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The Ulam-Hammersley problem for multiset permutations

Lucas Gerin

January 5, 2023

Abstract

We obtain the asymptotic behaviour of the longest increasing/non-decreasing subse-
quences in a random uniform multiset permutation in which each element in {1, . . . , n}
occurs k times, where k may depend on n. This generalizes the famous Ulam-Hammersley
problem of the case k = 1. The proof relies on poissonization and a connection with variants
of the Hammersley-Aldous-Diaconis particle system.

1 Introduction

A k-multiset permutation of size n is a word with letters in {1, 2, . . . , n} such that each let-
ter appears exactly k times. When this is convenient we identify a multiset permutation
s = (s(1), . . . , s(kn)) and the set of points {(i, s(i)), 1 ≤ i ≤ kn}. For example we say that there
is a point at height j in s is s(i) = j for some i.

We introduce two partial orders over the quarter-plane [0,∞)2:

(x, y) ≺ (x′, y′) if x < x′ and y < y′,

(x, y) 4 (x′, y′) if x < x′ and y ≤ y′.

(Note that the roles of x, y are not identical in the definition of 4.) For a finite set P of points
in the quarter-plane we put

L<(P) = max {L; there exists P1 ≺ P2 ≺ · · · ≺ PL, where each Pi ∈ P} ,
L≤(P) = max {L; there exists P1 4 P2 4 · · · 4 PL, where each Pi ∈ P} .

The integer L<(P) (resp. L≤(P)) is the length of the longest increasing (resp. non-decreasing)
subsequence of P.

Let Sk;n be a k-multiset permutation of size n taken uniformly among the
(

kn
k k ... k

)
possibil-

ities. In the case k = 1 the word S1;n is just a uniform permutation and estimating L<(S1;n) is
known as the Hammersley or Ulam-Hammersley problem. The first order was solved by Veršik
and Kerov [VK77] (see [Rom15] for a review of the problem):

E[L<(S1;n)] = E[L≤(S1;n)]
n→+∞∼ 2

√
n.

Note that the above limit also holds in probability, in the sense that P
(
| 1
2
√
n
L<(S1;n)− 1| > ε

)
→

0 for every ε > 0, that we shorten into: L<(S1;n) = 2
√
n+ oP(

√
n).

In the context of card guessing games it is asked in [CDH+22, Question 4.3] the behaviour of
L<(Sk;n) for a fixed k. Using known results regarding longest increasing subsequences through
independent points we can make an educated guess. Indeed, let Ber(p) be a field of i.i.d. Bernoulli
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random variables with mean p over the square lattice. Seppäläinen [Sep97, Th.1.] proved that
for fixed p and k,

L<
(

Ber(p) ∩ [0, kn]× [0, n]
)
n→∞∼ n×

√
p

1− p

(
2
√
k − (k + 1)

√
p
)
.

For p = 1/n there are in average k points of Ber(p) on each line of [0, kn] × [0, n]. Pretending
that we can safely let p depend on n in the above approximation we obtain

L<(Sk;n) ≈ L<
(

Ber(1/n) ∩ [0, kn]× [0, n]
)
≈ 2
√
kn.

The goal of the present paper is to make this approximation rigorous (however we are not going
to use Seppäläinen’s result but rather poissonize the problem). We actually adress this question
in the case where k depends on n.

Theorem 1 (Longest increasing subsequences). Let (kn) be a sequence of integers such that
kn ≤ n for all n. Then

E[L<(Skn;n)] = 2
√
nkn − kn + o(

√
nkn). (1)

(Of course if kn = o(n) then the RHS of (1) reduces to 2
√
nkn + o(

√
nkn).) If kn ≥ n for

some n then the naive greedy strategy shows very easily that E[L<(Skn;n)] ≥ n− o(n).

Theorem 2 (Longest non-decreasing subsequences). Let (kn) be an arbitrary sequence of inte-
gers. Then

E[L≤(Skn;n)] = 2
√
nkn + kn + o(

√
nkn). (2)

We are not aware of previous results for multiset permutations. However Theorems 1 and 2
in the linear regime kn ∼ constant×n should be compared to a result by Biane ([Bia01, Theorem
3]). Indeed he obtains the exact limiting shape of the random Young Tableau induced through
the RSK correspondence by a random wordWq;N of q i.i.d. uniform letters in {1, 2, . . . , N} in the
regime where √q/N → c for some constant c > 0. (The regime √q/N → c corresponds to kn ∼
c2n with our notation.) Regarding longest increasing subsequences we expect the asymptotics
of the word Wq;N to be close to that of the multiset permutation Sc2N ;N and Theorems 1 and 2
respectively suggest:

L<(Wq;N ) ≈ L<(Sc2N ;N ) ∼ 2Nc− c2N ∼ (2− c)√q,
L≤(Wq;N ) ≈ L≤(Sc2N ;N ) ∼ 2Nc+ c2N ∼ (2 + c)

√
q.

As the length of the first row (resp. the number of rows) in the Young Tableau corresponds
to the length of the longest non-decreasing subsequence in Wk;n (resp. the length of the longest
decreasing sequence) a weak consequence of ([Bia01, Theorem 3]) is that, in probability,

lim inf
1
√
q
L<(Wq;N ) ≥ (2− c), lim sup

1
√
q
L≤(Wq;N ) ≤ (2 + c),

which is indeed consistent with the above heuristic.

Strategy of proof and organization of the paper. In Section 2 we first provide the proof
of Theorems 1 and 2 in the case of a constant or slowly growing sequence (kn). The proof is
elementary (assuming known the Veršik-Kerov Theorem).

For the general case we borrowed a few tools in the literature. In particular we first study
poissonized versions of L<(Skn;n),L≤(Skn;n). As already suggested by Hammersley ([Ham72],
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Sec.9) and achieved by Aldous-Diaconis [AD95] the case k = 1 can be tackled by considering
an interacting particle system which is now known as the Hammersley or Hammersley-Aldous-
Diaconis particle system.

In Section 3 we introduce and analyze the two variants1 of the Hammersley process adapted
to multiset permutations. The standard path to analyze Hammersley-like models consists in
using subadditivity to prove the existence of a limiting shape and then proving that this limiting
shape satisfies a variational problem. Typically this variational problem is solved using convex
duality (see [Sep97, CG19]). The issue here is that since we allow kn to have different scales we
cannot use this approach and we need to derive non-asymptotic bounds for both processes. This
is the purpose of Theorem 8 whose proof is the most technical part of the paper. In Section 4 we
detail the multivariate de-poissonization procedure in order to conclude the proof of Theorem 1.
De-poissonization is more convoluted for non-decreasing subsequences: see Section 5.

