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Abstract  
 

Background and purpose: To investigate the performance of head-and-neck (HN) organs-at-risk (OAR) 

automatic segmentation (AS) using four atlas-based (ABAS) and two deep learning (DL) solutions. 

Material and Methods: All patients underwent iodine contrast-enhanced planning CT. Fourteen OAR were 

manually delineated. DL.1 and DL.2 solutions were trained with 63 mono-centric patients and >1000 multi-

centric patients, respectively. Ten and 15 patients with varied anatomies were selected for the atlas library 

and for testing, respectively. The evaluation was based on geometric indices (DICE coefficient and 95th 

percentile-Hausdorff Distance (HD95%)), time needed for manual corrections and clinical dosimetric 

endpoints obtained using automated treatment planning.  

Results: Both DICE and HD95% results indicated that DL algorithms generally performed better compared 

with ABAS algorithms for automatic segmentation of HN OAR. However, the hybrid-ABAS (ABAS.3) 

algorithm sometimes provided the highest agreement to the reference contours compared with the 2 DL. 

Compared with DL.2 and ABAS.3, DL.1 contours were the fastest to correct. For the 3 solutions, the 

differences in dose distributions obtained using AS contours and AS+manually corrected contours were 

not statistically significant. High dose differences could be observed when OAR contours were at short 

distances to the targets. However, this was not always interrelated. 

Conclusion: DL methods generally showed higher delineation accuracy compared with ABAS methods for 

AS segmentation of HN OAR. Most ABAS contours had high conformity to the reference but were more 

time consuming than DL algorithms, especially when considering the computing time and the time spent 

on manual corrections.  
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Introduction 

Manual contouring of organs-at-risk (OAR) is a time-consuming task that suffers from large intra- and inter-

observer variations, especially for head-and-neck (HN) cancer patients, because of the complex anatomy 

and the number of OAR [1–4]. Contour variations may also result in important dosimetric differences [5]. 

Therefore, automatic segmentation (AS) methods are strongly sought after to increase contouring 

accuracy, improve the inter-observer variability, reduce delineation time, and facilitate treatment plan 

adaptation [6, 7]. 

Among the different methods, atlas-based segmentation (ABAS) uses one or more representative patients 

with carefully delineated OAR as reference atlas library for contouring new patients [8]. Those methods 

are widely spread because they require minimum of resources, but they do have several drawbacks: atlas 

selection strategy (single vs multi-atlas) [8]; performance plateau reached after 10-20 atlases [9]; poor 

performance for small and low contrast soft tissue structures [10]; increased computational time with each 

added atlas [11]. 

Data from multiple atlases (multi-ABAS) can be combined with the help of a fusion algorithm in order to 

reduce the risk of anatomical variability between the atlas and the new patient [12]. Additionally, hybrid 

approaches are developed to combine multi-ABAS with machine learning features [13–17]. Despite a 

higher computational time, multi-ABAS studies have consistently demonstrated improved conformity to 

the reference contours over the single atlas methods, with consequent reduction of the post-editing time 

[18, 19]. By adding image intensity information, other studies have shown improved accuracy for model-

based methods particularly on large organs such as brainstem and spinal cord but lacking precision for tiny 

structures like cochlea [7], [13–15]. 

Another method issued from artificial intelligence (AI) research and challenging ABAS is the use of deep 

learning (DL) techniques [6], [7], [20–26]. DL contouring typically implies the training of a convolutional 

neural network (CNN) directly from a set of annotated reference data. Although the training phase 

requires extensive GPU computing power and work in data gathering and curation, once trained, the 

segmentation is very fast. Different network architectures are continuously investigated to reach the best 

predictions for multiple organ segmentation. While some models are accurate on most volumes, they may 

have difficulties in segmenting small volumes such as optical nerves or cochlea, or organs with low image 

contrast such as constrictor muscles. Comparison between different DL models is rather difficult due to 

differences in the data sets used. From the few studies analyzing the performance of different DL models 
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trained and tested on the same data sets, Chen et al. examined one multi-ABAS and three similar DL 

models following U-Net-like network architectures with distinctive differences in the configuration and 

loss functions [25]. While nnU-net [27] is a self-configuring network based on the training dataset, 

AnatomyNet [28] follows a defined scheme with squeeze-and-excitation residual blocks for better feature 

representation and a combination of two loss functions (DICE and Focal Loss). By using Ua-Net [29] for the 

HN model, that first performs an OAR detection module and then considers image features only within 

the detected regions, WBNet was superior to the other methods for most organs. Apart from the in-house 

developed models, several commercially available solutions have reported good agreement with 

physicians’ manual contours and considerable time savings on the delineation task [23, 24], [30–32]. 

Most studies showed that DL methods outperformed ABAS methods [23–25]. However, there is still room 

for improvement in the AS of computed tomography (CT) images for small organs or with limited image 

contrast such as optic nerves, optic chiasm or cochlea [10], [20], [25], [32]. 

Generally, AS methods comparisons are based on geometric indices calculations only (DICE; Hausdorff 

distance (HD)) to compare the volume overlap between the reference and the automatically generated 

contour [33]. However, it is highly recommended to perform additionally a dosimetric evaluation by 

generating treatment plans with the AS contours [7], [34–36]. Nevertheless, this involves extensive time 

in generating treatment plans, and may also introduce inter or intra-planner variability [37, 38]. 

In this context, the objective of the present study was to evaluate the performances of 4 atlas-based 

algorithms and 2 DL solutions for the AS of 14 HN OAR. Three multi-ABAS algorithms and one DL solution 

are commercially available while one hybrid-ABAS algorithm and one center-specific DL solution were 

investigated for the first time on HN CT images. All six solutions were evaluated based on geometrical 

accuracy and computational time. The time spent for correcting the contours was measured for the most 

accurate three AS methods and an auto-planning solution based on a priori multi-criterial optimization 

(MCO) algorithm was used for the first time to derive doses from AS contours with and without manual 

correction. 

Materials and methods 

Patient data 

Seventy-eight non-operated HN cancer patients treated with radiation therapy between 2018 and 2021 

and who underwent iodine contrast-enhanced planning CT, were selected for this study, which was 

approved by the hospital ethics committee. Fourteen OAR (i.e. parotids, submandibular glands, oral cavity, 
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constrictor muscle, larynx, esophagus, trachea, thyroid, eyes, optical nerves, cochlea, brainstem, spinal 

cord, mandible) were manually delineated by a single expert physician (>30 years of experience), on 

512x512 and 2mm-tick CT slices following HN delineation guidelines [3]. An overview of the study design 

is provided in Fig. 1. For the multi-ABAS approach, 10 patients from this database were selected based on 

their body mass index (BMI) (from 18.9 to 30.7) to form a heterogeneous library of atlases with various 

representative patient anatomies. The same 10 atlases were used to create a library in MIM-Maestro (MIM 

Software; Cleveland, USA) and in research version of the ADMIRE software (ADMIREv3.41, Elekta AB; 

Stockholm, Sweden). A mono-centric DL.1 model was trained using 63 patients with the same set of OAR 

excluding optical nerves and cochlea. Conversely, DL.2 model was trained on a large database of patients 

(>1000) collected from multiple centers including ours (Fig. 1). Fifteen patients having a BMI ranging from 

12.1 to 34.7 were reserved for the testing phase. Characteristics of the test cohort are detailed in Table 1.  

Multi-ABAS and DL methodologies 

Three multi-ABAS solutions integrated in the research version of Monaco treatment planning system (TPS) 

[39] (Monaco 5.59.11 with ADMIREv.3.41) and another one available in MIM-Maestro (MIM Software Inc., 

Cleveland, OH) were investigated: 

- ABAS.1: Simultaneous Truth And Performance Level Estimation (STAPLE) consists in estimating the 

optimal combination of the atlases segmentations by weighting each segmentation upon the 

estimated performance level based on expectation-maximization algorithm [12]. 

- ABAS.2: Patch Fusion (PF) algorithm computes the final probability of a voxel to belong to a 

structure as a weighted average of the atlases’ contours based on voxel intensity information [40]. 

- ABAS.3: Random Forest (RF) is a supervised learning algorithm which constructs a voxel classifier 

for each structure using the registered atlases as training data [16].  

- ABAS.4: Majority voting (MIM) [41].  

For the ADMIRE software, out of the 10 atlases used, a reference patient was selected for each test patient 

based on the closest BMI of the atlas and the underlying patient. No individual atlas selection was required 

for MIM, but a general template scan (patient having an anatomy close to the mean BMI of the atlas 

cohort) was registered with all the atlases in the library. 

Two DL models were investigated: 

- DL.1: ADMIRE-DL (ADMIREv.3.41, Elekta AB, Stockholm) trained with N=63 patients from one 

center. It is a fully connected deep convolutional neural network (DCNN) with 3D U-net 

architecture and short-range residual connections developed from the ResUnet3D network [42]. 

While the encoding part is responsible for learning multi-scale multi-dimensional image features 
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in multiple levels, the combination of long and short-range connections allows the decoding part 

to preserve the high-resolution image features and produce a label map corresponding to the 

input image size [42, 43].  

- DL.2: ART-plan Annotate (Therapanacea, France) trained on a large database with N>1000 patients 

obtained from several clinical sites. The model uses anatomy preserving DL ensemble networks 

that first detects organs through DL-based registration to a collection of whole-body annotated 

volumes. Then, the delineation of each anatomical structure is performed through an original 

combination of data-driven and decisional artificial intelligence that enforces anatomical 

consistency [30, 31]. 

