈v〉−`.

Proof. Let v ∈ R3 be fixed. We split the integral for some M > 1:∫
R3
|v − v∗|−α|ϕ(v∗)| dv∗

6
∫
|v−v∗|>M

|v − v∗|−α|ϕ(v∗)|dv∗ +
∫
|v−v∗|6M

|v − v∗|−α|ϕ(v∗)| dv∗

=: I1 + I2.

For I2 we write 〈v∗〉−` 6 〈v − v∗〉`〈v〉−` for some arbitrary ` > 0, thus

I2 . 〈v〉−`‖〈v〉`ϕ‖L∞v
∫
|v−v∗|6M

|v − v∗|−α〈v − v∗〉` dv∗ . 〈v〉−`.

For I1 we take p > 3/(3−α), so that p/(p− 1) < 3/α, and apply Hölder’s inequality to get

I1 6
Å∫

R3
|v − v∗|−α

p
p−1 〈v∗〉−q

p
p−1 dv∗

ã p−1
p
Å∫

R3
1|v−v∗|>M 〈v∗〉qp|ϕ(v∗)|p dv∗

ã 1
p

. 〈v〉−α
Å∫

R3
1|v−v∗|>M 〈v∗〉qp|ϕ(v∗)|p dv∗

ã 1
p

,

where q > 0 is such that q p
p−1 > 3. We now observe that for M > 2|v|, if |v − v∗| > M

then |v∗| > |v − v∗| − |v| >M/2, and thus we get∫
R3

1|v−v∗|>M 〈v∗〉
qp|ϕ(v∗)|p dv∗ .

∫
R3

1|v∗|>M/2 〈v∗〉qp|ϕ(v∗)|p dv∗

.M−p
∫

R3
〈v∗〉(q+1)p|ϕ(v∗)|p dv∗

.M−p.

We then conclude taking M > max(1, 2|v|) large enough. �

Proposition 2.3. The following change of variables formulas hold:∫
b(cos θ)|v − v∗|γf(v, v′, θ) dσ dv∗(2.4)

≈
∫
b (cos(π − 2θ)) |v − v∗|γ sin

(π
2 − θ

)−2−γ
f (v, v∗, π − 2θ) dσ dv∗,

∫
b(cos θ)|v − v∗|γf(v′, v∗, θ) dσ dv ≈

∫
b(cos 2θ)|v − v∗|γf (v, v∗, 2θ) dσ dv,(2.5)

∫
B(v − v∗, σ)f(v, v∗, v′, v′∗, θ) dσ dv∗ dv =

∫
B(v − v∗, σ)f(v′, v′∗, v, v∗, θ) dσ dv∗ dv.

(2.6)
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Proof. The pre-post collisional change of variables (2.6) is known to be involutive with
Jacobian 1 and it is easy to check that |v − v∗| = |v′ − v′∗|. We only deal with the first two
change of variables. Recall the definition of v′:

v′ = v + v∗
2 + σ

|v − v∗|
2 .

Denote k := v − v∗
|v − v∗|

and recall that θ is the angle (k, σ). The differentials of v′ with

respect to v and v∗ writes in the basis (k, σ, w) where w ⊥ k, σ (at least when k and σ are
not colinear)

dv′

dv = 1
2 (Id +〈 · , k〉σ) = 1

2

Ñ
1 0 0
1 1 + cos θ 0
0 0 1

é
,(2.7)

dv′

dv∗
= 1

2 (Id−〈 · , k〉σ) = 1
2

Ñ
1 0 0
1 1− cos θ 0
0 0 1

é
.(2.8)

Thus, the following identities hold:∣∣∣∣ dv′

dv

∣∣∣∣ = 1
8(1 + cos θ) = 1

4 cos2
Å
θ

2

ã
,∣∣∣∣ dv′

dv∗

∣∣∣∣ = 1
8(1− cos θ) = 1

4 sin2
Å
θ

2

ã
.

Furthermore, the definition of v′ also implies

|v′ − v∗|2 = 1
2 cos

Å
θ

2

ã2
|v − v∗|2,

|v′ − v|2 = 1
2 sin

Å
θ

2

ã2
|v − v∗|2.

The angle ϕ formed by v′ − v∗ and σ and the angle ψ formed by v′ − v and σ are related
to θ by

ϕ = θ

2 , ψ = π − θ
2 ,

thus the integrals are estimated as follows:

∫
b(cos θ)|v − v∗|γf(v, v′, θ) dσ dv∗

≈
∫
b (cos(π − 2ψ)) |v − v|γ sin

(π
2 − ψ

)−2−γ
f (v, v∗, π − 2ψ) dσ dv′,

∫
b(cos θ)|v − v∗|γf(v′, v∗, θ) dσ dv ≈

∫
b(cos 2ϕ)|v − v∗|γf

(
v′, v∗, 2ϕ

)
dσ dv′.

We conclude to (2.5) and (2.4) by renaming the integration variables. �

We state the so-called Cancellation lemma from [1, Lemma 1].

Proposition 2.4 (Cancellation lemma). The following cancellation formula holds:∫
B(v − v∗, σ)(f ′ − f) dv∗ dσ = (f ∗ S)(v),

where the function S = S(z) is defined as

S(z) := 2π
∫ π/2

0
sin θ

Å 1
cos3 θ

B

Å |z|
cos(θ/2) , cos θ

ã
−B(|z|, cos θ)

ã
dθ.

In the particular case of the collision kernel Bδ(v − v∗, σ) = B(v − v∗, σ)1|θ|6δ, the corre-
sponding function Sδ satisfies

Sδ(z) ≈ δ2−2s|z|γ .
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v∗

v

v′

v′∗

σ

θ

k

σ

ψ

v∗

v

v′

v′∗

σ

θ

k

σ

θ/2

Figure 1. The changes of variables (v, v′)→ (v, v∗) and (v′, v∗)→ (v, v∗).

The following lemma is from [3, Lemma 2.3].

Lemma 2.5. Let m = 〈v〉k with k > 0, then there holds

m(v) . m(v′) +m(v′∗),(2.9)
|m(v)−m(v′)| . θm(v′)〈v′∗〉+ θkm(v′∗),(2.10)

where the pre- and post-collisional velocities (v′, v′∗) and (v, v∗) are defined in (1.3).

This lemma will serve to remove the kinetic singularity |v − v∗|γ in some integrals
involving the collision kernel B(v − v∗, σ).

Lemma 2.6. For any a > −3, b ∈ R, q > 3 + 2s+ a+ b and any smooth enough function
f there holds ∫

b(cos θ)|v − v∗|a〈v − v∗〉b〈v∗〉−qf(v, v′) dσ dv∗ dv

≈
∫
b(cos θ)〈v − v∗〉a+b〈v∗〉−qf(v, v′) dσ dv∗ dv

Proof. As we cannot simply control |v − v∗|a〈v − v∗〉b by 〈v − v∗〉a+b, we resort to using
Carleman’s representation:∫

b(cos θ)|v − v∗|a〈v − v∗〉b〈v∗〉−qf(v, v′) dσ dv dv∗

≈
∫

v,h∈R3,
y⊥h, |y|>|h|

|y|1+2s+a

|h|1+2s 〈y〉
b〈v + y〉−qf(v, v + h) dy dhdv,

=
∫
Ksing(v, h)f(v, v + h)

|h|1+2s dhdv,

where we denoted the singular y-integral, which is well-defined because 1+2s+a+b−q < −2
and 1 + 2s+ a > −2

Ksing(v, h) :=
∫
y⊥h,
|y|>|h|

|y|1+2s+a〈y〉b〈v + y〉−q dy

and aim to prove

Ksing(v, h) ≈ Kreg(v, h) :=
∫
y⊥h,
|y|>|h|

|y|1+2s〈y〉a+b〈v + y〉−q dy.
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To do so, we split Ksing for |y| 6 ε and |y| > ε where ε > 0 will be chosen later:

Ksing(v, h) =
∫

y⊥h,
ε>|y|>|h|

|y|1+2s+a〈y〉b〈v + y〉−q dy

+
∫

y⊥h,
|y|>max{|h|,ε}

|y|1+2s+a〈y〉b〈v + y〉−q dy.

Concerning the first part, if ε is small enough, the assumption |y| 6 ε implies 〈v + y〉−q ≈
〈v〉−q uniformly in y. Concerning the second part, the assumption |y| > ε implies 〈y〉 ≈ |y|
uniformly in y. Thus we have

Ksing(v, h) =
∫

y⊥h,
ε>|y|>|h|

|y|1+2s+a〈y〉b〈v + y〉−q dy +
∫

y⊥h,
|y|>max{|h|,ε}

|y|1+2s+a〈y〉b〈v + y〉−q dy

≈〈v〉−q
∫

y⊥h,
ε>|y|>|h|

|y|1+2s+a〈y〉b dy +
∫

y⊥h,
|y|>max{|h|,ε}

|y|1+2s〈y〉a+b〈v + y〉−q dy

≈〈v〉−q +
∫

y⊥h,
|y|>max{|h|,ε}

|y|1+2s〈y〉a+b〈v + y〉−q dy

With the same reasoning, we have

Kreg(v, h) =
∫

y⊥h,
ε>|y|>|h|

|y|1+2s〈y〉a+b〈v + y〉−q dy +
∫

y⊥h,
|y|>max{|h|,ε}

|y|1+2s〈y〉a+b〈v + y〉−q dy

≈〈v〉−q
∫

y⊥h,
ε>|y|>|h|

|y|1+2s〈y〉a+b dy +
∫

y⊥h,
|y|>max{|h|,ε}

|y|1+2s〈y〉a+b〈v + y〉−q dy

≈〈v〉−q +
∫

y⊥h,
|y|>max{|h|,ε}

|y|1+2s〈y〉a+b〈v + y〉−q dy.

We conclude that Ksing ≈ Kreg, which concludes this step. �

Lemma 2.7. For any γ ∈ (−∞, 2] and s ∈ (0, 1), the anisotropic norm defined as

‖f‖2Hs,∗
v (m) = ‖〈v〉γ/2f‖2L2

v(m) +
∫
b(cos θ)(µ〈v〉−γ)∗(F ′ −F)2 dσ dv∗ dv,

where we denoted F = m〈v〉γ/2f , is equivalent to the following norms involving a weight
function ϕ ∈ L1

v (〈v〉) ∩ L logL:

(1) ‖〈v〉γ/2f‖2L2
v(m) +

∫
b(cos θ)ϕ∗(F ′ −F)2 dσ dv∗ dv, if also ϕ ∈ L1

v

(
〈v〉2s

)
,

(2) ‖〈v〉γ/2f‖2L2
v(m) +

∫
b(cos θ)ϕ∗〈v〉γ(F ′ − F )2 dσ dv∗ dv, if also ϕ ∈ L1

v

(
〈v〉4−γ

)
,

(3) ‖〈v〉γ/2f‖2L2
v(m)+

∫
b(cos θ)〈v−v∗〉γϕ∗(F ′−F )2 dσ dv∗ dv, if also ϕ ∈ L1

v

Ä
〈v〉4−γ+|γ|

ä
,

where we denoted F = mf . Furthermore, the anisotropic norm can be compared to isotropic
Sobolev norms as follows:

(2.11) ‖〈v〉γ/2f‖2Hs
v(m) . ‖f‖

2
Hs,∗
v (m) . ‖〈v〉

γ/2+2sf‖2Hs
v(m),

and we have the general bound

(2.12)
∫
b(cos θ)〈v〉γϕ∗(F ′ − F )2 dσ dv∗ dv . ‖〈v〉4−γϕ‖L1

v
‖f‖2Hs,∗

v (m).

Proof. We first establish the comparison (2.11) followed by the equivalence ‖f‖2
Hs,∗
v (m) ≈ (1),

then proceed to show (1) ≈ (2) and (2) ≈ (3).

Step 1: Proof of (2.11) and ‖f‖2
Hs,∗
v (m) ≈ (1). From the proof of [6, Lemma 2.7, estimate

of A], for some constant cψ > 0 depending on ‖ψ‖L logL and ‖ψ‖L1
v(〈v〉), we have

(2.13) ‖F‖2L2
v

+
∫
b(cos θ)ψ∗(F ′ −F)2 dσ dv∗ dv > cψ‖F‖2Hs

v
,
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and from the proof of [6, Lemma 2.8], we also have∫
b(cos θ)

(
µ〈v〉−γ

)
∗ (F ′ −F)2 dσ dv∗ dv . ‖〈v〉2sF‖2Hs

v
.