Beyond expectation. In the course of the proof we actually obtain results beyond the esti-
mation of the expectation. We obtain concentration inequalities for the poissonized version of
L<(Skn;n),L≤(Skn;n): see Theorem 8 and also the discussion in Section 5.3. Regarding fluctua-
tions a famous result by Baik, Deift and Johansson [BDJ99, Th.1.1] states that

L≤(S1;n)− 2
√
n

n1/6

(d)→ TW

where TW is the Tracy-Widom distribution. For L<(Sk;n) with fixed k we are quite confident
that the particle system approach and more precisely the analysis of second class particles (see
[CG06, CG19]) could be adapted and would yield that the fluctuations are also of order n1/6. For
general (kn) the intuition given by the comparison with the Hammersley process would suggest
that the fluctuations of L<(Skn;n) might be of order (knn)1/6 as long as (kn) does not grow too
fast. Yet we have no evidence for this.

2 Preliminaries: the case of small kn

We first prove Theorems 1 and 2 in the case of a small sequence (kn). We say that a sequence
(kn) of integers is small if

k2
n(kn)! = o(

√
n). (3)

Note that a sequence of the form kn = (log n)1−ε is small while kn = log n is not small.

Proof of Theorems 1 and 2 in the case of a small sequence (kn). (In order to lighten notation we
skip the dependence in n and write k = kn.)
Let σkn be a random uniform permutation of size kn. We can associate to σkn a k-multiset
permutation Sk;n in the following way. For every 1 ≤ i ≤ kn we put

Sk;n(i) = dσ(i)/ke.

It is clear that Sk;n is uniform and we have

L<(Sk;n) ≤ L≤(σkn) ≤ L≤(Sk;n).

1The first one is very close to the historical Hammersley process, I discovered during the preparation of this
article that the second one had recently appeared in A.Boyer’s PhD Thesis [Boy22] with a connection to the
O’Connell-Yor Brownian polymer.
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The Veršik-Kerov Theorem says that the middle term in the above inequality grows like 2
√
kn.

Hence we need to show that if (kn) is small then

L≤(Sk;n) = L<(Sk;n) + oP(
√
kn),

which is a big step towards the small case of Theorems 1 and 2. For this purpose we introduce
for every δ > 0 the event

Eδ :=
{
L≤(Sk;n) ≥ L<(Sk;n) + δ

√
n
}
. (4)

If Eδ occurs then in particular there exists a non-decreasing subsequence with δ
√
n ties, i.e.

points of Sk;n which are at the same height as their predecessor in the subsequence. These ties
have distinct heights 1 ≤ i1 < · · · < i` ≤ n for some δ

√
n/k ≤ ` ≤ δ

√
n. Fix

• Integers m1, . . . ,m` ≥ 2 such that (m1 − 1) + · · ·+ (m` − 1) = δ
√
n ;

• Column indices r1,1 < · · · < r1,m1 < r2,1 < r2,m1 < · · · < r`,1 < · · · < r1,m` .

We then introduce the event

F = F ((i`)`, (ri,j)i≤`,j≤mi)

= {S(r1,1) = · · · = S(r1,m1) = i1, S(r2,1) = · · · = S(r2,m1) = i2, . . . , S(r`,1) = · · · = S(r1,m`) = i`} .

By the union bound (we skip the integer parts)

P(Eδ) ≤
∑

δ
√
n/k≤`≤δ

√
n

∑
1≤i1<···≤i`≤n

∑
(ri,j)i≤`,j≤mi

P (F ((i`)`, (ri,j)i≤`,j≤mi)) .

Using

card
{∑

mi = δ
√
n+ `; each mi ≥ 2

}
= card

{∑
pi = δ

√
n; each pi ≥ 1

}
=

(
δ
√
n− 1

`− 1

)
we obtain the upper bound∑
(ri,j)i≤`,j≤mi

P(F ) =
1(
kn

k k ... k

) ( nk∑
mi

)
︸ ︷︷ ︸
choices of r’s

(
δ
√
n− 1

`− 1

)
︸ ︷︷ ︸
choices of m′is

(
kn−

∑
mi

(k −m1) (k −m2) . . . (k −m`)k . . . k

)
︸ ︷︷ ︸

choices of kn−
∑
mi remaining points

=
(k!)`(δ

√
n− 1)!

(δ
√
n+ `)!(δ

√
n− `)!(`− 1)!(k −m1)!(k −m2)!× · · · × (k −m`)!

≤ (k!)`

(δ
√
n)`+1(δ

√
n− `)!(`− 1)!

.

We now sum over 1 ≤ i1 < · · · ≤ i` ≤ n and then sum over `:

P(Eδ) ≤
δ
√
n∑

`=δ
√
n/k

(
n

`

)
(k!)`

(δ
√
n)`+1(δ

√
n− `)!(`− 1)!

≤
δ
√
n−3∑

`=δ
√
n/k

(
n

`

)
(k!)`

(δ
√
n)`+1(δ

√
n− `)!(`− 1)!

+ 3

(
n

δ
√
n

)
(k!)δ

√
n

(δ
√
n)δ
√
n−2(δ

√
n− 3)!

(5)
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i1

i`

r1,1 r1,2 r1,m1

i2

r2,1 r2,m2 r`,1 r`,m`
. . .

Figure 1: The event F . (Ties are surrounded in red. Points with blue background represent the
subsequence with δ

√
n ties.)

Using the two following inequalities valid for every j ≤ m (see e.g. [CLRS09, eq.(C.5)])(
m

j

)
≤
(
me

j

)j
, m! ≥ mm exp(−m)

we first obtain that if kn! = o(
√
n) (which is the case if (kn) is small) then the last term of (5)

tends to zero. Regarding the sum we write

P(Eδ) ≤
δ
√
n−3∑

`=δ
√
n/k

(ne
`

)` (k!)`

(δ
√
n)`+1(δ

√
n− `)δ

√
n−`e−δ

√
n+`(`− 1)`−1e−`+1

+ o(1)

≤
δ
√
n−3∑

`=δ
√
n/k

(
nek!(δ

√
n− `)

δ
√
n`(`− 1)

)`
(`− 1)e−1

δ
√
n

( e

δ
√
n− `︸ ︷︷ ︸

≤e/3<1

)δ√n
+ o(1)

≤
δ
√
n−3∑

`=δ
√
n/k

(√
nek!(δ

√
n− `)

δ`(`− 1)

)`
(`− 1)e−1

δ
√
n

( e

δ
√
n− `

)`
+ o(1)

≤
δ
√
n−3∑

`=δ
√
n/k

( √
ne2k!

δ`(`− 1)

)`
(`− 1)e−1

δ
√
n

+ o(1), (6)

which tends to zero for every δ > 0, as long as (kn) satisfies (3). This proves that L≤(Sk;n) =
L<(Sk;n) + oP(

√
kn). Using the crude bounds L<(Sk;n) ≤ n and L≤(Sk;n) ≤ kn, eq.(6) also

implies that
E[L≤(Sk;n)] = E[L<(Sk;n)] + o(

√
kn).

3 Poissonization: variants of the Hammersley process

Remark. In the sequel, Poisson(µ) (resp. Binomial(n, q)) stand for generic random variables
with Poisson distribution with mean µ (resp. Binomial distribution with parameters n, q).
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c ≥

0
(1
-β

?
)

Figure 2: Our four variants of the Hammersley process (time goes from bottom to top, trajectories
of particules are indicated in blue). Top left: The process L<(t). Top right: The process L≤(t).
Bottom left: The process L(α,p)

< (t). Bottom right: The process L(β,β?)
≤ (t).

