

Hydrogen retention in ITER's Diagnostic First Wall submitted to cyclic thermomechanical loadings

Shihao Bian, Jonathan Mougenot, Yann Charles, Xavier Bonnin, Tom

Wauters, Richard Pitts

▶ To cite this version:

Shihao Bian, Jonathan Mougenot, Yann Charles, Xavier Bonnin, Tom Wauters, et al.. Hydrogen retention in ITER's Diagnostic First Wall submitted to cyclic thermomechanical loadings. Procedia Structural Integrity, 2022, 42, pp.172-179. 10.1016/j.prostr.2022.12.021. hal-03920111

HAL Id: hal-03920111 https://hal.science/hal-03920111

Submitted on 3 Jan 2023 $\,$

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Available online at www.sciencedirect.com

ScienceDirect

Structural Integrity Procedia 00 (2019) 000-000

www.elsevier.com/locate/procedia

23 European Conference on Fracture - ECF23

Hydrogen retention in ITER's Diagnostic First Wall submitted to cyclic thermomechanical loadings

Shihao Bian^a*, Jonathan Mougenot^a, Yann Charles^a, Xavier Bonnin^b, Tom Wauters^b, Richard Pitts^b

^aUniversité Sorbonne Paris Nord, Laboratoire des Sciences des Procédés et des Matériaux, LSPM, CNRS, UPR 3407, F - 93430, Villetaneuse, France

^bITER Organization, Route de Vinon-sur-Verdon, CS 90046, 13067, St. Paul Lez Durance Cedex, France

Abstract

A simplified ITER's Diagnostic First Wall is modelled in Abaqus Finite Element software to evaluate hydrogen retention after cyclic plasma exposure, and especially, the impact of mechanical fields. Using several User Subroutines, a strongly coupled chemo-thermo-mechanical problem is set and solved. Hydrogen field results with or without mechanical fields are compared, during the different loading phases, leading to the conclusion that, for this simplified problem, mechanical fields have no important impact on hydrogen retention.

© 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/) Peer-review under responsibility of 23 European Conference on Fracture - ECF23 *Keywords:* Hydrogen; Diffusion; Trapping; Thermomechanic; Finite Element; Abaqus

* Corresponding author. Tel: +33-1-49-40-36-25 *E-mail address:* shihao.bian@lspm.cnrs.fr

2452-3216 © 2020 The Authors. Published by Elsevier B.V.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/) Peer-review under responsibility of 23 European Conference on Fracture - ECF23

1. Introduction

ITER (International Thermonuclear Experimental Reactor) is an international nuclear fusion research and engineering project aimed at replicating the fusion processes of the Sun to produce energy on Earth. The largest nuclear fusion reactor in the world, the ITER tokamak, is under construction.

ITER's Diagnostic First Wall (DFW) structure (Loesser et al., 2017) is composed of structural elements intended to support plasma diagnostic devices and protective panels of the vacuum chamber. These are made of 316L steel, and are subjected to cycles of both heat and particle fluxes (including tritium, a radioactive isotope of hydrogen). These particles may diffuse in the structure and get trapped by material defects (vacancies, dislocations, ...), assisted by thermo-mechanical fields.

Fig. 1. (a) ITER DFW location (reproduced from (Loesser et al., 2017)); (b) DFW (reproduced from (Giacomin et al., 2015))

Estimating the amount of tritium contained in DFW is mandatory for safety issues and component reliability (e.g., to avoid any Hydrogen Embrittlement-related phenomenon), especially to assess tritium permeation fluxes towards the DFW's cooling pipes, linked to a pollution risk.

e been performed on this component (Khodak et al., 2017; Smith et al., sis has yet been provided related to tritium diffusion and trapping in the al and mechanical fields (Benannoune et al., 2020).

aqus Finite Element software, tritium transport through a very simplified

re equations are presented, as well as the modelling strategy. Results are

nomenciature

- C_L diffusive hydrogen concentration
- C_T trapped hydrogen concentration
- N_L interstitial sites density
- N_T trap density
- θ_L interstitial site occupancy
- θ_T trap site occupancy
- ρ density
- C_p specific heat
- T temperature

