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Abstract We consider the minimization of a differentiable Lipschitz gradient but non necessarily
convex, function F defined on RN . We propose an accelerated gradient descent approach which
combines three strategies, namely (i) a variable metric derived from the majorization-minimization
principle ; (ii) a subspace strategy incorporating information from the past iterates ; (iii) a block
alternating update. Under the assumption that F satisfies the Kurdyka-Łojasiewicz property, we
give conditions under which the sequence generated by the resulting block majorize-minimize sub-
space algorithm converges to a critical point of the objective function, and we exhibit convergence
rates for its iterates.

Keywords Block alternating method, majorization-minimization, memory gradient, quasi-
Newton, non-convex optimization, Kurdyka-Lojasiewicz.

1 Introduction

Our work focuses on the resolution of

minimizex∈RNF (x), (1)

with F : RN → R is a differentiable Lipschitz gradient function which is not assumed to be convex.
Instead, we address the case when F satisfies the Kurdyka-Łojasiewicz (KL) inequality [1,2].

In the case of large scale optimization problems, one major concern is to find an optimization
algorithm able to deliver reliable numerical solutions in a reasonable time. Numerous works have
been devoted to accelerate the first order gradient descent technique. These methods aim to increase
the convergence rate while preserving theoretical guarantees and limited computational cost/mem-
ory burden per iteration. Three main families of acceleration strategies can be distinguished in the
literature. The first approach, adopted for example in the well-known L-BFGS [3] and non-linear
conjugate gradient [4] methods, relies on subspace acceleration [5,6]. The convergence rate is im-
proved by using information from past iterates for the construction of new estimates. Another
efficient way to accelerate the convergence of a minimization algorithm is based on a variable met-
ric (i.e., preconditioning) strategy [7,8]. The underlying metric is modified at each iteration thanks
to a preconditioning matrix, which may incorporate structural second-order information about the
function to minimize. The third technique to limit the dependence of an optimization algorithm
on the dimension of the problem, is to adopt a block alternating scheme where, at each iteration,
only a subset of the variables are updated [9].

Among various choices for preconditioning first-order methods, an important class of techniques
rely on the principle of Majorization-Minimization (MM) [10,11]. At each iteration, a quadratic
convex surrogate function majorizing F is constructed. The inverse of its curvature (i.e., Hessian)
matrix then serves to define a weighted Euclidean metric used for updating the next iterate. This
idea is at the core of the half-quadratic algorithm [12,13] for image restoration. It has also been
exploited in [14] to build an accelerated proximal gradient method for non smooth optimization,
with guaranteed convergence of the iterates to a stationary point, in the non-convex case. The
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latter result has been then extended in [15], where block alternating updates are introduced.
Block alternating MM approaches have also been explored in [16,17,18,19], although without
established convergence guarantees on their iterates in the non-convex setting. MM metrics are
also well suited to the construction of efficient subspace optimization methods [20,21,22,10]. In
[20], subspace acceleration is employed to reduce the complexity of an MM algorithm in large scale
image processing problems, and in [21], convergence guarantees are obtained on the iterates under
the KL assumption. This algorithm has recently been extended in [23] to the resolution of convex
constrained optimization problems.

In this letter, we propose to bridge the gap between the theoretical analysis from [15] and [20].
We introduce the Block MM Subspace (B2MS) algorithm to solve (1), that incorporates the three
aforementioned catalyzing effects, namely (i) MM-based preconditioning, (ii) subspace acceleration,
(iii) block alternating update. We show the convergence of its iterates to a critical point of F . We
furthermore perform its convergence rate analysis, relying on the KL exponent properties from [24].

The paper is organized as follows. Section 2 introduces the notation, the proposed B2MS algo-
rithm, and the considered assumptions. Section 3 provides technical descent lemmas essential to
our analysis. Section 4 presents our main contribution, namely the proof of convergence for B2MS,
and a study of its convergence rate.