Geometric evaluation of auto-segmentation solutions 

To quantitatively evaluate the segmentation results, we used two geometric indices: volumetric DICE and 

95thpercentile-Hausdorff distance (HD95%) [33]. DICE is a measure of the volumetric overlap between the 

ground truth contour (A) and the predicted segmentation (B), leading to a value between 0 (no overlap) 

and 1 (perfect overlap): 

𝐷𝐼𝐶𝐸 =  2𝑥|𝐴∩𝐵|
|𝐴|+|𝐵|   

However, DICE is limited to the pixels overlap without considering the shape differences. Therefore, a 

second metric was used to indicate the magnitude of mislocalization of the prediction. The HD is a 

boundary-based metric that measures the surface distances between the predicted contour and the 

ground truth segmentation. To eliminate the possible outliers, we used HD95%: 

𝐻𝐷95% = 𝑚𝑎𝑥𝑘95%[𝑑(𝐴, 𝐵), 𝑑(𝐵, 𝐴)] 

𝑑(𝐴, 𝐵) = max
𝑎∈𝐴

min
𝑏∈𝐵

‖𝑎 −𝑏‖ 

Where d(A,B) is the directed HD and A and B are the set of non-zero pixels in the images. HD metric has 

its own limitation that does not focus on the object itself therefore does not punish a prediction with a 

large hole inside or with a spotted pattern within the contour [44]. For the elongated organs (i.e., 

esophagus, trachea, constrictor muscle and spinal cord) the results were calculated only on the slices 

where both contours were present to avoid situations where the reference ground truth was missing. 

Time needed for manual corrections 
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Three of the automatic solutions (ABAS.3, DL.1 and DL.2) were clinically reviewed and corrected by a 

dosimetrist and validated by a skilled physician on Monaco contouring workstation following the regular 

clinical routine. The time spent on correcting and validating each structure was recorded independently. 

Dosimetric evaluation – automatic treatment plans 

For each patient, and for ABAS.3, DL.1 and DL.2 solutions, 2 different plans were generated: one using the 

AS contours and another one using AS+manually corrected contours. The differences in dose distributions 

were then evaluated on the corrected contours. In total, 90 VMAT treatment plans were calculated with 

mCycle auto-planning solution (Monaco 5.59.11, Elekta AB, Stockholm). The software uses a lexicographic 

MCO which has been extensively described before [45]. All plans were performed using two 360° arcs. A 

simultaneous integrated boost technique was used for delivering 70Gy to the planned target volume (PTV) 

associated to the primary tumor and 54.25Gy to the PTV associated to prophylactic nodal target, in 35 

fractions of 2Gy. Clinically relevant dosimetric endpoints for target volumes (V95%) and OAR (Dmean, D2%, 

D5%) were considered upon the clinical protocol and according to the recommendations of the French 

Society of Radiation Oncology [46]. 

Statistical analysis  

Per organ and per algorithm, statistical differences between methods were assessed using the non-

parametric Kruskal-Wallis test. Subsequently, to detect between which pairs of algorithms the differences 

were significant, the post-hoc Dunn’s test with Bonferroni correction was applied. Similarly, the 

differences between radiotherapy doses derived from AS contours with or without corrections were tested 

for statistical significance. P-values <0.05 were considered significant. The statistical analysis was 

performed using the libraries (scipy 1.6 and scikit-posthocs 0.7) in Python 3.8.  

Results 
Computational time per patient was in average 10.3±1.6min, 10.5±0.6min and 12.1±0.6min for ABAS.1, 

ABAS.2 and ABAS.3, respectively. For ABAS.4, it was under 1min while the atlas registration took 

approximately 6min for a library of 10 atlases. DL.1 and DL.2 provided a solution in less than 1min and 

2min, respectively. Per algorithm and per OAR, DICE scores and HD95% distance results of all solutions are 

summarized in Fig. 2 and Fig. 3, respectively. 

Overall, both DICE and HD95% results indicated that DL algorithms were more accurate than ABAS 

algorithms for AS of HN OAR. The Kruskal-Wallis statistical test identified significant differences between 

the 6 AS methods. However, the post-hoc paired test showed no statistical difference in terms of DICE and 

HD95% between the DL.1 and DL.2 and between ABAS.3 and the 2 DL solutions. With 11 common OAR, DL.1 
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had overall better contour overlap compared with DL.2 with a DICE average of 0.85±0.32 vs 0.82±0.06 and 

11 vs 9 OAR having DICEs ≥0.8. Per organ differences however did not reach a statistically significant level.  

Regarding ABAS solutions, ADMIRE ABAS algorithms had overall better DICEs and HD95% than ABAS.4, 

which had the lowest DICE results for 7 out of 14 OAR. While all the ADMIRE solutions had DICE results 

≥0.8 for 7 OAR, ABAS.3 contours were closer to the reference contours. Per OAR statistics revealed 

however no significant differences in DICE and HD95% between ABAS.2 and ABAS.3 and, compared with 

ABAS.1, both ABAS.2 and ABAS.3 performed significantly better for the eyes (p<0.02). Moreover, 

compared with ABAS.4, ABAS.3 performed significantly better for parotids (p<0.003), mandible (p<0.01) 

and submandibular glands (p<0.02). Note that ABAS.3 did not segment optic nerves and cochlea owing the 

algorithm’s limitation for such small structures. 

Compared with DL.1, ABAS.3 had significantly better DICE for the mandible (p=0.02). Compared with DL.2, 

ABAS.3 had significantly better DICE for the eyes (p=0.01) and for the mandible (p=0.01). On the opposite, 

DL.2 had significantly better DICE for the esophagus (p=0.04) and significantly better HD95% for the thyroid 

(p=0.03). Finally, the superiority of DL. 1 over ABAS.3 was not statistically demonstrated. 

An example of AS contours from ABAS.3, DL.1 and DL.2 in contrast with the physicians’ manual delineations 

is provided in Fig. 4.  

Ten of the OAR obtained with ABAS.3, DL.1 and DL.2 (best solutions graded based on the geometric 

accuracy results) were thereafter carefully corrected by a dosimetrist and checked by a physician. Manual 

corrections were done organ by organ on all the CT slices. The targets were never displayed, to not 

influence the observers. The manual correction time per patient was in average 36min34sec, 17min54sec 

and 26min57sec for ABAS.3, DL.1, and DL.2, respectively. The contours generated by DL.1, were the fastest 

to correct. In general, manual corrections of eyes, spinal cord and brainstem were <2min for the 3 solutions 

while for oral cavity and esophagus correction times were >3min depending on the AS algorithm used (Fig. 

5). 

After manual corrections, the DICE scores of all OAR were improved, except for the oral cavity on all 3 

solutions, and for the spinal cord on DL.2 solution (Table 3), thus highlighting inter-observer variability in 

contouring the oral cavity between the expert physician providing the reference contours, and the other 

physician performing manual corrections. At the same time, the HD95% did not decrease consistently for 

all the structures after the manual corrections, confirming, once more, the variability in manual delineation 

between observers. While performing correction on the DL.1 contours did not significantly improve DICE 
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and HD95% results, for DL.2 contours, results were significantly improved for the trachea (p<0.001). For 

ABAS.3, the improvements were statistically significant for esophagus (p<0.001) and thyroid (p<0.001). 

The differences in doses on corrected OAR, between treatment plans generated using the AS contours, 

with or without manual corrections are presented in Table 4. No statistically significant difference was 

found between doses for the 3 solutions. For each patient, a minimum distance between each OAR and 

the targets was calculated. Among OAR having a maximum dose constraint, the mandible had the largest 

dose difference when it overlapped with the PTV. For the brainstem and spinal cord, the largest dose 

differences occurred when the OAR was located at a larger distance to the PTV (>30mm). For the parotids 

and for the submandibular glands, maximum differences occurred when the OAR overlapped with the PTV. 

For the oral cavity, for the eyes and for the esophagus, the maximum differences were generally observed 

at distances<20 mm from the PTV. However, for the esophagus, there were some outliers at larger 

distances from the target (>60mm) for DL.2. For the trachea, only in one patient case, and for DL.2, a large 

difference was observed but at a high distance from the target (80mm). Some illustrations of dose 

distributions with regard to corrected/non-corrected contours and PTV position are available in Fig. 1 of 

the Supplementary Material. 

Discussion  

We showed in this study that, overall, both DICE and HD95% results indicated that DL algorithms performed 

better compared with the ABAS algorithms for automatic segmentation of HN OAR. Concerning the 2 DL 

solutions, out of 12 contours, DL.1 outperformed DL.2 solution in terms of DICE for 7 OAR, with, however, 

no statistically significant differences. Contrarily to DL.2, DL.1 was not tailored to automatically contour 

optic nerves and cochlea. Nevertheless, the correction of the AS contour of small organs generally takes 

more time than starting from scratch [47, 48] .Conversely, DL.2 was not trained to contour the constrictor 

muscle. However, the DL.1 results were highly inaccurate, showing the difficulty to get satisfying results 

for such organs with high anatomical variations and low image contrast. Therefore, consistent with the 

literature, OAR with good CT contrast were better segmented by ABAS and DL solutions compared with 

small and/or thin OAR such as optic nerves or cochlea, and OAR which do not have well-defined boundaries 

like constrictor muscles [23–25], [28], [49, 50]. 

Before this study, DL.1 and DL.2 algorithms had not been explored on HN site. The DL.1 algorithm was 

trained exclusively with manual delineations coming from one expert physician, providing uniformity of 

the training data. Ideally, there should be a consortium for the contour delineation between physicians 
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working in a radiotherapy department, which should rely on internationally published guidelines [3]. In 

this study, with a limited training dataset (N=63), we showed that a model can achieve consistent results 

for most of the structures in HN. Hence, with a minimum of work, centers can adapt a model to their 

standard delineation’s practices. Similarly, high accuracy segmentation results were obtained with the 

DeepVoxNet and another CNN with networks trained on N=70 and N=50 samples, respectively [47], [51]. 

