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Abstract 14 

The quantitative structure activity relationship (QSAR) methodology has been developed and 15 

extensively used to predict unknown environmental data for compounds that have not been 16 

experimentally studied yet. QSAR is based on a large series of descriptors: such as the number of 17 

atoms, the number of bonds… (descriptive), or based on the 2D structure of the molecule (connectivity 18 

indices…) or on its 3D structure (dipole moment, polarizability…). Among them, quantum-based 3D 19 

descriptors appear as promising tools to predict macroscopic environmental properties. For a set of 20 

104 pharmaceuticals and personal care products, four quantum-based 3D descriptors (electric dipole 21 

moment, polarizability, HOMO energy and ionization potential) were calculated using different 22 

computational chemistry strategies involving a conformational search followed by local quenches 23 

within three different frameworks: density functional theory (DFT), semi-empirical Austin Model 1 24 

(AM1) approach, and density functional based tight binding (DFTB). Comparing the results obtained 25 

using each framework highlights the necessity of a comprehensive conformational search and the use 26 

of an accurate potential for the local quenches. Using the combination of a global exploration through 27 

molecular dynamics with local quenches at B3LYP/6-31G* (DFT) allows the calculation of accurate and 28 

trackable quantum-based 3D descriptors. 29 

  30 
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Introduction 31 

Pharmaceuticals and personal care products (PPCP) have been increasingly studied over the past 32 

twenty years. This emerging contaminants family contains diverse groups of organic compounds, 33 

named according to their use or biological response, such as antibiotics, hormones, anti-inflammatory 34 

drugs, antiepileptic drugs, blood lipid regulators, β-blockers, contrast media and cytostatic drugs for 35 

pharmaceuticals; antimicrobial agents, synthetic musk, insect repellents, preservatives, fragrance 36 

components and sunscreen UV filters for personal care products[1,2]. Understanding the fate and 37 

effects of PPCP in the environment is therefore essential from human and environmental health 38 

perspectives. However, due to the high number of substances and of their transformation products, 39 

their fate cannot be studied experimentally on a case-by-case basis[3]. Consequently, numerous tools 40 

using computational and statistical methods have been developed to predict unknown environmental 41 

data for compounds that have not been experimentally studied yet. Among them, Quantitative 42 

Structure Activity Relationships (QSAR) are based on the assumptions that the structure of the lowest-43 

energy conformer of a molecule in the gas phase contains the features responsible for its physical and 44 

chemical properties despite the environmental and/or biological interactions, which inevitably 45 

modifies the conformation of the compound in use. For instance, QSAR has been used to predict the 46 

fate of various organic compounds[4–6]. Mamy et al.[6,7] have compiled many of these QSAR used to 47 

predict volatilization, transformation, etc. and have identified the common and generic structural 48 

parameters used in these equations. Forty common structural parameters, combining constitutional, 49 

topological, geometric, and electronic properties, were thus calculated for 500 organic compounds 50 

and transformation products, and implemented in the database of a recently developed clustering 51 

tool: TyPol (Typology of Pollutants). TyPol allows the classification of organic compounds according to 52 

both their overall behavior in the environment (characterized through mobility, persistence, 53 

volatility…) and ecotoxicological effects (bioconcentration factor, no observed effect concentration…), 54 

and to the set of the 40 structural parameters[8]. These latter gather molecular descriptors such as the 55 

number of atoms, the number of bonds… (descriptive) or based on the 2D structure of the molecule 56 

(connectivity indices…) or on its 3D structure (dipole moment, polarizability…). Most molecular 57 

descriptors used in TyPol are provided by the Dragon software[9] but the calculation of the 3D quantum-58 

based descriptors that appear especially powerful to predict macroscopic environmental 59 

properties[6,10], needs to use other softwares and methods. Some properties have already been 60 

computed for organic molecules either on few 3D quantum based descriptors or on relatively small 61 

molecules [11–13]. Moreover, the level of theory used to compute 3D quantum-based descriptors 62 

influences the obtained values by two ways: (i) the structural conformation of the lowest-energy 63 

isomer; (ii) the accuracy of the methods to compute the set of quantum descriptors. Semi-empirical 64 

approaches such as Austin Model 1 (AM1) or PM3 (Parametric Method 3) are often used to predict the 65 

physicochemical properties of a family of molecules[14,15] or their behavioral parameters[6]. The main 66 

advantage of those approaches relies on their low computational costs (time and memory). For 67 

example, up to now, AM1 is used in TyPol after a conformational search made “by hand”, to evaluate 68 

the 3D quantum descriptors listed in the database[8].  69 

Therefore, the objective of this work was to compare several computational chemistry strategies to 70 

calculate the quantum descriptors of organic compounds from the case study of 104 PPCP 71 

implemented in TyPol. The update of the database will be performed by non-computational chemists. 72 

Thus, an easy-to-use program chain will be implemented. In this paper, the selected potentials will be 73 

first described, followed by the impact of the conformational search method on the determination of 74 
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the lowest-energy isomer. Then, the effect of the potential used into the quantum descriptor 75 

calculation is discussed. Afterwards, a comparison between the quantum descriptor values presently 76 

in Typol and the ones computed at the recommended level is done. Then, the effect of the temperature 77 

on the set of quantum descriptors is studied using a mean value over the five lowest-energy isomers 78 

with weights based on the Boltzmann distribution. Finally, connections between the quantum and the 79 

non-quantum descriptors are attempted. 80 

 81 

Materials and Methods 82 

Computational Chemistry Methods 83 

Three different frameworks were used for the quantum calculation of the molecular electronic 84 

structures of PPCP in the gas phase: 85 

 the density functional theory (DFT); 86 

 an approximated scheme of DFT, the Density Functional based Tight Binding (DFTB); 87 

 a semi-empirical method (Austin Model 1, AM1). 88 

DFT. Within the DFT framework,[16] [17] the calculations were performed using the B3LYP hybrid 89 

functional[17–19]. Two basis sets have been used in this work. On the one hand, the 6-31G* basis set[20] 90 
[21] [22] was called “basis1” (see SI for more details). On the other hand, the 6-311+G(2d,2p) basis set [23] 91 
[24,25] [22] was denoted “basis2” (see SI for more details). In previous work on similar molecules 92 

(pesticides), the authors showed that the B3LYP/basis1 level is a nice compromise between accuracy 93 

and tractability to compute geometries with respect to correlated methods such as MP2 and CCSD(T). 94 

However, using basis1 or basis2 could slightly change the order of the isomers close in energy.[26,27] The 95 

calculations were run using Gaussian09 package[28]. 96 

DFTB. The mathematical expression for the DFTB energy is derived from DFT first principle theorems 97 

and is parameterized from DFT reference calculations[29–31],[32–34]. In this work, we have used the third 98 

order version of DFTB [32–34] (simply labelled DFTB in the following) with the 3-ob parameters set[34] 99 

(downloaded from the www.dftb.org website), a correction for the hydrogen bond interactions (see 100 