Notation Geometric≥0(1−β) stands for a geometric random variable with the convention P(Geometric≥0(1−
β) = k) = (1− β)βk for k ≥ 0. In particular E[Geometric≥0(1− β)] = β

1−β .

3.1 Definitions of the processes L<(t) and L≤(t)

In this Section we define formally and analyze two semi-discrete variants of the Hammersley
process.

For a parameter λ > 0 let Π(λ) be the random set Π(λ) = ∪iΠ(λ)
i where Π

(λ)
i ’s are independent

and each Π
(λ)
i is a homogeneous Poisson Point Process (PPP) with intensity λ on (0,∞)× {i}.

For simplicity set
Π

(λ)
x,t = Π(λ) ∩ ([0, x]× {1, . . . , t}) .

The goal of the present section is to obtain non-asymptotic bounds for L<
(

Π
(λ)
x,t

)
and L≤

(
Π

(λ)
x,t

)
.

Fix x > 0 throughout the section. For every t ∈ {0, 1, 2, . . . } the function y ∈ [0, x] 7→ L<(y, t)
(resp. L≤(y, t)) is a non-decreasing integer-valued function whose all steps are equal to +1.
Therefore this function is completely determined by the finite set

L<(t) :=
{
y ≤ x,L<(y, t) = L<(y, t−) + 1

}
.

(Respectively:
L≤(t) :=

{
y ≤ x,L≤(y, t) = L≤(y, t−) + 1

}
.)

Sets L<(t) and L≤(t) are finite subsets of [0, x] whose elements are considered as particles. It
is easy to see that for fixed x > 0 both processes (L<(t))t and (L≤(t))t are Markov processes
taking their values in the family of point processes of [0, x].
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Exactly the same way as for the classical Hammersley process ([Ham72, Sec.9], [AD95]) the
individual dynamic of particles is very easy to describe:

• The process L< . We put L<(0) = ∅. In order to define L<(t+1) from L<(t) we consider
particles from left to right. A particle at y in L<(t) moves at time t+ 1 at the location of
the leftmost available point z in Π

(λ)
t+1 ∩ (0, y) (if any, otherwise it stays at y). This point z

is not available anymore for subsequent particles, as well as every other point of Π
(λ)
t ∩(0, y).

0 x

Configuration L<(t)

t+1

Configuration L<(t+1)

y

z

y′

If there is a point in Π
(λ)
t+1 which is on the right of y′ := max{L<(t)} then a new particle is

created in L<(t+ 1), located at the leftmost point in Π
(λ)
t+1 ∩ (y′, x). (In pictures this new

particle comes from the right.)
A realization of L< is shown on top-left of Fig.2.

• The process L≤ . We put L≤(0) = ∅. In order to define L≤(t + 1) from L≤(t) we also
consider particles from left to right. A particle at y in L≤(t) moves at time t + 1 at the
location of the leftmost available point z in Π

(λ)
t ∩ (0, y). This point z is not available

anymore for subsequent particles, other points in (z, y) remain available.

0 xConfiguration L≤(t)

t+1

Configuration L≤(t+1)

If there is a point in Π
(λ)
t+1 which is on the right of y′ := max{L<(t)} then new particles are

created in L<(t+ 1), one for each point in Π
(λ)
t+1 ∩ (y′, x).

A realization of L≤ is shown on top-right of Fig.2.

Processes L<(t) and L≤(t) are designed in such a way that they record the length of longest
increasing/non-decreasing paths in Π. In fact particles trajectories correspond to the level sets
of the functions (x, t) 7→ L<

(
Π

(λ)
x,t

)
, (x, t) 7→ L≤

(
Π

(λ)
x,t

)
.

Proposition 3. For every x,

L<
(

Π
(λ)
x,t

)
= card(L<(t)), L≤

(
Π

(λ)
x,t

)
= card(L≤(t)),

where on each right-hand side we consider the particle system on [0, x].
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Proof. We are merely restating the original construction from Hammersley ([Ham72], Sec.9). We
only do the case of L<(t).

Let us call each particle trajectory a Hammersley line. By construction each Hammersley line
is a broken line starting from the right of the box [0, x]× [0, t] and is formed by a succession of
north/west line segments. Because of this, two distinct points in a given longest increasing subse-
quence of Π

(λ)
x,t cannot belong to the same Hammersley line. Since there are L<(t) Hammersley’s

lines this gives L<
(

Π
(λ)
x,t

)
≤ card(L<(t)).

In order to prove the converse inequality we build from this graphical construction a longest
increcreasing subsequence of Π

(λ)
x,t with exactly one point on each Hammersley line. To do so, we

order Hammersley’s lines from bottom-left to top-right, and we build our path starting from the
top-right corner. We first choose any point of Π

(λ)
x,t belonging to the last Hammersley line. We

then proceed by induction: we choose the next point among the points of of Π
(λ)
x,t lying on the

previous Hammersley line such that the subsequence remains increasing. (This is possible since
Hammersley’s lines only have North/West line segments.) This proves L<

(
Π

(λ)
x,t

)
≥ card(L<(t)).

3.2 Sources and sinks: stationarity

Proposition 3 tells us that in on our way to prove Theorem 1 and Theorem 2 we need to
understand the asymptotic behaviour of processes L<, L≤. These processes are far from being
stationary as particles may appear all the time in the system and never disappear. To solve
this issue we use the trick of sources/sinks introduced formally and exploited by Cator and
Groeneboom [CG05] (following the intuition given by [AD95]):

• Sources form a finite subset of [0, x]× {0} which plays the role of the initial configuration
L<(0), L≤(0).

• Sinks are points of {0} × [1, t] which add up to Π(λ) when one defines the dynamics of
L<(t), L≤(t). For L≤(t) it makes sense to add several sinks at the same location (0, i) so
sinks may have a multiplicity.

Examples of dynamics of L<, L≤ under the influence of sources/sinks is illustrated at the bottom
of Fig.2.

Lemma 4. For every λ, α > 0 let L(α,p)
< (t) be the Hammersley process defined as L<(t) with:

• sources distributed according to a homogeneous PPP with intensity α on [0, x]× {0} ;

• sinks distributed according to i.i.d. Bernoulli(p) with

λ

λ+ α
= p. (7)

If sources, sinks, and Π(λ) are independent then the process
(
L

(α,p)
< (t)

)
t≥0

is stationary.

Lemma 5. For every β > λ > 0 let L(β,β?)
≤ (t) be the Hammersley process defined as L≤(t) with:

• sources distributed according to a homogeneous PPP with intensity β on [0, x]× {0} ;

• sinks distributed according to i.i.d. Geometric≥0(1− β?) with

β?β = λ. (8)

8



If sources, sinks, and Π(λ) are independent then the process
(
L

(β,β?)
≤ (t)

)
t≥0

is stationary.

Proof of Lemmas 4 and 5. Lemma 5 could be obtain from several minor adjustments of [Boy22,
Chap.3, Lemma 3.2]. (Be aware that we have to switch x↔ t and sources ↔ sinks in [Boy22] in
order to fit our setup.) For the sake of the reader we however propose the following alternative
proof.

