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We report on numerical simulation of fluid interface deformations induced either by acoustic or
optical radiation pressure. This is done by solving simultaneously the scalar wave propagation
equation and the two-phase flow equations using the boundary element method. Using dimensional
analysis, we show that interface deformation morphogenesis is universal, i.e. depends on the same
dimensionless parameters in acoustics and electromagnetics. We numerically investigate a few se-
lected phenomena—in particular the shape of large deformations, the slenderness transition and its
hysteresis— and compare with existing and novel experimental observations. Qualitative agreement
between the numerical simulations and experiments is found when the mutual interaction between
wave propagation and wave-induced deformations is taken into account. Our results demonstrate
the leading role of the radiation pressure in morphogenesis of fluid interface deformations and the
importance of the propagation-deformation interplay .

I. INTRODUCTION

In 1939, Hertz and Mende showed that fluid inter-
faces were deformed by intense ultrasonic beams [1]. In
1973, Ashkin and Dziedzic [2] demonstrated the same
phenomenon using focused optical beams. Using ex-
tremely soft fluid interfaces, Casner and Delville [3] ob-
served ‘large’ interface deformations (i.e., whose height
is comparable to or larger than the beam diameter) us-
ing optical beams. Since then, various kinds of interface
deformations have been observed using either acoustic or
optical beams: bell-shaped deformations [3, 4], stepped
deformations [4–6], needle-like deformations [4, 7, 8], liq-
uid bridges [9–12] and cones [13]. Since Maxwell’s and
Lord Rayleigh’s pioneering works [14, 15], it is well es-
tablished that the main mechanical effect of an acous-
tic (AC) or electromagnetic (EM) wave on a liquid-
liquid interface is a normal stress called radiation pres-
sure [16, 17]. Since then, several other mechanical ef-
fects of acoustic and electromagnetic waves on liquids
and liquid interfaces have been identified, in particular
in presence of wave absorption or wave scattering by liq-
uids. Namely, one can mention situations where interface
deformations result from either bulk flows triggered by
bulk forces [8, 18–21] or thermocapillary flows originating
from interfacial tension gradients triggered by tempera-
ture gradients [22, 23]. Regarding non-scattering and
non-absorbing liquids, the previously cited studies have
led to conclude that the observed morphological diversity
of fluid interface deformations originates basically from
the mutual interplay between the shape of the interface
deformed by the radiation pressure and the wave prop-
agation. Indeed, a distorted interface acts as a dioptre
that modifies the structure of the wave passing through
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it, hence the radiation pressure exerted on it. From
now on, we refer to such a feedback mechanism as the
propagation-deformation interplay (PDI), which is the
subject of this work.

In the regime of ‘small’ deformations (i.e., whose height
is smaller than the beam diameter), the disturbances
of the beam by the curved interface are noticeable only
far downstream of the interface [24]. Consequently, the
shape of a static interface can be quantitatively described
by solving the balance between Laplace pressure, buoy-
ancy and the radiation pressure exerted by the incident,
non perturbed, wave [3, 4, 25]. By contrast, the descrip-
tion of large interface deformations requires to account
for the perturbation of the wave by the interface, i.e.
PDI. The particular case of axisymmetric liquid columns
can be treated analytically owing to the translational in-
variance of the interface shape along its axis of revolu-
tion [10–12]. The predicted equilibrium radius of the col-
umn, which has been calculated within an exact scalar
description of the electromagnetic field in both liquids,
is in agreement with experimental observations [10, 11].
The case of stepped deformations is far more challenging
from an analytical point of view. Still, the beam propa-
gation through axisymmetric dioptres having the shape
of the experimentally observed steady interfaces can be
numerically computed. The radiation pressure distribu-
tion deduced from the computed wave field was found to
satisfactorily balance the Laplace pressure and buoyancy
assessed from the measured shape of the interface [6]. Al-
though this is an a posteriori verification of the validity
of the PDI hypothesis, a self-consistent determination of
the shapes of the irradiated interfaces resulting from the
PDI is still missing. Furthermore, the mechanism under-
lying the instability leading to the formation of needle-
like deformations, which is likely to involve PDI, is still
unknown [7, 25].

In this work we aim to determine the interface defor-
mations by solving the PDI problem for any deformation
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amplitude. This is done by numerically mimicking an
experiment. In other words, we simultaneously solve the
hydrodynamic evolution of an irradiated two-phase fluid
sample and the propagation of the acoustic or electro-
magnetic beam through the moving interface, taking a
planar and horizontal interface at rest as the initial con-
dition (time t = 0) and considering a nonzero constant
beam power for t > 0. Such a numerical simulation of
the radiation pressure-driven deformation morphogene-
sis of fluid interfaces allows us to address the following
questions:

(i) How do the interface deformations depend on the
various parameters characterizing the wave-matter inter-
action?

(ii) Do the numerical simulations predict the same in-
terface deformation shapes as those experimentally ob-
served?

(iii) Does the instability leading to the formation of
needle-like deformations and the ensuing observed hys-
teresis originate from the PDI [7, 25]?

The paper is organized as follows. The key-ingredients
of the model are presented in Section II. The dimension-
less formulation of the model and its numerical handling
are provided in Section III. Then, a dimensional analysis
is performed in Section IV, which shows that the defor-
mation height depends on five independent dimensionless
quantities both in acoustics and electromagnetics. The
numerical results and its comparison with existing and
novel experimental observations are presented in Section
V, which addresses the three main questions listed above.
Finally, Section VI then summarizes the main results of
this work.

II. MODEL

In this section, we first present the wave propagation
equations describing the acoustic and electromagnetic
fields and the corresponding radiation stresses exerted
on the interface. Then, we present the hydrodynamic
equations describing the evolution of the fluid sample in
the creeping-flow regime that suits well most of the ex-
periments reported so far.

A. Propagation

Considering both fluids 1 and 2 as homogeneous,
isotropic and linear, we also assume inviscid and non
heat-conducting media when dealing with acoustic waves
whereas we assume non absorbing and non dispersive
media for electromagnetic waves. Within the latter
framework, the propagation of small-amplitude acous-
tic waves and of electromagnetic waves is described by
d’Alembert’s wave equation

∂2qi
∂t2
− c2i ∇2qi = 0, i = (1, 2), (1)

FIG. 1. Sketch of the simulation domain with the definitions
of the used notations. The convention c1 = c+ and c2 =
c− with c− < c+ is used, see Section V A for details. The
bold vertical arrows refer to the two possible directions of
propagation of the irradiating waves.

where q is the fluid pressure perturbation p′ associated
to acoustic waves, whereas it refers to the electric field E
or the magnetic field H for electromagnetic waves, and
c is the wave celerity (also equal to the phase and group
velocities). In addition the subscript i, refers to the fluid
labeled i, i = (1, 2), see Fig. 1.