The comparison (2.11) follows from these two bounds with ψ = µ〈v〉−γ . Furthermore, it
was established in the proof of [28, Lemma 2.3-(ii), estimate of Iδ11] that∫

b(cos θ)ϕ∗(F ′ −F)2 dσ dv∗ dv =
‖ϕ‖L1

v

‖µ〈v〉−γ‖L1
v

‖f‖2
Ḣs,∗
v (m)

+O
(
‖ϕ‖L1

v(〈v〉2s)‖F‖2Hs
v

)
.(2.14)

Thus, interpolating this estimate with (2.13) with ψ = ϕ as to absorb the O term, we
deduce ‖f‖2

Hs,∗
v (m) ≈ (1).

Step 2: Proof of (1) ≈ (2) and (2.12). On the one hand, we have∫
b(cos θ)ϕ∗〈v〉γ(F ′ − F )2 dσ dv∗ dv

=
∫
b(cos θ)ϕ∗(F ′ −F)2 dσ dv∗ dv

+
∫
b(cos θ)ϕ∗(F ′)2

(
〈v′〉γ/2 − 〈v〉γ/2

)2
dσ dv∗ dv

+ 2
∫
b(cos θ)ϕ∗F ′(F ′ −F)

(
〈v′〉γ/2 − 〈v〉γ/2

)
dσ dv∗ dv,

thus, using Young’s inequality, we have
1
2

∫
b(cos θ)ϕ∗(F ′ −F)2 dσ dv∗ dv −

∫
b(cos θ)ϕ∗(F ′)2

(
〈v′〉γ/2 − 〈v〉γ/2

)2
dσ dv∗ dv

6
∫
b(cos θ)ϕ∗〈v〉γ(F ′ − F )2 dσ dv∗ dv

6 2
∫
b(cos θ)ϕ∗(F ′ −F)2 dσ dv∗ dv + 2

∫
b(cos θ)ϕ∗(F ′)2

(
〈v′〉γ/2 − 〈v〉γ/2

)2
dσ dv∗ dv.

Next, the inequality [28, (2.7)] valid for any α 6 1:

|〈v〉α − 〈v′〉α| . sin
(
θ
2
)
〈v′〉α〈v∗〉2−α,

used with α = γ/2 6 1 allows to tame the angular singularity, making it integrable:∫
b(cos θ)ϕ∗(F ′)2

(
〈v′〉γ/2 − 〈v〉γ/2

)2
dσ dv∗ dv

.
∫
b(cos θ) sin

(
θ
2
)2 (

ϕ〈v〉4−γ
)
∗ (F ′)2 dσ dv∗ dv

.
∫ (

ϕ〈v〉4−γ
)
∗F

2 dv∗ dv = ‖〈v〉4−γϕ‖L1
v
‖F‖2L2

v
,

where we used (2.5) and then integrated in σ in the second inequality. In conclusion, we
have shown∫

b(cos θ)ϕ∗〈v〉γ(F ′ − F )2 dσ dv∗ dv ≈
∫
b(cos θ)ϕ∗(F ′ −F)2 dσ dv∗ dv

+O
Ä
‖ϕ4−γ‖L1

v
‖F‖2Hs

v

ä
,(2.15)

from which (1) ≈ (2) follows. Combining (2.15) with (2.14), and observing that 2s 6 4− γ,
we obtain∫

b(cos θ)ϕ∗〈v〉γ(F ′ − F )2 dσ dv∗ dv ≈ ‖ϕ‖L1
v
‖f‖2

Ḣs,∗
v (m) +O

Ä
‖〈v〉4−γϕ‖L1

v
‖F‖2Hs

v

ä
,

from which we deduce (2.12) thanks to (2.11).
Step 3: Proof of (2) ≈ (3). The equivalence is immediate thanks to the previous steps and

〈v∗〉−|γ|〈v〉γ 6 〈v − v∗〉γ 6 〈v∗〉|γ|〈v〉γ ,
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as it leads to the comparison∫
b(cos θ)

Ä
ϕ〈v〉−|γ|

ä
∗
〈v〉γ(F ′ − F )2 dσ dv∗ dv

6
∫
b(cos θ)ϕ∗〈v − v∗〉γ(F ′ − F )2 dσ dv∗ dv

6
∫
b(cos θ)

Ä
ϕ〈v〉|γ|

ä
∗
〈v〉γ(F ′ − F )2 dσ dv∗ dv.

This concludes the proof. �

We have seen in Lemma 2.7 that only the strength of the angular singularity and the
growth of the weight in v (i.e. 〈v〉γ or 〈v − v∗〉γ) up to the change of weight F ↔ F are
the defining features of the norm ‖ · ‖Hs,∗

v
. One could combine this result with Lemma 2.6

to show yet another equivalence:

‖f‖2Hs,∗
v (m) ≈ ‖〈v〉

γ/2f‖2L2
v(m) +

∫
B(v − v∗, σ)µ∗(F ′ −F)2 dv∗ dv dσ,

which is the definition chosen in the series [6, 4, 5, 7, 8, 3].

2.2. Homogeneous estimates. We cite below the main nonlinear estimate of [7] estab-
lished by Alexandre-Morimoto-Ukai-Xu-Yang, in a slightly simplified version using the fact
that γ + 2s < 0. In order to do this we shall first introduce the exponentially weighted
spaces used in [7], namely we define the spaces E and E∗ as the spaces associated to the
norms

‖f‖2E := ‖f‖2L2
v(µ−1/2),(2.16)

‖f‖2E∗ := ‖〈v〉γ/2+sf‖2L2
v(µ−1/2) +

∫
|v − v∗|γb(cos θ)µ∗(F ′ −F)2 dσ dv∗ dv,(2.17)

where we denoted F := F(v) = µ−1/2(v)f(v) and F ′ = F(v′). Let us recall that this norm
can be compared to isotropic Sobolev norms [7, Proposition 2.2]:

‖〈v〉γ/2f‖Hs
v(µ−1/2) . ‖f‖E∗ . ‖〈v〉

γ/2+sf‖Hs
v(µ−1/2).

Lemma 2.8 ([7, Theorem 1.2]). For any smooth enough functions f = f(v), g = g(v) and
h = h(v) the following bound holds

〈Q(f, g), h〉E . ‖h‖E∗ (‖f‖E‖g‖E∗ + ‖f‖E∗‖g‖E) .
In particular we have

〈Q(g, f), f〉E . ‖g‖E‖f‖
2
E∗ + ‖g‖E∗‖f‖E∗‖f‖E .

The goal of this section is to establish similar estimates in spaces with polynomial
weights, which we state below.

Proposition 2.9. Assume k > 9/2 − |γ|/2 + 2s and consider m = 〈v〉k. For any ` >
13/2 + 2|γ| and smooth enough functions f, g, h there holds

(2.18)

〈Q(f, g), h〉L2
v(m)

.
Ä
‖〈v〉γ/2f‖L2

v(m)‖g‖Hs,∗
v (〈v〉`) + ‖f‖Hs,∗

v (〈v〉`)‖g‖Hs,∗
v (m)

ä
‖〈v〉γ/2h‖L2

v(m)

+ ‖f‖L2
v(〈v〉`)‖〈v〉2sg‖Hs,∗

v (m)‖h‖Hs,∗
v (m)

Moreover there holds

(2.19)

〈Q(g, f), f〉L2
v(m)

. ‖g‖L2
v(〈v〉`)‖f‖2Hs,∗

v (m) + ‖g‖Hs,∗
v (〈v〉`)‖〈v〉γ/2f‖L2

v(m)‖f‖Hs,∗
v (m)

+ ‖〈v〉γ/2g‖L2
v(m)‖f‖Hs,∗

v (〈v〉`)‖〈v〉γ/2f‖L2
v(m).

These estimates will be proved by combining commutator estimates (Lemma 2.11) with
He’s estimates in L2

v (Lemma 2.10, for (2.18)) or new anisotropic estimates in L2(m)
(for (2.19)). Let us start by recalling the estimate established in He [27].
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Lemma 2.10 ([27, Theorem 1.1]). Assume −1 < γ + 2s < 0. For any w1, w1 > 0 such
that w1 +w2 = γ + 2s and a, b ∈ [0, 2s] such that a+ b = 2s, any `0 > 3/2 + |γ + 2s|, there
holds

〈Q(f, g), h〉L2
v
. ‖f‖L2

v(〈v〉`0 )‖g‖Ha
v (〈v〉w1 )‖h‖Hb

v(〈v〉w2 ).

Let us now state and prove the commutator estimates required to prove Proposition 2.9.

Lemma 2.11. Suppose k > 9/2 − |γ|/2 + 2s and consider m = 〈v〉k. For any smooth
enough functions f, g, h and any ` > 13/2 + 2|γ| there holds

|〈Q(f, g), h〉L2
v(m) − 〈Q(f,mg),mh〉L2

v
|

. ‖〈v〉γ/2h‖L2
v(m)

(
‖g‖Hs,∗

v (m)‖f‖Hs,∗
v (〈v〉`) + ‖g‖Hs,∗

v (〈v〉`)‖〈v〉γ/2f‖L2
v(m)

+ ‖g‖Hs,∗
v (m)‖f‖L2

v(〈v〉`)

)
.

Proof. We shall adapt the proof of [9, Proposition 3.1] where the hard potentials case
γ ∈ [0, 1] was considered. We start back from their decomposition:

〈Q(f, g), h〉L2
v(m) − 〈Q(f,mg),mh〉L2

v
=

∫
B(v − v∗, σ)f ′∗g′H(m−m′) dσ dv∗ dv =

6∑
j=1

Γj ,

where the terms Γj are defined in the proof of [9, Proposition 3.1] and, under the assumption
k > 9/2− |γ|/2 + 2s, were shown to satisfy

Γ1 = k

∫
b(cos θ)|v − v∗|γ〈v〉k−2|v − v∗|(v∗ · ω) cosk−1 ( θ

2
)

sin
(
θ
2
)
f∗g (mh)′ dσ dv∗ dv,

where
ω = σ − (σ · ξ)ξ

|σ − (σ · ξ)ξ| and ξ = v − v∗
|v − v∗|

,

as well as the bounds

Γ2 . I
(
g; (mf)2)1/2 × I

Ä
g; (mh)2

ä
,

Γ3 . I
(
〈v〉g;

Ä
〈v〉k−1f

ä2)1/2
× I
Ä
〈v〉g; (mh)2

ä1/2
,

Γ4 . I
Ä
〈v〉2f ; (〈v〉k−2g)2

ä
× I
Ä
〈v〉2f ; (mh)2

ä
,

Γ5 . I
(
〈v〉4f ;

Ä
〈v〉k−4g

ä2)1/2
× I
Ä
〈v〉4f ; (mh)2

ä1/2
,

Γ6 . I
Ä
f ; (mg)2

ä1/2
× I
Ä
f ; (mh)2

ä1/2
,

where we have denoted for compactness

I(ϕ; Φ) :=
∫
|v − v∗|γϕ∗Φ dv dv∗.

First, in virtue of (2.2), we have for `0 > 4 + 3/2 + s the following estimate:
6∑
j=2

Γj . ‖〈v〉γ/2h‖L2
v(m)
Ä
‖f‖Hs

v(〈v〉`0 )‖〈v〉
γ/2g‖L2

v(m) + ‖g‖Hs
v(〈v〉`0 )‖〈v〉

γ/2f‖L2
v(m)
ä
.

It remains to estimate the term Γ1. Still following the proof of [9, Proposition 3.1]), we
denote ω̃ = v′−v

|v′−v| , so that ω̃ is orthogonal to v′ − v∗, and thus we split Γ1 = Γ1,1 + Γ1,2
with

Γ1,1 = k

∫
b(cos θ) cosk

(
θ
2
)

sin
(
θ
2
)
|v − v∗|γ+1〈v〉k−2(v∗ · ω)f∗g (mh)′ dσ dv∗ dv,

and

Γ1,2 = k

∫
b(cos θ) cosk−1 ( θ

2
)

sin2 ( θ
2
)
|v − v∗|γ+1〈v〉k−2(v∗ · ω̃)f∗g (mh)′ dσ dv∗ dv.
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For the term Γ1,2 we can then argue as for the terms (Γj)26j66 and we obtain

Γ1,2 . I
Ä
〈v〉2f ; (〈v〉k−1g)2

ä
× I
Ä
〈v〉2f ; (mh)2

ä
. ‖〈v〉γ/2h‖L2

v(m)‖f‖Hs
v(〈v〉`0 )‖〈v〉

γ/2g‖L2
v(m).