Gaus et al.[33]) and an empirical long-range dispersion correction[35]. We used a Fermi electronic 101 

distribution (temperature of 500 K) to avoid convergency issues. It was however removed (Fermi 102 

temperature set to 0 K) for the final local optimization steps (see below). The polarizabilities were 103 

obtained from the scheme proposed by Witek et al.[36]. All DFTB calculations were performed with the 104 

deMonNano code[37] (see SI for more details). 105 

AM1. AM1 is a parametric quantum mechanical molecular model[38,39]. The parameterization of the 106 

model was carried out with a particular attention on dipole moments, ionization potentials, and 107 

geometries of molecules[38,39]. Up to now, AM1 is used in TyPol to compute 3D quantum descriptors. 108 

Strategy 109 

Two strategies were compared to obtain the lowest-energy isomer structures of the 104 PPCP. The 110 

first one, up to now used in TyPol, relies on angle and dihedral rotations made “by hand” to generate, 111 

for each molecule, a guessed geometry, which is further optimized locally, making use of the 112 

eigenvalue-following algorithm[40–42] combined with the AM1 potential. These structures will be 113 

http://www.dftb.org/
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labelled H_AM1 (for “by hand” designed + AM1 optimization) in the following. The second one relies 114 

on a combination of global exploration through molecular dynamics (MD) with periodic local quenches 115 

to improve the conformational search. 116 

Molecular Dynamics 117 

The MD exploration is performed at the DFTB level at high temperature to ensure that barriers 118 

separating basins associated to various conformers can easily be overcome (Figure 1a). 119 

 120 

Figure 1. (a) Schematic representation of the potential energy surface (PES) explored by DFTB 121 

molecular dynamics simulations for a molecular system. (1) is the global minimum; (2), (3) and (4) are 122 

local minima. In red, PES structures reached by the DFTB/MD exploration; in blue, path followed by 123 

the quench (geometry optimization) leading to the closest local minimum. (b) Graphical representation 124 

of the steps followed for the four molecular dynamic (MD) based strategies to calculate the quantum 125 

descriptors of organic compounds from the case-study of 104 PPCP. Red and green dots have the same 126 

meaning as in (a). 127 

 128 
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The temperature was maintained through a chain of 5 Nose Hoover thermostats at 800 K associated 129 

to an energy exchange frequency of 300 cm-1. Ten ps were simulated for each molecule starting from 130 

a guessed structure. The timestep was set to 1 fs, which would probably be too large to extract 131 

properties from such simulations but sufficient for the exploration purpose of the present work. 132 

Local Quenches 133 

Thirty-one structures were then extracted corresponding to snapshots equally spaced along the MD 134 

run. The latter were further optimized at the DFTB level (conjugated gradient) and the five lowest-135 

energy ones were selected for further local optimizations at the AM1, B3LYP/basis1 and B3LYP/basis2 136 

levels of theory using the Berny algorithm[43]. These structures will be labelled D_DFTB, D_AM1, 137 

D_DFT/basis1 and D_DFT/basis2 in the following, D_ accounting for the (DFTB/MD + quenches) 138 

exploration scheme followed by the level of theory used for the final local optimization procedure. The 139 

various strategies are summarized in Table I and Figure 1b. 140 

Table I. Computational chemistry strategies used in this work with the associated labels. The first part 141 

of the label refers to the potential energy surface (PES) exploration: H_ by hands or D_ using DFTB3 142 

molecular dynamics simulations (MD). The second part of the label refers to the local optimization 143 

level. 144 

LABEL PES exploration Local optimization 

 By hand MD  

H_AM1 ×  AM1 

D_AM1  × AM1 

D_DFTB  × DFTB3 

D_DFT/basis1  × B3LYP/6-31G* 

D_DFT/basis2  × B3LYP/6-311+G(2d,2p) 

 145 

Properties 146 

This work focuses on four 3D quantum-based chemical descriptors frequently used in QSAR, three of 147 

them already present in TyPol[6,8]: the dipole moment (Debye), the polarizability (Bohr3), the HOMO 148 

energy (eV); and the ionization potential (eV). 149 

The ionization potential IP (electron-Volt) is the minimal energy necessary to extract one electron from 150 

a gas phase molecule in its neutral fundamental state. IP is the energy difference between the cation 151 

(formed after the electron extraction) and the neutral molecule: IP = Ecation – Eneutral. In this work, we 152 

only consider the vertical IP, i.e., Ecation is the energy of the cation at the optimized neutral geometry. 153 

In practice, IP can be computed by direct or indirect methods. In the indirect method, Ecation and Eneutral 154 

are computed from two independent calculations. The direct method relies on the Koopman’s 155 

Theorem (KT)[44], which stipulates that the first IP equals the opposite value of the HOMO (Highest 156 

Occupied Molecular Orbital) energy of the neutral molecule: IPK = - EHOMO (electron-Volt). Differences 157 

exists between the two approaches. The KT considers that the electron is extracted from the HOMO. 158 
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Then, it only considers the HOMO energy and neglects the electronic reorganization after extracting 159 

the electron (see SI for more details[45],[46–50]). 160 

Dataset 161 

The dataset consisted of 104 PPCP. The most represented use families are antibiotics (34% of the data 162 

set), antidepressants (8%), fragrance components (8%), hormones and NSAIDs (Non-Steroidal Anti-163 

Inflammatory Drugs) (7%). At the H_AM1 level, dipole moments, polarizabilities, and HOMO energies 164 

were calculated for the 104 PPCP (the complete molecule set). At the D_AM1, D_DFTB, and 165 

D_DFT/basis1 levels, dipole moments, polarizabilities, HOMO energies, and ionization potentials were 166 

obtained for the 104 PPCP. At the D_DFT/basis2 level, dipole moments, polarizabilities, HOMO 167 

energies, and ionization potentials were determined for 100 PPCP. For four molecules: azithromycin, 168 

erythromycin, oleandomycin and roxithromycin; there were missing values because local geometry 169 

optimizations did not converge. 170 

Results and Discussion 171 

Conformational Search 172 

For extended molecules presenting very soft modes, it is worth noticing that the basins of the PES 173 

often present multiple isomers very close in energy and differing by small geometrical atomic 174 

displacements (Figure 1a). The fine details of these wells are sensitive to the level of theory used to 175 

describe the PES. Therefore, it is not always an easy task to state if two structures optimized with two 176 

different levels of theory correspond to the same isomer: it requires some degree of arbitrariness in 177 

the selected procedures, which will be detailed in the following. 178 

First, the results from the strategies involving a DFTB/MD exploration, namely D_AM1, D_DFTB, 179 

D_DFT/basis1 and D_DFT/basis2, are discussed. The five lowest-energy isomers obtained with the 180 

D_DFTB strategy were labelled according to their energetic position (1 to 5) before further 181 

optimization at the AM1 or DFT levels of theory. If two strategies found the same isomer name (same 182 

number) for their lowest-energy isomers, we considered that they agree on the structure of the most 183 

stable isomer. This approach was called the identification procedure 1 (IdP1). The 104 molecules were 184 

classified within five groups labelled by 0, 1, 2, 3 and 4 indices as follows (these groups are exclusive, 185 

see Table SI): 186 

 If the lowest-energy isomer has the same name with D_AM1, D_DFTB, D_DFT/basis1 and 187 