Consider for some fixed t ≥ 1 the process (Hy)0≤y≤x given by the number of Hammersley
lines passing through the point (y, t).

0 xConfiguration L≤(t-1)

The corresponding process (Hy)
x

t

The initial value H0 is the number of sinks at (0, t), which is distributed as a Geometric≥0(1−
β?). The process (Hy) is a random walk (reflected at zero) with ’+1 rate’ equal to λ and ’−1
rate’ equal to β. (Jumps of (Hy) are independent from sinks as sinks are independent from Π(λ).)
The Geometric≥0(1−β?) distribution is stationary for this random walk exactly when (8) holds.
The set of points of L(β,β?)

≤ (t) is given by the union of Π
(λ)
t and the points of L(β,β?)

≤ (t) that do
not correspond to a ’−1’ jump. A elementary computation with exponential and gamma random
variables then shows that this is distributed as a homogeneous PPP with intensity β.

Lemma 4 is proved exactly in the same way (alternatively one can mimic the proof of [CG05,
Th.3.1.] as the dynamics is the same as in the classical Hammersley process) so we omit details.
We simply explain where (7) comes from.

If Lemma 4 is true for some α, p, λ then in particular the number of particles in the system
should be constant in expectation. At time t a particle leaves the system (from the left) if and
only if there is a sink at height t, which occurs with probability p. On the other hand a new
particle appears from the right if there is a point in Π

(λ)
t which is on the right of the right-most

particle of L<(t). This occurs with probability λ/(α+ λ), hence we need (7) to hold so that the
expected number of particles remain constant.

3.3 Processes L<(t) and L≤(t): non-asymptotic bounds

From Lemmas 4 and 5 it is straightforward to derive non-asymptotic upper bounds for L<(t), L≤(t).
For y ≤ x let So(α)

x be the random set of sources with intensity α and for s ≤ t let Si(p)t the
random set of sinks with intensity p. It is convenient to use the notation L=<(P) which is, as
before, the length of the longest increasing path taking points in P but when the path is also
allowed to go through several sources (which have however the same y-coordinate) or several
sinks (which have the same x-coordinate). Formally,

L=<(P) = max {L; there exists P1 =≺ P2 =≺ · · · =≺ PL, where each Pi ∈ P} ,

9



where

(x, y) =≺ (x′, y′) if


x < x′ and y < y′,

or x = x′ = 0 and y < y′,

or x < x′ and y = y′ = 0.

Proposition 3 can be generalized in

L=<

(
Π

(λ)
x,t ∪ So(α)

x ∪ Si
(p)
t

)
= L

(α,p)
< (t) + card(Si

(p)
t ). (9)

Lemma 6 (Upper bound for L<). For every α, p ∈ (0, 1) such that (7) holds, there is a stochastic
domination of the form:

L<
(

Π
(λ)
x,t

)
4 Poisson(xα) + Binomial(t, p). (10)

(The Poisson and Binomial random variables involved in (10) are not independent.)

Proof. Adding sources and sinks may not decrease longest increasing paths. Thus,

L<
(

Π
(λ)
x,t

)
4 L=<

(
Π

(λ)
x,t ∪ So(α)

x ∪ Si
(p)
t

)
= L

(α,p)
< (t) + card(Si(p)) (using (9))

(d)
= L

(α,p)
< (0) + card(Si(p)) (using stationarity: Lemma 4)

(d)
= Poisson(xα) + Binomial(t, p).

Taking expectations in (10) we obtain

E
[
L<
(

Π
(λ)
x,t

)]
≤ xα+ tp.

As the LHS in the above equation does not depend on α, p (provided that α, p satisfies (7)) we
will apply (10) with the minimizing choice

ᾱ, p̄ := argminα,p satisfying (7) {xα+ tp} ,

i.e.

ᾱ =

√
tλ

x
− λ, p̄ =

√
xλ

t
, xᾱ+ tp̄ = 2

√
xtλ− xλ. (11)

We have proved
E
[
L<
(

Π
(λ)
x,t

)]
≤ 2
√
xtλ− xλ.

(Compare with (1).) We have a similar statement for non-decreasing subsequences:

Lemma 7 (Upper bound for L≤). For every β, β? ∈ (0, 1) such that (8) holds, there is a
stochastic domination of the form:

L≤
(

Π
(λ)
x,t

)
4 Poisson(xβ) + G(β?)

1 + · · ·+ G(β?)
t , (12)

where G(β?)
i ’s are i.i.d. Geometric≥0(1− β?).

10



We put

β̄, β̄? := argminβ,β? satisfying (8)

{
xβ + t

(
β?

1− β?

)}
, (13)

i.e.

β̄ =

√
tλ

x
+ λ, β̄? =

1

1 +
√
t/xλ

, xβ̄ + t

(
β̄

1− β̄

)
= 2
√
xtλ+ xλ. (14)

(In particular β̄ > λ, as required in Lemma 5.) Eq.(12) yields

E
[
L≤
(

Π
(λ)
x,t

)]
≤ 2
√
xtλ+ xλ. (15)

(Compare with (2).)

Theorem 8 (Concentration for L<, L≤). There exist strictly positive functions g, h such that
for all ε > 0 and for every x, t, λ such that t ≥ xλ

P(L<(Π
(λ)
x,t ) > (1 + ε)(2

√
xtλ− xλ)) ≤ exp(−g(ε)(

√
xtλ− xλ)), (16)

P(L<(Π
(λ)
x,t ) < (1− ε)(2

√
xtλ− xλ)) ≤ exp(−h(ε)(

√
xtλ− xλ)). (17)

Similarly:

P(L≤(Π
(λ)
x,t ) > (1 + ε)(2

√
xtλ+ xλ)) ≤ exp(−g(ε)

√
xtλ), (18)

P(L≤(Π
(λ)
x,t ) < (1− ε)(2

√
xtλ+ xλ)) ≤ exp(−h(ε)

√
xtλ). (19)

For the proof of Theorem 8 we will focus on the case of L<, i.e. eq.(16), (17). When necessary
we will give the slight modification needed to prove eq.(18) and (19). The beginning of the proof
mimics Lemmas 4.1 and 4.2 in [BEGG16].

We first prove similar bounds for the stationary processes with minimizing sources and sinks.

Lemma 9 (Concentration for L< with sources and sinks). Let ᾱ, p̄ be defined by (11). There
exists a strictly positive function g1 such that for all ε > 0 and for every x, t, λ such that t ≥ xλ

P(L=<(Π
(λ)
x,t ∪ So(ᾱ)

x ∪ Si
(p̄)
t ) > (1 + ε)(2

√
xtλ− xλ)) ≤ 2 exp(−g1(ε)(

√
xtλ− xλ)) (20)

P(L=<(Π
(λ)
x,t ∪ So(ᾱ)

x ∪ Si
(p̄)
t ) < (1− ε)(2

√
xtλ− xλ)) ≤ 2 exp(−g1(ε)(

√
xtλ− xλ)). (21)

Proof of Lemma 9. By stationarity (Lemma 4) we have

L=<(Π
(λ)
x,t ∪ So(ᾱ)

x ∪ Si
(p̄)
t )

(d)
= Poisson(xᾱ) + Binomial(t, p̄).