Moreover the term Γ1,1 is shown to satisfy, denoting G := 〈v〉k−2g,

Γ1,1 .
∫
b(cos θ) sin

(
θ
2
)
|v − v∗|γ〈v∗〉2|f∗||G − G′||m′h′|dσ dv∗ dv.

Using Hölder’s inequality for some n > 0 to choose later,

Γ1,1 .
∫
b1/2(cos θ)|v − v∗|γ/2 sin

(
θ
2
)

(mh)′
(
〈v〉2f

)1/2
∗

× b1/4(cos θ)〈v − v∗〉γ/4〈v〉1/2 ∣∣G − G′∣∣1/2 (〈v〉2+nf
)1/2
∗

× b1/4(cos θ)|v − v∗|γ/2〈v − v∗〉−γ/4〈v〉1/2 ∣∣G − G′∣∣1/2 〈v∗〉−n/2 dσ dv∗ dv

.
Å∫

b(cos θ)|v − v∗|γ sin2 ( θ
2
) [

(mh)′
]2 (〈v〉2f)∗ dσ dv∗ dv

ã1/2

×
Å∫

b(cos θ)〈v − v∗〉γ〈v〉2
(
G − G′

)2 (〈v〉2+nf
)2
∗ dσ dv∗ dv

ã1/4

×
Å∫

b(cos θ)|v − v∗|2γ〈v − v∗〉−γ〈v〉2
(
G − G′

)2 〈v∗〉−2n dσ dv∗ dv
ã1/4

.

The change of variable (2.5) followed by (2.2) in the first integral with `1 > 2 + 3/2 + s
gives

Γ1,1 . ‖f‖1/2
Hs
v(〈v〉`1 )‖〈v〉

γ/2h‖L2
v(m)

×
Å∫

b(cos θ)〈v − v∗〉γ〈v〉2
(
G − G′

)2 (〈v〉2+nf
)2
∗ dσ dv∗ dv

ã1/4

×
Å∫

b(cos θ)|v − v∗|2γ〈v − v∗〉−γ〈v〉2
(
G − G′

)2 〈v∗〉−2n dσ dv∗ dv
ã1/4

.

Next, using Lemma 2.6 in the third integral, taking 2n > 1 + 2s+ γ (note that 2γ > −3),
we have

Γ1,1 . ‖f‖1/2
Hs
v(〈v〉`1 )‖〈v〉

γ/2h‖L2
v(m)

×
Å∫

b(cos θ)〈v − v∗〉γ〈v〉2
(
G − G′

)2 (〈v〉2+nf
)2
∗ dσ dv∗ dv

ã1/4

×
Å∫

b(cos θ)〈v − v∗〉γ〈v〉2
(
G − G′

)2 〈v∗〉−2n dσ dv∗ dv
ã1/4

.

The inequality 〈v〉 6 〈v − v∗〉〈v∗〉 and the fact that γ 6 0 then imply

Γ1,1 . ‖f‖1/2
Hs
v(〈v〉`1 )‖〈v〉

γ/2h‖L2
v(m)

×
Å∫

b(cos θ)〈v〉2+γ (G − G′)2 Ä〈v〉2+n−γ/2f
ä2

∗
dσ dv∗ dv

ã1/4

×
Å∫

b(cos θ)〈v〉2+γ (G − G′)2 〈v∗〉−2n−γ dσ dv∗ dv
ã1/4

.

As 2 + γ 6 2, we may use (2.12) to bound these two integrals:

Γ1,1 . ‖f‖1/2
Hs
v(〈v〉`1 )‖〈v〉

γ/2h‖L2
v(m)‖g‖Hs,∗

v (m)‖〈v〉2−γ
Ä
〈v〉2+n−γ/2f

ä2
‖1/4
L1
v
‖〈v〉−2(n−2+γ)‖1/4

L1
v

. ‖f‖1/2
Hs
v(〈v〉`1 )‖〈v〉

γ/2h‖L2
v(m)‖g‖Hs,∗

v (m)‖〈v〉`2f‖
1/2
L2
v
,

where we considered n > 7/2 + |γ| and `2 = 3 + n + |γ| > 13/2 + 2|γ|. Note that since
13/2 + 2|γ| = 11/2− γ/2 + s+ (−γ − γ+2s

2 + 1) and γ + 2s < 0, we have `2 > `0 + |γ|/2.
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We conclude the proof by gathering previous estimates, using (2.11), and taking ` =
max(`0 + |γ|/2, `1, `2) = `2. �

We can now prove the main estimates of this subsection, that is to say those of Proposi-
tion 2.9.

Proof of Proposition 2.9. In this proof, we denote F := mf , G := mg and H := mh.
Step 1: Proof of (2.18). The first estimate (2.18) is a combination of Lemmas 2.10 and 2.11.
We first observe that Lemma 2.10 with w1 = k + γ/2 + 2s, w2 = k + γ/2 and a = b = s
yields, for `0 > 3/2 + |γ + 2s|,

〈Q(f,G), H〉L2
v
. ‖f‖L2

v(〈v〉`0 )‖〈v〉
γ/2+2sg‖Hs

v(m)‖〈v〉γ/2h‖Hs
v(m)

. ‖f‖L2(〈v〉`0 )‖〈v〉
2sg‖Hs,∗

v (m)‖h‖Hs,∗
v (m),

where we used (2.11) in the last line. We then deduce (2.18) by putting this estimate
together with Lemma 2.11 for ` > 13/2 + 2|γ| > `0.
Step 2: Reductions for the proof of (2.19). First, we decompose the trilinear form using a
commutator:

〈Q(g, f), f〉L2
v(m) = 〈Q(g, F ), F 〉L2

v
+ I3,

where we denoted
I3 := 〈Q(g, f), f〉L2

v(m) − 〈Q(g, F ), F 〉L2
v
.

Second, we decompose the remaining term as

〈Q(g, F ), F 〉L2
v(m) =

∫
B(v − v∗, σ)(g′∗F ′ − g∗F )F dσ dv dv∗

= 1
2

∫
B(v − v∗, σ)(2g′∗F ′F − g∗F 2 − g∗(F ′)2) dσ dv dv∗

+ 1
2

∫
B(v − v∗, σ)g∗((F ′)2 − F 2) dσ dv dv∗.

Using the change of variables (2.6) in the first term of the first integral and the cancellation
lemma 2.4 in the second integral, we obtain for some c > 0

〈Q(g, F ), F 〉L2
v(m) = −

∫
B(v − v∗, σ)g∗(F ′ − F )2 dσ dv dv∗ − c

∫
|v − v∗|γg∗F 2 dv dv∗

=: I1 + I2,

To sum up, we have the decomposition
〈Q(g, f), f〉L2

v(m) = I1 + I2 + I3.

The term I2 satisfies by Lemma 2.1, for any `0 > 3/2 + s,

I2 . ‖g‖Hs
v(〈v〉`0 )‖〈v〉

γ/2f‖2L2(m),

and the term I3 satisfies by Lemma 2.11, for any ` > 13/2 + 2|γ|,

I3 . ‖〈v〉γ/2f‖L2
v(m)

(
‖f‖Hs,∗

v (m)‖g‖Hs,∗
v (〈v〉`) + ‖f‖Hs,∗

v (〈v〉`)‖〈v〉γ/2g‖L2
v(m)

+ ‖f‖Hs,∗
v (m)‖g‖L2

v(〈v〉`)

)
,

so that, since ` > `0 + |γ|/2, the sum I2 + I3 satisfies the same estimate as I3.
Let us turn to I1. Using the Cauchy-Schwarz inequality with some positive q > 0 to be

chosen later, we have

I1 =
∫
b(cos θ)|v − v∗|γg∗(F ′ − F )2 dσ dv dv∗

6
Å∫

b(cos θ)|v − v∗|2γ〈v − v∗〉−γ〈v∗〉−q(F ′ − F )2 dσ dv dv∗
ã1/2

×
Å∫

b(cos θ)〈v − v∗〉γ
Ä
〈v〉q/2g

ä2

∗
(F ′ − F )2 dσ dv dv∗

ã1/2
.
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Assuming q > 3+γ+2s, we remove the singularity in the integral prefactor using Lemma 2.6,
and then use the inequality 〈v − v∗〉γ 6 〈v〉γ〈v∗〉−γ in both integrals:

I1 .
Å∫

b(cos θ)〈v − v∗〉γ〈v∗〉−q(F ′ − F )2 dσ dv dv∗
ã1/2

×
Å∫

b(cos θ)〈v − v∗〉γ
Ä
〈v〉q/2g

ä2

∗
(F ′ − F )2 dσ dv dv∗

ã1/2

.
Å∫

b(cos θ)〈v∗〉−q−γ〈v〉γ(F ′ − F )2 dσ dv dv∗
ã1/2

×
Å∫

b(cos θ)
Ä
〈v〉q/2−γ/2g

ä2

∗
〈v〉γ(F ′ − F )2 dσ dv dv∗

ã1/2
.

Using (2.12) and imposing q > 7− 2γ so that 〈v〉4−q−2γ is integrable, we then obtain

I1 . ‖f‖2Hs,∗
v (m)‖〈v〉

4−γ
Ä
〈v〉q/2g

ä2
‖1/2
L1
v

. ‖f‖2Hs,∗
v (m)‖〈v〉

`1g‖L2
v
,

where `1 = 2 − γ/2 + q/2 satisfies `1 > 11/2 + 2|γ| and `1 > 7/2 + 3|γ|/2 + s. The
estimate (2.19) is then proved by putting together previous estimates and observing that
max(`, `1) = `. �

2.3. Inhomogeneous estimates in the non-cutoff case. We shall prove inhomoge-
neous nonlinear estimates for the collision operator Q by using the homogeneous estimates
proven in previous Subsection 2.2. More precisely we shall prove bilinear estimates (Proposi-
tion 2.12) and trilinear estimates (Proposition 2.13 and Proposition 2.14), for polynomially
weighted spaces X(m) as well as for exponentially weighted spaces E (defined below). It
is worth mentioning that, because of our strategy employed in Section 4, some of these
estimates are of mixed type, that is, they involve one function in a polynomially weighted
space X(m) and another function in a exponentially weighted space E.

We introduce the exponentially weighted spaces E and E∗ as the spaces associated to
the norms
(2.20) ‖f‖2E := ‖f‖2L2

xL
2
v(µ−1/2) + ‖∇3

xf‖2L2
xL

2
v(µ−1/2)

and, respectively,
(2.21) ‖f‖2E∗ := ‖∇xπf‖2H2

xL
2
v(µ−1/2) + ‖f⊥‖2L2

xE
∗ + ‖∇3

xf
⊥‖2L2

xE
∗ ,

where we recall that E∗ is defined in (2.17), which are similar to those studied in [34].
We start by proving the estimates we will use to prove the stability of the iterative

scheme from Section 4.

Proposition 2.12. Assume k > 13/2 + 2|γ| + 6s and consider m = 〈v〉k. For any
f, g ∈ X(m) ∩X∗(m) there holds
(2.22) 〈Q(g, f), f〉X(m) . ‖f‖2X∗(m)‖g‖X(m) + ‖f‖X(m)‖f‖X∗(m)‖g‖X∗(m).

Moreover for any f ∈ X(m) ∩X∗(m) and g ∈ E ∩E∗ there holds
(2.23) 〈Q(g, f), f〉X(m) . ‖f‖2X∗(m)‖g‖E + ‖f‖X(m)‖f‖X∗(m)‖g‖E∗ .

Proof. Let us start by expanding the inner product defining the norm of X(m) in (1.10)
〈Q(g, f), f〉X(m) = 〈Q(g, f), f〉L2

xL
2
v(m) + 〈∇3

xQ(g, f),∇3
xf〉L2

xL
2
v(m〈v〉−6s),

thus we get

(2.24)
〈Q(g, f), f〉X(m)

.
∣∣∣〈Q(g, f), f〉L2

xL
2
v(m)

∣∣∣+
∑
|α|=3

∑
06β6α

∣∣∣〈Q(∂α−βx g, ∂βxf), ∂αx f〉L2
xL

2
v(m〈v〉−2|α|s)

∣∣∣ ,
and we shall estimate each term separately.