1. Acoustic waves

In the case of acoustic waves, ci = (ρiχi)
−1/2 where

ρi is the mass density and χi the isentropic compressibil-
ity. The complex harmonic velocity field ui associated
to the acoustic pressure perturbation p′i satisfies the lin-

earized Euler’s equation ρi
∂ui

∂t = −∇p′i. Along the fluid
interface, the pressure and the velocity fields satisfy the
condition of stress continuity

p′1 = p′2 , (2)

as well as the impermeability condition between the two
fluids

u1 · n = u2 · n , (3)

where n is the unit vector normal to the interface oriented
from fluid 1 to fluid 2. Finally, since the acoustic fluid
velocity is irrotational in absence of acoustic attenuation,
ui = −∇φi and consequently p′i = ρi

∂φi

∂t . Thus, the con-
tinuity of p′ across the interface results in the continuity
of ρφ, hence of ∇‖(ρφ) = ρ∇‖φ, where ∇‖ is the gradient
in the tangent plane to the interface. Since ∇‖φ = −u‖,
where u‖ = u − (u · n)n is the projection of u on the
tangent plane to the interface, we conclude that

ρ1 u‖1 = ρ2 u‖2. (4)
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2. Electromagnetic waves

In the case of electromagnetic waves, ci = (εiµi)
−1/2

where εi is the dielectric permittivity and µi is the mag-
netic permeability (which is usually equal to its value in
vacuum, µ0, in the optical frequency domain), both con-
sidered as real. The harmonic fields Ei and Hi satisfy
Maxwell’s equations ∇ · (εiEi) = 0, ∇ × Ei = −µi ∂Hi

∂t ,

∇ · (µiHi) = 0 and ∇ × Hi = εi
∂Ei

∂t . Thus, along the
fluid interface, Ei and Hi satisfy

ε1E1 · n = ε2E2 · n, (5)

n×E1 = n×E2, (6)

µ1H1 · n = µ2H2 · n, (7)

n×H1 = n×H2. (8)

The refractive index is ni =
√

(εiµi)/(ε0µ0) = c0/ci,
where ε0 is the dielectric permittivity of vacuum and c0 =
(ε0µ0)−1/2 is the wave celerity in vacuum. Note that
in acoustics, a refractive index can be also defined as
ni = 1/ci.

B. Radiation stress

In this section we define the acoustic and electromag-
netic stresses exerted on the fluid interface, and we derive
their expression assuming incident fields having axisym-
metric incident intensity profiles. The beam propagation
direction defines the z axis, which is normal to the in-
terface at rest. We thus introduce the cylindrical coor-
dinates (r, ϕ, z) associated with the direct orthonormal
basis (er, eϕ, ez) and also the local direct orthonormal
basis (n, t, eϕ), see Fig. 1.

1. Acoustic waves

The time-averaged acoustic radiation stress TAC
R ex-

erted on the fluid interface by the surrounding acoustic
field is expressed as

TAC
R =

(
TAC

2 − TAC
1

)
· n, (9)

where TAC is the time-averaged acoustic radiation tensor
defined in each fluid as [17, 26]:

TAC
i = −1

2
χi 〈p′2i 〉 I +

1

2
ρi〈u2

i 〉 I− ρi〈ui ⊗ ui〉. (10)

I is the identify tensor, ⊗ is the dyadic product, and 〈·〉
refers to the time average over one period T = 2π/ω.

Assuming the incident acoustic pressure and velocity
fields to have axisymmetric amplitude and phase spatial
distribution, the acoustic velocity can be expressed as
ui = unin+utit and one finds for the normal component

of the acoustic radiation stress

TAC
R · n =

[
−1

2
χ2 〈p′22 〉+

1

2
ρ2

(
〈u2

t2〉 − 〈u2
n2〉
)]

−
[
−1

2
χ1 〈p′21 〉+

1

2
ρ1

(
〈u2

t1〉 − 〈u2
n1〉
)]

,

(11)

where, according to Eqs. (3) and (4), the normal and
tangential components of the velocity field on both sides
of the interface satisfy

ρ1ut1 = ρ2ut2, (12)

un1 = un2. (13)

Noticeably, the tangential component of the acoustic ra-
diation stress TAC

R ·t is zero, which justifies the improper
name of radiation pressure given to the acoustic radia-
tion stress although it is not isotropic [27]. Since TAC

R ·n
is axisymmetric, we expect axisymmetric interface defor-
mations, which the problem two-dimensional.

Considering an incident plane wave, the acoustic radi-
ation pressure exerted on the horizontal interface at rest
is

TAC
R,0 =

2I

cfrom

Z2
1 + Z2

2 − 2 c1c2Z1Z2

(Z1 + Z2)2
n, (14)

where I is the acoustic intensity of the incident plane
wave, cfrom is the wave celerity of the medium from which
the incident wave impinges on the interface and Zi = ρici
is the acoustic impedance [4, 17]. In particular, when
ρ1 = ρ2, Eq. (14) simplifies to

TAC
R,0 =

2I

cfrom

c2 − c1
c1 + c2

n. (15)

2. Electromagnetic waves

The time-averaged electromagnetic radiation stress
TEM

R exerted on the fluid interface by the surrounding
electromagnetic field is expressed as

TEM
R =

(
TEM

2 − TEM
1

)
· n , (16)

where TEM is the time-averaged electromagnetic radia-
tion tensor defined in each fluid as [16]:

TEM
i = −1

2
εi〈E2

i 〉 I−
1

2
µi〈H2

i 〉 I+εi〈Ei⊗Ei〉+µi〈Hi⊗Hi〉.
(17)

The electrostriction term is purposely discarded since it
does not contribute to the stress balance at the inter-
face [28].

Noteworthy, in contrast to the case of acoustic waves,
it is not enough to assume axisymmetric phase spatial
distribution for both the electric and magnetic fields in
order to get an axisymmetric radiation stress leading to
a two-dimensional problem. Axisymmetric electromag-
netic radiation stress can be actually obtained by con-
sidering either axisymmetric transverse electric (TE) or
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axisymmetric transverse magnetic (TM) polarized elec-
tromagnetic beams.

On the one hand, for a TE field defined as Ei = Eieϕ
and Hi = Hnin + Htit, the normal component of the
electromagnetic radiation stress is

TEM,TE
R · n =

[
−1

2
ε2 〈E2

2〉+
1

2
µ2

(
〈H2

n2〉 − 〈H2
t2〉
)]

−
[
−1

2
ε1 〈E2

1〉+
1

2
µ1

(
〈H2

n1〉 − 〈H2
t1〉
)]
,

(18)

where, according to Eqs. (5)–(8), the magnitude of the
electric field and the normal and tangential components
of the magnetic field on both sides of the interface satisfy

E1 = E2, (19)

µ1Hn1 = µ2Hn2, (20)

Ht1 = Ht2. (21)

On the other hand, for a TM field defined as Ei = Enin+
Htit and Hi = Hieϕ, one gets

TEM,TM
R · n =

[
−1

2
µ2 〈H2

2 〉+
1

2
ε2

(
〈E2

n2〉 − 〈E2
t2〉
)]

−
[
−1

2
µ1 〈H2

1 〉+
1

2
ε1

(
〈E2

n1〉 − 〈E2
t1〉
)]
,

(22)

where, according to Eqs. (5)–(8), the normal and tangen-
tial components of the electric field and the magnitude
of the magnetic field and on both sides of the interface
satisfy

ε1En1 = ε2En2, (23)

Et1 = Et2, (24)

H1 = H2. (25)

Moreover, the tangential component of the electromag-
netic radiation stress TEM

R · t is zero whatever the polar-
ization state.