Then

P(L=<(Π
(λ)
x,t ∪ So(ᾱ)

x ∪ Si
(p̄)
t > (1 + ε)(2

√
xtλ− xλ)) ≤ P

(
Poisson(xᾱ) > (1 +

ε

2
)(
√
xtλ− xλ)

)
+ P

(
Binomial(t, p̄) > (1 +

ε

2
)
√
xtλ
)
.

Recall that xᾱ =
√
xtλ−xλ, tp̄ =

√
xtλ. Using the tail inequality for the Poisson distribution

(Lemma 14):

P
(

Poisson(xᾱ) > (1 +
ε

2
)(
√
xtλ− xλ)

)
≤ exp

(
−(
√
xtλ− xλ)ε2/4

)
Using the tail inequality for the binomial (Lemma 15) we get

P
(

Binomial(t, p̄) > (1 +
ε

2
)
√
xtλ
)
≤ exp(− 1

12ε
2
√
xtλ) ≤ exp(− 1

12ε
2(
√
xtλ− xλ))

The proof of (21) is identical. This shows Lemma 9 with g1(ε) = ε2/12.

11



xεx

Maximizing path for L=<

Maximizing path for L?<,ε

Point of Π(λ)

source

sink

Figure 3: A sample of Π
(λ)
x,t , sources, sinks, and the corresponding trajectories of particles (in

blue). Here L=<(Π
(λ)
x,t ∪ So

(α)
x ∪ Si(p)t ) = 5 (pink path) and L(α,p)

< (t) = 2 (two remaining particles
at the top of the box).

For longest non-decreasing subsequences we have a statement similar to Lemma 9. The only
modification in the proof is that in order to estimate the number of sinks one has to replace
Lemma 15 (tail inequality for the Binomial) by Lemma 16 (tail inequality for a sum of geometric
random variables). During the proof we need to bound

√
xtλ + xλ by

√
xtλ, this explains the

form of the right-hand side in eq.(18) and (19).

Proof of Theorem 8. Adding sources/sinks may not decrease L< so

L=<(Π
(λ)
x,t ∪ So(ᾱ)

x ∪ Si
(p̄)
t ) < L<(Π

(λ)
x,t ),

thus the upper bound (16) is a direct consequence of Lemma 9.
Let us now prove the lower bound. We consider the length of a maximizing path among those

using sources from 0 to εx and then only increasing points of Π
(λ)
x,t ∩ ([εx, x]× [0, t]) (see Fig.3).

Formally we set

L?=<,ε := card
(
So(ᾱ)

εx

)
+ L<

(
(Π

(λ)
x,t ∩ ([εx, x]× [0, t])

) (d)
= Poisson(εxᾱ) + L<

(
(Π

(λ)
x,t ∩ ([εx, x]× [0, t])

)
(22)

The idea is that for any fixed ε the paths contributing to L?=<,ε will typically not contribute to

L=<

(
Π

(λ)
x,t ∪ So

(ᾱ)
x ∪ Si

(p̄)
t

)
= L

(ᾱ,p)
< (t) + card(Si

(p̄)
t ). Indeed eq.(22) suggests that for large x, t

L?=<,ε ≈ E[Poisson(εxᾱ)] + E
[
L<
(

Π
(λ)
x,t ∩ ([εx, x]× [0, t])

)]
≈ xεᾱ+ 2

√
x(1− ε)λt− x(1− ε)λ

= 2
√
xλt− xλ−

√
xtλδ(ε),

where δ(ε) = 2−ε−2
√

1− ε is positive and increasing. In order to make the above approximation
rigorous we first write

2
√
xλt− xλ− 1

2

√
xtλδ(ε) = xεᾱ+ 1

4

√
xtλδ(ε) + 2

√
x(1− ε)λt− x(1− ε)λ+ 1

4

√
xtλδ(ε). (23)
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Combining (22) and (23) gives

P
(
L?<,ε ≥ 2

√
xλt− xλ− 1

2

√
xtλδ(ε)

)
≤ P

(
Poisson(xεᾱ) ≥ xεᾱ+ 1

4

√
xtλδ(ε)

)
+ P

(
L<(Π

(λ)
x,t ∩ ([εx, x]× [0, t]) ≥ 2

√
x(1− ε)λt− x(1− ε)λ+ 1

4

√
xtλδ(ε)

)
≤ exp

(
− xtλδ(ε)2

16× 4ε2(
√
xtλ− xλ)

)
(using Lemma 14)

+ P
(
L<(Π

(λ)
x,t ∩ ([εx, x]× [0, t]) ≥ 2

√
x(1− ε)λt− x(1− ε)λ+ 1

8(2
√
x(1− ε)λt− x(1− ε)λ)δ(ε)

)
≤ exp

(
−
√
xtλδ(ε)2/(64ε2)

)
+ P

(
L<(Π

(λ)
x,t ∩ ([εx, x]× [0, t]) ≥

(
2
√
x(1− ε)λt− x(1− ε)λ

)
× (1 + 1

8δ(ε))
)

≤ exp
(
−
√
xtλδ(ε)2/(64ε2)

)
+ exp

(
−g(δ(ε)/8)(

√
x(1− ε)tλ− x(1− ε)λ)

)
(using the upper bound (16))

and thus we can find some positive h such that

P
(
L?<,ε ≥ 2

√
xλt− xλ− 1

2

√
xtλδ(ε)

)
≤ exp

(
−h(ε)(

√
xtλ− xλ)

)
. (24)

One proves exactly in the same way a similar bound for the length of a maximizing path among
those using sinks in {0} × [0, εt] and then only increasing points of Π

(λ)
x,t ∩ ([0, x]× [εt, t]).

Choose now one of the maximizing paths P for L=<

(
Π

(λ)
x,t ∪ So

(ᾱ)
x ∪ Si

(p̄)
t

)
(if there are many

of them, choose one arbitrarily in a deterministic way: the lowest, say). Denote by sources(P)
and sinks(P) the number of sources and sinks in the path P:

sources(P) = card {0 ≤ y ≤ x such that (y, 0) ∈ P} .

In Fig.3 the path P is sketched in pink and sources(P) = 2, sinks(P) = 0.

Lemma 10. There exists a positive function ψ such that for all real η > 0

P
(
sources(P) + sinks(P) ≥ η

√
xλt
)
≤ 2 exp(−ψ(η)(

√
xλt− xλ)).

Proof of Lemma 10. If the event
{
sources(P) ≥ η

√
xλt
}

holds then there exists a (random) ε
such that the two following events hold:

• Soεx ≥ η
√
xλt ;

• L?=<,ε = L=<

(
Π

(λ)
x,t ∪ So

(ᾱ)
x ∪ Si

(p̄)
t

)
= L

(ᾱ,p̄)
< (t) + card(Si

(p̄)
t ).