2 Block MM subspace algorithm

2.1 Notation

We consider the Euclidean space RN , endowed with the scalar product ⟨·|·⟩ and norm ∥ · ∥. IN
states for the identity matrix of RN . For any A ∈ RN×N symmetric definite positive (SDP), we also
introduce the weighted norm ∥ · ∥A =

√
⟨·|A·⟩. Let S ⊂ {1, . . . , N} ≜ J1, NK with cardinal |S| and

complementary set S ≜ J1, NK/S. For all x = (xn)n∈J1,NK ∈ RN , we denote x(S) ≜
(
xi
)
i∈S ∈ R|S|.

Similarly, the restriction to block S of the gradient of F , at some x ∈ RN reads ∇F (S)(x) ∈ R|S|.
For any x ∈ RN , we finally introduce function F (S)(. ,x) : v ∈ R|S| 7→ F (u) where u(S) = v and
u(S) = x(S).

2.2 B2MS scheme

The proposed B2MS algorithm solves (1) through a block alternating minimization approach. Let
S a family of C ≥ 1 nonempty subsets of J1, NK (not necessarily disjoints). Let x0 ∈ RN . At every
iteration k ∈ N, the entries of the current iterate xk within a selected block Sk ∈ S are updated
using one iteration of the MM subspace algorithm [20] on the restriction of F to the k-th block
F (Sk)(·,xk). The entries of xk within the complementary set Sk remain constant.

To implement the MM subspace update, we first build the following quadratic majorant ap-
proximation [10] of F (Sk)(·,xk) at xk,

(∀v ∈ R|Sk|) Q(Sk)(v,xk) ≜ F (xk) + ⟨∇F (Sk)(xk),v − x
(Sk)
k ⟩+ 1

2
∥v − x

(Sk)
k ∥2

A(Sk)(xk)
, (2)

where A(Sk)(xk) ∈ R|Sk|×|Sk| is an SDP matrix such that:

(∀v ∈ R|Sk|) F (Sk)(v,xk) ≤ Q(Sk)(v,xk). (3)

Second, we choose a subspace acceleration matrix Dk ∈ R|Sk|×Mk [5]. The block update x
(Sk)
k+1 is

then defined as a minimizer of Q(Sk)(·,xk) within the vectorial subspace spanned by the columns
of Dk. Iterating the above procedure in a block alternating fashion yields Algorithm (4):

(B2MS)

Initialize x0 ∈ RN .
For k = 0, 1, 2, . . .

Choose Sk ∈ S and Dk ∈ R|Sk|×Mk

uk ∈ argmin
u∈RMk

Q(Sk)
(
x
(Sk)
k +Dku,xk

)
x
(Sk)
k+1 = x

(Sk)
k +Dkuk

x
(Sk)
k+1 = x

(Sk)
k

(4)
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If S = {J1, NK} (so C = 1), we retrieve the MM subspace algorithm from [20,21]. When Dk = I|Sk|,
the above approach can be viewed as a particular case of the BSUM scheme [16,25] using quadratic
surrogates, or of the approach from [15] using a null proximal term.

2.3 Assumptions

Assumption 1.
Family S verifies

⋃
S∈S

S = J1, NK. Moreover, there exists K ∈ N∗ such that, for all k ∈ N, every

S ∈ S belongs to {Sk, . . . ,Sk+K−1}.
Assumption 2. F is C1 and coercive on RN . Moreover, it is B-Lipschitz gradient, that is there
exists B > 0 such that

(∀x,y ∈ RN ) ∥∇F (x)−∇F (y)∥ ≤ B∥x− y∥. (5)

Assumption 3.
(i) For all k ∈ N, Dk has full column rank.
(ii) There exists (γ0, γ1) > 0 such that, for all k ∈ N,

(dk)
⊤ ∇F (Sk)(xk) ≤ −γ0∥∇F (Sk)(xk)∥2, (6)

∥dk∥ ≤ γ1∥∇F (Sk)(xk)∥, (7)

with dk ∈ R|Sk| the first column of Dk.
Assumption 4. There exists (η, ν) > 0 s.t

(∀k ∈ N) ηI|Sk| ⪯ A(Sk)(xk) ⪯ νI|Sk|. (8)

Assumption 5. For ξ ∈ R and any bounded E ⊂ RN , there exists (κ, ζ, θ) ∈ R∗
+×R∗