NON-CUTOFF BOLTZMANN EQUATION WITH SOFT POTENTIALS IN THE WHOLE SPACE 15

We fix some ` > 13/2 + 2|γ| such that k > `+ 6s, and observe that in particular we can
apply both estimates of Proposition 2.9 with the weight 〈v〉k−6s in the sequel.
Step 1: General estimates of (2.24) in Lpx-norms. The first term in (2.24) is bounded by
integrating estimate (2.19) in space and using Hölder’s inequality L∞x − L2

x − L2
x, which

yields:

(2.25)

〈Q(g, f), f〉L2
xL

2
v(m)

. ‖g‖L∞x L2
v(〈v〉`)‖f‖2L2

xH
s,∗
v (m)

+ ‖g‖L∞x Hs,∗
v (〈v〉`)‖〈v〉γ/2f‖L2

xL
2
v(m)‖f‖L2

xH
s,∗
v (m)

+ ‖〈v〉γ/2g‖L2
xL

2
v(m)‖f‖L∞x Hs,∗

v (〈v〉`)‖〈v〉γ/2f‖L2
xL

2
v(m).

We bound the second term in (2.24) depending on the value of β. When β = α, we obtain
using (2.19) a similar estimate as before:

(2.26)

〈Q(g, ∂αx f), ∂αx f〉L2
xL

2
v(m〈v〉−6s)

. ‖g‖L∞x L2
v(〈v〉`)‖∇3

xf‖2L2
xH

s,∗
v (m〈v〉−6s)

+ ‖g‖L∞x Hs,∗
v (〈v〉`)‖〈v〉γ/2∇3

xf‖L2
xL

2
v(m〈v〉−6s)‖∇3

xf‖L2
xH

s,∗
v (m〈v〉−6s)

+ ‖〈v〉γ/2g‖L∞x L2
v(m〈v〉−6s)‖∇3

xf‖L2
xH

s,∗
v (〈v〉`)‖〈v〉γ/2∇3

xf‖L2
xL

2
v(m〈v〉−6s).

When β = 0, we use (2.18) that we integrate in space and using again Hölder’s inequality
L∞x − L2

x − L2
x, which gives

(2.27)

〈Q(∂αx g, f), ∂αx f〉L2
xL

2
v(m〈v〉−6s)

. ‖〈v〉γ/2∇3
xg‖L2

xL
2
v(m〈v〉−6s)‖f‖L∞x Hs,∗

v (〈v〉`)‖〈v〉γ/2∇3
xf‖L2

xL
2
v(m〈v〉−6s)

+ ‖∇3
xg‖L2

xH
s,∗
v (〈v〉`)‖f‖L∞x Hs,∗

v (m〈v〉−6s)‖〈v〉γ/2∇3
xf‖L2

xL
2
v(m〈v〉−6s)

+ ‖∇3
xg‖L2

xL
2
v(〈v〉`)‖f‖L∞x Hs,∗

v (m〈v〉−4s)‖∇3
xf‖L2

xH
s,∗
v (m〈v〉−6s).

When |β| = 1, we we integrate estimate (2.18) using Hölder’s inequality L2
x − L4

x − L4
x:

(2.28)

〈Q(∂α−βx g, ∂βxf), ∂αx f〉L2
xL

2
v(m〈v〉−6s)

. ‖〈v〉γ/2∇2
xg‖L4

xL
2
v(m〈v〉−6s)‖∇xf‖L4

xH
s,∗
v (〈v〉`)‖〈v〉γ/2∇3

xf‖L2
xL

2
v(m〈v〉−6s)

+ ‖∇2
xg‖L4

xH
s,∗
v (〈v〉`)‖∇xf‖L4

xH
s,∗
v (m〈v〉−6s)‖〈v〉γ/2∇3

xf‖L2
xL

2
v(m〈v〉−6s)

+ ‖∇2
xg‖L4

xL
2
v(〈v〉`)‖∇xf‖L4

xH
s,∗
v (m〈v〉−4s)‖∇3

xf‖L2
xH

s,∗
v (m〈v〉−6s).

For |β| = 2 we integrate again (2.18) in space using Hölder’s inequality L∞x − L2
x − L2

x,
which yields

(2.29)

〈Q(∂α−βx g, ∂βxf), ∂αx f〉L2
xL

2
v(m〈v〉−6s)

. ‖〈v〉γ/2∇xg‖L∞x L2
v(m〈v〉−6s)‖∇2

xf‖L2
xH

s,∗
v (〈v〉`)‖〈v〉γ/2∇3

xf‖L2
xL

2
v(m〈v〉−6s)

+ ‖∇xg‖L∞x Hs,∗
v (〈v〉`)‖∇2

xf‖L2
xH

s,∗
v (m〈v〉−6s)‖〈v〉γ/2∇3

xf‖L2
xL

2
v(m〈v〉−6s)

+ ‖∇xg‖L∞x L2
v(〈v〉`)‖∇2

xf‖L2
xH

s,∗
v (m〈v〉−4s)‖∇3

xf‖L2
xH

s,∗
v (m〈v〉−6s).

Step 2: Sobolev embeddings for (2.22). We first observe that

‖f‖X(m) ≈ ‖f‖L2
xL

2
v(m) + ‖〈v〉−2s∇xf‖L2

xL
2
v(m)

+ ‖〈v〉−4s∇2
xf‖L2

xL
2
v(m) + ‖〈v〉−6s∇3

xf‖L2
xL

2
v(m)

and
‖f‖X∗(m) ≈ ‖f‖L2

xH
s,∗
v (m) + ‖〈v〉−2s∇xf‖L2

xH
s,∗
v (m)

+ ‖〈v〉−4s∇2
xf‖L2

xH
s,∗
v (m) + ‖〈v〉−6s∇3

xf‖L2
xH

s,∗
v (m)

Moreover, since k > `+ 6s, we have
‖g‖H2

xL
2
v(〈v〉`) + ‖∇xg‖H1

xL
2
v(〈v〉`) + ‖∇2

xg‖H1
xL

2
v(〈v〉`) + ‖∇3

xg‖L2
xL

2
v(〈v〉`) . ‖g‖X(m)
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and

‖g‖H2
xH

s,∗
v (〈v〉`) + ‖∇xg‖H1

xH
s,∗
v (〈v〉`) + ‖∇2

xg‖H1
xH

s,∗
v (〈v〉`) + ‖∇3

xg‖L2
xH

s,∗
v (〈v〉`) . ‖g‖X∗(m).

From (2.25), using the Sobolev embedding H2
x(R3) ↪→ L∞x (R3) we thus get

〈Q(g, f), f〉L2
xL

2
v(m) . ‖f‖2X∗(m)‖g‖X(m) + ‖f‖X(m)‖f‖X∗(m)‖g‖X∗(m).

Arguing similarly from (2.26) we obtain

〈Q(g, ∂αx f), ∂αx f〉L2
xL

2
v(m) . ‖f‖2X∗(m)‖g‖X(m) + ‖f‖X(m)‖f‖X∗(m)‖g‖X∗(m).

For (2.27), we use again H2
x(R3) ↪→ L∞x (R3) and

‖f‖H2
xH

s,∗
v (m〈v〉−4s) . ‖f‖X∗(m)

to deduce

〈Q(∂αx g, f), ∂αx f〉L2
xL

2
v(m) . ‖f‖2X∗(m)‖g‖X(m) + ‖f‖X(m)‖f‖X∗(m)‖g‖X∗(m).

For |β| = 1, from (2.28) and the Sobolev embedding H1
x(R3) ↪→ L4

x(R3), we remark that

‖∇xf‖H1
xH

s,∗
v (m〈v〉−4s) . ‖f‖X∗(m),

hence we get

〈Q(∂α−βx g, ∂βxf), ∂αx f〉L2
xL

2
v(m) . ‖f‖2X∗(m)‖g‖X(m) + ‖f‖X(m)‖f‖X∗(m)‖g‖X∗(m).

Finally, for the case |β| = 2, estimate (2.29) together with H2
x(R3) ↪→ L∞x (R3) yields

〈Q(∂α−βx g, ∂βxf), ∂αx f〉L2
xL

2
v(m) . ‖f‖2X∗(m)‖g‖X(m) + ‖f‖X(m)‖f‖X∗(m)‖g‖X∗(m).

This concludes the proof of (2.22).

Step 2: Proof of estimate (2.23). We first remark that

‖g‖H2
xH

s,∗
v (〈v〉`) . ‖πg‖H2

xL
2
v

+ ‖g⊥‖H2
xH

s,∗
v (〈v〉`) . ‖g‖E + ‖g‖E∗ ,

and that
‖〈v〉γ/2g‖L2

xL
2
v(m) + ‖〈v〉γ/2g‖H2

xL
2
v(m〈v〉−6s) . ‖g‖E.

Moreover

‖〈v〉γ/2f‖L2
xL

2
v(m) + ‖〈v〉γ/2∇3

xf‖L2
xL

2
v(m〈v〉−6s) . min{‖f‖X(m), ‖f‖X∗(m)}.

Therefore from (2.25) we get

〈Q(g, f), f〉L2
xL

2
v(m) . ‖f‖2X∗(m)‖g‖E + ‖f‖X(m)‖f‖X∗(m)‖g‖E∗ ,

and furthermore, for the case β = 0, we deduce from (2.26)

〈Q(g, ∂αx f), ∂αx f〉L2
xL

2
v(m〈v〉−6s) . ‖f‖2X∗(m)‖g‖E + ‖f‖X(m)‖f‖X∗(m)‖g‖E∗ .

For all the other cases |β| = 1, |β| = 2 and β = α, we can argue as in Step 1 by observing
that

‖∇xg‖H2
xH

s,∗
v (〈v〉`) + ‖∇2

xg‖H1
xH

s,∗
v (〈v〉`) + ‖∇3

xg‖L2
xH

s,∗
v (〈v〉`) . ‖g‖E∗ ,

which thus implies from (2.27)–(2.28)–(2.29) that

〈Q(∂α−βx g, ∂αx f), ∂αx f〉L2
xL

2
v(m〈v〉−6s) . ‖f‖2X∗(m)‖g‖E + ‖f‖X(m)‖f‖X∗(m)‖g‖E∗ .

This concludes the proof of (2.23). �

We now prove the estimates which we will use to prove the convergence of the iterative
scheme in Section 4.
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Proposition 2.13. Assume k > 13/2 + 5|γ|/2 + 6s and consider m = 〈v〉k. For any
f, g, h ∈ X(m) ∩X∗(m) there holds

(2.30) 〈Q(f, g), h〉X(m) . ‖f‖X∗(m)‖g‖X∗(m)‖h‖X(m) + ‖f‖X(m)‖〈v〉2sg‖X∗(m)‖h‖X∗(m).

Moreover for any f, h ∈ X(m) ∩X∗(m) and g ∈ E ∩E∗ there holds
(2.31)
〈Q(f, g), h〉X(m)

. ‖f‖X∗(m)‖g‖E‖h‖X∗(m) + ‖f‖X(m)‖g‖E∗‖h‖X∗(m) + ‖f‖X∗(m)‖g‖E∗‖h‖X(m),

and

(2.32) 〈Q(g, f), h〉X(m) . ‖〈v〉2sf‖X∗(m)‖g‖E‖h‖X∗(m) + ‖f‖X∗(m)‖g‖E∗‖h‖X(m),

Proof. By expanding the inner product of X(m), we are led to estimate

(2.33)
〈Q(f, g), h〉X(m) .

∣∣∣〈Q(f, g), h〉L2
xL

2
v(m)

∣∣∣
+

∑
|α|=3

∑
06β6α

∣∣∣〈Q(∂α−βx f, ∂βxg), ∂αxh〉L2
xL

2
v(m〈v〉−6s)

∣∣∣ .
The proof of each one of the estimates (2.30), (2.31) and (2.32) then follows the same
approach: For each term appearing in (2.33) we integrate in space the corresponding
homogeneous estimate and then use Hölder’s inequality and Sobolev embeddings arguing
similarly as in Step 1 of the proof of Proposition 2.12.

We fix some ` > 13/2 + 2|γ| such that k > `+ 6s+ |γ|/2, and remark that we can apply
estimate (2.18) of Proposition 2.9 with the weight 〈v〉k−6s in the sequel.

Step 1: General estimates of (2.33) in Lpx-norms. The first term in (2.33) is estimated
using (2.18) and Hölder’s inequality L∞x − L2

x − L2
x, which yields

(2.34)

〈Q(f, g), h〉L2
xL

2
v(m)

. ‖〈v〉γ/2f‖L2
xL

2
v(m)‖g‖L∞x Hs,∗

v (〈v〉`)‖〈v〉γ/2h‖L2
xL

2
v(m)

+ ‖f‖L∞x Hs,∗
v (〈v〉`)‖g‖L2

xH
s,∗
v (m)‖〈v〉γ/2h‖L2

xL
2
v(m)

+ ‖f‖L∞x L2
v(〈v〉`)‖〈v〉2sg‖L2

xH
s,∗
v (m)‖h‖L2

xH
s,∗
v (m).