Considering an incident plane wave, the electromag-
netic radiation pressure exerted on the horizontal inter-
face at rest is independent of the polarization state and
equals

TEM
R,0 =

2I

cfrom

Z2
1 + Z2

2 − 2 c1c2Z1Z2

(Z1 + Z2)2
n, (26)

where I is the electromagnetic intensity of the incident
plane wave, cfrom is the wave celerity of the medium from
which the incident wave impinges on the interface and
Zi = (µi/εi)

1/2 = (εici)
−1 = µici is the electromagnetic

impedance. In particular, in the optical frequency do-
main for which µ1 = µ2, Eq. (26) simplifies to

TEM
R,0 =

2I

cfrom

c2 − c1
c1 + c2

n . (27)

where I is the electromagnetic intensity of the incident
plane wave.

C. Synthesis

Comparisons between Eqs. (2) and (19), between
Eqs. (12) and (20) between Eqs. (13) and (21) and be-
tween Eqs. (11) and (18) show that the electromag-
netic TE problem and the acoustic problem are formally
identical with the following correspondences: p ↔ E,
u ↔ eϕ ×H, ρ ↔ µ and χ ↔ ε. Similarly, comparisons
between Eqs. (2) and (25), between Eqs. (12) and (23),
between Eqs. (13) and (24) and between Eqs. (11) and
(22) show that the electromagnetic TM problem and the
acoustic problem are formally identical with the follow-
ing correspondences: p ↔ H, u ↔ eϕ × E, ρ ↔ ε and
χ↔ µ.

These correspondences between the mechanical effects
of acoustic waves and TE or TM electromagnetic waves
offer a common framework that allow treating the wave-
matter interaction in a universal manner.

D. Flow

As a result of the radiation stresses exerted on the
interface, the interface can be deformed and the two-
phase fluid sample can flow. The velocity and pressure
fields associated to this flow driven by radiation pressure
are noted Ui and Pi, respectively.

Since the observed interface velocity is always largely
subsonic, we assume both velocity fields Ui as incom-
pressible, hence satisfying

∇ ·Ui = 0 . (28)

and both fluid densities ρi remain homogeneous and con-
stant.

Moreover, the observed interface velocity is sufficiently
small to ensure that the associated Reynolds number is
small compared to unity and we model the flows of both
fluids as creeping flows. Defining the piezometric pres-
sure P̂i as P̂i = Pi + ρigz, where g = −gez is the gravity
acceleration, Stokes equation is therefore satisfied in both
fluids [28], namely,

−∇P̂i + ηi∇2Ui = 0 , (29)

where ηi is dynamic viscosity of fluid i. In addition, at the
interface between the two immiscible fluids, we assume
the continuity of the flow velocity

U1 = U2 . (30)

The hydrodynamic stress TH0 exerted by the flows on
the interface is

TH0 =
(
TH0

2 − TH0
1

)
· n. (31)

where TH0
i is the hydrodynamic stress tensor

TH0
i = −Pi I +

ηi
2

[
∇Ui + (∇Ui)

T
]
, (32)
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(·)T refering to the transpose.
Along the moving interface, the sum of the hydrody-

namic and radiation pressures stresses is balanced by the
Laplace pressure:

TH0 + TR + σκn = 0. (33)

where σ is the interfacial tension, h(r, t) is the height of
the axisymmetric interface deformation at radius r and
time t and

κ =
∂h

∂s

(
1

r
+
∂2h

∂s2

)
− ∂2r

∂s2
(34)

is the associated curvature, s being the curvilinear ab-
scissa defined along the deformation h(r, t), see Fig. 1.

In order to separate the effect of gravity from the effect
of flows on the interface shape, it is useful to define the
pseudo-stress tensor as

TH
i = −P̂i I +

ηi
2

[
∇Ui + (∇Ui)

T
]

(35)

and the hydrodynamic pseudo-stress as

TH =
(
TH

2 − TH
1

)
· n. (36)

Eq. (33) can be rewritten as:

TH + TR + σκn + (ρ1 − ρ2)ghn = 0. (37)

where TH solely encompasses all the effect of flows on
the interface shape.

III. NUMERICAL RESOLUTION

A. Dimensionless formulation

The axisymmetry of the problem results in a two-
dimensional formulation. As depicted in Fig. 1, the com-
putation domain is included in the meridional plane (r, z)
and is defined as 0 ≤ r ≤ rmax, 0 ≤ z ≤ zmax (we chose
rmax = 4ω0 and zmax = 8ω0). Accordingly, fluids 1 and 2
are associated with identical areas equal to rmaxzmax and
whose closed-path contour is made of a fixed contour Ci,
i = (1, 2), and a mobile contour Cint which defines the
fluid interface, as sketched in Fig. 1. The interface co-
incides with the plane z = 0 at rest and its contact line
is pinned at (r = ±rmax, z = 0) with variable contact
angle.

The goal of the numerical simulation is to evaluate U
and P at any point x(r, z) = r er + z ez of the computa-
tion domain and at any time t ≥ 0 in order to compute
the stresses exerted on the interface at its location, then
its motion, which is computed using a Lagrangian ap-
proach according to

dx

dt
= U(x) , x ∈ Cint, (38)

starting from rest at t = 0.

The incident acoustic or electromagnetic beam is cho-
sen to be focused at the fluid interface at rest, as is
usually done in experiments. More precisely, based on
an experimental argument, we choose Gaussian incident
beams whose intensity profiles at z = 0 in absence of
interface is

I(r) =
2P
πw2

0

exp(−2r2/w2
0) , (39)

where P is the total beam power. Indeed, in the elec-
tromagnetic case, a continuous-wave laser sources in the
TEM00 mode is usually used, see for instance [3, 25]. In
the case of acoustics, spherically focused single-element
transducers are usually used [4, 6]. Still, it has been
shown in [29] that Eq. (39) accurately fits the acoustic
intensity distribution in the focal plane of these transduc-
ers. To conclude, Eq. (39) is adapted to the description
of electromagnetic and acoustic beams at their focus.