+×]0, 1[ such
that, for all x ∈ E with |F (x)− ξ| ≤ ζ,

∥∇F (x)∥ ≥ κ |F (x)− ξ|θ . (9)

Assumption 1, also adopted in [15], implies that every set of S is updated at least once during
any K-length cycle. It is also known as quasi-cyclic or acyclic rule [18], the cyclic rule being
a special case of it. Assumption 2 ensures the existence of a minimizer for F , as well as the
existence for quadratic majorant approximations for F (by descent lemma [26]). Assumption 3(ii)
is equivalent to imposing a gradient-related condition [26] on the first column of Dk. This is
satisfied by a large number of typical subspace acceleration matrices [20][Tab. I]. In particular,
setting Dk = [−∇F (xk)|xk − xk−1] ∈ RN×2 for k ∈ N∗ yields the memory gradient subspace [27,
28] which has strong connections with the non-linear conjugate gradient method [29]. Assumption 4
is rather mild, and inherent to the stability of quadratic MM schemes [20,14]. Finally, Assumption
5 is usually refereed to as the KL inequality [1,2], and arises from the literature of non-smooth
analysis. It is satisfied by a large variety of functions, non necessarily convex, such as semi-algebraic
or analytical functions, to name a few. Its use has become popular in the last decade, as it provides
a key tool for establishing convergence of iterates for descent methods in the nonconvex setting [24,
15,8].

3 Technical lemmas

This section presents technical lemmas that turn out to be essential to our convergence analysis.

Lemma 1 Under Assumptions 1-4, the B2MS sequence (xk)k∈N satisfies:

(∀k ∈ N) F (xk)− F (xk+1) ≥
γ2
0

2γ2
1ν

∥∇F (Sk)(xk)∥2, (10)

+∞∑
k=0

∥∇F (Sk)(xk)∥2 < +∞, (11)

(∀k ∈ N) ∥xk+1 − xk∥2 ≤ 1

η2
∥∇F (Sk)(xk)∥2, (12)

(∀k ∈ N) ∥∇F (Sk)(xk)∥2 ≤ γ2
1ν

2

γ2
0

∥xk+1 − xk∥2. (13)
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Proof. Consider k ∈ N. Since xk+1 is the concatenation of x(Sk)
k+1 , x

(Sk)
k , the use of (3) gives,

F (xk+1) = F (Sk)(x
(Sk)
k+1 ,xk) ≤ Q(Sk)

(
x
(Sk)
k+1 ,xk

)
= Q(Sk)

(
x
(Sk)
k +Dkuk,xk

)
. (14)

Let e = (1, 0, . . . , 0)⊤ ∈ RMk . Since uk minimizes Q(Sk)
(
x
(Sk)
k +Dk . ,xk

)
, any t ∈ R satisfies

Q(Sk)
(
x
(Sk)
k +Dkuk,xk

)
≤ Q(Sk)

(
x
(Sk)
k +Dkte,xk

)
= Q(Sk)

(
x
(Sk)
k + t dk,xk

)
.

Moreover, t 7→ Q(Sk)
(
x
(Sk)
k + t dk,xk

)
is scalar quadratic with F (xk)−

⟨∇F (Sk)(xk),dk⟩2
2∥dk∥2

A(Sk)(xk)

as mini-

mal value. Hence, Assumptions 3-4 leads to

Q(Sk)
(
x
(Sk)
k +Dkuk,xk

)
≤ F (xk)−

〈
∇F (Sk)(xk),dk

〉2
2∥dk∥2A(Sk)(xk)

≤ F (xk)−
γ2
0

2γ2
1ν

∥∇F (Sk)(xk)∥2. (15)

Combination of (15) with (14) directly gives (10) in Lemma 1. (F (xk))k∈N is then a decreasing
sequence. Coercivity of F thus guarantees its convergence to a limit F∞ ∈ R. Moreover,

+∞∑
k=0

∥∇F (Sk)(xk)∥2 ≤ 2γ2
1ν

γ2
0

(F∞ − F (x0)) , (16)

so that (11) in Lemma 1 is obtained. Since function Q(Sk)
(
x
(Sk)
k +Dk . ,xk

)
is quadratic, we also

deduce that its minimizer uk satisfies:(
∇F (Sk)(xk)