The second term in (2.33) is then estimated depending on the value of β. For the case
β = 0, we also have by using (2.18) and Hölder’s inequality L∞x − L2

x − L2
x that

(2.35)

〈Q(∂αx f, g), ∂αxh〉L2
xL

2
v(m〈v〉−6s)

. ‖〈v〉γ/2∇3
xf‖L2

xL
2
v(m〈v〉−6s)‖g‖L∞x Hs,∗

v (〈v〉`)‖〈v〉γ/2∇3
xh‖L2

xL
2
v(m〈v〉−6s)

+ ‖∇3
xf‖L2

xH
s,∗
v (〈v〉`)‖g‖L∞x Hs,∗

v (m〈v〉−6s)‖〈v〉γ/2∇3
xh‖L2

xL
2
v(m〈v〉−6s)

+ ‖∇3
xf‖L2

xL
2
v(〈v〉`)‖〈v〉2sg‖L∞x Hs,∗

v (m〈v〉−6s)‖∇3
xh‖L2

xH
s,∗
v (m〈v〉−6s).

When |β| = 1 we use Hölder’s inequality L4
x − L4

x − L2
x to get

(2.36)

〈Q(∂α−βx f, ∂βxg), ∂αxh〉L2
xL

2
v(m〈v〉−6s)

. ‖〈v〉γ/2∇2
xf‖L4

xL
2
v(m〈v〉−6s)‖∇xg‖L4

xH
s,∗
v (〈v〉`)‖〈v〉γ/2∇3

xh‖L2
xL

2
v(m〈v〉−6s)

+ ‖∇2
xf‖L4

xH
s,∗
v (〈v〉`)‖∇xg‖L4

xH
s,∗
v (m〈v〉−6s)‖〈v〉γ/2∇3

xh‖L2
xL

2
v(m〈v〉−6s)

+ ‖∇2
xf‖L4

xL
2
v(〈v〉`)‖〈v〉2s∇xg‖L4

xH
s,∗
v (m〈v〉−6s)‖∇3

xh‖L2
xH

s,∗
v (m〈v〉−6s).

and for |β| = 2:

(2.37)

〈Q(∂α−βx f, ∂βxg), ∂αxh〉L2
xL

2
v(m〈v〉−6s)

. ‖〈v〉γ/2∇xf‖L4
xL

2
v(m〈v〉−6s)‖∇2

xg‖L4
xH

s,∗
v (〈v〉`)‖〈v〉γ/2∇3

xh‖L2
xL

2
v(m〈v〉−6s)

+ ‖∇xf‖L4
xH

s,∗
v (〈v〉`)‖∇2

xg‖L4
xH

s,∗
v (m〈v〉−6s)‖〈v〉γ/2∇3

xh‖L2
xL

2
v(m〈v〉−6s)

+ ‖∇xf‖L4
xL

2
v(〈v〉`)‖〈v〉2s∇2

xg‖L4
xH

s,∗
v (m〈v〉−6s)‖∇3

xh‖L2
xH

s,∗
v (m〈v〉−6s).
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Finally, for β = α we get, using again Hölder’s inequality L∞x − L2
x − L2

x,

(2.38)

〈Q(f, ∂αx g), ∂αxh〉L2
xL

2
v(m〈v〉−6s)

. ‖〈v〉γ/2f‖L∞x L2
v(m〈v〉−6s)‖∇3

xg‖L2
xH

s,∗
v (〈v〉`)‖〈v〉γ/2∇3

xh‖L2
xL

2
v(m〈v〉−6s)

+ ‖f‖L∞x Hs,∗
v (〈v〉`)‖∇3

xg‖L2
xH

s,∗
v (m〈v〉−6s)‖〈v〉γ/2∇3

xh‖L2
xL

2
v(m〈v〉−6s)

+ ‖f‖L∞x L2
v(〈v〉`)‖〈v〉2s∇3

xg‖L2
xH

s,∗
v (m〈v〉−6s)‖∇3

xh‖L2
xH

s,∗
v (m〈v〉−6s).

We now split the proof into three steps.

Step 2: Sobolev embeddings to prove (2.30). It follows from estimates (2.34)–(2.35)–(2.36)–
(2.37)–(2.38) by using the Sobolev embeddings H2

x(R3) ↪→ L∞x (R3) and H1
x(R3) ↪→ L4

x(R3)
as in Step 1 of Proposition 2.12.

Step 3: Proof of (2.31). We first observe that

‖g‖H2
xH

s,∗
v (〈v〉`) . ‖πg‖H2

xL
2
v

+ ‖g⊥‖L2
xH

s,∗
v (〈v〉`) . ‖g‖E + ‖g‖E∗ ,

and
‖〈v〉2sg‖L2

xH
s,∗
v (m) . ‖πg‖L2

xL
2
v

+ ‖〈v〉2sg⊥‖L2
xH

s,∗
v (m) . ‖g‖E + ‖g‖E∗ .

Moreover
‖〈v〉γ/2f‖L2

xL
2
v(m) . min

{
‖f‖X(m), ‖f‖X∗(m)

}
and

‖〈v〉γ/2f‖H2
xL

2
v(〈v〉`) . min

{
‖f‖X(m), ‖f‖X∗(m)

}
since k > `+ 6s. Therefore from (2.34) we get

〈Q(f, g), h〉L2
xL

2
v(m)

. ‖f‖X∗(m)‖g‖E‖h‖X∗(m) + ‖f‖X(m)‖g‖E∗‖h‖X∗(m) + ‖f‖X∗(m)‖g‖E∗‖h‖X(m).

For the case β = 0 we remark that, similarly as above, we have

‖〈v〉2sg‖H2
xH

s,∗
v (m〈v〉−6s) . ‖πg‖H2

xL
2
v

+ ‖〈v〉2sg⊥‖H2
xH

s,∗
v (m〈v〉−6s) . ‖g‖E + ‖g‖E∗ .

moreover
‖〈v〉γ/2∇3

xf‖L2
xL

2
v(m〈v〉−6s) . min

{
‖f‖X(m), ‖f‖X∗(m)

}
,

as well as
‖∇3

xf‖L2
xL

2
v(〈v〉`) . min

{
‖f‖X(m), ‖f‖X∗(m)

}
,

since k + γ/2 > `+ 6s. Hence we deduce from (2.35)

〈Q(∂αx f, g), ∂αxh〉L2
xL

2
v(m〈v〉−6s)

. ‖f‖X∗(m)‖g‖E‖h‖X∗(m) + ‖f‖X(m)‖g‖E∗‖h‖X∗(m) + ‖f‖X∗(m)‖g‖E∗‖h‖X(m).

For all the other cases |β| = 1, |β| = 2 and β = α, we can argue as in Step 1 by observing
that

‖∇xg‖L4
xH

s,∗
v (〈v〉`) + ‖∇2

xg‖L4
xH

s,∗
v (〈v〉`) + ‖∇3

xg‖L2
xH

s,∗
v (〈v〉`) . ‖g‖E∗ ,

as well as

‖∇xg‖L4
xH

s,∗
v (m〈v〉−4s) + ‖∇2

xg‖L4
xH

s,∗
v (m〈v〉−4s) + ‖∇3

xg‖L2
xH

s,∗
v (m〈v〉−4s) . ‖g‖E∗ ,

which thus implies from (2.36)–(2.37)–(2.38) that

〈Q(∂α−βx f, ∂αx g), ∂αxh〉L2
xL

2
v(m〈v〉−6s) . ‖g‖E∗

(
‖f‖X∗(m)‖h‖X(m) + ‖f‖X(m)‖h‖X∗(m)

)
.

Step 4: Proof of (2.32). It follows similarly as in Step 2 above, so we omit the proof. �

We now introduce an equivalent norm ||| · |||E ≈ ‖ · ‖E induced by the scalar product

(2.39) 〈〈f, g〉〉E := 〈f, g〉E + Ψ[f, g],
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for some bilinear form Ψ which is defined in [34, Lemma 2.1] and is of the form, recalling
the definition of the projection π[f ] as well as ρ[f ], u[f ] and θ[f ] in (1.7),

(2.40)

Ψ[f, g] := η1
¨
∇xθ[f ],Λ[g⊥]

∂
H2
x

+ η1
¨
Λ[f⊥],∇xθ[g]

∂
H2
x

+ η2
¨
∇xu[f ] +∇xu[f ]>,Θ[g⊥] + I3θ[g]

∂
H2
x

+ η2
¨
Θ[f⊥] + I3θ[f ],∇xu[g] +∇xu[g]>

∂
H2
x

+ η3 〈∇xρ[f ], u[g]〉H2
x

+ η3 〈u[f ],∇xρ[g]〉H2
x

with 0 < η3 � η2 � η1 � 1, I3 the identity matrix and

Λ[f ] =
∫

R3
v(|v|2 − 5)f dv, Θ[f ] =

∫
R3

(v ⊗ v − I3)f dv.

Proposition 2.14. The following estimates holds for the new scalar product 〈〈·, ·〉〉E on E:
For any f, g, h ∈ E ∩E∗ one has

〈〈Q(f, g), h〉〉E . ‖h‖E∗ (‖f‖E‖g‖E∗ + ‖f‖E∗‖g‖E) .(2.41)
Furthermore, for any bounded compactly supported function χ = χ(v), we also have for
any ` > 0

〈〈g, χf〉〉E . ‖g‖E‖f‖X(〈v〉`),(2.42)
〈〈g, χf〉〉E . ‖g‖E∗‖f‖X(〈v〉`) + ‖πg‖L2

x
‖f‖X∗(〈v〉`).(2.43)

Proof. We start by proving (2.41) then comment on how to prove (2.42) and (2.43).
Step 1: Bound of 〈·, ·〉E for (2.41). First, since Q is E-orthogonal to πh, we have

〈Q(f, g), h〉E = 〈Q(f, g), h⊥〉L2
xL

2
v(µ−1/2) + 〈∇3

xQ(f, g),∇3
xh
⊥〉L2

xL
2
v(µ−1/2).

The proof of Proposition 2.13 can then be adapted (and simplified) to get from the
homogeneous estimate of Lemma 2.8 in the current setting

〈Q(f, g), h〉E . ‖h‖E∗ (‖f‖E‖g‖E∗ + ‖f‖E∗‖g‖E) .
A detailed proof is given in [34, Section 3.1] (note that the authors require more derivatives
because of their homogeneous nonlinear estimates).
Step 2: Bound of Ψ[·, ·] for (2.41). In this step, we use the notation from the definition
(2.40) of Ψ. Before considering any estimate, note that because Q is L2

v

Ä
µ−1/2

ä
-orthogonal

to ker(L ), we have
ρ[Q(f, g)] = u[Q(f, g)] = θ[Q(f, g)] = 0,

which leaves us with fewer terms that we estimate using the Cauchy-Schwarz inequality:

Ψ[Q(f, g), h] = η1 〈Λ[Q(f, g)],∇xθ[h]〉H2
x

+ η2
¨
Θ[Q(f, g)],∇xu[h] +∇xu[h]>

∂
H2
x

. ‖Λ[Q(f, g)]‖H2
x
‖∇xθ[h]‖H2

x
+ ‖Θ[Q(f, g)]‖H2

x
‖∇xu[h]‖H2

x

Using Lemma 2.8 and the fact that vi(|v|2 − 5)µ, (vivj − δij)µ ∈ E∗ for any 1 6 i, j 6 3,
we have

‖Λ[Q(f, g)]‖2H2
x
+‖Θ[Q(f, g)]‖2H2

x
.

∑
06p+q62

∫ {
‖∇pxf‖E‖∇qxg‖E∗+‖∇pxf‖E∗‖∇qxf‖E

}2
dx.

Combined with the embedding H2
x(R3) ↪→ L∞x (R3) or H1

x(R3) ↪→ L4
x(R3) and arguing as

in Step 2 of Proposition 2.13, this yields
‖Λ[Q(f, g)]‖2H2

x
+ ‖Θ[Q(f, g)]‖2H2

x
. ‖f‖E‖g‖E∗ + ‖f‖E∗‖g‖E.

Finally we get
‖∇xθ[h]‖H2

x
+ ‖∇xu[h]‖H2

x
. ‖∇xπh‖H2

xE
. ‖h‖E∗ .