Using w0 as the characteristic spatial scale we can de-
fine the characteristic fluid velocity in the creeping flow
regime as U0 = σ/η2 (note: choosing η1 instead of η2

would be equally relevant), the characteristic interface
evolution timescale as τ = w0/U0 and the characteristic

pseudo-pressure variation in each fluid as P̂i0 = ηiU0/w0.
These characteristic parameters allow to formulate the
problem in a dimensionless manner. namely, we in-
troduce the dimensionless position vector x̃ = x/w0,

time t̃ = t/τ , velocity Ũi = Ui/U0, pseudo-pressure

P̃i = P̂i/P̂i0 and deformation height h̃ = h/w0. Ac-
cordingly, Eqs. (28)–(30) and (37) are rewritten in a di-
mensionless form as

∇̃ · Ũi = 0 , (40)

−∇̃P̃i + ∇̃2Ũi = 0 , (41)

Ũ1 = Ũ2 , x ∈ Cint , (42)

(T̃H
2 − αT̃H

1 ) · n + T̃R + κ̃n + Bo h̃n = 0 , x ∈ Cint ,
(43)

where α = η1/η2, Bo = (ρ1 − ρ2)gw2
0/σ is the Bond

number, T̃i = Ti/P̂i0 is the dimensionless hydrodynamic

stress tensor and T̃R = TR w0/σ is the dimensionless
radiation stress. Finally, the boundary condition along
C1 and C2 is

Ũi = 0 , x ∈ Ci . (44)

B. Boundary Integral formulation

The solution of Eqs. (40) and (41) can be obtained
by determining the solution of the Stokes equation cor-
responding to a Dirac-excitation [30, 31]. It consists in
exerting a unit point-force on the fluid at a given point
and determining the induced velocity field Ũ and hydro-
dynamic stress tensor T̃H everywhere else. Taking ad-
vantage of axisymmetry of the problem, the solution can
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be eventually expressed as a function of one-dimensional
integrals along the contours C1, C2 and Cint, see Ref. [32]
for details. One finds

1 + α

2
Ũ(x̃) =

−
∫
Cint

[
κ̃(ỹ) + T̃R(ỹ) + Bo h̃(ỹ)

]
Ũ∗(x̃− ỹ) · n(ỹ) dC(ỹ)

+ (1− α)

∫
Cint

[
K̃∗(x̃− ỹ) · Ũ(ỹ)

]
· n(ỹ) dC(ỹ)

− α
∫
C1

Ũ∗(x̃− ỹ) ·
[
T̃H

1 (ỹ) · n(ỹ)
]

dC(ỹ)

+

∫
C2

Ũ∗(x̃− ỹ) ·
[
T̃H

2 (ỹ) · n(ỹ)
]

dC(ỹ) , x̃ ∈ Cint ,

(45)

where dC(ỹ) refers to the elementary contour piece at
point ỹ, and

Ũ∗(d̃) =
1

8π

(
1

d̃
I +

d̃⊗ d̃

d̃3

)
, (46)

K̃∗(d̃) =− 3

4π

(
d̃⊗ d̃⊗ d̃

d̃5

)
. (47)

are the velocity and stress associated to the Green kernel,
respectively, with d̃ = x̃− ỹ.

The numerical resolution is based on the Boundary
Element Method. This method has been chosen because
it allows for a precise monitoring of the interface position,
which is crucial here since both capillary stresses and
radiation pressure depend on the interface shape (i.e.,
slope and curvature).

C. Numerical procedure

1. Propagation

The acoustic or electromagnetic beam is considered as
harmonic with angular frequency ω. As a consequence,
the propagating field qi = p′i, Ei or Hi can be described
as the real part of the complex field Qi exp(−jωt) which
satisfies Helmholtz’s equation

∇2Qi + k2
iQi = 0, (48)

where ki = ω/ci is the wavenumber in fluid i. Thus,
the open source numerical code developed for comput-
ing the acoustic propagation in the harmonic regime [33]
can be used indistinctly for simulating optical or acous-
tic fields. Eq. (48) is solved using opensource fortran
routines [33] described in Ref. [34] and adapted to our
specific problem.

2. Flow

The influence of the viscosity ratio η1/η2 on the inter-
face dynamics has been studied in [32]. The conclusion
of the latter work is that the viscosity ratio has no quali-
tative influence on it, hence we chose η1 = η2 = η for our
numerical investigations.

First, the acoustic or electromagnetic field along the
initially flat interface is computed. Then, the radia-
tion pressure exerted along the interface is computed
and injected into the first term of the right-hand side
of Eq. (45). This gives a system of N integral equations,
N being the number of points used to discretize the in-
terface. Its numerical solution allows the determination
of the velocity field along the interface, whose position
is then advected through a simple Euler forward scheme
x(t + ∆t) = x(t) + U(t)∆t. This procedure is then re-
peated accounting for until a stationary state is reached.

IV. PRELIMINARY ANALYSIS

A. Universal dimensionless characteristic
quantities

In this section, we introduce two dimensionless quan-
tities enabling, on the one hand, to evaluate the strength
of the mechanical perturbation applied on the interface
and on the other hand, to appreciate the influence of
the deformed interface acting as a dioptre on the wave
propagation. These two parameters are the dimension-
less characteristic radiation pressure Π0 and the char-
acteristic waveguiding parameter V , respectively. Both
are universal in the sense that they are independent of
the acoustic or electromagnetic nature of the irradiating
wave.

Constructing Π0 starts by noting that a dimensionless
radiation pressure Π can be defined at each point of the
interface as the ratio between the radiation pressure and
the characteristic value of the Laplace overpressure σ/w0,

Π =
w0

σ
TR · n , (49)

where TR = TAC
R or TEM

R . A characteristic value of
the dimensionless radiation pressure is thus obtained by
considering a flat horizontal interface and evaluating it
at the beam focus, see Eqs. (14) and (26),

Π0 =
2P

πcfromσw0

Z2
1 + Z2

2 − 2 c1c2Z1Z2

(Z1 + Z2)2
. (50)

As shown in [3, 4, 6, 25, 29], in the Bo� 1 limit, which
applies to the present work as discussed in Section V,
the height h0 of the steady humps formed at an interface
irradiated by a Gaussian beam satisfies h0/w0 ∼ Π0.

The parameter V is that arising from standard waveg-
uide theory. Its introduction in the context of the present
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work is rooted in the fact that the existence and the diam-
eter of liquid bridges [10–12] and needle-like interface de-
formations [8] sustained either by acoustic or electromag-
netic waves can be explained by the waveguiding prop-
erties of the wave-induced deformation that behaves as a
step-index liquid-core liquid-cladding cylindrical waveg-
uide. Considering the textbook case of step-index opti-
cal fibre with radius R, inner refractive index nin and
outer index nout < nin, the number of guided propa-
gating modes is determined by the value of the dimen-
sionless parameter V = k0R

√
n2

out − n2
in, where k0 is the

wavenumber in vacuum of the harmonic field injected into
the waveguide [35]. By analogy, here we define a univer-
sal characteristic waveguiding parameter V associated to
an interface deformation as

V = ωw0

√√√√∣∣∣∣∣
(

1

cfrom

)2

−
(

1

cto

)2
∣∣∣∣∣ , (51)

where cto is the wave celerity of the medium to which
the incident wave goes after passing through the inter-
face. Introducing the wavenumber of the incident beam,
kfrom = ω/cfrom, Eq. (51) can be reformulated as

V = kfromw0

√√√√∣∣∣∣∣1−
(
cfrom

cto

)2
∣∣∣∣∣ . (52)

As shown in [6], V is a prime choice parameter for de-
scribing and understanding the shape of observed inter-
face deformations whatever is the nature of the wave.