D_DFT/basis2 strategies, the molecule is indexed 1; 188 

 If the lowest-energy isomer has the same name only for D_DFTB, D_DFT/basis1 and 189 

D_DFT/basis2 strategies, the molecule is indexed 2; 190 

 If the lowest-energy isomer has the same name for D_DFT/basis1 and D_DFT/basis2 strategies 191 

but not with the D_DFTB strategy, the molecule is indexed 3; 192 

 If the lowest-energy isomers at D_DFT/basis2 and D_DFT/basis1 strategies have different 193 

names, the molecule is indexed 4; 194 

 for four molecules, the D_DFT/basis2 local geometry optimizations did not converge and they 195 

were indexed 0. 196 

 197 
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Indices 0, 1, 2, 3 and 4 gathered 3.8 %, 27.9%, 15.4%, 33.7% and 19.2% of the molecule set, 198 

respectively. In other words, the four levels of theory led to the same most stable structure after local 199 

optimization of the same five isomers for only 27.9% of the molecule set (index 1). For 15.4% of the 200 

104 compounds, only the DFT like levels of theory, namely D_DFTB, D_DFT/basis1 and D_DFT/basis2 201 

gave the same lowest-energy isomer name (index 2). For 19.2 % of the set, changing the basis for the 202 

DFT/B3LYP calculations, led to different most stable isomers (index 4). These results point out the 203 

strong dependence of the identified most stable structures on the choice of the potential. The largest 204 

correspondence between the various computational methods was obtained for D_DFT/basis1 and 205 

D_DFT/basis2, which agreed for 80% of the molecule set (Table II). The agreement with the most 206 

accurate strategy, D_DFT/basis2, drops to less than 50% when the local optimization was performed 207 

at the DFTB or AM1 levels of theory (Table II), showing that working within the density functional 208 

theory framework brings a decisive and unquestionable improvement. D_DFTB and D_AM1 present 209 

similar abilities (between 44 and 50%) at recovering the D_DFT/basis2 or DFT/basis1 lowest-energy 210 

minima (Table II). It must be underlined that both parametrized strategies, D_DFTB and D_AM1, only 211 

agree for 49% of the molecule set (Table II). 212 

 213 

Table II. Percentages of isomer correspondences among the studied computational chemistry 214 

strategies. The percentages written in black correspond to when both methods found the same isomer 215 

number for their lowest-energy isomers. The percentages in red correspond to when both methods 216 

found the same total energy (total energy difference < 10-3 au) when the structure of the lowest-energy 217 

isomer of the most accurate method is reoptimized at the least accurate level of theory. 218 

  H_AM1 D_AM1 D_DFTB D_DFT/basis1 D_DFT/basis2 

H_AM1  36 35 28 32 

D_AM1   49/59 46/54 44/57 
D_DFTB    50/50 48/52 

D_DFT/basis1     80/90 
D_DFT/basis2      

 219 

The identification procedure IdP1 only applies to strategies involving the DFTB/MD exploration as a 220 

first step. Consequently, as the isomer structures obtained at the H_AM1 level are not products of the 221 

MD exploration, the isomer numbering is not comparable to the other methods (D_) arising from the 222 

MD exploration. To allow comparison with the H_AM1 strategy, we defined a second procedure to 223 

compare the most stable isomers found by the two strategies: the structure of the lowest-energy 224 

isomer of the most accurate method (M1) was reoptimized at the least accurate level of theory (M2) 225 

giving EtotM1. Then, we compared this energy to EtotM2, the total energy of the lowest-energy isomer 226 

at M2 level by calculating the total energy difference ΔEtot = EtotM1-EtotM2. If |ΔEtot| < 10-3 a.u., it 227 

was considered that both strategies found the same lowest-energy isomer. This new identification 228 

strategy, IdP2, was used to provide the red number in Table II. 229 
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When both ways to evaluate isomer correspondences (IdP1 and IdP2) were possible, IdP1 always gave 230 

percentages of correspondence lower than those of IdP2 although presenting the same trend. The 231 

largest difference is of 13 points (D_AM1 versus D_DFT/basis2), the smallest of 0 point (D_DFTB versus 232 

D_DFT/basis1). Going vertically down through a column the percentages increase a lot (variations up 233 

to 58%), whereas going horizontally left to right through a line, they remain mostly unchanged 234 

(|variations| ≤ 8%). 235 

H_AM1 had the lowest correspondence rates with any of the other methods, below 36%, meaning that 236 

the MD PES exploration has provided a tremendous improvement in the conformational search and in 237 

particular, the identification of the lowest-energy isomer (Table II). It was particularly striking to obtain 238 

the poor agreement of 36%, when comparing H_AM1 and D_AM1 because the two methods differed 239 

only by the MD exploration prescreening, and the final local optimization was performed at the same 240 

level (AM1). In addition, when going from H_AM1 to D_AM1, the agreement with D_DFT/basis1 241 

increases from 28 to 54 % (from 32 to 57 % for the agreement with D_DFT/basis2) (Table II). 242 

As a conclusion, the MD PES exploration is mandatory due to the multiple minima exhibited by the PES 243 

on such extended molecules. Moreover, facing the lack of experimental data for the molecules of the 244 

set under study, comparisons will be made with respect to the highest level of theory of this study, 245 

D_DFT/basis2. However, comparing to experimental results, Hait and Head-Gordon showed that B3LYP 246 

with aug-pc-4, a polarization consistent basis set, gave 6.98% and 6.24% root-mean-square relative 247 

errors in dipole moments and polarizabilities, respectively when CCSD(T) gave 3.95% and 1.62% [12,13]. 248 

Their databases contained 132 (polarizability) and 200 (dipole moment) relatively small molecules (6 249 

atoms max), while we deal with 104 compounds having between 16 and 134 atoms. Thus, our 250 

calculations at the DFT/basis2 level have already been very heavy given the size of the molecules. A 251 

reference level as CCSD(T) associated with a large basis set is simply not feasible for most of our 252 

molecules, again given their size. 253 

 254 

Effects of the Computational Chemistry Methods on the Values of 3D Quantum Descriptors 255 

As the influence of the computational method on the value of the 3D quantum descriptors was 256 

determined considering the D_DFT/basis2 strategy, only the matching molecules at both levels were 257 

considered (IdP1): 29 molecules for D_AM1 (index 1), 45 molecules for D_DFTB (indices 1 and 2) and 258 

80 molecules for D_DFT/basis1 (indices 1, 2 and 3). Each quantum descriptor computed at 259 

D_DFT/basis2 level was compared to the descriptor computed at either D_AM1 or D_DFTB or 260 