This implies that this random ε is larger than η/2 > 0 unless the number of sources in [0, xη/2]
is improbably high:

P(sources(P) ≥ η
√
xλt) ≤ P(Soηx/2 ≥ η

√
xλt) + P(sources(P) ≥ η

√
xλt; Soηx/2 < η

√
xλt)

≤ P(Soηx/2 ≥ η
√
xλt)

+ P(L
(ᾱ,p̄)
< (t) ≤

√
xλt− xλ− 1

4δ(η/3)
√
xλt)

+ P(card(Si
(p̄)
t ) ≤

√
xλt− 1

4δ(η/3)
√
xλt)

+ P(L?=<,ε ≥ 2
√
xλt− xλ− 1

2δ(η/3)
√
xλt for some η/2 ≤ ε ≤ 1).
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From previous calculations, the three first terms in the above display are less than exp(−φ(η)(
√
xλt−

xλ)) for some positive function φ. To conclude the proof it remains to bound the fourth term.
Let K be an integer larger than 6/η3, by definition of L?=<,ε we have for every ε ∈ [ kK ,

k+1
K )

L?=<,ε ≤ L?=<,k/K + card(So(ᾱ)
x ∩ [ kK ,

k+1
K ]).

Thus

P(
⋃

η/2≤ε≤1

L?=<,ε > 2
√
xλt− xλ− 1

2δ(η/3)
√
xλt)

≤
∑

k≥bηK/2c

P
(
L?=<,k/K > 2

√
xλt− xλ− δ(η/3)

√
xλt
)

+
∑

k≥bηK/2c

P
(

card(So(ᾱ)
x ∩ [ kK ,

k+1
K ]) > 1

2δ(η/3)
√
xλt
)

≤
∑

k≥bηK/2c

P
(
L?=<,k/K > 2

√
xλt− xλ− δ(k/K)

√
xλt
)

(since K > 6/η3 > 6/η and δ is increasing)

+
∑

k≥bηK/2c

P
(

card(So(ᾱ)
x ∩ [ kK ,

k+1
K ]) > 1

2δ(η/3)
√
xλt
)

≤
∑

k≥bηK/2c

exp(−h(k/K)(
√
xtλ− xλ)) (using (24))

+K × P
(

Poisson(ᾱ/K) > 1
2δ(η/3)

√
xλt
)

≤ K exp(−h(η/3)(
√
xtλ− xλ)) +K × P

(
Poisson(ᾱ/K) > 1

2δ(η/3)
√
xλt
)
,

≤ K exp(−h(η/3)(
√
xtλ− xλ)) +K × P

(
Poisson(ᾱ/K) > ᾱ/K +

η2

32

√
xλt

)
, (using K > 6/η3)

≤12

η
exp(−ϕ(η)(

√
xtλ− xλ)),

for some positive function ϕ(η). We can find ψ such that

min

{
1,

12

η
e−ϕ(η)(

√
xtλ−xλ) + 3 exp(−φ(η))

}
≤ e−ψ(η)(

√
xtλ−xλ)

and thus P(sources(P) ≥ η
√
xλt) ≤ exp(−ψ(η)(

√
xtλ − xλ)). With minor modifications one

proves the same bound for sinks (possibly by changing ψ): P(sinks(P) ≥ η
√
xλt) ≤ exp(−ψ(η)(

√
xtλ−

xλ)) and Lemma 10 is proved.

We can conclude the proof of the lower bound in Theorem 8. Let us write

L<(t) ≥ L=<(Π
(λ)
x,t ∪ So(ᾱ)

x ∪ Si
(p̄)
t )− sources(P)− sinks(P),

we bound the right-hand side using Lemmas 9 and 10.

4 Proof of Theorem 1 when kn → +∞: de-Poissonization

In order to conclude the proof of Theorem 1 it remains to de-Poissonize Theorem 8. We need
a few notation. For any integers i1, . . . , in let Si1,...,in be the random set of points given by i`
uniform points on each horizontal line:

Si1,...,in = ∪n`=1 ∪
i`
r=1 {U`,r} × {`} ,
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where (U`,r)`,r is an array of i.i.d. uniform random variables in [0, 1]. Set also ei1,...,in =
E[L<(Si1,...,in)]. By uniformity of U ’s we have the identity E[L<(Sk;n)] = ek,...,k and therefore
our problem reduces to estimating ek,...,k. On the other hand if X1, . . . , Xn are i.i.d. Poisson
random variables with mean k then

E[eX1,...,Xn ] = E
[
L<(P(1/n)

nkn,n
)
]

= 2
√
nkn − kn + o(

√
nkn). (25)

The last equality is obtained by combining Theorem 8 for

x = nkn, t = n, λn =
1

n

with the trivial bound L<(P(1/n)
nkn,n

) ≤ n. In order to exploit (25) we need the following smoothness
estimate.

Lemma 11. For every i1, . . . , in and j1, . . . , jn

|ei1,...,in − ej1,...,jn | ≤ 6

√√√√ n∑
`=1

|i` − j`|.

Proof. Let S = Si1,...,in be as above. If we replace in S the y-coordinate of each point of the form
(x, `) by a new y-coordinate uniform in the interval (`, ` + 1) (independent from anything else)
then this defines a uniform permutation σi1+···+in of size i1 + · · ·+ in. The longest increasing sub-
sequence in S is mapped onto an increasing subsequence in σi1+···+in and thus this construction
shows the stochastic domination L<(Si1,...,in) 4 L<(σi1+···+in). Thus for every i1, . . . , in,

ei1,...,in ≤ E[L<(σi1+···+in)] ≤ 6
√
i1 + · · ·+ in. (26)

(The last inequality follows from [Ste97, Lemma 1.4.1].) Besides, consider for two n-tuples
i1, . . . , in and j1, . . . , jn two independent set of points Si1,...,in , S̃j1,...,jn then

L<(Si1,...,in) ≤ L<(Si1,...,in ∪ S̃j1,...,jn) ≤ L<(Si1,...,in) + L<(S̃j1,...,jn).

This proves that
ei1,...,in ≤ ei1+j1,...,in+jn ≤ ei1,...,in + ej1,...,jn .

(In particular (i1, . . . , in) 7→ ei1,...,in is non-decreasing with respect to any of its coordinate.)
Therefore

ei1,...,in ≤ e(i1−j1)+,...,(in−jn)+ + ej1−(i1−j1)−,...,jn−(in−jn)−

≤ e|i1−j1|,...,|in−jn| + ej1,...,jn .

By switching the role of i’s and j’s:

|ei1,...,in − ej1,...,jn | ≤ e|i1−j1|,...,|in−jn| ≤ 6

√√√√ n∑
`=1

|i` − j`|,

using (26).

Proof of Theorem 1 for any sequence (kn)→ +∞. Using smoothness we write

|ek,...,k − E[eX1,...,Xn ]| ≤ E [|ek,...,k − eX1,...,Xn |] ≤ 6× E

( n∑
`=1

|X` − k|

)1/2
 . (27)
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Using twice the Cauchy-Schwarz inequality:

E

( n∑
`=1

|X` − k|

)1/2
 ≤

√√√√E

[
n∑
`=1

|X` − k|

]
≤
√
nE [|X1 − k|]

≤
√
nE [|X1 − k|2]1/2 =

√
n
√

Var(X1) =

√
n
√
k.