Other studies demonstrated that organs’ pattern depends on the training sample size [52] and yet similar 

results can be obtained when training on a small set of carefully curated data compared with a larger set 

of more easily available routine-level clinical annotations [53]. On the opposite, DL.2 solution was trained 

with more than 1000 samples per organ collected from multiple centers and can segment 50 OAR and 

target volumes in HN. Despite this, highly accurate contours were obtained in this study. Proving that a 

multi-center study approach includes combination of manual contours from different physicians (easier to 

obtain), DL.2 results presented good conformity to new datasets and comparable performance to a model 

train with data from a single center. 

We also showed that, using a carefully selected atlas of patients, ADMIRE multi-ABAS methods achieved 

good agreement with manual contours (DICE≥0.8) [8], [18] and, for some organs, similar or better 

agreement with the reference contours compared with DL models (i.e. oral cavity, mandible, eyes). 

Conversely, ABAS.4 had overall inferior performance. Among multi-ABAS algorithms, ABAS.3, which had 

not been explored before, produced the best results and had significantly better DICEs than DL.1 and DL.2 

solutions for mandible and eyes, respectively. Therefore, with only 10 carefully selected atlases composed 

of non-operated patients with a wide range of BMI, ABAS.3 algorithm may serve as an AS solution easy to 

implement clinically. Note that using an enlarged library of 20 patients (data not shown) did not 

considerably improved the performances of ABAS.3 but drastically increased the computation time, 

demonstrating that the performance plateau phenomena still exists with this new ABAS method. 

Many studies have reported the performances of different algorithms for HN OAR segmentation on CT 

images (Table 1 of supplementary data). All studies underlined limited performance on small organs, and 

the importance of both manual contours’ quality, and training data size to obtain accurate segmentations 

and clinically acceptable treatment plans. It was also mentioned that, for noncritical OAR (i.e. far from 

PTV), manual corrections could be omitted [34]. Moreover, AS has shown to reduce inter-observer 

variability when observers performed manual editing on the automatically generated contours, which 

improves the consistency of manual delineation [5]. 
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According to the recently published guidelines, together with geometric accuracy, studies should ideally 

report benefit in time saving and clinical acceptability in terms of patient dose evaluation, for assessing 

the benefit of an automatic segmentation method [33]. Both tasks involve exhaustive labor and are not 

systematically conducted first because of the time requested to be completed, and secondly because of 

the intra-observer factor, which could introduce a bias in the observations. In this study, both tasks were 

completed for the three best algorithms, and an auto-planning solution was used to perform treatment 

plans based on AS contours with or without corrections. This was a strength of this study, and an efficient 

way to isolate the consequences of contour variations on the radiotherapy doses and reveal more precisely 

which contours require greater attention [34, 35]. Among other methods, some authors proposed to 

superpose the original clinical plan onto the automatically delineated contours [5], [23], to use automated 

planning strategies such as knowledge-based planning (KBP) [34, 35] or to conserve the original beam 

configuration parameters [36]. To our knowledge, this is the first time that an a priori MCO auto-planning 

solution is used for contour evaluation. 

We observed in our study that, for most structures, the correction time for DL.1 and DL.2 solutions was 

<1min (e.g., eyes, brainstem, submandibular glands) and <2min (e.g., mandible, parotid glands) 

demonstrating significant time saving versus starting from scratch, particularly for the dosimetrist, whose 

work represented, depending on the AS solution, from 60% to 70% of the total manual editing time. 

Correcting DL.1 contours was 18min and 9min faster compared with ABAS.3 and DL.2 contours, 

respectively. Generally, the oral cavity and esophagus took more time to be corrected. For the oral cavity, 

this may be correlated with the inter-observer variability since the DICE results were consistently smaller 

for all 3 solutions after the manual corrections. We finally observed that all dose-volume constraints and 

target objectives were respected in all plans and that manual corrections of the AS contours had no 

statistically significant impact on the dose distributions. The ∆Dmean for the investigated structures were 

<0.9Gy. Generally, the range of the ∆D2% were the highest for the spinal cord and for the brainstem for all 

the solutions, which may be an important factor in physician’s decision when validating the treatment 

plan. Similar to other studies, for most organs, the difference in the delivered dose was not significant [34], 

[36]. The dose constraints and objectives were respected for all the plans automatically generated and 

thus, manual correction could be omitted. 

Considering the organ position relative to the PTV, high dose differences could be observed when the OAR 

contour overlapped with the target volumes or was located in their short vicinity. However, this was not 

always interrelated. This was true for the parotid glands, but for the spinal cord and brainstem, the highest 

ΔD2% were located at a larger distance between the OAR and the PTV (>35mm and >15mm relative to PTV 
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70Gy and PTV 54.25Gy, respectively). At the same time, at short distances from the PTV (<5mm), the ΔD2% 

in brainstem and spinal cord was <2Gy. One possible reason is that, closer to targets, the AS contours were 

highly accurate. Although spinal cord and brainstem presented generally good agreement with the manual 

reference contour, the manual corrections which were nevertheless fast, proved clinically meaningful in 

certain patients. 

Note that this study was deliberately focused on a center-specific approach. The goal was to investigate 

which of the 6 AS solutions available in our department were more accurate and required less resources 

in terms of patient data and manpower. In particular, the objective was to evaluate whether, with a 

relatively small database of homogeneous contoured patients, a center could easily implement an AS 

solution conformed to its own contouring practices, which, nevertheless, should respect international 

contouring guidelines. At the same time, we evaluated a solution that was trained on a multi-centric 

database of contours. Note that the reference contours used in this study belonged to only one expert 

physician, and also, the manual corrections were done by only one dosimetrist and one physician, both 

trained by the reference expert. Although the study could benefit from multiple observers involved in 

manual corrections of the contours, this was, nevertheless, reproducing the clinical workflow of our 

department. Moreover, the relatively small cohort of the test patients was composed of heterogeneous 

patients’ anatomies and tumor locations, in order to challenge the different AS solutions. Including more 

patients will definitively strengthen the study, in particular, the statistical analysis. Finally, these findings 

suggest that, acknowledging their strengths and limitations, the investigated hybrid ABAS and DL methods 

improved our clinical workflow. 

Conclusions 
DL methods generally showed higher delineation accuracy compared with ABAS methods for AS 

segmentation of HN OAR. We showed that a DL model can provide accurate contours with a limited 

training dataset, provided that data comes from a single hospital, and if possible, only one expert physician 

is involved. Most ABAS contours had high conformity to the reference but were more time consuming than 

DL algorithms, especially when considering the computing time and the time spent on manual corrections. 

Finally, even if manual checks and modifications must not be ignored, all AS solutions allow reducing inter-

observer variability when physicians perform manual editing of the AS contours. 

Acknowledgements 

Elekta AB is acknowledged for having involved the CLB team in this research project. We are grateful to 

Nicolette O’Connell, employed by Elekta, who had a key role in the development of our ADMIRE deep 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



12 
 

learning model. This work was performed within the framework of the SIRIC LYriCAN Grant INCa-INSERM-

DGOS-12563, and the LABEX PRIMES(ANR-11-LABX-0063) of Université de Lyon, within the program 

Investissements d’Avenir (ANR-11-IDEX-0007) operated by the ANR. We are also grateful to Sophie King 

for her involvement in this work and Sylvie Chabaud for her advice in statistical analysis. 

References 
[1] C. L. Brouwer et al., “3D Variation in delineation of head and neck organs at risk,” Radiation 

Oncology, vol. 7, no. 1, pp. 1–10, Mar. 2012, doi: 10.1186/1748-717X-7-32/FIGURES/4. 

[2] B. E. Nelms, W. A. Tomé, G. Robinson, and J. Wheeler, “Variations in the contouring of organs at 
risk: Test case from a patient with oropharyngeal cancer,” Int J Radiat Oncol Biol Phys, 2012, doi: 
10.1016/j.ijrobp.2010.10.019. 

[3] C. L. Brouwer et al., “CT-based delineation of organs at risk in the head and neck region: 
DAHANCA, EORTC, GORTEC, HKNPCSG, NCIC CTG, NCRI, NRG Oncology and TROG consensus 
guidelines,” Radiotherapy and Oncology, vol. 117, no. 1, pp. 83–90, Oct. 2015, doi: 
10.1016/J.RADONC.2015.07.041. 

[4] M. Awan et al., “Prospective assessment of an atlas-based intervention combined with real-time 
software feedback in contouring lymph node levels and organs-at-risk in the head and neck: 
Quantitative assessment of conformance to expert delineation,” Pract Radiat Oncol, vol. 3, no. 3, 
pp. 186–193, Jul. 2013, doi: 10.1016/J.PRRO.2012.11.002. 

[5] C. J. Tao et al., “Multi-subject atlas-based auto-segmentation reduces interobserver variation and 
improves dosimetric parameter consistency for organs at risk in nasopharyngeal carcinoma: A 
multi-institution clinical study,” Radiotherapy and Oncology, vol. 115, no. 3, pp. 407–411, 2015, 
doi: 10.1016/j.radonc.2015.05.012. 

[6] G. Sharp et al., “Vision 20/20: Perspectives on automated image segmentation for radiotherapy,” 
Med Phys, vol. 41, no. 5, 2014, doi: 10.1118/1.4871620. 

[7] T. Vrtovec, D. Močnik, P. Strojan, F. Pernuš, and B. Ibragimov, “Auto-segmentation of organs at 
risk for head and neck radiotherapy planning: From atlas-based to deep learning methods,” Med 
Phys, vol. 47, no. 9, pp. e929–e950, Sep. 2020. 