D_DFT/basis1 (Figure 2 and Table III). 261 

 262 

 263 

 264 

 265 
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 266 

Figure 2. For the following quantum descriptors: dipole moment (Debye), polarizability (Bohr3), HOMO 267 

energy (= -IPK) (eV) and ionization potential (eV); straight lines in red are confronting D_DFT/basis2 268 

results on the vertical axis to D_AM1, D_DFTB and D_DFT/basis1 results. On each graph, the equation, 269 

y=ax+b, of the linear regression line is written in red with the corresponding R2 regression coefficient, 270 

while the green straight line represents the first bisector: y=x. The set of molecules used to produce 271 

the graphs were: (i) index 1, for D_AM1 versus D_DFT/basis2 (29 molecules); (ii) indices 1 and 2 for 272 

D_DFTB versus D_DFT/basis2 (45 molecules); (iii) indices 1, 2 and 3 for D_DFT/basis1 versus 273 

D_DFT/basis2 (80 molecules). The indices are defined in Results and Discussion. 274 

 275 

 276 

 277 

 278 

 279 

 280 

 281 

 282 
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Table III. Relative absolute errors (%) (mean, median, minimum, and maximum) for four 3D quantum 283 

descriptors (dipole moment, polarizability, HOMO energy (= -IPK) and IP, ionization potential) 284 

calculated at D_AM1, D_DFTB and D_DFT/basis1 in comparison to the highest level of theory of this 285 

study, D_DFT/basis2. The set of molecules used to produce the numbers were: (i) index 1, for D_AM1 286 

versus D_DFT/basis2 (29 molecules); (ii) indices 1 and 2 for D_DFTB versus D_DFT/basis2 (45 287 

molecules); (iii) indices 1, 2 and 3 for D_DFT/basis1 versus D_DFT/basis2 (80 molecules). The indices 288 

are defined in Results and Discussion. 289 

  Dipole Moment Polarizability HOMO energy 
= -IPK 

Ionization Potential 
IP 

Mean D_AM1 15 27 45 7 
 D_DFTB 25 26 11 2 

 D_DFT/basis1 9 14 6 4 

Median D_AM1 11 27 45 7 
 D_DFTB 12 26 11 2 

 D_DFT/basis1 7 14 6 4 

Min D_AM1 1 21 39 2 
 D_DFTB 0 16 3 0 
 D_DFT/basis1 0 12 4 2 

Max D_AM1 48 36 53 15 
 D_DFTB 393 32 20 7 

 D_DFT/basis1 65 18 8 5 
 290 

For the dipole moment, D_DFT/basis2 vs. D_DFT/basis1 led to the best correlation coefficient (R2 = 291 

0.99). D_DFTB gives more dispersion (R2=0.92) than D_DFT/basis1, and D_AM1 led to a correlation 292 

coefficient (R2=0.89) lower than those of D_DFTB and D_DFT/basis1. At the same time, the slope the 293 

closest to one (a=0.979) was obtained with D_DFTB but the y-intercept the closest to zero was found 294 

for D_DFT/basis1 (b=0.030). Table III shows that, on average, the absolute values obtained for the 295 

dipole moment are better described at the D_DFT/basis1 level than at D_AM1 or D_DFTB levels. The 296 

average relative error is of 9% in D_DFT/basis1 compared to D_DFT/basis2 with a maximum of 65% 297 

and a minimum of 1%. 298 

Concerning polarizability, the three methods underestimated the values with respect to D_DFT/basis2 299 

as shown by the deviation from the first bisector. D_DFT/basis1 was the best method to reproduce 300 

polarizability (R2=0.99, a=1.130). D_DFTB and D_AM1 also performed well (R2=0.96 and 0.97 301 

respectively) but led to a greater underestimation than D_DFT/basis1. The closest y-intercept to zero 302 

(b=1.873) was obtained with D_AM1. Again, according to Table III, D_DFT/basis 1 is the best method 303 

to reproduce the absolute values of polarizability. With respect to D_DFT/basis2, the relative errors on 304 

this descriptor are only 14% in average with a maximum of 18% and a minimum of 12%. 305 

D_DFT/basis1 allowed the best determination of IPK (= - EHOMO) (R2=0.99) although slightly 306 

underestimating IPK comparing to D_DFT/basis2 (a=0.9661 and b=-0.5535<0). D_DFTB showed an 307 
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important dispersion (R2=0.44) while it slightly underestimated the IPK values. D_AM1 strongly 308 

overestimated IPK for all the molecules of this set with an intermediate dispersion (R2=0.76) (index 1, 309 

29 molecules). The average relative error made on IPK in D_DFT/basis1 compared to D_DFT/basis2 is 310 

only 6% (Table III), a value is clearly lower than those obtained for D_AM1 (45%) and D_DFTB (11%). 311 

For IP (computed with the indirect method), D_DFT/basis1 was the most efficient method (R2=0.99) 312 

leading to a small underestimation of the values. D_DFTB showed a larger dispersion (R2=0.71) with 313 

small over- or under- estimations while D_AM1 led to a comparable one (R2=0.77) and overestimated 314 

IP values. The lowest average relative error regarding the IP evaluation with respect to D_DFT/basis2 315 

(Table III) is obtained at the D_DFTB level (2%) but the performance of D_DFT/basis1 is almost 316 

equivalent (4%). However, with D_DFTB, the IP is either underestimated or overestimated, depending 317 

on the molecule, whereas with D_DFT/basis1, IP is systematically overestimated (Figure 2). 318 

Consequently, D_DFTB can hardly be used to predict IP trends on the opposite to D_DFT/basis1. 319 

Finally, D_DFT/basis1 was the preferred method to compute the quantum descriptors as it gave the 320 

best regression coefficients (Figure 2) for all quantum descriptors and the smallest average relative 321 

errors (Table III) for all quantum descriptors except IP, with respect to D_DFT/basis2. Moreover, the 322 

computations are more tractable with D_DFT/basis1 than with the highest computational level (for 323 

local quench plus frequency calculations between 2.5 and 13 times more CPU time depending on the 324 

molecules). Consequently, the D_DFT/basis1 strategy can be recommended to calculate 3D quantum 325 

descriptors. 326 

 327 

Moreover, for the molecules indexed 1, for which the four levels of theory led to the same most stable 328 

structure (27.9% of the molecule set), computing the lowest-energy isomer (local quench plus 329 

frequency calculation) at AM1 is between 91 and 1436 times faster than at DFT/basis1, and between 330 

1204 and 34 425 times faster than at DFT/basis2. Local quench plus frequency calculations for the 331 

lowest-energy isomer lasted between 2 and 73 seconds (~1 minute) at AM1, between 441 and 70 738 332 

seconds (~20 hours) at DFT/basis1, and between 5 178 and 1 401 534 seconds (~16 days) at DFT/basis2. 333 

Thus, a conformational search through molecular dynamics (D_) followed by local quenches at 334 

DFT/basis1 was the best compromise to reach accuracy and a reasonable computational cost. 335 