)⊤
D

(Sk)
k uk =

(
uk
)⊤ ∥Dk∥2A(Sk)(xk)

. (17)

Equality Dkuk = xk+1 − xk, and Assumption 4, lead to

Q(Sk)
(
x
(Sk)
k +Dkuk,xk

)
= F (xk)−

1

2
∥Dku

k∥2
A(Sk)(xk)

≥ F (xk)−
ν

2
∥xk+1 − xk∥2. (18)

Equation (13) of Lemma 1 then comes by plugging (18) into (15). Using again the expression of
uk as a minimizer of a quadratic form, we can rewrite one iteration of B2MS scheme as

xk+1 − xk = −Bk ∇F (Sk)(xk), (19)

with Bk ≜ Dk

(
D⊤

k A
(Sk)(xk)Dk

)−1
D⊤

k . Remark that Assumption 3(i) ensures that Bk is a
well-defined symmetric definite positive matrix. Then, by Assumption 4,

Bk ⪯ 1

η
Dk

(
D⊤

k Dk

)−1
D⊤

k ⪯ 1

η
I|Sk|. (20)

Plugging (20) into (19) and taking the squared norm of the quantities gives (12) of Lemma 1.

Lemma 2 Let (uk)k∈N, (vk)k∈N two sequences of positive real. If there exists k∗ ≥ K such that

(∀k ≥ k∗) uk ≤ ρ

k−1∑
i=k−K

ui + vk−1, (21)

if ρ < 1
K and

+∞∑
k=0

vk < +∞ , then
+∞∑
k=0

uk < +∞.

Proof. Summing (21) from k∗ to n ≥ k∗ leads to

n∑
k=k∗

uk ≤ ρ

n∑
k=k∗

k−1∑
i=k−K

ui +

n∑
k=k∗

vk−1, (22)

with
n∑

k=k∗

k−1∑
i=k−K

ui =

n∑
k=k∗

K∑
i=1

uk−i =

K∑
i=1

n−i∑
k=k∗−i

uk ≤
K∑
i=1

n∑
k=0

uk. (23)
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Plugging (23) into (22), yields
n∑

k=k∗

uk ≤ ρK

n∑
k=k∗

uk +

(
ρK

k∗−1∑
k=0

uk +

n∑
k=k∗

vk−1

)
≤ ρK

n∑
k=k∗

uk +

(
ρK

k∗−1∑
k=0

uk +

+∞∑
k=0

vk

)
,

(24)

that is (1 − ρK)
∑n

k=k∗ uk ≤ ρK
∑k∗−1

k=0 uk +
∑+∞

k=0 vk. With 0 < 1 − ρK < 1, we deduce the
summability of (uk)k∈N.

Lemma 1 gathers the different inequalities and descent properties which result from B2MS
scheme (4). Equations (10)-(11) can be interpreted as a generalized block version of [20, Theorem
1]. Lemma 2 is an alternative of [30, Lemma 3], [31, Lemma 5.1].

4 Asymptotical behaviour

For the sake of clarity, our presentation for the convergence analysis of scheme (4) is divided into
three parts. First, we establish the convergence of the gradient of the B2MS iterates to zero, under
Assumptions 1-4. Second, under the additional Assumption 5 (i.e., KL inequality), we show the
convergence of the iterates of B2MS to a stationary point. Third, we establish a convergence rate
result involving the KL exponent θ of function F .

4.1 Global convergence

Theorem 1 Let (xk)k∈N the B2MS sequence. Under Assumptions 1-4, sequence (∥∇F (xk)∥)k∈N
converges to 0. Moreover, there exists x∗, a stationary point of F , such that F (xk) −→

k→+∞
F (x∗).

Proof. Let k ≥ K. For all S ∈ S, Assumption 1 ensures that {t ∈ Jk −K, k − 1K / St = S} is a
non-empty set. We can thus rewrite every set of S as S = STS

k
with

TS
k ≜ max {t ∈ Jk −K, k − 1K / St = S} .