Noteworthy, Π0 and V are the two key universal in-
gredients when addressing the PDI problem. Indeed, Π0

informs to what extent the incident wave can deform the
interface whereas V informs to what extent the deformed
interface can distort the incident wave.

B. Dimensional analysis

In this section we aim at identifying a minimal set of
dimensionless parameters determining the axisymmetric
shape of the deformed interface at steady state h∞(r) =
h(r, t� τ).

1. General remarks

At first we notice that, for electromagnetic waves, the
hypothesis of axisymmetric deformations requires to dis-
card the role of the polarization state, which is valid
in the limit of small refractive index contrast, as sug-
gested by the expressions of the Fresnel coefficients of
reflexion and transmission at the interface between two
homogeneous media. Since all the reported electromag-
netic experiments involve weak refractive index contrasts
(typically of the order of a few percent), the role of the
polarization state is discarded from now on. Moreover,

the dimensions of the fluid sample rmax and zmax are as-
sumed to be large enough that h∞ does not depend on
them.

At steady state there is no more flow: Ui = 0 and
P̂i = 0. Consequently TH = 0. As shown by Eq. (37),
the deformation thus results from the combined effects of
interfacial tension σ, buoyancy g(ρ1 − ρ2) and radiation
pressure TR. As shown by Eq. (10) and (17), radia-
tion pressure involves the propagating fields and physical
properties of both fluids. The propagating fields are de-
fined by the beam power P, its waist w0, its wavenumber
kfrom = ω/cfrom and its direction of propagation, that
is accounted by introducing a boolean variable ξ whose
value depends on whether cfrom > cto or cfrom < cto.
The fluids physical properties determining the radiation
pressure are c1, c2 plus (i) µ1 and µ2 for electromagnetic
waves or (ii) ρ1 and ρ2 for acoustic waves. In what follows
we consider separately the acoustic and electromagnetic
cases.

2. Acoustic waves

From the previous analysis it follows that for acoustic
waves, h∞ is function of 11 independent quantities:

h∞ = f(r, g(ρ1 − ρ2), σ,P, w0, kfrom, ξ, ρ1, ρ2, c1, c2).
(53)

Since the quantities appearing in Eq. (53) can be ex-
pressed using the dimensions of mass, length and time,
according to Buckingham’s theorem [36], Eq. (53) can
be rewritten as a relationship between 9 independent di-
mensionless quantities. We choose

h∞
w0

= F

(
r

w0
,Bo,Π0, V, ξ,

Z1

Z2
,
c1
c2
, A(ρ̄)

)
, (54)

where ρ̄ = (ρ1 + ρ2)/2 and A(ρ̄) is a dimensionless quan-
tity involving ρ̄. Noticing that ρ̄ accounts for fluid inertia,
which is involved only in unsteady phenomena, A(ρ̄) is
discarded recalling that we deal here with static steady
states. Finally, an important additional simplification
occurs when considering ρ1 = ρ2, which leads to Bo = 0
and Z1/Z2 = c1/c2, hence to

h∞
w0

= F

(
r

w0
,
c1
c2
,Π0, V, ξ

)
. (55)

3. Electromagnetic waves

In the case of electromagnetic waves, h∞ is function of
11 independent quantities:

h∞ = f(r, g(ρ1 − ρ2), σ,P, w0, kfrom, ξ, µ1, µ2, c1, c2).
(56)

The quantities appearing in Eq. (56) can be expressed
using the dimensions of mass, length, time, and electric
current. According to Buckingham’s theorem, Eq. (56)
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can be rewritten as a relationship between 8 independent
dimensionless quantities, which we choose as

h∞
w0

= F

(
r

w0
,Bo,Π0, V, ξ,

Z1

Z2
,
c1
c2

)
. (57)

Taking into account that µ1 = µ2 = µ0 at optical fre-
quencies and that Zi = µici, and assuming ρ1 = ρ2, one
gets

h∞
w0

= F

(
r

w0
,
c1
c2
,Π0, V, ξ

)
. (58)

4. Synthesis

This analysis shows that whenever the role of the polar-
ization state of electromagnetic waves can be discarded,
the steady dimensionless shape of the interface can be
described in a universal manner, indistinctly for acoustic
and electromagnetic waves. Moreover, in the ρ1 = ρ2

approximation, this universal description entails four di-
mensionless parameters, namely c1

c2
, Π0, V and ξ.

In the unsteady regime, h also depends on time t, fluid
viscosities η1 and η2, as well as ρ1 and ρ2. According
to [32], in the creeping flow regime, neither fluid iner-
tia, nor the viscosity ratio have a significant influence on
the interfacial dynamics, whose characteristic timescale
is τ = w0η2/σ as already introduced in section III.A.

V. RESULTS

A. Disclaimer

With the aim at demonstrating that the PDI based
on the sole action of radiation pressure presented in Sec-
tion II reproduces the main features of experimental ob-
servations, we do not report here on the systematic explo-
ration of the four-dimensional parameter space. Instead,
we set Π0 to a rather large value (typically, Π0 ' 5− 10)
in order to put the system in regimes where the conse-
quences of PDI are strikingly apparent. Moreover, we
focus on the influence of the celerity contrast and of the
beam direction of propagation. For this aim, we choose
two values that are representative of low and large val-
ues of the ratio c−/c+, namely, c−/c+ = 0.5, which can
be achieved in acoustic experiments, and c−/c+ = 0.95,
which is typical of optical experiments.

Moreover, the restrictions of our numerical study call
for a few comments regarding a possible comparison with
experimental results. Indeed, in our numerical study
gravity effects are discarded owing to the assumption
ρ1 = ρ2 while in practice ρ1 6= ρ2. In the optical do-
main previous works showed that gravity does not have a
qualitative influence on the observed deformations [3, 25]
whereas in acoustics ρ1 6= ρ2 results in a possible effect
of gravity and also in an additional dimensionless pa-
rameter, the ratio Z1/Z2, as discussed in Section IV B.

Therefore one can anticipate discrepancies between sim-
ulations and experiments in acoustics.

B. Morphogenesis of interface deformations: the
role of propagation-deformation interplay

In order to appreciate the role of PDI, we compare the
deformation evolution of an initially flat interface expe-
riencing constant irradiation from time t = 0 with and
without PDI. The case “with PDI” refers to the treat-
ment presented so far whereas the case “without PDI” is
carried out by computing the radiation pressure as that
exerted by the incident Gaussian field whatever the de-
formation of the interface.