 336 

H_AM1 versus D_DFT/basis1 337 

After discussing separately, the effect of a global exploration and the choice of a potential to compute 338 

the quantum descriptors, we shine a light on the comparison between the previously implemented 339 

strategy in TyPol, namely H_AM1, and the new recommended strategy D_DFT/basis1. The quantum 340 

descriptor values determined by the H_AM1 strategy (presently in the TyPol database) and those 341 

calculated using D_DFT/basis1 strategy were compared (Figure S1) for the set of molecules with indices 342 

1, 2, 3 and 4 (100 molecules). D_DFT/basis1 and H_AM1 quantum descriptors are discussed with 343 

respect to those computed at the D_DFT/basis2 level (see Figure 3a and 3b, respectively). 344 
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 345 

Figure 3. For the following quantum descriptors: dipole moment (Debye), polarizability (Bohr3) and 346 

HOMO energy (= -IPK) (eV); straight lines in red are confronting D_DFT/basis2 results on the vertical 347 

axis to: (a) D_DFT/basis1 results; (b) H_AM1 results. On each graph, the equation, y=ax+b, of the linear 348 

regression line is written in red with the corresponding R2 regression coefficient, while the green 349 

straight line represents the first bisector: y=x. Only the set of molecules with indices 1, 2, 3 and 4 (100 350 

molecules) was used to produce the graphs. The indices are defined in Results and Discussion. 351 

 352 

For the dipole moment calculation, D_DFT/basis1 best matched D_DFT/basis2 (a=1.01, b=0.002) while 353 

less satisfactory results were obtained with H_AM1 (a=0.886, b=0.568) (Figure 3). In addition, the 354 

dispersion was significantly lower for D_DFT/basis2 vs. D_DFT/basis1 (R2 = 0.95 > R2 = 0.69 for 355 

D_DFT/basis2 vs. H_AM1) (Figure 3). Therefore, dipole moment values as listed in TyPol will be 356 

substantially improved using the D_DFT/basis1 strategy. As a set of 100 PPCP molecules was 357 

considered, the dispersion was more important than those observed on Figure 2 because only similar 358 

isomers according to IdP1 were selected (29 molecules D_DFT/basis2 vs. D_AM1; see Effects of the 359 

Computational Chemistry Methods on the Values of 3D Quantum Descriptors): R2 = 0.89 for 360 

D_DFT/basis2 vs. D_AM1, and R2 = 0.99 for D_DFT/basis2 vs. D_DFT/basis1. The differences originate 361 

from the molecular conformation, which was not the lowest in energy for many molecules using 362 

H_AM1 compared to D_AM1 (69 molecules D_DFT/basis2 vs. H_AM1 and 57 molecules D_DFT/basis2 363 

vs. D_AM1). It should be noted that the dipole moment strongly depends on the molecular 364 

conformation. Thus, a global exploration (D_) is needed to properly compute dipole moment values 365 

(see also Temperature effects). 366 

For the polarizability, the dispersions obtained with D_DFT/basis2 vs. H_AM1 and D_DFT/basis2 vs. 367 

D_DFT/basis1 were acceptable (R2=0.97 and 0.99, respectively) (Figure 3). Indeed, the polarization, 368 
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depending on the size of the electronic cloud, is quite unchanged when the conformation of the 369 

molecule varies. This explains the small dispersion observed with D_DFT/basis2 vs. H_AM1. However, 370 

as mentioned in the previous section, all methods significantly underestimate polarizabilities with 371 

respect to the D_DFT/basis2 level (Figure 3). There was a clear underestimation of the polarizabilities 372 

calculated at H_AM1 (a=1.356 and b=0.655) and to a lesser extent at D_DFT/basis1 (a=1.130 and b=-373 

6.707), compared to D_DFT/basis2 (Figure 3), which could be partly corrected by including atomic 374 

polarizabilities as implemented in the MOPAC package[8] but not in the Gaussian one. Up to now, TyPol 375 

quantum descriptors were calculated at the H_AM1 level of theory with the MOPAC package. 376 

Polarizabilities listed in TyPol are corrected and then accuratea. To compare polarizabilities computed 377 

with H_AM1 presently listed in TyPol to the other strategies, we calculated polarizabilities on H_AM1 378 

structures via Gaussian package. 379 

As explained in Materials and Methods, the ionization potential can be computed using the HOMO 380 

energy (= -IPK, Koopman’s Theorem). The AM1 potential led to a large overestimation of IPK (D_AM1 381 

on Figure 2). A huge overestimation of IPK was observed for H_AM1 (a=0.667 and b=-0.204, R2=0.60, 382 

Figure 3b) but an improved agreement was found for D_DFT/basis2 vs. D_DFT/basis1 (a=0.922 and b=-383 

0.797, Figure 3a) leading also to a correlation coefficient close to one: R2=0.916 (Figure 3). Indeed, the 384 

HOMO energy depends on the conformation of the molecule, so the dispersion is larger with H_AM1 385 

considering the whole set of molecules (R2=0.60 D_DFT/basis2 vs. H_AM1) than considering only 29 386 

molecules (R2=0.76 D_DFT/basis2 vs. D_AM1, Figure 2). Finally, the HOMO energy computed with AM1 387 

could not be used to compute properly the ionization potential. We suggest replacing IPK computed at 388 

the AM1 level by D_DFT/basis1 IPK. Moreover, for a better accuracy of IP values, the indirect method 389 

using the cation and the neutral species energies is recommended (see discussion below, Results and 390 

Discussion). 391 

As a conclusion, the H_AM1 strategy could lead to a reasonable calculation of polarizabilities if atomic 392 

corrections were added. However, the determination of accurate dipole moments and IPK implies to 393 

make a more comprehensive conformational search through molecular dynamics (D_), and to use a 394 

higher level of theory for the local optimizations such as DFT/basis1 or DFT/basis2. 395 

In addition, to evidence the potential to be chosen for 3D quantum molecular descriptor calculation, 396 

the absolute errors of the three different levels D_AM1, D_DFTB and D_DFT/basis1 were compared 397 

with respect to the D_DFT/basis2 values for each quantum descriptors under investigation in this work 398 

(Figure 4). 399 

                                                           
aMOPAC[51] manual specifies that “Polarizability volumes calculated using NDDO methods are too low by about 
30%.” “In 2004, the polarizability volume reported was modified by the use of additive corrections.” “For 
normal organic compounds, the average error in polarizability should be less than 2%.” 
http://openmopac.net/index.html  
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 400 

Figure 4. For the following quantum descriptors: dipole moment (Debye), polarizability (Bohr3), HOMO 401 

energy (eV) and IP, ionization potential (eV), absolute error between D_AM1, D_DFTB and 402 

D_DFT/basis1 results and D_DFT/basis2 ones are plotted using boxplots. Only the set of molecules with 403 

indices 1, 2, 3 and 4 (100 molecules) was used to produce the graphs. Kruskal-Wallis and Dunnett test 404 

were performed to evaluate the difference between the methods (*: p-value< 0.001, hypothesis: the 405 

methods are significantly different). The indices are defined in Results and Discussion. 406 