- A elastic limit
- *B* hardening constant
- *C* strain rate constant
- *n* hardening exponent
- *m* thermal softening exponent
- ε_p equivalent plastic strain
- σ_{Y} yield stress
- T_{room} room temperature
- T_{melt} melting temperature

λ	thermal conductivity	R_p	particle implantation depth
$\boldsymbol{\varepsilon}_{th}$	thermal strain tensor	φ_{imp}	implantation flux of hydrogen
α	thermal expansion coefficient	D_L	hydrogen diffusion coefficient
Ι	identity tensor	C_{L0}	hydrogen boundary condition

2. Constitutive equations

Several physical phenomena are involved in the problem resolution: hydrogen transport and trapping, mechanical behavior, and heat transfer, all being coupled. In the following, hydrogen is considered instead of tritium.

2.1. Hydrogen transport

It is assumed that the total hydrogen concentration can be split into a diffusive part, C_L , and a trapped one, C_T . If several kinds of traps are involved, $C_T = \sum_i C_{T,i}$, *i* being the trap kind number. These concentrations are related to trap densities $N_{T,i}$ (or interstitial site density N_L) by the occupancy $\theta_{T,i} \in [0,1]$ (denoted θ_L for diffusive hydrogen):

$$\begin{cases} C_L = N_L \theta_L \\ C_T = \sum_i C_{T,i} = \sum_i N_{T,i} \theta_{T,i} \end{cases}$$
(1)

Coupling mechanically-assisted hydrogen flux φ_L (based on Fick's law) (Bockris et al., 1971; Li et al., 1966) and mass conservation yields the diffusion and trapping equation (Sofronis and McMeeking, 1989)

$$\frac{\partial C_L}{\partial t} + \sum_i \frac{\partial C_{T,i}}{\partial t} = \boldsymbol{\nabla} \cdot \left(D_L \boldsymbol{\nabla} C_L + D_L C_L \frac{V_H}{RT} \boldsymbol{\nabla} P_H \right)$$
(2)

where *R* is the ideal gas constant, *T* the absolute temperature, D_L the hydrogen diffusion coefficient, and V_H the partial molar volume of hydrogen. $P_H = -1/3 \operatorname{tr}(\boldsymbol{\sigma})$ is the hydrostatic stress, where $\boldsymbol{\sigma}$ is the stress tensor. The temporal evolution of the trapped hydrogen concentration (for each trap) can be computed using the so-called McNabb and Foster equation(McNabb and Foster, 1963), for $C_L \ll N_L$ (or $\theta_L \ll 1$)

$$\frac{\partial C_{T,i}}{\partial t} = \frac{k_i}{N_L} C_L \left(N_{T,i} - C_{T,i} \right) - p_i C_{T,i} \tag{3}$$

where p_i and k_i are the detrapping and trapping reaction rates.

2.2. Heat transfer

The heat transfer equation is

$$\rho C_p \frac{\partial T}{\partial t} = \boldsymbol{\nabla}. \left(\lambda \boldsymbol{\nabla} T \right) \tag{4}$$

where ρ is the density, C_p the specific heat and λ the thermal conductivity. Any temperature variation induces a thermal expansion tensor such as

$$\boldsymbol{\varepsilon}_{th} = \boldsymbol{\alpha}(T - T_{init})\boldsymbol{I}$$

$$\boldsymbol{\varepsilon}_{th} = \boldsymbol{\alpha}(T - T_{init})\boldsymbol{I}$$

$$(5)$$

where T_{init} is the initial temperature, and I is the identity tensor.

2.3. Mechanical behavior

Isotropic thermo-elasticity is considered, based on Young modulus E and Poisson ratio ν . Isotropic hardening is assumed, based on a Johnson-Cook law (G. R. Johnson and Cook, 1983)

$$\sigma_{Y} \stackrel{=}{=} \begin{pmatrix} A + B \varepsilon_{p}^{n} \\ A + B \varepsilon_{p}^{n} \end{pmatrix} \left(\left(1 - \left(\frac{T - T_{room}}{T_{room}} \right)^{n} \right) \right) \right)$$
(6)

where σ_Y represents the yield stress and ε_p the equivalent plastic strain. T_{room} and T_{melt} represent respectively the room and melting temperatures (assumed to be equal to 300 and 1356 K respectively). Last, A, B, n and m are material parameters.