In order to appreciate the role of the direction of prop-
agation, the comparison is conducted in two configura-
tions, namely cfrom > cto and cfrom < cto. In the follow-
ing, we adopt the following convention: the bottom fluid
indexed by the subscript 1 is taken as that having the
largest celerity (c1 = c+) whereas the top fluid indexed
by the subscript 2 has the smallest celerity (c2 = c− with
c− < c+). Thus, the configuration cfrom > cto corre-
sponds to a beam propagating upward from fluid 1 to
fluid 2. Conversely, the configuration cfrom < cto corre-
sponds to a beam propagating downward from fluid 2 to
fluid 1.

1. Large celerity contrast with cfrom > cto

The evolution of the interface shape and of the radia-
tion pressure distribution along the interface for c−/c+ =
0.5 and cfrom > cto, at Π0 = 10, is shown without PDI
in Figs. 2(a, b) and with PDI in Figs. 2(e, f). An insight
into the wave field if provided in the right part of the fig-
ure where the spatial distribution of the phase Φ and of
the dimensionless energy density E/E0 of the wave field,
where E0 refers to the maximum of the energy density of
the incident beam in absence of interface (i.e., consider-
ing that the fluid ‘from’ fills all space). The phase and
energy density at time t = 0 (at which the interface is
flat) are shown in Figs. 2(c) and 2(d), respectively. Note
the expected factor 2 between the wavelengths in the two
fluids [Fig. 2(c)] and the axial energy modulation in fluid
‘from’ [Fig. 2(d)] which results from the interference be-
tween the incident beam and the backward wave due to
its partial reflection off the interface.

In the absence of PDI, the magnitude of the dimen-
sionless hump height h̃0 = h0/w0 smoothly increases
with time and is associated with a bell shaped dimen-
sionless hump profile h̃(r̃, t̃) at all stages of the evolu-
tion, see Fig. 2(a), in agreement with previous stud-
ies [28, 32]. Correspondingly, the dimensionless radia-
tion pressure distribution along the deformed interface,
Π(r̃, t̃), is also smooth and bell-shaped close to the axis
at all times.
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By contrast, in presence of PDI, we observe a stepped
evolution of the hump height and a transition from bell-
shaped to step-shaped hump profiles, see Fig. 2(e). This
transition is associated with the appearance of radial
modulations of the radiation pressure exerted along the
interface, whose physical origin lies in the appearance of
guided modes within the increasingly slender deforma-
tion due to the PDI [6].

The comparison between numerical simulations
with/without PDI confirms its paramount influence on
both the shape and evolution of the irradiated inter-
face. Noticeably, the steady shape of the irradiated in-
terface shape shown in Fig. 2(h) qualitatively reproduces
well the experimental observations on fluids such that
c−/c+ ' 0.5, as shown in Fig. 4(a). Also we note in
Fig. 2(h) the axial energy density modulation along the
beam axis in fluid “to”. It might be understood as the re-
sult of interferences between distinct guided modes (i.e.,
associated to distinct wavenumbers) propagating through
the deformed interface acting as a multimodal waveg-
uide. Such energy density modulation is also visible in
Figs. 3(b) and 4(b) of Ref. [6], while the underlying mul-
timodal propagation is demonstrated in Figs. 6(a), 6(b),
7(a) and 7(b) of Ref. [6].

2. Large celerity contrast with cfrom < cto

The evolution of the interface shape for c−/c+ = 0.5
and cfrom < cto, at Π0 = 5, is reported in the bottom-half
part of Fig. 2 in a similar manner as for the previously
discussed case cfrom > cto.

In absence of PDI, the only qualitative difference be-
tween the case cfrom < cto and the case cfrom > cto
lies in the emergence of a peak in the radiation pres-
sure distribution along the deformed interface, as shown
in Fig. 2(j). This peak corresponds to the coincidence
of the local inclination of the interface with respect to
the horizontal with the so-called total internal reflection
(TIR) angle θTIR = arcsin(c−/c+) [5].

As shown in Fig. 2(m, n), when PDI is at work, a non-
smooth evolution of the hump height is found as for the
case cfrom > cto and the interface deformation evolves to-
ward a steady, slender and corrugated shape, also show
in Fig. 2(q). This steady shape compares well with ex-
perimental observations on fluids such that c−/c+ ' 0.5
shown in Fig.4(b) .

3. Small celerity contrast with cfrom > cto

The morphogenesis of interface deformation for
c−/c+ = 0.95 and cfrom > cto, at Π0 = 6, is reported
in the top-half part of Fig. 3 in a similar manner as for
Fig. 2.

As expected, since the celerity contrast is small, the ax-
ial energy density modulations in fluid ‘from’ are much
less pronounced than in the case of large celerity contrast,

as illustrated by the comparison between Fig. 3(d) and
Fig. 2(d). Although the interface shape evolution with
and without PDI are qualitatively similar, the interface
deformation is more cylindrical with PDI than without
PDI, for which a bell-shaped deformation is observed.
This is attributed to the waveguiding effect of the defor-
mation [6]. The comparison between the steady shape
visible in Fig. 3(h) and experimental observations on flu-
ids such that c−/c+ ' 0.9 shown in Fig. 4(c), provides
with a satisfying qualitative agreement.

4. Small celerity contrast with cfrom < cto

The evolution of the interface shape for c−/c+ = 0.95
and cfrom < cto, at Π0 = 6, is reported in the bottom-half
part of Fig. 3 in a similar manner as for the previously
discussed case cfrom > cto.

Although the hump height evolutions are qualitatively
similar with and without PDI, the asymptotic regime is
reached twice more rapidly with PDI than without and
the asymptotic height is twice smaller with PDI than
without, which substantially differs from the large con-
trast situation. Moreover, the steady deformation shapes
noticeably differ depending on whether PDI is taken into
account or not. Without PDI, the deformation tends to
a cone, as shown in Fig. 3(j), whereas a bell-shaped de-
formation is found with PDI, as shown in Fig. 3(n, q).
These results demonstrate how strongly the PDI matters
even when the celerity contrast is rather small. Also, a
qualitative agreement is found between Fig. 3(q) and ex-
perimental observations on fluids such that c−/c+ ' 0.9
shown in Fig. 4(d).

C. Slenderness transition

1. Background

Two decades ago, it was observed that an abrupt tran-
sition from moderately to strongly slender deformation
occurs in the electromagnetic case only when cfrom <
cto [7]. This so-called “slenderness transition” between
two distinct regimes of deformation, was observed when
a focused laser beam deforms an interface between the
coexisting phases of a two-phase micro-emulsion close to
its critical miscibility. A ray-optics based interpretation
involving total internal reflection was suggested. Namely,
it was proposed that the transition occurs when the in-
clination angle θi of the deformed interface with respect
to the horizontal [see inset of Fig. 6 (b)] exceeds the an-
gle of total internal reflection [7], which is specific to the
situation cfrom < cto.