 407 

For the dipole moment, polarizability and HOMO energy, D_DFT/basis1 gave lower errors than D_AM1 408 

and D_DFTB. Moreover, those errors were statistically different (* in Figure 4). For the ionization 409 

potential, all levels gave errors statistically different from each other but D_DFTB gives the lowest 410 

mean absolute errors compared to D_DFT/basis2. However, one must keep in mind that, as seen in 411 

the previous section, D_DFT/basis1 has the advantage to systematically overestimate the ionization 412 

potential values compared to D_DFT/basis2, while respecting the IP ordering of the various molecules, 413 

and could be used in a QSAR scheme where it is mandatory to respect the trends.  On the opposite, 414 

D_DFTB over- or underestimates those values depending on the molecule, preventing its use to 415 

correlate IP to macroscopic properties.  416 

Moreover, for the molecules indexed 1, for which the four levels of theory led to the same most stable 417 

structure (27.9% of the molecule set), computing the lowest-energy isomer (local quench plus 418 

frequency calculation) at AM1 is between 91 and 1436 times faster than at DFT/basis1, and between 419 

1204 and 34 425 times faster than at DFT/basis2. Local quench plus frequency calculations for the 420 
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lowest-energy isomer lasted between 2 and 73 seconds (~1 minute) at AM1, between 441 and 70 738 421 

seconds (~20 hours) at DFT/basis1, and between 5 178 and 1 401 534 seconds (~16 days) at 422 

DFT/basis2. Thus, a conformational search through molecular dynamics (D_) followed by local 423 

quenches at DFT/basis1 was the best compromise to reach accuracy and a reasonable computational 424 

cost considering the large size of the database. 425 

 426 

Temperature Effects 427 

 428 

As said in Materials and Methods – Global Exploration, for each compound of the dataset, the five 429 

lowest-energy conformers were selected for local optimizations at each level of theory of this study, 430 

in particular at D_DFT/basis1. In this section, we highlight the temperature effects at D_DFT/basis1 431 

level on the three following quantum descriptors: dipole moment, polarizability, and HOMO energy. 432 

First, for 17 compounds, only one isomer was found. For 19 compounds only two isomers were found; 433 

for 16 compounds, 3 isomers were localized and for 25, 4. Finally, 5 isomers of low energies were found 434 

for 27 compounds. Among these 27 compounds, the fifth lowest-energy isomer abundance using a 435 

Boltzmann distribution at room temperature is at most 6.3% (diphenhydramine) and for 24 of these 436 

compounds, this abundance is less than 2%. 437 

For the 104 dataset compounds, the polarizability and HOMO energy computed from the lowest-438 

energy isomer differ by less than 2% from those resulting from Boltzmann weighted values obtained 439 

with the five lowest-energy structures. It can therefore be concluded that taking the Boltzmann 440 

distribution into account is not essential in the calculation of these two quantum descriptors. 441 

However, if we now look at the values of the dipole moment, the effects of temperature are quite 442 

different (see Figure 5). 443 

 444 

 445 

 446 
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 447 

Figure 5. Percentage of errors by evaluating the dipole moment values using the lowest-energy isomer 448 

value instead of the Boltzmann averaged value (5 lowest-energy isomers) at room temperature at the 449 

D_DFT/basis1 level. 450 

 451 

The difference between the lowest-energy value and the Boltzmann averaged value is less than 5 % 452 

for 66 compounds, between 5 and 10% for 15 compounds and between 10 and20% for 14 compounds. 453 

Finally, for 9 compounds, the error is greater than 20%: tetrabromobisphenolA (69%), omeprazole 454 

(44%), estriol (36%), gemfibrozil (34%), 17-ethinylestradiol (30%), risperidone (29%), metoprolol (26%), 455 

oxytetracycline (24%), mestranol (23%), and olaquindox (20%). TetrabromobisphenolA has two 456 

isomers with Boltzmann equiprobabilities (54% and 46%) but as already mentioned (Quantum 457 

Descriptor Analysis), the lowest-energy isomer of tetrabromobisphenolA has a small μ = 0.533 D (at 458 

D_DFT/basis1), whereas the second lowest-energy isomer exhibits a larger μ value 3.108 D (at 459 

D_DFT/basis1). Consequently, the Boltzmann weighted dipole moment value of 1.719 D is far from 460 

both isomer values. For the 8 other compounds, the observation is to a lesser extent the same: a wide 461 

range of variation of the dipole moment for all the conformers combined with non-negligible 462 

Boltzmann weights. 463 

To correctly evaluate the dipole moment, Boltzmann distribution must be considered but to get correct 464 

polarizabilities and HOMO energies, the values obtained for the lowest-energy conformer is sufficient. 465 

As quantum descriptor calculations were performed for the five lowest-energy isomers, we suggest 466 

adding the Boltzmann average dipole moment in the Typol database. 467 

 468 

Quantum Descriptor Analysis 469 

 470 

In this section, we seek to show that the information carried by the 3D quantum descriptors is not 471 

already contained in descriptors simpler to calculate, which do not require the determination of the 472 

lowest-energy conformer followed by quantum chemistry calculations. Thus, the distribution functions 473 
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of the 3D quantum descriptors computed with the D_DFT/basis2 strategy, are discussed regarding 474 

non-quantum descriptors, i.e., descriptive or based on 2D or 3D structural formula (Table SII). For 475 

example, we will look for a link: i) between the dipole moment and the number of heteroatoms (nHet) 476 

of the molecule; ii) between the polarizability and the molecular weight (MW); iii) between the 477 

ionization potential and the number of heteroatoms (nHet) or the number of aromatic bonds (nAB). 478 

The dipole moment (μ) results from the vectorial linear combination of the bond and lone pair μ 479 

present in the molecule. The greater the difference in the electronegativity between two atoms, the 480 

more the bond is polarized and the greater the bond dipole moment (bond μ). Consequently, the 481 

molecules containing heteroatoms, N, O, S, F, Cl, Br and I, which are more electronegative than C or H, 482 

will have more polarized bonds and thus, non-zero bond μ.  However, dipole moment values are not 483 

completely determined by the number of heteroatoms in a molecule because of the tremendous 484 

influence of the molecule conformation in the result of the vectorial linear combination of bond μ to 485 

obtain the μ of the molecule. In the molecule set, μ goes from 0.253 D for estriol to 11.825 D for 486 

norfloxacin (Figure 6). 487 

 488 

Figure 6. Distribution functions of the following quantum descriptors calculated at the D_DFT/basis2 489 

level of theory: dipole moment (Debye), polarizability (Bohr3), HOMO energy (= -IPK) (eV) and IP, 490 

ionization potential (eV). Only the set of molecules with indices 1, 2, 3 and 4 (100 molecules) was used 491 

to produce the graphs. The indices are defined in Results and Discussion. 492 

 493 

Fifty-seven molecules have a μ between 0.253 D and 3.8 D, the mean value for the dipole moment. 494 