The application of k − TS
k Jensen’s inequalities on ∥∇FS(xk)∥2 leads to

∥∇F (S)(xk)∥2 ≤
k−1∑
i=TS

k

2k−i∥∇F (S)(xi+1)−∇F (S)F (xi)∥2 + 2k−TS
k ∥∇F (S)F (xTS

k
)∥2. (25)

We now majorize both parts of the right term of (25). For the former, we apply successively (5) and
(12). The latter part is handled by using S = STS

k
and noticing that k−i ∈]0,K[ for i ∈ JTS

k , k−1K.
It yields

∥∇F (S)(xk)∥2 ≤ 2KB2

η2

k−1∑
i=TS

k

∥∇F (Si)(xi)∥2 + 2K∥∇F
(S

TS
k
)
(xTS

k
)∥2,

≤ 2K
(
B2

η2
+ 1

) k−1∑
i=TS

k

∥∇F (Si)(xi)∥2,

≤ 2K
(
B2

η2
+ 1

) k−1∑
i=k−K

∥∇F (Si)(xi)∥2. (26)

Then from (11) we have ∥∇F (S)(xk)∥2 −→
k→+∞

0 . Since J1, NK =
⋃
S∈S

S (by Ass. 1) and S finite,

∥∇F (xk)∥2 ≤
∑
S∈S

∥∇F (S)(xk)∥2 −→
k→+∞

0. (27)

Through Lemma 1 proof, we have already shown that (F (xk))k∈N converges to a finite limit
F∞. The coercivity of F (Ass. 2) also ensures the boundedness of (xk)k∈N. Thus, there exists an
accumulation point of (xk)k∈N, that we denote x∗. As ∥∇F (xk)∥ −→

k→+∞
0 and ∇F is continuous (by

Ass. 2), ∇F (x∗) = 0 directly follows, so that x∗ is a stationary point of F . Moreover, F∞ = F (x∗)
since F is continuous, which concludes our proof.



6 Emilie Chouzenoux and Jean-Baptiste Fest

Theorem 1 shows a classical behaviour for a descent method applied to non-convex Lipschitz
gradient objective function [32].

4.2 Sequence convergence

This part is dedicated to refine the result of Theorem 1, when we additionally introduce Assump-
tion 5. We first state a technical inequality giving a direct relation between the gradient at the
current iterate and the differences of past iterates over a cycle (i.e a K-length period)

Proposition 1. Let (xk)k∈N the B2MS sequence. Under Assumptions 1-4, for all k ≥ K,

∥∇F (xk)∥2 ≤ 2KC

(
B2 +

γ2
1

γ2
0

ν2
) k−1∑

i=k−K

∥xi+1 − xi∥2. (28)

Proof. Let k ≥ K. The beginning of the proof is identical to that of Theorem 1 until Eq.(25). We
then derive a new majoration for the quantity involved in the right term of (25). We first majorize
using Ass. 2 combined with S = STS

k
. We then use (13) of Lemma 1. This yields:

∥∇F (S)(xk)∥2 ≤ 2KB2
k−1∑
i=TS

k

∥xi+1 − xi∥2 + 2K∥∇F
(S

TS
k
)
(xTS

k
)∥2,

≤ 2KB2
k−1∑
i=TS

k

∥xi+1 − xi∥2 + 2K
ν2γ2

1

γ2
0

∥xTS
k +1 − xTS

k
∥2,

≤ 2K
(
B2 +

γ2
1

γ2
0

ν2
) k−1∑

i=TS
k

∥xi+1 − xi∥2,

≤ 2K
(
B2 +

γ2
1

γ2
0

ν2
) k−1∑

i=k−K

∥xi+1 − xi∥2. (29)

We then sum (29) over S (of cardinal C). The right term being independent from S, it is simply
multiplied by C. Then, noting that ∥∇F (xk)∥2 ≤

∑
S∈S

∥∇F (S)(xk)∥2 concludes our proof.

Remark that an alternative proof of Theorem 1 could be obtained from Prop. 1. However,
inequality (26) is more direct to demonstrate than (28).

We finally state our main theoretical result, namely the convergence of the iterates of B2MS
scheme.

Theorem 2 Let (xk)k∈N the B2MS sequence. Under Assumptions 1-5,

+∞∑
k=0

∥xk+1 − xk∥ < +∞. (30)

Moreover, (xk)k∈N converges to a stationary point of F .