2.4. Material parameters

All parameters are extracted from literature. N_L and D_L can be found in (Penzhorn et al., 2012). One trap has been considered, with a trapping energy equal to 0.7 eV (Guillermain, 2016), and a density such that $\log N_T = 25.26 - 2.33e^{-5.5\varepsilon_p}$ site/m³ (adapted from (Kumnick and H. H. Johnson, 1980) to account for an initial dislocation density equal to 10^{12} - 10^{14} m/m³). Heat transfer parameters have been taken from (Umbrello et al., 2007), with an temperature-independent expansion coefficient (Sayman et al., 2009). Last, thermomechanical parameters have been extracted from (Chandrasekaran et al., 2005; Umbrello et al., 2007).

Fig. 2 Implementation scheme of a strongly coupled thermo-chemo-mechanical problem in Abaqus software.

3. Implementation

The chemo-thermo-mechanical system described in the three paragraphs is resolved in a fully coupled way (strong coupling) using the Abaqus Finite Element software (Simulia, 2011), based on the 'coupled temp-displacement' procedure and user subroutines (see (Charles et al., 2017; Vasikaran et al., 2020) for details):

- UMAT subroutine: thermomechanical behavior (section 2.3);
- UMATHT subroutine: hydrogen transport and trapping (section 2.1);
- UEL subroutine: heat transfer (equation (4));
- UEXPAN subroutine: thermal expansion (equation (5)).

The interactions of the different subroutines are depicted on Fig. 2.

4. Model definition

The geometry of the DFW is presented in Fig. 3(a). For the sake of simplicity, only a part of this geometry will be modelled (indicated by a red rectangle). Each cylindrical conduit represents a tube for the cooling fluid.

Fig. 3. (a) DFW and the part modelled (in a red rectangle), (b) mesh and dimension, (c) applied boundary conditions. (d) Loading scenario (temperature & hydrogen)

The part of interest is modelled in 2D and meshed with just under 4000 fully integrated linear elements (Fig. 3b). Symmetry boundary conditions are imposed on the lower and left edges (Fig. 3c), and plane strain is assumed. A water flow circulating in the cooling tubes induces a constant pressure on the DFW of 4 MPa. On the plasma-exposed face, heat and hydrogen loading cycles are imposed, while on the upper surface and on the cooling tubes, an instantaneous hydrogen draining is assumed ($C_L = 0$).

The scenario chosen is illustrated in Fig. 3d. It consists of 160 loading cycles of 3 days each (Phase 1), and an annealing cycle of 8 months (Phase 2), at constant temperature and without plasma exposure. Each 3-day cycle corresponds to the temporal conception over 2 days of 12 daily places of 400 seconds. This cycle is repeated T(K) Phase 1 Phase 2 for 16 months (160 cycles). Hy n C_{L0} on the exposure surface, such as in (Hodille et al 503K 513K 975 513K $\frac{C_L}{L} = 1$ $C_{L,0}$ (baking) $C_{L0} = \frac{R_p \varphi_{imp}}{D_L} = 1.46 \times$ (7)2340s 31209 373*K* where φ_{imp} represents the hy plantation depth (set to 13 nm (Benannoune et al., 202 343K 5. Results 343K Three calculation Texpo Twater Hydrogen → time with only the pressure 3 days 16 months exerted by the water -24 months

The diffusion fields at the end of Phase 1 are given in Fig. 4 for the three cases. It can be observed that, while the cooling pipes-induced pressure increases the level of C_L , at least near the exposed surface, the depth of C_L 's penetration seems not affected by mechanical fields. This impact of the stress field on C_L levels is linked to the hydrostatic pressure

Shihao Bian/ Structural Integrity Procedia 00 (2019) 000-000

effect on hydrogen flux, which affects the maximal C_L level. To detail that effect, in Fig. 5 are plotted the P_H distributions when only the cooling pipes pressure is considered (Fig. 5a) and with all the mechanical fields, at the higher and lower exposition temperatures (Fig. 5b and Fig. 5c respectively).