[8] H. X et al., “Atlas-based auto-segmentation of head and neck CT images,” Med Image Comput 
Comput Assist Interv, vol. 11, no. Pt 2, pp. 434–441, 2008, doi: 10.1007/978-3-540-85990-1_52. 

[9] A. Larrue, D. Gujral, C. Nutting, and M. Gooding, “The impact of the number of atlases on the 
performance of automatic multi-atlas contouring,” Physica Medica, 2015, doi: 
10.1016/j.ejmp.2015.10.020. 

[10] M. la Macchia et al., “Systematic evaluation of three different commercial software solutions for 
automatic segmentation for adaptive therapy in head-and-neck, prostate and pleural cancer,” 
Radiation Oncology, 2012, doi: 10.1186/1748-717X-7-160. 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



13 
 

[11] S. Gresswell, P. Renz, D. Werts, and Y. Arshoun, “(P059) Impact of Increasing Atlas Size on 
Accuracy of an Atlas-Based Auto-Segmentation Program (ABAS) for Organs-at-Risk (OARS) in Head 
and Neck (H&N) Cancer Patients,” International Journal of Radiation Oncology*Biology*Physics, 
2017, doi: 10.1016/j.ijrobp.2017.02.155. 

[12] S. K. Warfield, K. H. Zou, and W. M. Wells, “Simultaneous truth and performance level estimation 
(STAPLE): An algorithm for the validation of image segmentation,” IEEE Trans Med Imaging, vol. 
23, no. 7, pp. 903–921, Jul. 2004, doi: 10.1109/TMI.2004.828354. 

[13] A. A. Qazi, V. Pekar, J. Kim, J. Xie, S. L. Breen, and D. A. Jaffray, “Auto-segmentation of normal and 
target structures in head and neck CT images: A feature-driven model-based approach,” Med 
Phys, 2011, doi: 10.1118/1.3654160. 

[14] V. Fortunati et al., “Tissue segmentation of head and neck CT images for treatment planning: A 
multiatlas approach combined with intensity modeling,” Med Phys, 2013, doi: 
10.1118/1.4810971. 

[15] K. D. Fritscher, M. Peroni, P. Zaffino, M. F. Spadea, R. Schubert, and G. Sharp, “Automatic 
segmentation of head and neck CT images for radiotherapy treatment planning using multiple 
atlases, statistical appearance models, and geodesic active contours,” Med Phys, vol. 41, no. 5, 
2014, doi: 10.1118/1.4871623. 

[16] X. Han, “Learning-boosted label fusion for multi-atlas auto-segmentation,” 2013. doi: 
10.1007/978-3-319-02267-3_3. 

[17] G. v. Walker et al., “Prospective randomized double-blind study of atlas-based organ-at-risk 
autosegmentation-assisted radiation planning in head and neck cancer,” Radiotherapy and 
Oncology, 2014, doi: 10.1016/j.radonc.2014.08.028. 

[18] D. N. Teguh et al., “Clinical validation of atlas-based auto-segmentation of multiple target 
volumes and normal tissue (swallowing/mastication) structures in the head and neck,” Int J 
Radiat Oncol Biol Phys, vol. 81, no. 4, pp. 950–957, Nov. 2011, doi: 10.1016/j.ijrobp.2010.07.009. 

[19] P. C. Levendag et al., “Atlas Based Auto-segmentation of CT Images: Clinical Evaluation of using 
Auto-contouring in High-dose, High-precision Radiotherapy of Cancer in the Head and Neck,” 
International Journal of Radiation Oncology*Biology*Physics, vol. 72, no. 1, p. S401, Sep. 2008, 
doi: 10.1016/j.ijrobp.2008.06.1285. 

[20] M. Kosmin et al., “Rapid advances in auto-segmentation of organs at risk and target volumes in 
head and neck cancer,” Radiotherapy and Oncology, vol. 135. Elsevier Ireland Ltd, pp. 130–140, 
Jun. 01, 2019. doi: 10.1016/j.radonc.2019.03.004. 

[21] M. Field, N. Hardcastle, M. Jameson, N. Aherne, and L. Holloway, “Machine learning applications 
in radiation oncology.,” Phys Imaging Radiat Oncol, vol. 19, pp. 13–24, Jul. 2021. 

[22] S. Minaee, Y. Boykov, F. Porikli, A. Plaza, N. Kehtarnavaz, and D. Terzopoulos, “Image 
Segmentation Using Deep Learning: A Survey,” Jan. 2020. 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



14 
 

[23] L. v. van Dijk et al., “Improving automatic delineation for head and neck organs at risk by Deep 
Learning Contouring,” Radiotherapy and Oncology, vol. 142, pp. 115–123, Jan. 2020, doi: 
10.1016/j.radonc.2019.09.022. 

[24] Y. Urago et al., “Evaluation of auto-segmentation accuracy of cloud-based artificial intelligence 
and atlas-based models,” Radiation Oncology, vol. 16, no. 1, p. 175, 2021, doi: 10.1186/s13014-
021-01896-1. 

[25] X. Chen et al., “A deep learning-based auto-segmentation system for organs-at-risk on whole-
body computed tomography images for radiation therapy,” Radiotherapy and Oncology, vol. 160, 
pp. 175–184, 2021, doi: 10.1016/j.radonc.2021.04.019. 

[26] Y. Fu, Y. Lei, T. Wang, W. J. Curran, T. Liu, and X. Yang, “A review of deep learning based methods 
for medical image multi-organ segmentation,” Physica Medica, vol. 85, no. November 2020, pp. 
107–122, 2021, doi: 10.1016/j.ejmp.2021.05.003. 

[27] F. Isensee, P. F. Jaeger, S. A. A. Kohl, J. Petersen, and K. H. Maier-Hein, “nnU-Net: a self-
configuring method for deep learning-based biomedical image segmentation,” Nature Methods 
2020 18:2, vol. 18, no. 2, pp. 203–211, Dec. 2020, doi: 10.1038/s41592-020-01008-z. 

[28] W. Zhu et al., “AnatomyNet: Deep learning for fast and fully automated whole-volume 
segmentation of head and neck anatomy,” Med Phys, vol. 46, no. 2, pp. 576–589, Feb. 2019, doi: 
10.1002/MP.13300. 

[29] H. Tang et al., “Clinically applicable deep learning framework for organs at risk delineation in CT 
images,” Nature Machine Intelligence 2019 1:10, vol. 1, no. 10, pp. 480–491, Sep. 2019, doi: 
10.1038/s42256-019-0099-z. 

[30] C. Robert et al., “Clinical implementation of deep-learning based auto-contouring tools–
Experience of three French radiotherapy centers,” Cancer/Radiotherapie, vol. 25, no. 6–7, pp. 
607–616, 2021, doi: 10.1016/j.canrad.2021.06.023. 

[31] M. Ung et al., “Improving Radiotherapy Workflow Through Implementation of Delineation 
Guidelines & AI-Based Annotation,” International Journal of Radiation Oncology*Biology*Physics, 
vol. 108, no. 3, p. e315, Nov. 2020, doi: 10.1016/J.IJROBP.2020.07.753. 

[32] J. Wong et al., “Comparing deep learning-based auto-segmentation of organs at risk and clinical 
target volumes to expert inter-observer variability in radiotherapy planning,” Radiotherapy and 
Oncology, vol. 144, pp. 152–158, 2020, doi: 10.1016/j.radonc.2019.10.019. 

[33] A. A. Taha and A. Hanbury, “Metrics for evaluating 3D medical image segmentation: Analysis, 
selection, and tool,” BMC Med Imaging, 2015, doi: 10.1186/s12880-015-0068-x. 

[34] W. van Rooij, M. Dahele, H. Ribeiro Brandao, A. R. Delaney, B. J. Slotman, and W. F. Verbakel, 
“Deep Learning-Based Delineation of Head and Neck Organs at Risk: Geometric and Dosimetric 
Evaluation,” Int J Radiat Oncol Biol Phys, vol. 104, no. 3, pp. 677–684, Jul. 2019, doi: 
10.1016/J.IJROBP.2019.02.040. 

[35] T. Y. Lim, E. Gillespie, J. Murphy, and K. L. Moore, “Clinically Oriented Contour Evaluation Using 
Dosimetric Indices Generated From Automated Knowledge-Based Planning,” International Journal 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



15 
 

of Radiation Oncology*Biology*Physics, vol. 103, no. 5, pp. 1251–1260, Apr. 2019, doi: 
10.1016/j.ijrobp.2018.11.048. 

[36] S. Y. Tsuji, A. Hwang, V. Weinberg, S. S. Yom, J. M. Quivey, and P. Xia, “Dosimetric Evaluation of 
Automatic Segmentation for Adaptive IMRT for Head-and-Neck Cancer,” Int J Radiat Oncol Biol 
Phys, vol. 77, no. 3, pp. 707–714, 2010, doi: 10.1016/j.ijrobp.2009.06.012. 

[37] B. E. Nelms et al., “Variation in external beam treatment plan quality: An inter-institutional study 
of planners and planning systems,” Pract Radiat Oncol, vol. 2, no. 4, pp. 296–305, Oct. 2012, doi: 
10.1016/J.PRRO.2011.11.012. 

[38] V. Batumalai, M. G. Jameson, D. F. Forstner, P. Vial, and L. C. Holloway, “How important is 
dosimetrist experience for intensity modulated radiation therapy? A comparative analysis of a 
head and neck case,” Pract Radiat Oncol, vol. 3, no. 3, pp. e99–e106, Jul. 2013, doi: 
10.1016/J.PRRO.2012.06.009. 