Further investigations dedicated to the measurement
of the maximal value for the steady-state incidence angle
at the onset of the transition, θ∞i,max, showed that θ∞i,max is
unambiguously smaller than θTIR [25], thus questioning
the ray-optics approach. However, since the near-critical
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FIG. 2. Computed morphogenesis of large interface deformations for celerity contrast c−/c+ = 0.5, waveguiding parameter V = 5.4 with
Propagation-Deformation Interplay (PDI) (a,b, i, j) and without PDI (e)–(h), (m–q). (a)–(h) cfrom > cto, Π0 = 10. (i)–(q) cfrom < cto, Π0 = 5.
The deformation profiles shown in panel (b) [respectively (f), (j) and (n)] correspond to the instants indicated by the symbols with corresponding
color in panel (a) [respectively (e), (i) and (m)]. The curves in panels (b), (f), (j) and (n) are shifted vertically one with respect to the other for
clarity purpose. In panels (c), (g), (k) and (p), Φ is the phase of the wave field. In panels (d), (h), (l) and (q), E is the wave energy density and
E0 is the energy density maximum of the incident beam in absence of interface.

micro-emulsions involved in the first experimental obser-
vations were turbid [7], both both radiation pressure and
bulk radiation forces may contribute to the slenderness
transition. Since then, bulk radiation forces associated
with turbidity have been shown to induce a jet transition

(i.e., the sudden occurrence of droplet emission at the
tip of a needle-like deformation [8]) which shares several
common features with the slenderness transition [19, 38].
The question of whether the slenderness transition can
be triggered solely by radiation pressure is still open.
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FIG. 3. Computed morphogenesis of large interface deformation dynamics for celerity contrast c−/c+ = 0.95, waveguiding
parameter V = 2.0 with PDI (a,b, i, j) and without PDI (e)–(h), (m–q). (a)–(h) cfrom > cto, Π0 = 6. (i)–(q) cfrom < cto,
Π0 = 6. Graphical representation is identical to that of Fig. 2.

Here we provide new insight into the slenderness tran-
sition mechanism by combining novel experiments and
numerical investigation in the absence of bulk radiation
forces, within a framework encompassing both for acous-
tic and electromagnetic waves.

2. Experimental observations

Two experimental observations of slenderness transi-
tion respectively driven by acoustic and optical beams are
reported in Fig. 5 at the onset of the transition threshold,
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FIG. 4. Experimentally observed morphologies at steady-
state under acoustic irradiation at 2.25 MHz frequency. (a)
20 cSt Silicone oil / FC72 oil interface corresponding to
c−/c+ = 0.51 and V = 4.5. (b) 5 cSt Silicone oil / 65 wt%
glycerol-water mixture interface corresponding to c−/c+ =
0.54 and V = 4.5. (c) Water / kerosene interface correspond-
ing to c−/c+ = 0.88 and V = 2.6. (d) Water / kerosene
interface corresponding to c−/c+ = 0.88 and V = 2.6.

which corresponds to Π0 = Πth
0 , and slightly above the

threshold with Π0 = Πth
0 (1 + ε), where ε is a small pa-

rameter. In both cases the celerity contrast is small and
almost identical, namely, c−/c+ = 0.94 in acoustics and
c−/c+ = 0.96 in optics, hence providing a playground
for a generic comparison between experiments and nu-
merics, which calls for two remarks. First, in acoustics,
the thermoviscous dissipation prevents us from achieving
an experiment virtually free of bulk radiation forces (i.e.
free of acoustic streaming) and, in our experiments, the
waveguiding parameter V can only be tuned by chang-
ing the fluids. Second, in optics it is possible to deal with
fluids virtually free from bulk forces [13] and in our ex-
periments V can be readily tuned by changing the beam
waist w0. Therefore, because we aim to test the impact of
PDI only on the slenderness transition, hereafter we fo-
cus on the electromagnetic case and we present an exper-
imental parametric study that is compared to numerical
simulations.

The optical experiment is carried out using visible
radiation on a two-phase fluid composed a water-rich
phase coexisting with an oil-rich phase of a three-phase
equilibrium of a brine / dioctyl sodium sulfosuccinate
(AOT) surfactant / n-heptane mixture [37] called a Win-
sor phase. Such a fluid interface is characterized by (i) a
small interfacial tension, allowing the slenderness transi-
tion to be triggered using a focused beam emitted by a
tabletop continuous-wave laser, and (ii) an optical trans-
parency of both phases in contact, which ensures that
bulk forces can be safely discarded.

The experiments consists in irradiating the fluid us-
ing a Gaussian laser beam focused on the fluid interface
at rest and in observing the steady deformed interface.
The threshold power value P th at which the slenderness
transition occurs is then determined by dichotomy with
a 1 % accuracy in a wide range of values of w0 at fixed
celerity contrast c−/c+ = 0.96 with cfrom < cto. The
angle θ∞imax is then evaluated at the inflection point of
the steady interface deformation by image processing.
The variation of θ∞imax versus V is displayed in Fig. 6(a).
We find that θ∞i,max is nearly independent of V and that
〈θ∞i,max〉 = 55.3◦ (with 3.3◦ standard deviation) is smaller
than θTIR = 73.8◦ by more than 18◦. This demon-

50 µm50 µm1 mm

Π"#$ Π"#$(1 + ()

Optics

1 mm

Π"#$ Π"#$(1 + ()

Acoustics

(a) (b) (c) (d)

FIG. 5. Experimental observation of the slenderness tran-
sition in acoustics at 2.25 MHz frequency and in optics at
532 nm wavelength. (a, b) Acoustic irradiation of a mineral
oil / 32 wt% glycerol-water mixture interface corresponding
to c−/c+ = 0.94 and V = 1.9. (c,d) Optical irradiation of the
interface between water-rich and oil-rich phases of a three-
phase equilibrium (called as a Winsor phase) of a brine /
AOT surfactant / n-heptane mixture [13, 37] corresponding
to c−/c+ = 0.96 and V = 34. Pictures of the interface de-
formations are shown at the onset of the transition threshold
at Π0 = Πth

0 (a,c) and slightly above it at Π0 = Πth
0 (1 + ε)

with ε = 0.02 in panel (b) and ε = 0.01 in panel (d). In
all panels the incident wave propagates from top to bottom
(cfrom < cto).
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FIG. 6. (a) Measured maximum value θ∞i,max of the incidence angle θi of the rays on the steady deformed interface of a Winsor
phase irradiated by a downward laser beam with cfrom < cto at the threshold of the slenderness transition as function of the
waveguiding parameter V at constant value of the celerity contrast c−/c+ = 0.96. Orange circles: experimental values; Black
lozenges: computed values; θTIR: total internal reflection angle. (b) Computed time evolution of the dimensionless hump height
for several values of Π0 at and above the threshold of slenderness transition Πth

0 = 5.54, for V = 8.4. Inset: sketch of the
deformed interface illustrating the incidence angle θi of the rays on the deformed interface. (c,e) Deformation profiles at the
threshold (Π0 = Πth

0 ) and just above (Π0 = 1.002 Πth
0 ) at t/τ = (0.5, 1, 2, 4, 8.7, 39) and t/τ = (5, 10, 15, 20, 25, 32), respectively.