If k = kn →∞ then the last display is a o(
√
nkn) and eq.(27) and (25) show that

ek,...,k = E[L<(Sk;n)] = 2
√
nkn − kn + o(

√
nkn).

5 Proof of Theorem 2

5.1 Proof for large (kn)

We now prove Theorem 2 for a large sequence (kn). We say that (kn) is large if

n2kn exp(−(kn)α) = o(
√
nkn) (28)

for some α ∈ (0, 1). Note that kn = log n is not large while kn = (log n)1+ε is large.
We first observe that de-Poissonization cannot be applied as in the previous section. We

lack smoothness as, for instance, E[L≤(Si1,0,0,...,0)] = i1 6= O(
√∑

i`). The strategy is to apply
Theorem 8 with

x = nkn, t = n, λn ≈
1

n
.

(The exact value of λn will be different for the proofs of the lower and upper bounds.)
Proof of the upper bound of (2) for large (kn).

Choose α such that n2kn exp(−kαn) = o(
√
nkn). Put

λn =
1

n
+
δn
n
, with δn = k−(1−α)/2

n .

Let Eλnn be the event

Eλnn =
{

at least kn points in each row of P(λn)
nkn,n

}
.

The event En occurs with large probability. Indeed,

1− P(Eλnn ) ≤ nP (Poisson(nknλn) ≤ kn)

≤ nP (Poisson(nknλn) ≤ nknλn + kn − nknλn)

≤ nP (Poisson(nknλn) ≤ nknλn − knδn)

≤ n exp

(
− k2

nδ
2
n

4nknλn

)
≤ n exp

(
−1

8knδ
2
n

)
= n exp

(
−1

8k
α
n

)
. (29)

At the last line we used Lemma 14. The latter probability tends to 0 as (kn) is large.

Lemma 12. Random sets Skn;n and Π
(λn)
nkn,n

can be defined on the same probability space in such
a way that

L≤(Skn;n) ≤ L≤(Π
(λn)
nkn,n

) + nkn(1− 1
Eλnn

). (30)
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Proof of Lemma 12. Draw a sample of Π
(λn)
nkn,n

and let Π̃
(λn)
nkn,n

be the subset of Π
(λn)
nkn,n

obtained
by keeping only the kn leftmost points in each row. If Eλnn occurs then the relative orders of
points in Π̃

(λn)
nkn,n

corresponds to a uniform kn-multiset permutation. If Eλnn does not hold we
bound L≤(Skn;n) by the worst case nkn.

Taking expectations in (30) and using the upper bound (15) yields

E[L≤(Skn;n)] ≤ 2
√
nkn(1 + δn) + kn(1 + δn) + n2kn exp (−kαn) ,

hence the upper bound in (2).

Proof of the lower bound of (2) for large (kn). Choose now λn = 1
n(1 − δn) with δn =

k
−(1−α)/2
n . Let Fn be the event

F λnn =
{

at most kn points in each row of P(λn)
nkn,n

}
.

The event F λnn occurs with large probability:

1− P(F λnn ) ≤ nP (Poisson(nknλn) ≥ kn) ≤ n exp
(
−1

8k
α
n

)
,

which tends to zero. Random sets Skn;n and P(λn)
nkn,n

can be defined on the same probability space
in such a way that

L≤(Skn;n) ≥ L≤(P(λn)
nkn,n

)1
Fλnn

.

Therefore

P
(
L≤(Skn;n) < (2

√
nkn(1− δn) + kn(1− δn))(1− ε)

)
≤

P
(
L≤(P(λn)

nkn,n
) < (2

√
nkn(1− δn) + kn(1− δn))(1− ε)

)
+ P

(
not F λnn

)
.

and we conclude with (19).

5.2 The gap between small and large (kn)

After I circulated a preliminary version of this article, Valentin Féray came up with a simple
argument for bridging the gap between small and large (kn). This allows to prove Theorem 2 for
an arbitrary sequence (kn), I reproduce his argument here with his permission.

Lemma 13. Let n, k,A be positive integers. Two random uniform multiset permutations S̃kA;bn/Ac
and Sk;n can be built on the same probability space in such a way that

L≤ (Sk;n) ≤ L≤
(
S̃kA;bn/Ac

)
+ kA.

Proof of Lemma 13 . Draw Sk;n uniformly at random, the idea is to group all points of Sk;n

whose height is between 1 and A, to group all points whose height is between A+ 1 and 2A, and
so on.

Formally, denote by 1 ≤ i1 < i2 < · · · < ikAbn/Ac the indices such that 1 ≤ i` ≤ bn/Ac for
every ` (see Fig.4). For 1 ≤ ` ≤ kAbn/Ac put

S̃(`) = dS(i`)/ke.

The word S̃ is a uniform kA-multiset permutation of size bn/Ac. A longest non-decreasing
subsequence in S is mapped onto a non-decreasing subsequence in S̃, except maybe some points
with height > Abn/Ac (there are no more than kA such points). This shows the Lemma.
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1

bn/AcA

n

i1 i2 i3 i4 . . .

1

bn/Ac

1 kAbn/Ac

A

Figure 4: Illustration of the notation of Lemma 13. Top: the multiset permutation Sk;n. Bottom:
the corresponding S̃. The longest non-decreasing subsequence in Sk;n (circled points) is mapped
onto a non-decreasing subsequence in S̃, except one point with height > Abn/Ac.

We conclude the proof of Theorem 2 by an estimation of E[L≤ (Skn;n)] in the case where
there are infinitely many kn’s such that, say, (log n)3/4 ≤ kn ≤ (log n)5/4. For the lower bound
the job is already done by Theorem 1 since

E[L≤ (Skn;n)] ≥ E[L< (Skn;n)] = 2
√
nkn − kn + o(

√
nkn),

which of course also 2
√
nkn+o(nkn) for this range of (kn). For the upper bound take A = blog nc

in Lemma 13:
E[L≤ (Skn;n)] ≤ E[L≤

(
Skn logn;bn/blogncc

)
] + kn log n (31)

and we can apply the large case since

(n/ log n)2kn log n exp(−(kn log n)α) = o(kn log n× bn/blog ncc).

Thus the right-hand side of (31) is also 2
√
nkn + o(

√
nkn).

5.3 Deviation inequalities

We briefly explain here how to deduce from previous calculations deviation inequalities for
L<(Skn;n) and L≤(Skn;n) in the case where (kn) is large. We only write the case of an up-
per bound for L< (Skn;n) and do not aim at optimality. As in Section 5.1 choose λn = 1

n + δn
n

where δn = k
−(1−α)/2
n .
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P
(
L< (Skn;n) > (2

√
nkn − kn)(1 + ε)

)
≤ P

(
Eλnn does not occur

)
+ P

(
L<
(

Π
(λn)
nkn,n

)
> (2

√
nkn − kn)(1 + ε)

)
≤ n exp

(
−1

8k
α
n

)
(using (29))

+ P
(
L<
(

Π
(λn)
nkn,n

)
> (1 + δn)(2

√
nkn − kn)

1 + ε

1 + δn

)
≤ n exp

(
−1

8k
α
n

)
+ P

(
L<
(

Π
(λn)
nkn,n

)
> (2

√
nkn(1 + δn)− kn(1 + δn))

1 + ε

1 + δn

)
≤ n exp

(
−1

8k
α
n

)
+ exp(−g̃(ε/2)(

√
nkn − kn)),

for large enough n and for some positive g̃, using (16).