[39] M. Clements, N. Schupp, M. Tattersall, A. Brown, and R. Larson, “Monaco treatment planning 
system tools and optimization processes,” Medical Dosimetry, vol. 43, no. 2, pp. 106–117, Jun. 
2018, doi: 10.1016/J.MEDDOS.2018.02.005. 

[40] P. Coupé, J. v. Manjón, V. Fonov, J. Pruessner, M. Robles, and D. L. Collins, “Patch-based 
segmentation using expert priors: application to hippocampus and ventricle segmentation,” 
Neuroimage, vol. 54, no. 2, pp. 940–954, Jan. 2011, doi: 10.1016/J.NEUROIMAGE.2010.09.018. 

[41] H. Lee et al., “Clinical evaluation of commercial atlas-based auto-segmentation in the head and 
neck region,” Front Oncol, vol. 9, no. APR, pp. 1–9, 2019, doi: 10.3389/fonc.2019.00239. 

[42] A. Amjad et al., “General and custom deep learning autosegmentation models for organs in head 
and neck, abdomen, and male pelvis,” Med Phys, vol. 49, no. 3, pp. 1686–1700, 2022, doi: 
10.1002/mp.15507. 

[43] J. Yang et al., “Autosegmentation for thoracic radiation treatment planning: A grand challenge at 
AAPM 2017,” Med Phys, vol. 45, no. 10, pp. 4568–4581, Oct. 2018, doi: 10.1002/mp.13141. 

[44] L. Maier-Hein et al., “Metrics reloaded: Pitfalls and recommendations for image analysis 
validation,” Jun. 2022, doi: 10.48550/arxiv.2206.01653. 

[45] M.-C. Biston et al., “Evaluation of fully automated a priori MCO treatment planning in VMAT for 
head-and-neck cancer,” Physica Medica, vol. 87, pp. 31–38, Jul. 2021, doi: 
10.1016/j.ejmp.2021.05.037. 

[46] V. Grégoire, S. Boisbouvier, P. Giraud, P. Maingon, Y. Pointreau, and L. Vieillevigne, “Management 
and work-up procedures of patients with head and neck malignancies treated by radiation,” 
Cancer/Radiotherapie, vol. 26, no. 1–2, pp. 147–155, 2022, doi: 10.1016/j.canrad.2021.10.005. 

[47] S. Willems et al., “Clinical implementation of deepvoxnet for auto-delineation of organs at risk in 
head and neck cancer patients in radiotherapy,” Lecture Notes in Computer Science (including 
subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 11041 
LNCS, pp. 223–232, 2018, doi: 10.1007/978-3-030-01201-4_24. 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



16 
 

[48]  van der V. J et al., “Benefits of deep learning for delineation of organs at risk in head and neck 
cancer,” Radiother Oncol, vol. 138, pp. 68–74, Sep. 2019, doi: 10.1016/J.RADONC.2019.05.010. 

[49] W. Chen et al., “Deep learning vs. atlas-based models for fast auto-segmentation of the 
masticatory muscles on head and neck CT images,” Radiation Oncology, vol. 15, no. 1, Jul. 2020, 
doi: 10.1186/s13014-020-01617-0. 

[50] T. Nemoto et al., “Efficacy evaluation of 2D, 3D U-Net semantic segmentation and atlas-based 
segmentation of normal lungs excluding the trachea and main bronchi,” J Radiat Res, 2020, doi: 
10.1093/jrr/rrz086. 

[51] B. Ibragimov and L. Xing, “Segmentation of organs-at-risks in head and neck CT images using 
convolutional neural networks:,” Med Phys, 2017, doi: 10.1002/mp.12045. 

[52] Y. Fang, J. Wang, S. Chen, Y. Guo, Z. Zhang, and W. Hu, “The Impact Of Training Sample Size On 
Deep Learning Based Organ Auto Segmentation For Head Neck,” International Journal of 
Radiation Oncology*Biology*Physics, 2020, doi: 10.1016/j.ijrobp.2020.07.228. 

[53] A. Hänsch et al., “PV-0530: Parotid gland segmentation with deep learning using clinical vs. 
curated training data,” Radiotherapy and Oncology, 2018, doi: 10.1016/s0167-8140(18)30840-5. 

  

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 

1 
 

Abstract  
Background and purpose: To investigate the performance of head-and-neck (HN) organs-at-risk (OARs) 

contouring using three atlas-based (ABAS) solutions (STAPLE and Patch Fusions (PF) (ADMIREv3.41, Elekta 

AB; Sweden), majority voting fusion (MIM-Maestro, MIM Software; USA)), two Deep Learning (DL) 

solutions (ART-Plan Annotate, TheraPanacea; France) and ADMIRE-DL (ADMIREv3.41) and one hybrid 

ABAS solution (Random Forest (RF) (ADMIREv3.41)). 

Material and Methods: All patients underwent iodine contrast-enhanced planning CT. Fourteen OARs 

were manually delineated. DL models were trained with 63 mono-centric patients and >1000 multi-centric 

patients, for ADMIRE-DL and ART-plan, respectively. Ten and 15 patients with varied anatomies were 

selected for the atlas library and for testing, respectively. The evaluation was based on geometric indices 

(DICE coefficient and 95th percentile-Hausdorff Distance), time needed for manual corrections and clinical 

dosimetric endpoints obtained using automated treatment planning.  

Results: Overall, DL algorithms were more performing than ABAS methods for segmentation of HN OARs, 

especially when considering the computational time and the time spent on manual corrections. ADMIRE-

DL had superior results compared to ART-plan with a DICE average of 0.85±0.32 vs 0.82±0.06.  Regarding 

ABAS solutions, ADMIRE algorithms had better performances than MIM. While all the ADMIRE solutions 

had DICE results ≥0.8 for 7 OARs, generally better results were obtained with the RF algorithm compared 

to PF and STAPLE, which was the least performing.  For ADMIRE-DL, ART-plan and RF solutions, a small 

dosimetric impact was observed when generating plans with corrected or non-corrected contours. 

Conclusion: Automatic segmentation solutions can reach high accuracy results and allow reducing inter-

observer variability. 
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Introduction 
Manual contouring of organs-at-risk (OARs) is a time-consuming task that may suffer from large intra- and 

inter-observer variations, especially for head-and-neck (HN) cancer patients, because of the complex 

anatomy and the number of OARs at risk [1-4]. Contour variations may also result in important dosimetric 

differences[5]. Therefore, automatic segmentation (AS) methods are strongly sought after to increase 

contouring accuracy, improve the inter-observer variability, reduce delineation time, and facilitate 

treatment plan adaptation[6;7]. 

Among the different methods, atlas-based auto-segmentation (ABAS) uses one or more representative 

patients with carefully delineated OARs as a reference atlas for contouring new patients[8]. Those 

methods are widely spread due to their implementation convenience, but they do have several drawbacks: 

atlas selection strategy (single vs multi-atlas)[8]; performance plateau reached after 10-20 atlases[9]; poor 

performance for small and low contrast soft tissue structures[10]; increased computational time with each 

added atlas[11]. 

ABAS can be performed using a standard fusion between the atlases and the new patient [12], or by using 

a hybrid algorithm combining multi-ABAS with machine learning [13-17]. Despite a higher computational 

time, multi-ABAS studies have consistently demonstrated improved segmentation accuracy over the single 

atlas methods, with consequent reduction of the post-editing time [18;19]. By adding image intensity 

information, other studies have shown higher accuracy for model-based methods particularly on large 

organs such as brainstem, and spinal cord but poorer performances for tiny structures like cochlea [13-

15]. 

Another method issued from artificial intelligence (AI) research and challenging ABAS is the use of deep 

learning (DL) techniques [6;7;20-25]. DL contouring typically implies the training of a convolutional neural 

network (CNN) directly from a set of annotated reference data. Although the training phase requires 

extensive GPU computing power and work in data gathering and curation, once trained, the segmentation 

is very fast. Most studies showed that DL methods outperformed ABAS methods [23-25]. Another few 

studies have compared different DL algorithms trained on the same data sets. The WBNetwas shown to 

provide superior results when compared to AnatomyNet and nnU-Net for 50 OARs on CT images [25-27]. 

However, neither of the DL methods have solved yet the problem of accurately segmenting small and low 

contrast structures. 

Often, AS methods comparisons are based on geometric indices calculations only (DICE; Hausdorff 

distance (HD)) to compare the volume overlap between the reference and the automatically generated 
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contour[28]. However, it is highly recommended to perform additionally a dosimetric evaluation by 

generating treatment plans created with the AS contours [29-32]. This involves extensive time in 

generating treatment plans, and may also introduce inter or intra-planner variability [33;34]. 

In this context, the objective of the present study was to evaluate the performances 6 different algorithms 

for the auto-segmentation of 14 HN OARs: 

- 3 commercial ABAS solutions (STAPLE[8] and Patch Fusion[35] (ADMIREv3.41, Elekta AB; 

Stockholm, Sweden), majority voting fusion[36] (MIM-Maestro, MIM Software; Cleveland, USA)) 

- 1 commercial DL solution (ART-Plan Annotate [37], TheraPanacea; Paris, France)) 

- 1 non-commercial hybrid ABAS solution (Random Forest (ADMIREv3.41)) 

- 1 non-commercial DL solution (ADMIRE-DL (ADMIREv3.41)) 

This study is original since the performances of ART-plan, ADMIRE-RF and ADMIRE-DL have never been 

investigated yet. Comparisons were first based on geometrical indices (DICE and HD), and on the time 

spent for correcting the contours. Finally, an a priori multi-criterial optimization (MCO) algorithm for 

automatic treatment planning was used, for the first time, to derive doses from AS contours with and 

without manual correction. 