When only the water pressure is accounted for, it can be seen that the DFW section is slightly under dilatation (The section is slightly under dilatation (The section is slightly under dilatation), we discussed increase we think in a section is slightly under dilatation (The section is slightly under dilatation), we discussed increase we think in a section is slightly under dilatation (The section is slightly under dilatation), we discussed increase we different the section is slightly under dilatation (The section is slightly under dilatation), a calculation considering only the pressure for the back of the back of the section is slightly under dilatation in the section is slightly under dilatation is slightly under dilatation is slightly a calculation in the section is slightly in the section is slightly as the section is slightly under dilatation is slightly under dilatation is slightly a calculated by the back of the back of the section is slightly as the section is slice as the section is slightly as the section is slightly as

Fig. 5. Distribution of P_H at the end of phase 1's last cycle (160 cycles) considering (a) water pressure only and (b-c) all thermomechanical fields at higher and lower exposition temperature T_{expo} respectively.

The impact of mechanical fields on hydrogen retention can be investigated by introducing its total amount per unit thickness (for a 2D configuration) $Q_{tot} = \int (C_L + C_T) dV$ in the DFW section; Q_{tot} evolution with time is plotted in Fig. 7a for the three cases.

The impact of the cooling pipes pressure is here very clear: at each cycle, Q_{tot} increases continuously, exhibiting cycles corresponding to the plasma loading ones. When the DFW section is exposed to both hydrogen and temperature, Q_{tot} increases. Hydrogen amount decreases as soon as these boundary conditions are modified, during phase 2 (no

6 6 Fig. 5. Distribution of P_H at the end of phase 1's last cycle (160 cycles) considering (a) water pressure only and (b-c) all thermomechanical fields at higher and lower exposition temperature T_{expo} respectively.

The impact of mechanical fields on hydrogen retention can be investigated by introducing its total amount $Q_{tot} = \int (C_L + C_T) dV$ in the DFW section; $Q_{tot} = 0$ and $Q_{tot} = 0$ for the other cases.

The impact of the cooling pipes pressure is here very clear: at each cycle, Q_{tot} increases continuously, exhibiting cycles corresponding the loading ones. When the DFW section is exposed to both hydrogen and temperature, Q_{tot} more characteristic contractions are imparted to the process of the pr

Fig. 6. (#Filemper(h) Employ the file the field with the field with the set the set the set the field with the

Fig. 6. (a) Temperature and (b) thermal strain fields and (c) equivalent plastic strain at the end of Phase 1's last cycle, at the higher T_{expo} value. When thermal the strain fields and (c) equivalent plastic strain field to the strain of the strain field of t

the cooling pipes (imposed temperature of 513K). This facilitates hydrogen diffusion and detrapping. In a stress-free configuration, H transport is only driven by traps and C_L gradients, while mechanical fields (and especially compression) hardly affect the global desorption process (Fig. 7c).

7

6. Conclusion

It has been shown that the mechanical fields, induced by both plane strain, symmetry assumptions, and thermal expansion, have a slight effect on hydrogen fields during the different loading phases of the DFW section, and thus, on hydrogen retention. It has also been seen that boundary conditions induce plastic strain localization in their vicinity, leading to a needed interrogation on their relevance; this localization, however, has no influence on the tritium retention or the desorption flux in the DFW section.

Acknowledgements

ITER is the Nuclear Facility INB no. 174. The views and opinions expressed herein do not necessarily reflect those of the ITER Organization. This publication is provided for scientific purposes only. Its contents should not be considered as commitments from the ITER Organization as a nuclear operator in the frame of the licensing process.

This work has been performed under the auspices of the ITER Scientist Fellow Network and received funding from an ITER Organization Implementing Agreement (No. IO/IA/20/4300002270).

References

- Benannoune, S., Charles, Y., Mougenot, J., Gaspérini, M., De Temmerman, G., 2020. Multidimensional finite-element simulations of the diffusion and trapping of hydrogen in plasma-facing components including thermal expansion. Phys Scr T171, 014011. doi:10.1088/1402-4896/ab4335
- Bockris, J.O., Beck, W., Genshaw, M.A., Subramanyan, P.K., Williams, F.S., 1971. The effect of stress on the chemical potential of hydrogen in iron and steel 19, 1209–1218. doi:10.1016/0001-6160(71)90054-X
- Chandrasekaran, H., M'Saoubi, R., Chazal, H., 2005. Modelling of material flow stress in chip formation process from orthogonal milling and split hopkinson bar tests. Mach Sci Technol 9, 131–145.
- Charles, Y., Nguyen, T.H., Gaspérini, M., 2017. Comparison of hydrogen transport through pre-deformed synthetic polycrystals and homogeneous samples by finite element analysis. Int J Hydrog Energy 42, 20336–20350. doi:10.1016/j.jipydene.2017.06.016
- Giacomin, T., Delhom, D., Drevon, J.M., Guirao, J., Iglesias, S., Jourdan, T., Loesser, D., Maquet, P., Ordieres, J., Pak, S., Proust, M., Smith, M., Udintsev, V.S., Vacas, C., Walsh, M.J., Zhai, Y., 2015. Engineering requirements due to the ESP/ESPN regulation apply at the port plug for ITER diagnostic system. Fusion Eng Des 98-99, 1488–1491.