Appendix: Useful tail inequalities

We collect here for convenience some (non-optimal) tail inequalities.

Lemma 14 ((See Chap.2 in [JŁR00])). Let Poisson(λ) be a Poisson random variable with mean
λ. For every A > 0

P (Poisson(λ) ≤ λ−A) ≤ exp(−A2/4λ),

P (Poisson(λ) ≥ λ+A) ≤ exp(−A2/4λ).

Lemma 15 (Th.2.1 in [JŁR00]). Let Binomial(n, p) be a Binomial random variable with param-
eters (n, p). For 0 < ε < 1,

P(Binomial(n, p) ≤ np+ εnp) ≤ exp
(
−ε2np/2

)
,

P(Binomial(n, p) ≥ np− εnp) ≤ exp
(
−ε2np/3

)
.

Lemma 16. Let G(α)
1 , . . . ,G(α)

k be i.i.d. random variables with distribution Geometric≥0(1− α).
For 0 < ε < 1,

P
(
G(α)

1 + · · ·+ G(α)
k ≥ (1 + ε)k

α

1− α

)
≤ exp

(
−1

4ε
2k

α

1− α

)
,

P
(
G(α)

1 + · · ·+ G(α)
k ≤ (1− ε)k α

1− α

)
≤ exp

(
−1

4ε
2k

α

1− α

)
.

Proof of Lemma 16. Using eλ ≤ 1 + λ+ λ2 for |λ| < 1 we have

E[eλ(G(α)1 − α
1−α )] =

(1− α)e−λ
α

1−α

1− αeλ
≤ exp

(
−λ2 α

1− α

)
.

This says that G(α)
1 is subexponential and the Chernov method (see e.g. [Wai19, Prop.2.2] for

the case of subexponential random variables) implies that

P
(
G(α)

1 + · · ·+ G(α)
k ≥ (1 + ε)k

α

1− α

)
≤ max

{
exp

(
−1

4ε
2k2 α

1− α

)
, exp

(
−1

2εk
α

1− α

)}
≤ exp

(
−1

4ε
2k

α

1− α

)
.

19



Acknowledgements. This work started as a collaboration with Anne-Laure Basdevant, I
would like to thank her very warmly. I am also extremely indebted to Valentin Féray for Lemma
13 and for having enlightened me on the links with [Bia01]. Finally, thanks to Sam Spiro for
stimulating exchanges.

References

[AD95] David Aldous and Persi Diaconis. Hammersley’s interacting particle process and
longest increasing subsequences. Probability Theory and Related Fields, 103(2):199–
213, 1995.

[BDJ99] Jinho Baik, Percy Deift, and Kurt Johansson. On the distribution of the length of
the longest increasing subsequence of random permutations. J. Amer. Math. Soc.,
12(4):1119–1178, 1999.

[BEGG16] Anne-Laure Basdevant, Nathanaël Enriquez, Lucas Gerin, and Jean-Baptiste Gouéré.
Discrete Hammersley’s lines with sources and sinks. ALEA Lat. Am. J. Probab. Math.
Stat., 13:33–52, 2016.

[Bia01] Philippe Biane. Approximate factorization and concentration for characters of sym-
metric groups. Internat. Math. Res. Notices, (4):179–192, 2001.

[Boy22] Alexandre Boyer. Chapter 3 (in English) of Stationnarité bidimensionnelle de modèles
aléatoires du plan, 2022. PhD Thesis, available at https://tel.archives-ouvertes.
fr/tel-03783603/.

[CDH+22] Alexander Clifton, Bishal Deb, Yifeng Huang, Sam Spiro, and Semin Yoo. Con-
tinuously increasing subsequences of random multiset permutations. Sém. Lothar.
Combin., 86B:Art. 4, 11, 2022. (Proceedings of FPSAC’22.).

[CG05] Eric Cator and Piet Groeneboom. Hammersley’s process with sources and sinks.
Annals of Probability, 33(3):879–903, 2005.

[CG06] Eric Cator and Piet Groeneboom. Second class particles and cube root asymptotics
for Hammersley’s process. Annals of Probability, 34(4):1273–1295, 2006.

[CG19] Federico Ciech and Nicos Georgiou. Order of the variance in the discrete Hammersley
process with boundaries. Journal of Statistical Physics, 176(3):591–638, 2019.

[CLRS09] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.
Introduction to algorithms. MIT Press, Cambridge, MA, third edition, 2009.

[Ham72] John M. Hammersley. A few seedlings of research. In Proceedings of the 6th Berkeley
Symp. Math. Statist. and Probability, volume 1, pages 345–394, 1972.

[JŁR00] Svante Janson, Tomasz Łuczak, and Andrzej Rucinski. Random graphs. Wiley-
Interscience Series in Discrete Mathematics and Optimization. Wiley-Interscience,
New York, 2000.

[Rom15] Dan Romik. The surprising mathematics of longest increasing subsequences, volume 4
of Institute of Mathematical Statistics Textbooks. Cambridge University Press, New
York, 2015.

20

https://tel.archives-ouvertes.fr/tel-03783603/
https://tel.archives-ouvertes.fr/tel-03783603/


[Sep97] Timo Seppäläinen. Increasing sequences of independent points on the planar lattice.
Annals of Applied Probability, 7(4):886–898, 1997.

[Ste97] John Michael Steele. Probability theory and combinatorial optimization. Society for
Industrial and Applied Mathematics (SIAM), 1997.

[VK77] Anatoly M. Veršik and Sergei V. Kerov. Asymptotics of Plancherel measure of sym-
metrical group and limit form of Young tables. Doklady Akademii Nauk SSSR,
233.6:1024–1027, 1977.

[Wai19] Martin J. Wainwright. High-dimensional statistics, volume 48 of Cambridge Series in
Statistical and Probabilistic Mathematics. Cambridge University Press, Cambridge,
2019. A non-asymptotic viewpoint.

Lucas Gerin gerin@cmap.polytechnique.fr
Cmap, Cnrs, École Polytechnique,
Institut Polytechnique de Paris,
Route de Saclay,
91120 Palaiseau Cedex (France).

21


	Introduction
	Preliminaries: the case of small kn
	Poissonization: variants of the Hammersley process
	Definitions of the processes L<(t) and L(t)
	Sources and sinks: stationarity
	Processes L<(t) and L(t): non-asymptotic bounds

	Proof of Theorem 1 when kn+: de-Poissonization
	Proof of Theorem 2
	Proof for large (kn)
	The gap between small and large (kn)
	Deviation inequalities