Materials and methods 

Patient data 

Seventy-eight non-operated HN cancer patients treated with radiation therapy between 2018 and 2021 

and who underwent iodine contrast-enhanced planning computed tomography (CT), were selected for 

this study, which was approved by the hospital ethics committee. Fourteen OARs (i.e. parotids, 

submandibular glands, oral cavity, constrictor muscle, larynx, esophagus, trachea, thyroid, eyes, optical 

nerves, cochlea, brainstem, spinal cord, mandible) were manually delineated by a single expert physician 

(>30 years of experience), on 512x512 and 2mm-tick CT slices following HN delineation guidelines[3]. For 

the multi-ABAS approach, 10 patients from this database were carefully selected based on their body mass 

index (BMI) (from 18.9 to 30.7) to form a heterogeneous library of atlases. The same 10 atlases were used 

to create a library in MIM-Maestro and in ADMIRE (Fig.1). For ADMIRE-DL model training, 63 patients were 

used with the same set of OARs contours excluding optical nerves and cochlea. Conversely, ART-plan was 

trained with a large number of patients collected from multiple centers including ours. Fifteen patients 

having a BMI range from 12.1 to 34.7 were reserved for the testing phase (Fig.1). 
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Multi-ABAS and DL methodologies 

Three ABAS solutions available in the research version of Monaco TPS (Monaco 5.59.11 with 

ADMIREv.3.41) and another one available in MIM-Maestro were investigated: 

- STAPLE (Simultaneous Truth And Performance Level Estimation) consists in estimating the optimal 

combination of the segmentations by weighting each segmentation upon the estimated 

performance level [12]. 

- Patch Fusion (PF) algorithm computes the final probability of a voxel to belong to a structure as a 

weighted average of the atlases’ contours based on voxel intensity information[38]. 

- Random Forest (RF) is a supervised learning algorithm which constructs a voxel classifier for each 

structure using the registered atlases as training data[16]. 

- MIM uses majority voting as fusion algorithm[36].  

 

For the ADMIRE software, out of the 10 atlases used, a reference patient was selected for each test patient 

based on the closest BMI of the atlas and the underlying patient. No individual atlas selection was required 

for MIM, but a general template scan (patient having an anatomy close to the mean BMI of the atlas 

cohort) was registered with all the atlases in the library. 

Two DL models were investigated: 

- ADMIRE-DL model (N=63 patients from one center) is a fully connected deep convolutional neural 

network (DCNN) with 3D U-net architecture and added residue connections from ResNet [39;40]. 

It allows to obtain the segmentation of an entire whole 3D image in a single pass instead of 

classifying the image patch each time. 

- ART-plan automated annotations (ART-plan, N>1000 patients per structure from multiple centers) 

rely on a local organ-specific three levels 3D-CNN (ART-Net) that uses local linear mapping for 

embedding the target volume and the reference anatomies with annotations. The full annotation 

is achieved by combining multiple networks with statistically preserving coherent principles. 

Geometric evaluation of auto-segmentation solutions 

To quantitatively evaluate the segmentation results, we used two geometric indices: volumetric DICE and 

95thpercentile-HD (HD95%) together with dosimetric endpoints (V95%, Dmean, D5% and D2%) [28;30]. DICE 

coefficient quantifies the overlap between two volumes leading to a value between 0 (no overlap) and 1 

(perfect overlap). The HD measures the distance from each point of a surface to the nearest point on the 

other surface. We used 95th percentile of the distances between boundary points to eliminate the possible 
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outliers. For the elongated organs (i.e., esophagus, trachea, constrictor muscle and spinal cord) the results 

were calculated only on the slices where both contours were present. 

Time needed for manual corrections 

Three of the automatic solutions (RF, ADMIRE-DL, ART-plan) were clinically reviewed and corrected by a 

dosimetrist and validated by a skilled physician on MONACO contouring workstation. The time spent on 

correcting and validating each structure was recorded independently. 

 

Dosimetric evaluation – automatic treatment plans 

For each patient, and for RF, ADMIRE-DL and ART-plan solutions, 2 different plans were generated: one 

using AS contours and another one using AS+manually corrected contours. The differences in dose 

distributions were then evaluated on the corrected contours. In total, 90 VMAT treatment plans were 

computed with mCycle auto-planning solution (Monaco 5.59.11, Elekta AB, Stockholm). The software uses 

a lexicographic MCO which has been extensively described before[41]. All plans were performed using two 

360° arcs. A simultaneous integrated boost technique was used for delivering 70Gy to the PTV associated 

to the primary tumor or node therapeutic CTV and 54.25Gy to the PTV associated to prophylactic nodal 

CTV, in 35 fractions of 2Gy.  

 

Statistical analysis  

Statistical differences between the methods were assessed using Wilcoxon signed rank test. P-values 

under <0.05 were considered significant. 

Results 
Computational time per patient was in average 10.3±1.6min, 10.5±0.6min and 12.1±0.6min for STAPLE, PF 

and RF, respectively. For MIM, it was under 1min while the atlas registration took approximately 6min for 

a library of 10 atlases. ADMIRE-DL and ART-plan provided a solution in less than 1min and 2min, 

respectively. DICE scores and HD95% distance results of all solutions are summarized in Fig.2. 

Overall, both DICE and HD95% results indicated that DL algorithms had better performances than ABAS 

algorithms for AS segmentation of HN OARs. With 11 common OARs, ADMIRE-DL had overall superior 

results compared to ART-plan with a DICE average of 0.85±0.32 vs 0.82±0.06 and 11 vs 9 OARs having 

DICEs ≥0.8. ART-plan had significantly better DICE results only for the thyroid (p=0.017). Meanwhile, 

ADMIRE-DL provided significantly better DICEs for trachea (p=0.004) and larynx (p=0.001), and significantly 

better HD95% for mandible (p=0.04) and larynx (p=0.001). 
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Regarding ABAS solutions, ADMIRE algorithms had, overall, better DICEs and HD95% than MIM, which had 

the lowest DICE results for 7 out of 14 OARs. While all the ADMIRE solutions had DICE results ≥0.8 for 7 

OARs, generally better results were obtained with the RF algorithm compared to PF and STAPLE, which 

was the least performing. Compared to PF, the RF algorithm had significantly superior DICE for the eyes 

(p<0.001), mandible (p<0.001) and thyroid (p=0.002) and significantly better HD95% for the thyroid 

(p=0.002). Note that RF did not segment optic nerves and cochlea owing the algorithm’s limitation for such 

small structures. 

Compared to the ADMIRE-DL, the RF algorithm provided significantly better DICE and HD95% results for oral 

cavity (p≤0.007) and eyes (p≤0.01), and significantly better DICE for mandible (p=0.004) and constrictor 

muscle (p=0.007). Conversely, ADMIRE-DL had significantly better DICE and HD95% results for thyroid 

(p≤0.02) and esophagus (p≤0.004), and significantly better DICE for parotids (p=0.004). 

An example of segmentation from PF, ART-plan and ADMIRE-DL compared to the physicians’ manual 

delineations is provided in Fig.3. 

Ten of the OARs obtained with RF, ADMIRE-DL and ART-plan were thereafter carefully corrected by a 

dosimetrist and checked by a physician. The manual correction time per patient was in average 

36min34sec, 26min57sec and 17min54sec for RF, ART-plan, and ADMIRE-DL, respectively. The contours 

generated by ADMIRE-DL model, were the fastest to correct. In general, manual corrections of eyes, spinal 

cord and brainstem were <2min for the 3 solutions while for oral cavity and esophagus correction times 

were >3min depending on the AS algorithm used (Fig.4). 

After manual corrections, the DICE scores of all OARs increased, except for the oral cavity on all 3 solutions, 

and for the spinal cord with ART-plan (Table 1), thus highlighting inter-observer variability in oral cavity 

contouring between the expert physician providing the reference contours, and other physician 

performing manual corrections. At the same time, the HD95% did not decreased consistently for all the 

structures after the manual corrections. 

The differences in doses on corrected OARs, between treatment plans generated using the AS contours, 

with or without manual corrections are presented in Table 2. Target coverage differences were not 

significant, except for the V95% for PTV70Gy, with ADMIRE-DL contours (p=0.03). However, coverage 

differences were ≤1.4%. The OARs doses were significantly different for oral cavity (p=0.03), right 

submandibular gland (p=0.04) and esophagus (p=0.04) in the plans created with ADMIRE-DL contours, but 

with average dose differences ≤0.65Gy. With ART-plan generated contours a significant dose difference 
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was found for the left parotid (p=0.01). Conversely, no significant dose differences were identified in the 

plans generated with the RF contours, but the largest dose differences (D2%) to brainstem and spinal cord. 

Discussion  
 

We showed in this study that, overall, both DICE and HD95% results indicated that DL algorithms had better 

performances than ABAS algorithms for automatic segmentation of HN OARs. Concerning the 2 DL 

solutions, out of 12 contours, ADMIRE-DL outperformed ART-plan in terms of DICE for 7 OARs, with 

significant difference for larynx and trachea. HD95% were also significantly smaller for mandible and larynx 

for ADMIRE-DL compared to ART-plan. Contrarily to ART-plan, ADMIRE-DL was not tailored to 

automatically contour optic nerves and cochlea. Nevertheless, the correction of the AS contour of small 

organs generally takes more time than starting from scratch [42;43]. Conversely, ART-plan was not trained 

to contour the constrictor muscle. However, ADMIRE-DL results were poor, showing the difficulty to get 

satisfying results for such organs with high anatomical variations and limited image contrast. Consistent 

with the literature, poor performances were observed on small organs for both ABAS and DL solutions [23-

26;44;45]. 