Proof. Following the same notations as those of Theorem 1, let us apply (9) to set E = {xk / k ∈
N}, which is a bounded set by our proof of Theorem 1, and ξ = F∞. Then, by KL inequality (Ass. 5),
there exists (κ, ζ, θ) ∈ R∗

+ × R∗
+×]0, 1[ such that for every k ∈ N verifying |F (xk)− F∞| ≤ ζ,

∥∇F (xk)∥ ≥ κ |F (xk)− F∞|θ . (31)

Using (13) and (10) gives, for every k ∈ N,

∥xk+1 − xk∥2 ≤ 2γ2
1ν

γ2
0η

2
(F (xk)− F (xk+1)) =

2γ2
1ν

γ2
0η

2
[(F (xk)− F∞)− (F (xk+1)− F∞)] . (32)

Let us now invoke the convexity of v ∈ R+ 7→ v
1

1−θ . It follows that for all v, w ∈ R+ with v ≤ w

w − v ≤ (1− θ)−1wθ
(
w1−θ − v1−θ

)
. (33)
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Plugging (33) in (32) with w = F (xk)− F∞ and v = F (xk+1)− F∞ yields, for every k ∈ N,

∥xk+1 − xk∥2 ≤ 2γ2
1ν

γ2
0η

2(1− θ)
[F (xk)− F∞]θ∆k, (34)

with ∆k ≜
(
F (xk)− F∞)1−θ − (F (xk+1)− F∞)

1−θ. Since F (xk) −→
k→+∞

F∞, there exists k0 ≥ K

such that
(∀k ≥ k0) |F (xk)− F∞| ≤ ζ. (35)

Thus, using (31),
(∀k ≥ k0) ∥∇F (xk)∥ ≥ κ |F (xk)− F∞|θ . (36)

Combining (36) and (34) leads to

(∀k ≥ k0) ∥xk+1 − xk∥2 ≤ 2γ2
1ν

γ2
0η

2κ(1− θ)
∥∇F (xk)∥∆k. (37)

We now rely on the majoration of Lemma 1, to obtain

(∀k ≥ k0) ∥xk+1 − xk∥2 ≤ Λ

√√√√ k−1∑
i=k−K

∥xi+1 − xi∥2 ∆k ≤ Λ

k−1∑
i=k−K

∥xi+1 − xi∥ ∆k, (38)

with Λ ≜ 2
K
2

+1

κ(1−θ)
γ2
1ν

γ2
0η

2

√
C
√
B2 +

γ2
1

γ2
0
ν2. We extract the square root of (38) and invoke the inequality

√
ab ≤ a

c + bc
4 with a =

k−1∑
i=k−K

∥xi+1 − xi∥, b = ∆k and some c > 0. Then,

(∀k ≥ k0) ∥xk+1 − xk∥ ≤
√
Λ

c

k−1∑
i=k−K

∥xi+1 − xi∥+
c

4

√
Λ∆k. (39)

(∆k)k∈N is summable and
√
Λ/c ∈]0, 1/K[ for c >

√
ΛK, we apply Lemma 2 with k∗ = k0. Finally,

(∥xk+1 − xk∥)k∈N is summable and (xk)k∈N is a Cauchy sequence possessing x∗ as an accumulation
point. Sequence (xk)k∈N thus converges to x∗.

4.3 Convergence rate

As highlighted above, Theorem 2 guarantees the convergence of sequence (xk)k∈N to x∗, a station-
ary point of function F . Our last contribution lies in characterizing the convergence rate for B2MS
algorithm. Hereagain, KL inequality (Ass. 5) is an anchor point of our analysis.

Theorem 3 Let (xk)k∈N the B2MS sequence. Under Assumptions 1-5, the following holds.

(i) if θ ∈]1/2, 1[, then ∥xk − x∗∥ =
k→+∞

O
(
k−

1−θ
2θ−1

)
;

(ii) If θ ∈]0, 1/2], then there exists ε ∈]0, 1[ such that
∥xk − x∗∥ =

k→+∞
O
(
εk
)
.