To sum up, we have shown
Ψ [Q(f, g), h] . ‖h‖E∗ (‖f‖E‖g‖E∗ + ‖f‖E∗‖g‖E) .
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Step 3: Proof of and (2.42) and (2.43). Brutal bounds lead to (2.42). The proof of (2.43)

is immediate from (2.11) which implies

〈g, χf〉E . ‖〈v〉γ/2+sg‖E‖χ〈v〉`f‖E .
(
‖g‖E∗ + ‖πg‖L2

xL
2
v

)
‖f‖X(〈v〉`).

Similar arguments from the previous step also lead to

Ψ [g, χf ] . ‖g‖E∗‖f‖X(〈v〉`),

which completes the proof. �

3. Linear theory

3.1. Estimates on L . The goal of this subsection is to prove the following proposition.

Proposition 3.1. Let k > 7/2− |γ|/2 + 2s and denote the weight function m = 〈v〉k. For
any smooth enough function f there holds

(3.1)
∫

(L f)fm2 dx dv 6 −c‖f‖2L2
xH

s,∗
v (m) + C‖f‖2L2

x,v
,

for some positive constants c, C > 0.

We introduce a splitting of the angular cross section b(cos θ) so as to decompose the
linearized operator L as a singular regularizing part and a weakly coercive non-singular
part, namely we define for any δ ∈ (0, 1]

b(cos θ) = b(cos θ)1|θ|6δπ/2 + b(cos θ)1|θ|>δπ/2 =: bδ(cos θ) + bcδ(cos θ),

which induces the following splitting of the linearized operator:

L = Lδ + L c
δ .

Denote νδ the approximate collision frequency defined as

νδ(v) =
∫

R3×S2
|v − v∗|γbcδ(cos θ)µ(v∗) dσ dv∗

which satisfies, according to the cutoff case (see for instance [21]), for some positive
constants ν0, ν1 > 0

ν0δ
−2s〈v〉γ 6 νδ(v) 6 ν1δ

−2s〈v〉γ , ∀v ∈ R3.(3.2)

The cutoff part of the linearized collision operator then splits
(3.3)

L c
δ f = −νδf +

∫
R3×S2

|v − v∗|γbcδ(cos θ)
[
f(v′∗)µ(v′)− f(v∗)µ(v) + µ(v′∗)f(v′)

]
dσ dv∗.

Lemma 3.2 (Non-grazing collisions). Suppose k > 3/2 + |γ|/2 + s and let m = 〈v〉k. For
any δ, ε ∈ (0, 1] there holds∫

(L c
δ g) gm2 dv 6 −cδ−2s‖〈v〉γ/2g‖2L2

v(m) + ε‖〈v〉γ/2g‖2Hs
v(m) + Cδ,ε‖g‖2L2

v
,

for some positive constants c, Cδ,ε > 0.

Proof. Firstly we consider∫
(L c

δ g) gm2 dv =− ‖ν1/2
δ g‖2L2

v(m) +
∫
|v − v∗|γbcδ(cos θ)g′∗µ′gm2 dσ dv∗ dv

−
∫
|v − v∗|γbcδ(cos θ)g∗µgm2 dσ dv∗ dv

+
∫
|v − v∗|γbcδ(cos θ)µ′∗g′gm2 dσ dv∗ dv,

so that, using the bounds (3.2) on νδ, we have∫
(L c

δ g) gm2 dv + ν0δ
−2s‖〈v〉γ/2g‖2L2

v(m) 6 I1 + I2 + I3,
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with, denoting G = mg,

I1 :=
∫
|v − v∗|γbcδ(cos θ)g′∗µ′Gm dσ dv∗ dv,

I2 :=
∫
|v − v∗|γbcδ(cos θ)g∗µGm dσ dv∗ dv,

I3 :=
∫
|v − v∗|γbcδ(cos θ)µ′∗g′Gm dσ dv∗ dv.

In Step 1, we prove that the terms I1 and I3 satisfy the bound

I1 + I3 . δ
−1−γ/2−2s

∫
|v − v∗|γ G2 ϕ∗ dv dv∗,(3.4)

where ϕ denotes a Schwartz function (typically of the form µa〈v〉b) from which we will
deduce using Lemma 2.2 with η = εδ1+γ/2 that there holds
(3.5) I1 + I3 6 εδ

−2s‖〈v〉γ/2g‖2L2
v(m) + Cε,δ‖g‖2L2

v
.

In Step 2, we will prove that I2 satisfies
I2 6 εδ

−2s‖〈v〉γ/2g‖Hs
v(m) + Cε,δ‖g‖2L2

v
,

so that taking ε small enough, we obtain

I1 + I2 + I3 6
ν0
2 δ
−2s‖〈v〉γ/2g‖2L2

v(m) + ε′‖〈v〉γ/2g‖2Hs
v(m) + Cδ,ε‖g‖2L2

v
,

where ε′ is arbitrarily small. This will indeed prove the lemma by taking ε′ small enough.
Step 2: Proof of (3.4) for I1 and I3. We start by splitting I1 using (2.9):

I1 =
∫
|v − v∗|γbcδ(cos θ)g′∗µ′mG dσ dv∗ dv

.
∫
|v − v∗|γbcδ(cos θ) (〈v〉g)′∗ (µm)′G dσ dv∗ dv

+
∫
|v − v∗|γbcδ(cos θ)G′∗µ′G dσ dv∗ dv =: I11 + I12,

Rewriting I11 thanks to (2.6), using the Cauchy-Schwarz inequality, then integrating in σ
one obtains

I11 =
∫
|v − v∗|γbcδ(cos θ) (〈v〉g)∗ (µm)G′ dσ dv∗ dv

6
Å∫
|v − v∗|γbcδ(cos θ) (〈v〉g)2

∗ (µm) dσ dv∗ dv
ã1/2

×
Å∫
|v − v∗|γbcδ(cos θ) (µm) (G′)2 dσ dv∗ dv

ã1/2
.

Using the change of variables (2.4) in the post-factor, then integrating in σ we get

I11 .
Å∫

bcδ(cos θ)|v − v∗|γ (〈v〉g)2
∗ (µm) dv∗ dv

ã1/2

×
Å∫

bcδ(cos(π − 2θ))|v − v∗|γ (π − 2θ)−2−γ (µm)G2
∗ dv∗ dv

ã1/2

. δ−1−γ/2−2s
∫
|v − v∗|γ(µm)G2

∗ dv∗ dv.

To bound the part I12, we start again with the Cauchy-Schwarz inequality:

I12 =
∫
|v − v∗|γbcδ(cos θ)G′∗µ′G dσ dv∗ dv

6
Å∫
|v − v∗|γbcδ(cos θ)(G′∗)2µ′ dσ dv∗ dv

ã1/2

×
Å∫
|v − v∗|γbcδ(cos θ)µ′G2 dσ dv∗ dv

ã1/2
.
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Up to the pre-post change of variables (2.6) in the prefactor, this term is dealt with in the
same way as I11. Similar computations (using (2.5) this time) lead to

I3 . δ
−2s

∫
|v − v∗|γ(µm)G2

∗ dv∗ dv.

This concludes this step.
Step 2: Proof of (3.5) for I2. For I2, we integrate in σ to get the factor δ−2s, then in v∗
using the estimate (2.1) with the power θ = k + γ/2 > 3/2 + s, which yields

I2 =
∫
bcδ(cos θ)|v − v∗|γg∗µG dv∗ dv

. δ−2s‖〈v〉θg‖Hs
v

∫
〈v〉γµG dv

. εδ−2s‖〈v〉γ/2g‖Hs
v(m) + Cε,δ ‖g‖L2

v
,

where the last line comes from Young’s inequality. �

Lemma 3.3 (Grazing collisions). Let k > 13/2 + 2|γ| and define m = 〈v〉k. There exists
some c > 0 such that for any ε > 0 and δ > 0

〈Lδf, f〉L2
v(m) 6 ε‖f‖2Hs,∗ + Cε‖〈v〉γ/2f‖2L2

v(m),(3.6)

〈L f, f〉L2
v(m) 6 −c‖f‖2Hs,∗

v (m) + C‖〈v〉γ/2f‖2L2
v(m),(3.7)

for some Cε > 0.

Proof. We start by splitting the Dirichlet form using commutators:
〈Lδf, f〉L2

v(m) = 〈Qδ(µ, f), f〉L2
v(m) + 〈Qδ(f, µ), f〉L2

v(m)

= 〈Qδ(µ, F ), F 〉L2
v

+R1 +R2 +R3,

where we denoted
R1 := 〈Qδ(f,mµ), F 〉L2

v
,

R2 := 〈Qδ(µ, f), f〉L2
v(m) − 〈Qδ(µ, F ), F 〉L2

v
,

R3 := 〈Qδ(f, µ), f〉L2
v(m) − 〈Qδ(f,mµ), F 〉L2

v
.

The first term is estimated using Lemma 2.10 (where we choose w1 = γ/2 + 2s, w2 = γ/2
for the weights, a = 2s and b = 0 for the derivatives):

R1 . ‖〈v〉γ/2f‖2L2
v(m),

and the two other ones using Lemma 2.11 and Young’s inequality:

R2 +R3 6 C
Ä
‖〈v〉γ/2f‖2L2

v(m) + ‖〈v〉γ/2f‖L2
v(m)‖f‖Hs,∗

v (m)
ä

6 Cε‖〈v〉γ/2f‖2L2
v(m) + ε‖f‖2Hs,∗

v (m).

We then focus on the first term which provides the anisotropic dissipation Ḣs,∗
v (m):

〈Qδ(µ, F ), F 〉L2
v(m) =

∫
Bδ(v − v∗, σ)(µ′∗F ′ − µ∗F )F dσ dv∗ dv

=1
2

∫
Bδ(v − v∗, σ)(2µ′∗F ′F − µ∗F 2 − µ′∗F 2) dσ dv∗ dv

+ 1
2

∫
Bδ(v − v∗, σ)(µ′∗ − µ∗)F 2 dσ dv∗ dv.

We use (2.6) to change the term µ′∗F
2 of the first integral into µ∗(F ′)2, and the cancellation

lemma (Proposition 2.4) in the second integral:

〈Qδ(µ, F ), F 〉L2
v(m) = −1

2

∫
Bδ(v − v∗, σ)µ′∗(F ′ − F )2 dσ dv∗ dv

+ Cδ

∫
|v − v∗|γµ∗F 2 dv∗ dv,
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where Cδ . 1. We thus have in virtue of (2.1)

〈Qδ(µ, F ), F 〉L2
v(m) + 1

2

∫
Bδ(v − v∗, σ)µ′∗(F ′ − F )2 dσ dv∗ dv . ‖〈v〉γ/2f‖2L2

v(m).

Next, using (2.6), and then |v − v∗| 6 〈v〉〈v∗〉 combined with the fact that γ 6 0, we have

−
∫
Bδ(v − v∗, σ)µ′∗(F ′ − F )2 dσ dv∗ dv

=−
∫
bδ(cos θ)|v − v∗|γµ∗(F ′ − F )2 dσ dv∗ dv

6−
∫
bδ(cos θ)〈v〉γ

(
µ〈v〉−γ

)
∗ (F ′ − F )2 dσ dv∗ dv.

One shows as in the proof of (1) ≈ (2) from Lemma 2.7 that

−
∫
Bδ(v − v∗, σ)µ′∗(F ′ − F )2 dσ dv∗ dv + 1

2

∫
bδ(cos θ) (µ〈v〉γ)∗ (F ′ −F)2 dσ dv∗ dv

.‖〈v〉γ/2f‖2L2
v(m).

Together with the previous estimates, we conclude that

〈Lδf, f〉L2
v(m) 6−

1
2

∫
bδ(cos θ) (µ〈v〉γ)∗ (F ′ −F)2 dσ dv∗ dv

+ ε‖f‖2Hs,∗
v (m) + Cε‖〈v〉γ/2f‖2L2

v(m).

The second term being non-positive, we conclude that (3.6) holds.
Furthermore, this proof works when replacing bδ by b (which corresponds, in a way, to

taking δ large), thus for L we get

〈L f, f〉L2
v(m) 6−

1
2

∫
b(cos θ) (µ〈v〉γ)∗ (F ′ −F)2 dσ dv∗ dv

+ ε‖f‖2Hs,∗
v (m) + Cε‖〈v〉γ/2f‖2L2

v(m).

Recalling the definition of the norm Ḣs,∗
v (m) in (1.9), we therefore deduce that (3.7) also

holds by taking ε small enough. �

We are now able to complete the proof of Proposition 3.1.