Before this study, ADMIRE-DL and ART-plan algorithms had not been explored on HN site. The ADMIRE-DL 

algorithm was trained exclusively with manual delineations by one expert physician, providing uniformity 

of the training data. Ideally, there should be a consortium for the contour delineation between physicians 

working in a radiotherapy department, which should rely on internationally published guidelines [3]. In 

this study, with a limited training dataset (N=63), we showed that a model can achieve consistent results 

for most of the structures in HN. Hence, with a minimum of work, centers can adapt a model to their 

standard delineation’s practices. Similarly, high accuracy segmentation results were obtained with the 

DeepVoxNet and another CNN with networks trained on N=70 and N=50 samples, respectively [42;46]. 

Other studies demonstrated that organs pattern depend on the training sample size  and yet similar results 

can be obtained when training on a small set of carefully curated data compared to a larger set of more 

easily available routine-level clinical annotations [47;48]. On the opposite, ART-plan solution was trained 

with more than 1000 training samples per organ collected from multiple centers and can segment 50 OARs 

and target volumes in HN. Despite this, high performance segmentations were obtained in this study. 

Proving that a multi-center study approach includes combination of manual contours from different 

physicians (easier to obtain), ART-plan results presented good conformity to new datasets and comparable 

performance to a model train with data from a single center. 
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We also showed that, using a carefully selected atlas of patients, STAPLE, PF and RF methods provide very 

good agreement with manual contours (DICE≥0.8) [8;18] and, for some organs, comparable or better 

results than DL models (i.e. oral cavity, mandible, eyes). Conversely, MIM solution had overall inferior 

performance. Among these algorithms, RF, which had not been explored before, was the most performing 

and had significantly better results than the two DL models for oral cavity, mandible, and eyes. Therefore, 

with only 10 carefully selected atlases, RF algorithm may serve as an AS solution easy to implement 

clinically. Note that using an enlarged library of 20 patients (data not shown) did not considerably 

improved the performances of RF but drastically increased the computation time, demonstrating that the 

performance plateau phenomena still exists with this new ABAS method. 

Many studies have reported the performances of different algorithms for HN OARs segmentation on CT 

images (Table 1 of supplementary data). All studies underline limited performance on small organs, and 

the importance of both manual contours’ quality and training data size to get results closer to clinical 

acceptability. Moreover, AS has shown to reduce inter-observer variability when observers performed 

manual editing on the automatically generated contours, which improves the consistency of manual 

delineation[5]. 

According to the recently published guidelines, together with geometric accuracy, studies should ideally 

report benefit in time saving and clinical acceptability in terms of patient dose evaluation, for assessing 

the benefit of an automatic segmentation method[28]. Both tasks are challenging and often put aside first 

because of the time requested to be completed, and because of the intra-planner variability, which could 

introduce a bias in the observations. In this study, both tasks were completed for the three best algorithms, 

and an auto-planning solution was used to perform treatment plans based on AS contours with or without 

corrections. This was a strength of this study, and an efficient way to isolate the consequences of contour 

variations on the radiotherapy doses and reveal more precisely which contours require greater attention 

[29;30]. Among other methods, some authors proposed to superpose the original clinical plan onto the 

automatically delineated contours [5;23], to use automated planning strategies such as knowledge-based 

planning (KBP) [29;30] or to conserve the original beam configuration parameters [31]. To our knowledge, 

this is the first time that an a priori MCO auto-planning solution is used for contour evaluation. 

We observed in our study that, for most structures, the correction time for ADMIRE-DL and ART-plan 

solutions was <1min (e.g., eyes, brainstem, submandibular glands) and <2min (e.g., mandible, parotid 

glands) demonstrating significant time saving versus starting from scratch. Correcting ADMIRE-DL contours 

was 18min and 9min faster compared with RF and ART-plan contours, respectively. Generally, the oral 
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cavity and esophagus took more time to be corrected. For the oral cavity, this may be correlated with the 

inter-observer variability since the DICE results were consistently smaller for all 3 solutions after the 

manual corrections. We finally observed that manual corrections of the AS contours had small impact on 

the dose distributions, which indicates no clinically meaningful differences between the three algorithms. 

The ∆Dmean for the investigated structures were <0.9Gy. Generally, the range of the ∆D2% were the highest 

for the spinal cord and for the brainstem for all the solutions, which may be an important factor in 

physician’s decision when validating the treatment plan. However, all dose-volume constraints were 

respected in all the plans. Similar to other studies, for most organs, the clinical impact was not significant 

and thus, manual correction could be omitted [29;31]. 

Conclusions 
DL methods were generally more performing than ABAS methods for AS segmentation of HN OARs. We 

showed that a DL model can reach high performances with a limited training dataset, provided that data 

comes from a single hospital, and if possible, only one expert physician is involved. Most ABAS methods 

showed consistent results but were less performing than DL algorithms especially when considering the 

computing time and the time spent on manual corrections. Finally, even if manual corrections are often 

necessary, all AS solutions allow reducing inter-observer variability when physicians perform manual 

editing on the automatically generated contours. 
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Table. 1  
Characteristics of the test cohort used for evaluation of the AS solutions 

 Tumor localization TNM BMI Gender Age 
Patient 1 Oral cavity T4aN0M0 24.1 M 88Y 
Patient 2 Hypopharynx T3N2aM0 12.1 M 57Y 
Patient 3 Nasal cavity T2N0M0 31 F 83Y 
Patient 4 Tonsils T2N0M0 20.8 M 75Y 
Patient 5 Hypopharynx T0N3M0 24 M 45Y 
Patient 6 Rhinopharynx T3N1M0 19 F 58Y 
Patient 7 Rhinopharynx T3N0M0 19.8 F 69Y 
Patient 8 Rhinopharynx T2N2M0 21.4 F 71Y 
Patient 9 Hypopharynx T1N1M0 23.4 M 75Y 

Patient 10 Larynx T2N0M0 30.4 M 60Y 
Patient 11 Tonsils T2N0M0 24 F 69Y 
Patient 12 Unilateral ganglion T4N3M1 34.7 M 54Y 
Patient 13 Parapharynx T2N1M0 25.5 M 65Y 
Patient 14 Subglotic T4aN0M0 21.5 M 58Y 
Patient 15 Hypopharynx T4bN0M0 19 M 75Y 
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Table 2  
Geometric evaluation after manual corrections of 10 OAR for the three best solutions; with * are marked the differences that are 
statistically significant (p<0.05). Abbreviations: Sub.glands = submandibular glands; 

 ABAS.3 DL.1 DL.2 

DICE without 
corrections 

after manual 
corrections 

without 
corrections 

after manual 
corrections 

without 
corrections 

after manual 
corrections 

Parotids 0.8 ± 0.05 0.84 ± 0.04  0.82 ± 0.04 0.84 ± 0.04  0.81 ± 0.06 0.85 ± 0.03  
Oral cavity 0.87 ± 0.04 0.81 ± 0.06  0.85 ± 0.06 0.79 ± 0.08  0.84 ± 0.07 0.79 ± 0.08  
Sub.glands 0.77 ± 0.13 0.83 ± 0.1 0.8 ± 0.07 0.84 ± 0.07  0.79 ± 0.13 0.82 ± 0.14  
Mandible 0.92 ± 0.02 0.93 ± 0.02  0.9 ± 0.02 0.9 ± 0.02 0.89 ± 0.03 0.9 ± 0.03  
Esophagus 0.72 ± 0.1 0.86 ± 0.04* 0.83 ± 0.04 0.86 ± 0.03 0.84 ± 0.05 0.87 ± 0.03 
Trachea 0.88 ± 0.05 0.91 ± 0.04 0.9 ± 0.02 0.9 ± 0.06 0.87 ± 0.03 0.91 ± 0.04* 
Thyroid 0.74 ± 0.11 0.85 ± 0.03 * 0.83 ± 0.04 0.85 ± 0.04  0.85 ± 0.04 0.86 ± 0.03  
Eyes 0.91 ± 0.03 0.91 ± 0.03 0.89 ± 0.03 0.9 ± 0.03  0.87 ± 0.04 0.9 ± 0.03 
Spinal cord 0.84 ± 0.05 0.84 ± 0.05 0.84 ± 0.04 0.85 ± 0.04 0.85 ± 0.03 0.84 ± 0.04 
Brainstem 0.85 ± 0.04 0.86 ± 0.05 0.85 ± 0.03 0.86 ± 0.04 0.85 ± 0.06 0.86 ± 0.06 