The µ values are not normally distributed (Figure 6). Consequently, in Table III, mean and median do 495 

not correspond. Only seven molecules have a μ > 8.0 D and are part of the fluoroquinolones having 496 

the 2D formula shown on Figure 7 and differing by R1 and R2 groups. Members of the fluoroquinolones 497 

contain at least one fluorine atom, which is the most electronegative element of the whole periodic 498 

classification. 499 
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 500 

Figure 7. Fluoroquinolones 2D formula: the members of this family differ by R1 and R2 groups. 501 

 502 

The great polarity of the C—F bond can partly explain the large values of μ in the fluoroquinolones. As 503 

expected, μ values are not completely determined by the number of heteroatoms (nHet), for instance, 504 

the lowest-energy isomer of tetrabromobisphenolA has a small μ of 0.757 D although it has four 505 

bromine and two oxygen atoms whereas the second lowest-energy isomer of this compound exhibits 506 

a larger μ value of 3.236 D as mentioned previously in Temperature Effects. 507 

The polarizability (α) is the aptitude of the electronic cloud of a molecule to deform when an electric 508 

field is applied. It depends on the size of the electronic cloud and thus, on the number of electrons 509 

within the molecule. For an atom 𝑋𝑍
𝐴 , the number of electrons Z and the atomic weight A are clearly 510 

related. Consequently, for a molecule, α increases with the molecular weight (MW). Looking at the 511 

distribution function for α on Figure 6, ten molecules belong to the eleven lowest α values (< 135 Bohr3) 512 

and the eleven lowest MW values (< 185 g/mol) and have less than twenty-seven atoms. At the same 513 

time, the twelve highest MW values (> 414 g/mol) share nine molecules with the twelve highest α 514 

values (> 319 Bohr3). Both extreme values are found for the same molecules for α and MW: the minima 515 

are for ortho-cresol (108.15 g/mol, 86.44 Bohr3); the maxima for iopromide (791.15 g/mol, 375.11 516 

Bohr3). Moreover, looking at the molecules around the average values (𝑎𝑣) of MW and α (𝑎𝑣 ±
1

3
𝜎, σ 517 

the standard deviation), twenty-three are in common over thirty-two molecules for α and over thirty-518 

one for MW. In fact, MW and α distribution functions are quasi stackable. Moreover, as polarizabilities 519 

are little influenced by the conformation of the molecules, polarizabilities were represented versus 520 

MW for the whole set of molecules (except index 0) (Figure 8). 521 
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 522 

Figure 8. Polarizabilities (Bohr3) at D_DFT/basis2 level versus molecular weight (MW) values (g/mol). 523 

The equation, y=ax+b, of the linear regression line is written in red with the corresponding R2 524 

regression coefficient, while the green straight line represents the first bisector: y=x. Only the set of 525 

molecules with indices 1, 2, 3 and 4 (100 molecules) was used to produce the graphs. The indices are 526 

defined in Results and Discussion. 527 

 528 

Linear regression leads to the following equation: α (Bohr3) = 0.566 MW (g/mol) + 53.42; with an 529 

acceptable dispersion (R2 = 0.834). Two points were clearly more distant to the straight line: iopromide 530 

(791.15 g/mol, 375.11 Bohr3) and tetrabromobisphenolA (543.87 g/mol, 280.17 Bohr3). Iopromide is 531 

the only molecule of the set containing iodine and tetrabromobisphenolA, the only molecule 532 

containing bromine (Figure 8). Iodine and bromine are the heaviest elements present in the set of 533 

molecules under study. The greatest dispersion for both molecules could be explained by the quality 534 

of the basis set used for these two elements: only basis1 was used as basis2 was not available ( are 535 

then underestimated). Moreover, we did not consider scalar relativistic effects with core 536 

pseudopotentials, which could be harmful for these two elements. Anyway, knowing MW for a PPCP 537 

molecule, we can predict its polarizability value with an acceptable accuracy (R2 = 0.834) via the 538 

equation: α (Bohr3) = 0.566 MW (g/mol) + 53.42. 539 

For the ionization potential, we have two objectives here. The first one is to relate this potential to the 540 

descriptors nAB and nHet and to highlight that the information carried by the ionization potential is 541 

not already contained in these two descriptors. The second objective is to show that the calculation of 542 

the ionization potential is improved if the electronic reorganization is considered: IP versus IPK (see 543 

Materials and Methods). The ionization potential is the minimal energy to extract one electron from 544 

a molecule. If IP differs from IPK, IP gives a more reliable value as it takes electronic reorganization into 545 
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account. Figure 9 presents IP as a function of IPK both computed at D_DFT/basis2 (a) or D_DFT/basis1 546 

(b). For both linear regression lines, the slopes are close to one: a=1.03 (D_DFT/basis2) and a=1.021 547 

(D_DFT/basis1). 548 

 549 

Figure 9. At both D_DFT/basis2 (a) and D_DFT/basis1 (b) levels, straight lines in red are confronting IP 550 

(eV) values on the vertical axis to IPK (= - HOMO energy) (eV) values. On both graphs, the equation, 551 

y=ax+b, of the linear regression line is written in red with the corresponding R2 regression coefficient, 552 

while the green straight line represents the first bisector: y=x. (a) Only the set of molecules with indices 553 

1, 2, 3 and 4 (100 molecules) was used to produce the graphs. (b) All the set of molecules was used to 554 

produce the graphs: indices 0, 1, 2, 3 and 4 (104 molecules). The indices are defined in Results and 555 

Discussion. 556 

 557 

Thus, the lines are almost parallel to the first bisector. IPK underestimates IP and shifting IPK by b=1.379 558 

eV (D_DFT/basis2) and by b=1.507 eV (D_DFT/basis1) gives almost the value of the corresponding IP. 559 

Moreover, the dispersion observed (R2=0.796, 0.77 respectively) indicates that the electronic 560 

reorganization depends on the molecule under interest. The indirect method is then recommended to 561 

obtain more accurate IP values. On Figure 6, both IP and HOMO energy distribution functions are 562 

represented. Looking at the molecules around the average values (𝑎𝑣) of IP and HOMO energy (𝑎𝑣 ±563 
1

3
𝜎, σ the standard deviation), 15 are in common over 36 molecules for IP, and over 25 for HOMO 564 

energy. For the extreme values: (i) eight molecules belong to both the ten lowest HOMO energies and 565 

the ten highest IP values; (ii) seven molecules belong to both the ten highest HOMO energies and the 566 

ten lowest IP values. Overall, as similar patterns are observable for IP and IPK (=-HOMO energy) 567 

distribution functions, we will thus focus on the description of IP. For the 100 molecules under study, 568 

IP values are going from 6.855 eV (tamoxifen) to 9.237 eV (metrodinazole) with an average value of 569 

7.832 eV (median = 7.810 eV). The 36 molecules with IP values around the average, have IP values 570 

between 7.693 (pyrimethamine) and 7.979 eV (iopromide). When the electron is extracted from the 571 