Proof of Proposition 3.1. We get from Lemmas 3.2 and (3.6) that for δ small enough

〈L f, f〉L2
v(m) = 〈L c

δ f, f〉L2
v(m) + 〈Lδf, f〉L2

v(m)

6 ε‖f‖2
Ḣs,∗
v (m) + Cε‖〈v〉γ/2f‖L2

v(m) − cδ−2s‖〈v〉γ/2f‖2L2
v(m) + C‖f‖2L2

v

6 ε‖f‖2
Ḣs,∗
v (m) − ‖〈v〉

γ/2f‖2L2
v(m) + C‖f‖2L2

v(m).

We interpolate this estimate with (3.7): for any θ ∈ [0, 1]

〈L f, f〉L2
v(m) 6 [θε− (1− θ)c] ‖f‖2

Ḣs,∗
v (m)

+ [−θ + (1− θ)C] ‖〈v〉γ/2f‖L2
v(m) + θC‖f‖2L2

v
.

We deduce (3.1) by taking θ close enough to 1, ε small enough, and integrating in space. �

3.2. Estimates on Λ. We already know from [34, (2.20)] that in the gaussian space E,
the full linearized operator Λ = L − v · ∇x dissipates the E∗-norm. We recall here this
result.

Proposition 3.4 ([34]). The equivalent scalar product defined in (2.39) satisfy the coercive-
type estimate:

〈〈Λf, f〉〉E . −‖f‖
2
E∗ .
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Concerning the polynomial space X(m), we will rely on the following splitting of the
linearized operator Λ:

Λ = A+ B,
A := MχR, B := Λ−A,

with constants M,R > 0 and χR(v) = χ(v/R), where χ ∈ C∞c (R3) is a smooth function
satisfying 1|v|61 6 χ 6 1|v|62. The parameters M,R > 0 will be tuned later (to be chosen
large enough) in order to make B dissipative.

Proposition 3.5. Assume k > 13/2 + 2|γ| and define m = 〈v〉k. There are M0, R0 > 0
large enough such that for any M >M0 and R > R0 there holds, for any smooth enough
function f ,

〈Bf, f〉L2
x,v(m) . −‖f‖2L2

xH
s,∗
v (m).

Proof. We write
〈Bf, f〉L2

x,v(m) = 〈L −Af, f〉L2
x,v(m) − 〈v · ∇xf, f〉L2

x,v(m).

The second term vanishes in virtue of its gradient structure (∇xf) f = ∇x(|f |2), thus by
Proposition 3.1, we have for some constants c, C > 0

〈Bf, f〉L2
x,v(m) 6 −c‖f‖2L2

xH
s,∗
v (m) + C‖f‖2L2

xL
2
v
−M‖χR(v)f‖2L2

xL
2
v(m)

6 − c2‖f‖
2
L2
xH

s,∗
v (m) −

∫ ( c
2〈v〉

γ − Cm−2 +MχR(v)
)
|f |2m2 dv dx,

by using that ‖f‖L2
xH

s,∗
v (m) > ‖〈v〉γ/2f‖L2

xL
2
v(m). For large values of |v|, we have that

c
2〈v〉

γ − Cm−2 > 0 by the assumption k > |γ|/2, thus there are M0, R0 > 0 large enough
such that for all M >M0 and R > R0 we have

c

2〈v〉
γ − Cm−2 +MχR(v) > 0,

from which we deduce the desired estimate. �

As an immediate consequence of Proposition 3.5 and the fact that B commutes with ∇x,
we obtain the following dissipative estimate for B in spaces of the type X(m) and X∗(m),
recalling the definition in (1.10) and (1.11), respectively:

Corollary 3.6. Assume k > 13/2 + 2|γ|+ 6s and define m = 〈v〉k. There are M0, R0 > 0
large enough such that for any M >M0 and R > R0 there holds, for any smooth enough
function f ,

〈Bf, f〉X(m) . −‖f‖2X∗(m).

4. Proof of Theorem 1.1

This section is devoted to the proof of Theorem 1.1. Recall that we assume non-cutoff
soft potentials (1.4)–(1.5). We fix

k > 13/2 + 7|γ|/2 + 8s
and define the weight function m = 〈v〉k. We also consider θ, k0 > 0 such that

2 < θ <
2(k − k0)
|γ|

and k0 > 13/2 + 5|γ|/2 + 8s

and define the weight function m0 = 〈v〉k0 . Finally we define the weight functions
m = m〈v〉−2s = 〈v〉k−2s as well as m0 = m0〈v〉−2s = 〈v〉k0−2s. Observe that we have

k0 − 2s > 13/2 + 5|γ|/2 + 6s
so that we may apply in the sequel Propositions 2.12 and 2.13 as well as Corollary 3.6 with
the weight function m0, and consequently also with the weights m, m0 and m.

Drawing inspiration from [10], we seek a solution to (1.6) of the form
f(t) = h(t) + g(t) ∈ X(m) + E
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where the two parts evolve according to the differential system

(4.1)


∂th = Bh+Q(h, h) +Q(g, h) +Q(h, g),
∂tg = Λg +Q(g, g) +Ah,
h(0, x, v) = f0(x, v), g(0, x, v) = 0.

We will construct a solution to this system by building a sequence of approximate solu-
tions (hN , gN )∞N=0 initialized as (h0, g0) = 0 and defined inductively by

(4.2)


∂thN+1 = BhN+1 +Q(hN , hN+1) +Q(gN , hN+1) +Q(hN+1, gN ),
∂tgN+1 = ΛgN+1 +Q(gN , gN+1) +AhN ,
hN+1(0, x, v) = f0(x, v), gN+1(0, x, v) = 0.

To do so, we introduce the functional spaces X (m), Y (m0) and E as the spaces associated
to the norms, respectively:

‖h‖2X (m) := sup
t>0
‖h(t)‖2X(m) +

∫ ∞
0
‖h(t)‖2X∗(m) dt,(4.3)

‖h‖2Y (m0) := sup
t>0

(1 + t)θ‖h(t)‖2X(m0) +
∫ ∞

0
(1 + t)θ‖h(t)‖2X∗(m0) dt,(4.4)

‖g‖2E := sup
t>0
|||g(t)|||2E +

∫ ∞
0
‖g(t)‖2E∗ dt,(4.5)

where we recall that the norm ||| · |||E is defined in (2.39) and it is equivalent to ‖ · ‖E, and
that the spaces X(m), X∗(m), Y(m), E and E∗ are defined respectively in (1.10), (1.11),
(1.12), (2.20) and (2.21). Similarly, we also consider the spaces X (m) and Y (m0) defined
respectively by (4.3) and (4.4) but with the weights m and m0.

4.1. Stability of the scheme. In this subsection, we will show by induction that if the
initial data satisfies

‖f0‖X(m) 6 ε0

with ε0 > 0 small enough, then the following bound holds for all N > 0:
(4.6) ‖hN‖X (m) + ‖hN‖Y (m0) + ‖gN‖E . ‖f0‖X(m) 6 ε0.

This is of course true for N = 0. Assume this bound for some N > 0 and let us deduce it
for N + 1.

4.1.1. Stability of hN+1 in norm X (m). We start with the first equation of (4.2). The
weak coercivity estimate on B from Corollary 3.6 gives for some λ > 0

〈BhN+1, hN+1〉X(m) 6 −λ‖hN+1‖2X∗(m),

and the nonlinear terms are estimated using Proposition 2.12:
〈Q(hN , hN+1), hN+1〉X(m) .‖hN+1‖2X∗(m)‖hN‖X(m)

+ ‖hN+1‖X(m)‖hN+1‖X∗(m)‖hN‖X∗(m),

〈Q(gN , hN+1), hN+1〉X(m) .‖hN+1‖2X∗(m)‖gN‖E
+ ‖hN+1‖X(m)‖hN+1‖X∗(m)‖gN‖E∗ ,

as well as the bound (2.31):

〈Q(hN+1, gN ), hN+1〉X(m) .‖hN+1‖2X∗(m)‖gN‖E
+ ‖hN+1‖X(m)‖hN+1‖X∗(m)‖gN‖E∗ .

To sum up, we have the following energy estimate for hN+1:
1
2

d
dt‖hN+1‖2X(m) + λ‖hN+1‖2X∗(m) .‖hN+1‖2X∗(m)

(
‖gN‖E + ‖hN‖X(m)

)
+ ‖hN+1‖X(m)‖hN+1‖X∗(m)

(
‖hN‖X∗(m) + ‖gN‖E∗

)
.
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Integrating in time and simplifying by ‖hN+1‖X (m), we obtain using the bounds (4.6)

‖hN+1‖X (m) . ε0‖hN+1‖X (m) + ‖f0‖X(m),

which, assuming ε0 > 0 small enough, simplifies as

(4.7) ‖hN+1‖X (m) . ‖f0‖X(m) 6 ε0.

This concludes this step.

4.1.2. Stability of hN+1 in norm Y (m0). As for the estimates with the weight m, we have
for some λ > 0

1
2

d
dt‖hN+1‖2X(m0) + λ‖hN+1‖2X∗(m0)

. ‖hN+1‖2X∗(m0)
(
‖gN‖E + ‖hN‖X(m0)

)
+ ‖hN+1‖X(m0)‖hN+1‖X∗(m0)

(
‖hN‖X∗(m0) + ‖gN‖E∗

)
,

which, using the bounds (4.6) and assuming ε0 > 0 small enough in order to absorb the
first term in the right-hand side by the left-hand side, simplifies as

1
2

d
dt‖hN+1‖2X(m0) + λ

2 ‖hN+1‖2X∗(m0)

. ‖hN+1‖X(m0)‖hN+1‖X∗(m0)
(
‖hN‖X∗(m0) + ‖gN‖E∗

)
,

Moreover, since we have ‖〈v〉γ/2h‖X(m0) 6 ‖h‖X∗(m0), the following interpolation inequality
holds for any R > 0:

〈R〉−|γ|‖h‖2X(m0) 6 ‖h‖
2
X∗(m0) + 〈R〉−|γ|−2(k−k0)‖h‖2X(m),

thus, taking 〈R〉 =
(
λ
2θ
)1/|γ| (1 + t)1/γ|, we have

2θ
λ

(1 + t)−1‖h‖2X(m0) 6 ‖h‖
2
X∗(m0) + 2θ

λ
(1 + t)−1− 2(k−k0)

|γ| ‖h‖2X(m).

We now plug this control in the energy estimate:

1
2

d
dt‖hN+1‖2X(m0) + λ

4 ‖hN+1‖2X∗(m0) + θ

2(1 + t)−1‖hN+1‖2X∗(m0)

. (1 + t)−1− 2(k−k0)
|γ| ‖hN+1‖2X(m)

+ ‖hN+1‖X(m0)‖hN+1‖X∗(m0)
(
‖hN‖X∗(m0) + ‖gN‖E∗

)
,

and then multiply both sides by (1 + t)θ:

d
dt

{
(1 + t)θ‖hN+1‖2X(m0)

}
+ λ

2 (1 + t)θ‖hN+1‖2X∗(m0)

. (1 + t)θ−1− 2(k−k0)
|γ| ‖hN+1‖2X(m)

+ (1 + t)θ‖hN+1‖X(m0)‖hN+1‖X∗(m0)
(
‖hN‖X∗(m0) + ‖gN‖E∗

)
.

Integrating in time and using (4.6), we get

‖hN+1‖2Y (m0) . ‖hN+1‖2X (m) + ε0‖hN+1‖2Y (m0) + ‖f0‖2X(m0),

where we used the fact that θ − 1− 2(k−k0)
|γ| < −1 so that (1 + t)θ−1− 2(k−k0)

|γ| is integrable.
Assuming ε0 > 0 small enough and plugging in (4.7), we finally get

(4.8) ‖hN+1‖Y (m0) . ‖f0‖X(m0) 6 ε0.

This concludes this step.
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4.1.3. Stability of gN+1 in norm E . We now turn to the second equation of (4.2). The
weak coercivity estimate from Proposition 3.4 gives us for some λ > 0

〈〈ΛgN+1, gN+1〉〉E 6 −λ‖gN+1‖2E∗ .

The nonlinear term is estimated using (2.41):

〈〈Q(gN , gN+1), gN+1〉〉E . ‖gN‖E‖gN+1‖2E∗ + ‖gN+1‖E∗‖gN+1‖E‖gN‖E∗ .

The coupling term is estimated using (2.42):

〈〈AhN , gN+1〉〉E . ‖hN‖X(m0)‖gN+1‖E.