HD95% (mm) without 
corrections 

after manual 
corrections 

without 
corrections 

after manual 
corrections 

without 
corrections 

after manual 
corrections 

Parotids 7.2 ± 3.4 7.9 ± 7.2  6.2 ± 2.6 8.4 ± 8.1 7.8 ± 5.2 7.0 ± 7.1 
Oral cavity 6.5 ± 2.6 11.2 ± 3.9  8.1 ± 3.9 11.4 ± 5.1  9.4 ± 5.1 12 ± 5.3  
Sub.glands 4.5 ± 3.1 4.0 ± 2.7  3.7 ± 0.9 2.9 ± 1.3 4.7 ± 2.2 3.8 ± 2.1  
Mandible 2.2 ± 1.1 1.5 ± 1  2.3 ± 0.8 2.1 ± 0.9 3.7 ± 2 2.1 ± 1.4  
Esophagus 6.1 ± 2.3 2.3 ± 0.9* 3 ± 1.3 2.7 ± 0.7 3.6 ± 2.6 1.9 ± 0.4 
Trachea 3.2 ± 1.6 1.9 ± 0.5 2.3 ± 0.7 1.8 ± 0.7 2.4 ± 0.5 1.8 ± 0.6* 
Thyroid 8 ± 8.3 2.5 ± 1.2 * 4.5 ± 4.7 2.2 ± 0.6  3.0 ± 1.4 2.5 ± 1.3  
Eyes 2. ± 0.5 1.9 ± 0.5 2.4 ± 0.8 2 ± 0.4  2.4 ± 0.8 2.2 ± 0.7  
Spinal cord 2.1 ± 0.5 2 ± 0.5 1.8 ± 0.6 1.8 ± 0.5 1.7 ± 0.4 2 ± 0.5 
Brainstem 3.9 ± 1.6 3.9 ± 1.9  4.4 ± 1.6 4.1 ± 1.7 4.1 ± 1.7 3.9 ± 1.8 
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Table 3  
Dosimetric differences between doses generated with manually corrected contours and automatic contours, analyzed  
on the corrected contours; impact on the target volumes is evaluated in V95% dose coverage, for the spinal cord and brainstem in  
D2%, and for the mandible in D5% while for the rest of the OAR mean doses are calculated. Abbreviations: sub.glands =  
submandibular glands; R = right, L = left;  
 

 ABAS.3 DL.1 DL.2 

Structure V95% 

[%] 
∆V95% 
[%] 

∆V95% ranges 
[%] 

V95% 
[%] 

∆V95% 

[%] 
∆V95% ranges 

[%] 
V95% 
[%] 

∆V95% 

[%] 
∆V95% ranges 

[%] 

PTV_70Gy 98.3 -0.1  [-0.9, 0.7] 98.4 0.2   [-1.4, 1.3] 98.3 -0.04  [-0.8, 2.1] 
PTV_54.25Gy 99.2 -0.03  [-0.2, 0.1] 99.2 0.01  [-0.2, 0.3] 99.2 0.05  [-0.1, 0.2] 

 

Dmean 
[Gy] 

∆Dmean 
[Gy] 

∆Dmean ranges 
[Gy] 

Dmean 
[Gy] 

∆Dmean 
[Gy] 

∆Dmean ranges 
[Gy] 

Dmean 
[Gy] 

∆Dmean 
[Gy] 

∆Dmean ranges 
[Gy] 

Parotid R 16.2 -0.1  [-3.4, 3.3] 16.8 0.3  [-1.8, 3.4] 17.6 0.3  [-2.2, 3.6] 
Parotid L 12.9 -0.04  [-4.3, 3.3] 15.1 0.4  [-2.4, 4] 15 1.1   [-0.8, 6] 
Oral cavity 21 -0.02  [-2.7, 3.2] 21.1 -0.6   [-2.2, 0.9] 21 -0.7  [-3.8, 1.3] 
Sub.gland R 32.5 -0.1  [-0.9, 1.7] 38.7 -0.5   [-2.3, 1.2] 39.1 -0.4  [-7.4, 3.1] 
Sub.gland L 34.1 -0.4  [-2.8, 1.2] 40.6 -0.3  [-1.8, 1.3] 40.9 0.1  [-1.6, 1.1] 
Esophagus 7.9 0.2  [-0.5, 1.7] 9.2 0.5   [-1.1, 2.4] 10.2 0.9  [-0.3, 5.5] 
Trachea 10.1 -0.2  [-0.9, 0.2] 11.9 -0.1  [-0.9, 0.4] 13.5 0.2  [-1.1, 5.2] 
Thyroid 29.4 -0.2  [-4.8, 1.1] 35.5 -0.5  [-3.7, 1.9] 35.4 -0.3  [-2, 1.3] 
Eye R 5.2 0.5  [-1.5, 4.2] 4.9 0.4  [-4.1, 10.3] 5.1 -0.4  [-6.1, 0.8] 
Eye L 4.5 -0.4  [-8.9, 2.5] 5.4 0.8  [-0.4, 8.8] 4.4 -0.8  [-8.9, 1.2] 

 D2% 
[Gy] 

∆D2% 
[Gy] 

∆D2% ranges 
[Gy] 

D2% 
[Gy] 

∆D2% 
[Gy] 

 ∆D2% ranges 
[Gy] 

D2% 
[Gy] 

∆D2% 
[Gy] 

∆D2% ranges 
[Gy] 

Spinal cord 25 2.5  [-4.6, 24.4] 23.7 -0.5  [-16.3, 10.1] 24.2 -2.1  [-13.6,16.2] 
Brainstem 16.9 -1.5  [-20.2,13.1] 18 -1.0  [-7.1,4.9] 18.9 -0.6  [-9.7,6.9] 

 D5% 
[Gy] 

∆D5% 
[Gy] 

∆D5% ranges 
[Gy] 

D5% 
[Gy] 

∆D5% 
[Gy] 

 ∆D5% ranges 
[Gy] 

D5% 
[Gy] 

∆D5% 
[Gy] 

 ∆D5% ranges 
[Gy] 

Mandible 43.3 0.1  [-3.6, 2.1] 43.4 -0.2  [-2.9, 6.3] 44.4 0.35  [-2.5, 4.9] 
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Multi-ABAS solutions (N= 10 atlases) 

Non-commercial solution 
ABAS.3 Random Forest (hybrid)  
(ADMIREv3.41; Elekta AB, Stockholm) 
*did not segment optical nerves and cochlea 

Commercial solutions 
ABAS.1 STAPLE (Elekta AB, Stockholm) 
ABAS.2 Patch Fusion (Elekta AB, Stockholm) 
ABAS.4 Majority voting (MIM Software Inc., Cleveland, OH) 
 

Deep learning models  

Non-commercial solution 
(N=63, mono-centric) 

DL.1 ADMIRE-DL (ADMIREv3.41; Elekta AB, Stockholm) 
*did not segment optical nerves and cochlea 
 

Commercial solution 
(N>1000, multi-centric) 

DL.2 ART-plan Annotate (Therapanacea, France) 
*did not segment constrictor muscle 

Performance evaluation (N=15 patients) 

14 OAR 

Geometric evaluation (All 6 methods) 
• DICE  
• HD95% 

Statistical tests:  
• Kruskal-Wallis 
• Post-hoc Dunn’s test 

• Post-hoc Dunn’s test 

10 OAR 

Geometric and dosimetric evaluation  
(ABAS.3, DL.1, DL.2) 

 
• Manual correction time: dosimetrist+physician 
• DICE and HD95% after corrections  
• Δdose 

Figure 1 Click here to access/download;Figure;Fig1.Overview of the

study design.pdf



A. B. 

 
C. D. 

 
  

Over all segmented OAR 

Over 11 common OAR 

Figure 2 Click here to access/download;Figure;Fig2.Geometric
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3= ABAS.3 
4= ABAS.4 
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6= DL.2 

1= ABAS.1 
2= ABAS.2 
3= ABAS.3 
4= ABAS.4 
5= DL.1 
6= DL.2 

Figure 3 Click here to access/download;Figure;Fig3.Geometric evaluation
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Fig. 1. Overview of the study design and performance evaluation methods; OAR = organs-at-risk, HD95%=95th percentile-
Hausdorff Distance; * indicates the OAR that were not segmented by certain methods; Δdose=difference between the reference 
plan created with corrected OAR contours and the plan created with AS contours only; 

Fig. 2. Geometric evaluation of the 6 automatic solutions. 1 = ABAS.1, 2 = ABAS.2, 3 = ABAS.3, 4 = ABAS.4, 5 = DL.1, 6 = DL.2; Panels 
A and B: analysis was performed over all the OAR. Panels C and D: analysis was performed over 11 common OAR. In red and in 
green are highlighted the worst and the best results, respectively determined by the mean value of DICE/HD95%; in the boxplots, 
the orange line represents the median, the green triangle indicate the mean value and the circles represent outliers. 

Fig. 3. Geometric evaluation per OAR of the 4 multi-ABAS and 2 DL solutions; 1 = ABAS.1, 2 = ABAS.2, 3 = ABAS.3, 4 = ABAS.4, 5 = 
DL.1, 6 = DL.2; in red and in green are highlighted the worst and the best results, respectively determined by the mean value of 
DICE/HD95%; in the boxplots, the orange line represents the median, the green triangle indicate the mean value and the circles 
represent outliers; Abbreviations: Sub.glands = submandibular glands; 

Fig. 4. Example of automatic segmentation uncertainties compared with manual delineations. OAR position relative to the PTV 
can be observed in panels C and D. A good agreement was generally observed in simple geometry structures such as eyes or spinal 
cord. Large contour discrepancies were noticed compared with the manual reference in the cranial and caudal slices for some 
structures such as oral cavity, trachea or brainstem. To illustrate OAR position relative the target, PTV volume is displayed. 

Fig. 5. Time spent on manual corrections for each OAR automatically generated. 3 = ABAS.3, 5 = DL.1, and 6 = DL.2; Abbreviations: 
Sub.glands = submandibular glands; 

Table 1 Characteristics of the test cohort used for evaluation of the AS solutions 
 
Table 2 Geometric evaluation after manual corrections of 10 OAR for the three best solutions; with * are marked the differences 
that are statistically significant (p<0.05). Abbreviations: Sub.glands = submandibular glands; 
 
Table 3 Dosimetric differences between doses generated with manually corrected contours and automatic contours, analyzed on 
the corrected contours; impact on the target volumes is evaluated in V95% dose coverage, for the spinal cord and brainstem in D2%, 
and for the mandible in D5% while for the rest of the OAR mean doses are calculated. Abbreviations: sub.glands = submandibular 
glands; R = right, L = left;  
 

Table and Figure Legend Click here to access/download;Figure;Captations_revision.docx
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