Proof. Keeping the same notations as previously, let c > 0 and k ≥ k0. We sum (39) from kK

Γk ≤
√
Λ

c

+∞∑
j=kK

j−1∑
i=j−K

∥xi+1 − xi∥+
c

4

√
Λ

+∞∑
j=kK

∆j , (40)

with Γk ≜
∑+∞

j=kK ∥xj+1 − xj∥. On the one hand,

+∞∑
j=kK

j−1∑
i=j−K

∥xi+1 − xi∥ =

+∞∑
j=kK

K−1∑
i=0

∥xi+j−K+1 − xi+j−K∥,

=

K−1∑
i=0

+∞∑
j=kK

∥xi+j−K+1 − xi+j−K∥ ≤ KΓk−1. (41)
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On the other hand, using F (x)− F (x∗) −→
k→+∞

0 (31) and Lemma 1 yields

[F (xkK)− F (x∗)]
1−θ ≤ κ

θ−1
θ ∥∇F (xkK)∥

1−θ
θ ≤ Λ

′

 kK−1∑
j=(k−1)K

∥xj+1 − xj∥2


1−θ
2θ

,

≤ Λ
′

 kK−1∑
j=(k−1)K

∥xj+1 − xj∥


1−θ
θ

,

= Λ
′
(Γk−1 − Γk)

1−θ
θ , (42)

with Λ
′
≜ κ

θ−1
θ

(
2KC

(
B2 +

γ2
1

γ2
0
ν2
)) 1−θ

2θ

. Plugging (41), (42) in (40), with c = 2
√
ΛK and

+∞∑
j=kK

∆j = [F (xkK)− F (x∗)]
1−θ gives

Γk ≤ 1

2
Γk−1 +

1

2
KΛΛ

′
(Γk−1 − Γk)

1−θ
θ . (43)

By multiplying (43) by 2 and removing Γk from each side,

Γk ≤ (Γk−1 − Γk) +KΛΛ
′
(Γk−1 − Γk)

1−θ
θ . (44)

Since (Γk)k∈N is a positive decreasing sequence to zero, we can apply [24, Theorem 2].

• If θ ∈]1/2, 1[, there exists λ > 0 such that

(∀k ≥ k0) Γk ≤ λk−
1−θ
2θ−1 . (45)

Denoting q(k), r(k) the quotient and remainder of the Euclidean division of k by K, leads to

∥xk − x∗∥ = ∥xq(k)K+r(k) − x∗∥ ≤ Γq(k). (46)

Combining (46) with (45) gives, for k large enough,

∥xk − x∗∥ ≤ λq(k)−
1−θ
2θ−1 = λ

(
k − r(k)

K

)− 1−θ
2θ−1

≤ λ

(
k

K
− 1

)− 1−θ
2θ−1

, (47)

with λ
(

k
K − 1

)− 1−θ
2θ−1 =

k→+∞
O
(
k−

1−θ
2θ−1

)
.

• If θ ∈]0, 1/2], there exist µ > 0 and δ ∈]0, 1[ such that

(∀k ≥ k0) Γk ≤ µ δk. (48)

Similarly with the previous case, for k large enough,

∥xk − x∗∥ ≤ µ δq(k) = µ δ
k−r(k)

K ≤ µ δ
k
K . (49)

Conclusion is obtained by taking ε = δ
1
K ∈]0, 1[.

One can notice the dependency of the convergence rate with the KL exponent θ. This result is
similar to the one in [15], though with a more direct proof following naturally from our global con-
vergence Theorem 2. We also notice that the gradient Lipschitz property (see Assumption 2) entails
that the convergence rate obtained for (∥xk − x∗∥)k∈N also holds for the sequence (∥∇F (xk)∥)k∈N.

5 Conclusion

This work introduces a block alternating MM subspace algorithm and provides its convergence
analysis in the non-convex case. When combined with a memory gradient subspace (see, for e.g.,
[28]), the proposed method can be viewed as a convergent block alternating non linear conjugate
gradient algorithm for non-convex large scale optimization. Future work will be dedicated to build-
ing a distributed implementation for B2MS, for instance by adopting an asynchronous approach
[17] where block updates are spread among core machines with possible update delay.
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