Putting these bounds together et recalling that ||| · |||E and ‖ · ‖E are equivalent, we obtain
the following energy estimate for gN+1:

1
2

d
dt |||gN+1|||2E + λ‖gN+1‖2E∗ .|||gN |||E‖gN+1‖2E∗ + ‖gN+1‖E∗ |||gN+1|||E‖gN‖E∗

+ ‖hN‖X(m0)|||gN+1|||E,

which, using (4.6) and assuming ε0 > 0 small enough in order to absorb the first term in
the right-hand side by the left-hand sid, simplifies into

1
2

d
dt |||gN+1|||2E + λ

2 ‖gN+1‖2E∗ . ‖gN+1‖E∗ |||gN+1|||E‖gN‖E∗ + ‖hN‖X(m0)|||gN+1|||E.

Integrating in time and using (4.6) and simplifying by ‖gN+1‖E , we finally get

‖gN+1‖2E . ‖gN‖E ‖gN+1‖2E + ‖hN‖Y (m0)‖gN+1‖E
. ε0‖gN+1‖2E + ‖f0‖X(m)‖gN+1‖E ,

which implies, assuming ε0 > 0 small enough, that

(4.9) ‖gN+1‖E . ‖f0‖X(m) 6 ε0.

This concludes this step.

We therefore deduce (4.6) for N + 1 by gathering estimates (4.7), (4.8) and (4.9), which
completes the stability part of the proof.

4.2. Convergence of the scheme. Consider the successive differences of (hN )∞N=0 de-
noted by dN+1 := hN+1 − hN , that of (gN )∞N=0 by eN+1 := gN+1 − gN , and consider the
equation satisfied by dN+1

(4.10)


∂tdN+1 = BdN+1 +Q(hN , dN+1) +Q(dN , hN )

+Q(gN , dN+1) +Q(eN , hN )
+Q(dN+1, gN ) +Q(hN , eN ),

dN+1(0, x, v) = 0,

as well as the one satisfied by eN+1:

(4.11)
®
∂teN+1 = ΛeN+1 +Q(gN , eN+1) +Q(eN , gN ) +AdN ,
eN+1(0, x, v) = 0.

In this subsection, we shall establish that for ε0 > 0 small enough the following bound
holds, for some C0 > 0 and all N > 0:

(4.12) ‖eN‖E + ‖dN‖X (m) + ‖dN‖Y (m0) . (C0ε0)N/2.
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4.2.1. Recursive estimates for dN+1 in norm X (m). Let N ∈ N. We start by considering
the first equation (4.10). The estimates of Proposition 2.12 give the following control:

〈Q(hN , dN+1), dN+1〉X(m) .‖dN+1‖2X∗(m)‖hN‖X(m)

+ ‖hN‖X∗(m)‖dN+1‖X(m)‖dN+1‖X∗(m),

and also

〈Q(gN , dN+1), dN+1〉X(m) .‖dN+1‖2X∗(m)‖gN‖E
+ ‖gN‖E∗‖dN+1‖X(m)‖dN+1‖X∗(m).

Moreover, estimate (2.31) gives

〈Q(dN+1, gN ), dN+1〉X(m) .‖dN+1‖2X∗(m)‖gN‖E
+ ‖dN+1‖X∗(m)‖gN‖E∗‖dN+1‖X(m),

as well as

〈Q(hN , eN ), dN+1〉X(m) .‖dN+1‖X∗(m)‖hN‖X∗(m)‖eN‖E
+ ‖dN+1‖X∗(m)‖eN‖E∗‖hN‖X(m)

+ ‖dN+1‖X(m)‖eN‖E∗‖hN‖X∗(m).

Finally, estimates (2.32) and (2.30) give respectively the following bounds, which force to
work in the larger space X(m) instead of X(m):

〈Q(eN , hN ), dN+1〉X(m) .‖dN+1‖X∗(m)‖eN‖E∗‖hN‖X(m)

+ ‖dN+1‖X∗(m)‖hN‖X∗(m)‖eN‖E,

and

〈Q(dN , hN ), dN+1〉X(m) .‖dN+1‖X(m)‖dN‖X∗(m)‖hN‖X∗(m)

+ ‖dN+1‖X∗(m)‖hN‖X∗(m)‖dN‖X(m).

As in the step of stability in section 4.1.1, we put these bounds together and integrate the
resulting energy estimate to obtain the following control:

‖dN+1‖2X (m) . ε0‖dN+1‖2X (m) + ε0‖dN+1‖X (m)‖eN‖E + ε0‖dN+1‖X (m)‖dN‖X (m)

where we used the stability estimates (4.6). Assuming ε0 > 0 small enough, this simplifies
as

(4.13) ‖dN+1‖X (m) . ε0‖eN‖E + ε0‖dN‖X (m).

4.2.2. Recursive estimate for dN+1 in norm Y (m0). Let N ∈ N. Arguing as in the step
of stability in section 4.1.2, we have

d
dt

{
(1 + t)θ‖dN+1‖2X(m0)

}
+ λ

2 (1 + t)θ‖dN+1‖2X∗(m0)

. (1 + t)θ‖dN+1‖X(m0)‖dN+1‖X∗(m0)
(
‖hN‖X∗(m0) + ‖gN‖E∗

)
+ (1 + t)θ‖dN+1‖X∗(m0)‖hN‖X∗(m0)

Ä
‖eN‖E + ‖dN‖X(m0)

ä
+ (1 + t)θ‖dN+1‖X∗(m0)‖hN‖X(m0)

Ä
‖eN‖E∗ + ‖dN‖X∗(m0)

ä
+ (1 + t)θ‖dN+1‖X(m0)‖hN‖X∗(m0)‖eN‖E∗

+ (1 + t)θ−1− 2(k−k0)
|γ| ‖dN+1‖2X(m).

After integrating and using the bounds (4.6) from the stability estimate, we are left with

‖dN+1‖2Y (m0) . ε0‖dN+1‖2Y (m0) + ε0‖dN+1‖Y (m0)
Ä
‖eN‖E + ‖dN‖Y (m0)

ä
+ ‖dN+1‖2X (m)

. ε0‖dN+1‖2Y (m0) + ε0
Ä
‖eN‖2E + ‖dN‖2Y (m0)

ä
+ ‖dN+1‖2X (m),
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where we used Young’s inequality in the last line. Assuming ε0 > 0 small enough and
plugging (4.13) in, this bound simplifies as

(4.14) ‖dN+1‖Y (m0) . ε0‖eN‖E + ε0‖dN‖X (m0) + ε0‖dN‖Y (m0).

4.2.3. Recursive estimates for eN in norm E . Let N ∈ N. We now considering the second
equation (4.11). Using (2.41) we have

〈〈Q(gN , eN+1), eN+1〉〉E . ‖gN‖E‖eN+1‖2E∗ + ‖eN+1‖E∗‖eN+1‖E‖gN‖E∗ ,

as well as

〈〈Q(eN , gN ), eN+1〉〉E . ‖eN+1‖E∗ (‖eN‖E∗‖gN‖E + ‖eN‖E‖gN‖E∗) ,

and using (2.42) we get

〈〈AdN , eN+1〉〉E . ‖dN‖X(m0)‖eN+1‖E.

Arguing as in section 4.1.3, we gather these estimates and integrate the resulting energy
estimate in time to obtain the following bound:

‖eN+1‖E . ‖gN‖E ‖eN+1‖E + ‖gN‖E ‖eN‖E + ‖dN‖Y (m0),

which, using the stability estimates (4.6) and assuming ε0 > 0 small enough, simplifies as

(4.15) ‖eN+1‖E . ε0‖eN‖E + ‖dN‖Y (m0).

4.2.4. Proof of convergence. We first prove (4.12) by using previous estimates. It is clearly
true for N = 0, so we assume that (4.12) holds for all integers up to some N > 0, and we
shall deduce it for N + 1. Thanks to estimates (4.13), (4.14) and (4.15) we have obtained,
for all N > 0,

‖dN+1‖X (m) . ε0
(
‖dN‖X (m) + ‖eN‖E

)
‖dN+1‖Y (m0) . ε0

Ä
‖dN‖X (m) + ‖dN‖Y (m0) + ‖eN‖E

ä
‖eN+1‖E . ε0‖eN‖E + ‖dN‖Y (m0).

This implies that

‖dN+1‖X (m) + ‖dN+1‖Y (m0) + ‖eN+1‖E . ε0(‖dN−1‖X (m) + ‖dN−1‖Y (m0) + ‖eN−1‖E )

and thus, using (4.12) for N − 1, we deduce

‖dN+1‖X (m) + ‖dN+1‖Y (m0) + ‖eN+1‖E . ε0(C0ε0)
N−1

2 . (C0ε0)
N+1

2 ,

which proves (4.12).
Therefore, assuming ε0 > 0 small enough, the sequence (hN , gN )N>0 is a Cauchy sequence

in X (m) × E and thus converges to some limit (h, g) in X (m) × E . In virtue of the
stability estimates, the limit thus satisfies the bounds

sup
t>0
‖h(t)‖2X(m) +

∫ ∞
0
‖h(t)‖2X∗(m) dt . ‖f0‖2X(m),

sup
t>0

(1 + t)θ‖h(t)‖2X(m0) +
∫ ∞

0
(1 + t)θ‖h(t)‖2X∗(m0) dt . ‖f0‖2X(m),

sup
t>0
‖g(t)‖2E +

∫ ∞
0
‖g(t)‖2E∗ dt . ‖f0‖2X(m).

The solution thus constructed to the original perturbation equation (1.6) is given by letting
f := h+ g ∈ L∞(R+; X(m)) ∩ L2(R+; Y(m)), which thus satisfies

sup
t>0
‖f(t)‖2X(m) +

∫ ∞
0

Ä
‖f⊥(t)‖2X∗(m) + ‖∇xπf(t)‖2H2

xL
2
v

ä
dt . ‖f0‖2X(m).
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4.3. Uniqueness of the solution. Consider two solutions f, f̃ ∈ L∞(R+; X(m)) ∩
L2(R+; Y(m)) to (1.6) with the same initial condition f0 and verifying

sup
t>0
‖f(t)‖2X(m) +

∫ ∞
0
‖f(t)‖2Y(m) dt . ‖f0‖2X(m) 6 ε

2
0,

sup
t>0
‖f̃(t)‖2X(m) +

∫ ∞
0
‖f̃(t)‖2Y(m) dt . ‖f0‖2X(m) 6 ε

2
0,

with ε0 > 0 small enough. Denote d := f − f̃ the difference of these solutions, which
satisfies

∂td = Bd+Ad+Q(d, f) +Q(f̃ , d).
Arguing as in the previous steps, one gets for some λ > 0 the control

1
2

d
dt‖d‖

2
X(m) + λ‖d‖2X∗(m) .‖d‖

2
X(m) + ‖d‖2X∗(m)‖f‖X(m) + ‖d‖X∗(m)‖d‖X(m)‖f‖Y(m)

+ ‖d‖2X∗(m)‖f̃‖X(m) + ‖d‖X∗(m)‖d‖X(m)‖f̃‖X∗(m),

which, once integrated from t = 0 to t = T <∞, gives (with obvious notation)

‖d‖2X (m;T ) .
(
T + ‖f‖L∞([0,T ];X(m)) + ‖f‖L2([0,T ];X∗(m))

+ ‖f̃‖L∞([0,T ];X(m)) + ‖f̃‖L2([0,T ];X∗(m))

)
‖d‖2X (m;T ).

Observing that
‖φ‖X∗(m) . ‖πφ‖H3

xL
2
v

+ ‖φ⊥‖X∗(m) . ‖πφ‖L2
xL

2
v

+ ‖φ‖Y(m) . ‖φ‖X(m) + ‖φ‖Y(m)

we have
‖f‖L2([0,T ];X∗(m)) .

√
T‖f‖L∞([0,T ];X(m)) + ‖f‖L2([0,T ];Y(m)) .

√
Tε0 + ε0

and similarly for f̃ . Using the uniform bounds on f and f̃ , this becomes

‖d‖2X (m;T ) .
(
T + ε0 +

√
Tε0

)
‖d‖2X (m;T ).

Assuming T > 0 small enough and ε0 > 0 small enough, we have (for instance)

‖d‖2X (m;T ) 6
1
2‖d‖

2
X (m;T ),

which means that d = 0, or equivalently f = f̃ , on interval [0, T ]. By continuing this
argument, we deduce that f0 gives rise to a unique (global) solution, namely, f . This
concludes the proof of Theorem 1.1.
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