Guillermain, D., 2016. ITER Report T2YEND.

- Hodille, E.A., Fernandez, N., Piazza, Z.A., Ajmalghan, M., Ferro, Y., 2018. Hydrogen supersaturated layers in H/D plasma-loaded tungsten: A global model based on thermodynamics, kinetics and density functional theory data. Phys Rev Mater 2, 093802.
- Johnson, G.R., Cook, W.H., 1983. A constitutive model and data for materials subjected to large strains, high strain rates, and high temperatures, in: American Defense Preparedness Association, Koninklijk Instituut van Ingenieurs (Netherlands) (Eds.). Presented at the 7th International Symposium on Ballistics, the Hague, the Netherlands, pp. 541–547.
- Khodak, A., Loesser, G., Zhai, Y., Udintsev, V., Klabacha, J., Wang, W., Johnson, D., Feder, R., 2017. Numerical Analysis of Coolant Flow and Heat Transfer in ITER Diagnostic First Wall. Fusion Sci Technol. doi:10.13182/FST14-955
- Kumnick, A.J., Johnson, H.H., 1980. Deep trapping states for hydrogen in deformed iron. Acta Metall 28, 33–39. doi:10.1016/0001-6160(80)90038-3
- Li, J.C.M., Oriani, R.A., Darken, L.S., 1966. The Thermodynamics of Stressed Solids. Z Phys Chem 49, 271–290. doi:10.1524/zpch.1966.49.3 5.271
- Loesser, G.D., Pitcher, C.S., Feder, R., Johnson, D., Pak, S., Walsh, M., Zhai, Y., 2017. ITER Diagnostic First Wall. Fusion Sci Technol. doi:10.13182/FST12-558
- McNabb, A., Foster, P.K., 1963. A new analysis of the diffusion of hydrogen in iron and ferritic steels. Trans Metall Soc AIME 227, 618-627.
- Penzhorn, R.D., Torikai, Y., Watanabe, K., Matsuyama, M., Perevezentsev, A., 2012. On the fate of tritium in thermally treated stainless steel type 316L. J Nucl Mater 429, 346–352. doi:10.1016/j.jnucmat.2012.03.012
- Sayman, O., Sen, F., Celik, E., Arman, Y., 2009. Thermal stress analysis of Wc–Co/Cr–Ni multilayer coatings on 316L steel substrate during cooling process. Mater Des 30, 770–774. doi:10.1016/j.matdes.2008.06.004
- Simulia, 2011. Abaqus Analysis User's Manual. Dassault System.
- Smith, M., Zhai, Y., Loesser, G., Wang, W., Udintsev, V., Giacomin, T., Khodak, A., Johnson, D., Feder, R., Klabacha, J., 2017. Analysis of ITER Upper Port Diagnostic First Walls. Fusion Sci Technol. doi:10.13182/FST14-990
- Sofronis, P., McMeeking, R.M., 1989. Numerical analysis of hydrogen transport near a blunting crack tip. J Mech Phys Solids 37, 317–350. doi:10.1016/0022-5096(89)90002-1
- Umbrello, D., M'Saoubi, R., Outeiro, J.C., 2007. The influence of Johnson–Cook material constants on finite element simulation of machining of AISI 316L steel. Int J Mach Tool Manu 47, 462–470. doi:10.1016/j.ijmachtools.2006.06.006
- Vasikaran, E., Charles, Y., Gilormini, P., 2020. Implementation of a reaction-diffusion process in the Abaqus finite element software. Mech Indus 21, 508. doi:10.1051/meca/2020010