HOMO, this orbital is either a heteroatom lone-pair or a π orbital. For instance, among the largest IP, 572 

the electron is extracted from the π HOMO for aspirin, and from the carbonyl oxygen lone pair for 573 

acetophenone. For metrodinazole, the HOMO of the neutral molecule is the hydroxyl oxygen lone pair 574 

whereas, in the cation, the depopulated orbital is a π orbital delocalized over the imidazole cycle. The 575 
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electronic reorganization is evidently important between the neutral and cationic forms, in this case, 576 

Koopman’s Theorem fails. Finally, we tried to relate IP and descriptive descriptors as nHet (number of 577 

heteroatoms) or nAB (number of aromatic bonds) but no clear correlation was found. 578 

In the following, we intend to connect quantum descriptors with non-quantum descriptors using a 579 

partial least square regression (PLS) to evidence the possible correlations between both types of 580 

descriptors. A PLS was performed considering the non-quantum descriptors not depending on the 581 

conformation of the molecule as the predictive variables (X) (see Table SII) and the quantum 582 

descriptors as predicted variables (Y). The non-quantum descriptors were obtained from the Dragon 583 

software while the quantum descriptors used were calculated with the D_DFT/basis2 method. The 584 

number of PLS components was four. Components 1 and 2 were the ones collecting the highest 585 

explained variance. For the predictive variables (X), the explained variance on component 1 was 26.5% 586 

and 10.4% for component 2. For the predicted variables (Y), the explained variance was 11.1% and 587 

10.9% on components 1 and 2, respectively. The explained variance is low on both components for the 588 

predictive and the predicted variables. Thus, the information provided by quantum descriptors is 589 

poorly described by non-quantum descriptors. This fact constitutes a first proof of the importance of 590 

considering quantum descriptors in the TyPol database to best describe the molecules and hope to 591 

predict their environmental behavior. 592 

On Figure 10, the correlation circle showed that the weight of the component 1 came from the 593 

molecular weight (MW), the number of hydrogen acceptor (nHAcc), the number of heteroatoms 594 

(nHet), the number of hydrogen donor (nHDon) and the number of hydroxyl groups (nOH). The weight 595 

of component 2 is carried by the number of aromatic bonds (nAB) and the number of benzene type 596 

rings (nBnz) (Figure 10). The Cluster Image Map (CIM) was also constructed from the PLS regression 597 

data. The CIM allows to obtain the correlation level between the predictive and the predicted variables 598 

according to the set of variables. 599 

 600 

 601 
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 602 

Figure 10. Circles of correlations of the non-quantum molecular descriptors (in blue) and ‘3D quantum 603 

descriptors’ (in orange) variables on the two main components of the PLS (PLS1 and PLS2). HOMO 604 

stands for HOMO energy, IP for ionization potential, Polari for polarization and DipMom for dipole 605 

moment. See Table SII for the description of the non-quantum molecular descriptors. 606 

 607 

The HOMO energy was the least explained quantum descriptor (Figure 10). The IP seems to be 608 

negatively correlated with both descriptors nAB and nBnz according to the CIM of component 2. IP is 609 

also negatively correlated to nHAcc, nHet and MW on the component 1 (Figure 10). The dipole 610 

moment, which tends to the lower left part of the correlation circle, is positively correlated with the 611 

amine number (nAmin) and ketone number (nKeton), and negatively correlated with nAB and nBnz. 612 

Finally, polarizability is the quantum descriptor that correlates best with the descriptors (Figure 10). 613 

This quantum descriptor is related to MW, nHAcc, nHet, Total Ring Size (TRS) and the number of 614 

rotatable bonds (RBN). 615 

The strongest correlations established by the PLS between quantum and non-quantum descriptors had 616 

all been anticipated but remain very weak given the explained variances. Therefore, the information 617 

carried by the quantum descriptors (dipole moment, polarizability, HOMO energy and ionization 618 

potential) is not redundant with that carried by the non-quantum descriptive, 2D and 3D descriptors. 619 

The intrinsic properties of the molecule are better described when the quantum descriptors are 620 

included. 621 

 622 

Conclusion 623 

As a conclusion, the importance of doing a comprehensive conformational search through molecular 624 

dynamics was characterized. Investigating the quality and efficiency of various levels of theory (AM1, 625 
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DFTB and DFT) for computing quantum descriptors, namely dipole moment, polarizability, ionization 626 

potential and HOMO energy, we propose a strategy, the so-called D_DFT/basis1, as a good 627 

compromise between accuracy and computational cost. It consists in an exhaustive MD 628 

conformational search followed by a local optimization at B3LYP/6-31G*. Moreover, we showed that 629 

dipole moment values are not completely determined by the number of heteroatoms in a molecule, 630 

indeed, the conformation of the molecule has a tremendous influence on the dipole moment value. 631 

On the contrary, knowing the molecular weight of a molecule allows to predict with an acceptable 632 

accuracy its polarizability. At the same time, ionization potential values are not correlated with the 633 

number of heteroatoms or the number of aromatic bonds in the compound. Finally, information bared 634 

by quantum descriptors is not redundant with the one bared only by the non-quantum descriptive, 2D 635 

and 3D descriptors. Therefore, quantum descriptors (dipole moment, polarizability, HOMO energy, 636 

ionization potential) should be considered into TyPol database. At present, the quantum descriptors 637 

calculated at the D_DFT/basis1 level are being calculated for all 500 organic contaminants in the TyPol 638 

database. We showed that averaging the quantum descriptors values obtained for the lowest-energy 639 

isomers with a Boltzmann distribution provides values very close to those of the most stable isomer 640 

for the polarizabilities and the HOMO energies. On the opposite, the dipole moments can be strongly 641 

affected by the introduction of higher energy isomers contributions. Once the database has been 642 

updated, we will be able to test the consequences of these improvements on the classifications already 643 

published,[52] but above all to consider new and more ambitious projects. However, the improvement 644 

of the base is continuous. New descriptors can be integrated describing, for example, solvent effects: 645 

a first step towards quantum descriptors directly linked to the behavior of a contaminant in the 646 

environment. 647 

 648 

Supporting Information Summary 649 

More details on the computational chemistry methods are given for DFT and DFTB (1.). Similarly, 650 
further information about ionization potential calculations is presented (2.c.). The molecule set of 104 651 
PPCP is separated into 5 groups further details about those groups: indices, exclusivity, percentages; 652 
are given in Table SI. The list of the 20 non-quantum descriptors from Dragon software used in this 653 
work are gathered in Table SII. A comparison of 3 quantum-based 3D descriptors calculated at 654 
D_DFT/basis1 (chosen strategy) and at H_AM1 (presently in the TyPol database) is represented on 655 
Figure S1. An archive file is provided including the most stable isomer structures obtained with the 656 
chosen strategy, D_DFT/basis1. 657 
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For 104 pharmaceuticals and personal care products (PPCP), four quantum-based 3D descriptors 757 

(electric dipole moment, polarizability, HOMO energy and ionization potential) were calculated using 758 

different computational chemistry strategies combining a molecular dynamics global exploration with 759 

local quenches within different frameworks (semi-empirical, DFTB, DFT). 760 