(d,f) Corresponding evolution of θi,max. The colored markers refer to the instants at which the interface deformation profiles
are shown in panels (c,e).

strates experimentally that the slenderness transition is
not driven by the total internal reflection phenomenon
and does not require bulk radiation forces.

3. Numerical investigation

The numerical investigation of the slenderness transi-
tion, which is only observed with PDI and with cfrom <
cto, is conducted by mimicking the experiments presented
in the previous section. Accordingly, we determine the
threshold dimensionless power value Πth

0 at which the
slenderness transition takes place. A typical numerical
experiment is illustrated in Fig. 6(b) where the evolution
of the on-axis height of the deformed interface is shown
for different values of Π0 at c−/c+ = 0.96 and V = 8.4.
The sudden occurrence of a diverging behavior of the
deformation height as Π0 increases from 5.54 to 5.55 il-
lustrates the abrupt nature of the slenderness transition
with respect to the control parameter Π0 and justifies the
0.2 % accuracy of the determination of Πth

0 . A detailed
picture of the interface evolution at the threshold and

slightly above is shown in Figs. 6(c-f). The dimension-
less deformation profiles h(r)/w0 vs r/w0 are displayed in
panels (c) and (e) at several dimensionless instants. Also
the corresponding evolution of the interface inclination
angle θi,max at the inflexion point are shown in panels (d)
and (f). For Π0 = Πth

0 , θi,max increases, then saturates
at a value θ∞i,max significantly smaller than θTIR, while for

Π0 = 1.002 Πth
0 , the increase of θi,max slows down when

approaching θ∞i,max, then revives up to θTIR. Finally, a
thin tip grows at the deformation end, as shown in Fig-
ure 6(e), leading to θi,max ' 90◦, as shown in Figure 6(f).

Since V is varied by varying kw0 at fixed c−/c+, in-
creasing V requires to increase the spatial resolution of
the simulations. Given the associated computational
cost, our investigations are restricted to the typical range
2 < V < 18. The numerically computed dependence of
θ∞i,max versus V is displayed in Fig. 6(a), which quantita-
tively agrees with the experimental measurements. This
confirms that the slenderness transition does not require
bulk radiation forces, cannot be explained by the sole
ray-optics approach, and is actually driven by PDI. In
addition, Figs. 5(a) and 5(b) also support preceding con-
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FIG. 7. (a) Experimentally observed hysteretic behavior of

the deformation height h̃ versus Π0 of the interface of a Win-
sor phase such that c−/c+ = 0.96, V = 13.7. (b) Computed
hysteretic behavior for c−/c+ = 0.93, V = 6.9.

clusions in the acoustic domain. Indeed, for this pair
of fluids, θTIR ' 70◦ whereas the transition occurs at
θ∞i,max ' 30◦ < θTIR.

D. Hysteresis of the slenderness transition

Beyond the slenderness transition, by cycling the beam
power up and down in the typical range 0 < Π0/Π

th
0 < 2,

we evidenced a hysteretic behavior of the deformation

height versus Π0, as shown in Fig. 7(a). Experiments
correspond to V = 13.7 and the hysteresis phenomenon
is also observed for larger values of V . The relative width
of the hysteresis cycle is ∼ 50 % and its lower and upper
branches are characterized by a height ratio ∼ 10. Notic-
ing that a hysteresis is a generic manifestation of the feed-
back action of a system on its driving parameter, these
experimental results tend to further highlight the role
of PDI that can be also explored numerically. For this
purpose, we simulate the interface response to a cycling
of the dimensionless power in a configuration as close as
possible to the experimental conditions. Recalling that
the computational limitations prevent us from assessing
deformation heights as large as those observed experi-
mentally (h0/w0 = 10 − 100), we chose material param-
eters enabling the demonstration of the existence of an
hysteretic behavior, namely c−/c+ = 0.93 and V = 6.9.
The results are shown in Fig.7(b). A hysteresis cycle is
numerically obtained, which demonstrates that PDI is
required for describing a hysteresic behavior.

VI. CONCLUDING REMARKS

As illustrated by the Eqs. (55) and (58), the inter-
face deformations induced by the radiation pressure of
an acoustic or an electromagnetic beam can be described
in a universal manner using 4 parameters (in the limit of
small density contrast regarding acoustic fields), which
makes their thorough numerical investigation rather chal-
lenging. For this reason, in this work we have numerically
investigated a few phenomena such as the deformation
morphologies, the slenderness transition and its hystere-
sis, using parameter values as close as possible to those
encountered in experiment. In overall, we found qualita-
tive agreement between numerical simulations and exper-
iments only when the propagation-deformation interplay
is taken into account, hence pinpointing its crucial role
in the interface deformation morphogenesis in situations
where streaming flows induced by bulk forces—which can
occur both in acoustics and optics—can be neglected.
Therefore, the numerical model presented here consti-
tutes a valuable tool for further investigations of these
phenomena.
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Physical Review Fluids 5, 024002 (2020).

[21] M. K. Tan, J. R. Friend, and L. Y. Yeo, Phys. Rev. Lett.
103, 024501 (2009).

[22] H. Chraibi and J.-P. Delville, Physics of Fluids 24,
032102 (2012).

[23] D. Rivière, B. Selva, H. Chraibi, U. Delabre, and J.-P.
Delville, Physical Review E 93, 023112 (1 (2016).

[24] A. Casner and J.-P. Delville, Opt. Lett., OL 26, 1418
(2001).

[25] R. Wunenburger, A. Casner, and J.-P. Delville, Physical
Review E 73, 036314 (2006).

[26] L. Brillouin, Les tenseurs en mécanique et en élasticité
(in French) (Masson, 1938).

[27] P. L. Marston, The Journal of the Acoustical Society of
America 67, 15 (1980).

[28] H. Chraibi, D. Lasseux, E. Arquis, R. Wunenburger, and
J.-P. Delville, Eur. J. Mech. B 27, 419 (2008).

[29] B. Issenmann, R. Wunenburger, S. Manneville, and J.-P.
Delville, Phys. Rev. Lett. 97, 074502 (2006).

[30] O. A. Ladyzhenskaya, ”The mathematical theory of vis-
cous incompressible flow” (Gordon and Breach, 1987).

[31] C. Pozrikidis, Cambridge University Press (1992).
[32] H. Chraibi, D. Lasseux, R. Wunenburger, E. Arquis, and

J.-P. Delville, Eur. Phys. J. E 32, 43 (2010).
[33] URL http://www.boundary-element-method.com/

helmholtz/.
[34] S. Kirkup, ”The Boundary Element Method in Acoustics”

(Integrated Sound Software, 2007).
[35] K. Okamoto, Fundamentals of optical waveguides (Else-

vier, 2021).
[36] E. Buckingham, Physical review 4, 345 (1914).
[37] P. A. Winsor, Transactions of the Faraday Society 44,

376 (1948).
[38] H. Chesneau, J. Petit, H. Chräıbi, and J.-P. Delville,
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