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Abstract

In the paper ‘On the Dirac-Frenkel Variational Principle on Tensor Banach Spaces’, we provided a
geometrical description of manifolds of tensors in Tucker format with fixed multilinear (or Tucker) rank
in tensor Banach spaces, that allowed to extend the Dirac-Frenkel variational principle in the framework
of topological tensor spaces. The purpose of this note is to extend these results to more general tensor
formats. More precisely, we provide a new geometrical description of manifolds of tensors in tree-based
(or hierarchical) format, also known as tree tensor networks, which are intersections of manifolds of
tensors in Tucker format associated with different partitions of the set of dimensions. The proposed
geometrical description of tensors in tree-based format is compatible with the one of manifolds of tensors
in Tucker format.
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1 Introduction

Tensor methods are prominent tools in a wide range of applications involving high-dimensional data or
functions. The exploitation of low-rank structures of tensors is the basis of many approximation or dimension
reduction methods, see the surveys [16, 2, 19, 20, 4, 5] and monograph [12]. Providing a geometrical
description of sets of low-rank tensors has many interests. In particular, it allows to devise robust algorithms
for optimization [1, 25] or construct reduced order models for dynamical systems [15].

A basic low-rank tensor format is the Tucker format. Given a collection of d vector spaces Vν , ν ∈ D :=
{1, . . . , d}, and the corresponding algebraic tensor space VD = V1 ⊗ . . .⊗ Vd, the set of tensors Mr(VD) of
tensors in Tucker format with rank r = (r1, . . . , rd) is the set of tensors v in VD such that v ∈ U1 ⊗ . . .⊗Ud

for some subspaces Uν in the Grassmann manifold Grν (Vν) of rν -dimensional spaces in Vν . A geometrical
description of Mr(VD) has been introduced in [9], providing this set the structure of a C∞-Banach manifold.
Tree-based tensor formats [8], also known as tree tensor networks in physics or data science [21, 23, 10, 18],
are more general low-rank tensor formats, also based on subspaces. They include the hierarchical format [13]
or the tensor-train format [22]. Sets of tensors in tree-based tensor format are the intersection of a collection
of sets of tensors in Tucker format associated with a hierarchy of partitions given by a tree. More precisely,
given a tree TD over D (see Definition 3.2 below for a more precise description), we can define a sequence
of partitions P1, . . . ,PL of D, with L the depth of the tree, such that each element in Pk is a subset of an
element of Pk−1 (see example in Figure 1.1). For each partition Pk, a tensor in VD can be identified with
a tensor in VPk

:=
⊗

α∈Pk
Vα, that allows to define manifolds of tensors in Tucker format Mrk

(VPk
) with

rk ∈ N#Pk . The set FT r(VD) of tensors in VD with tree-based rank r = (rα)α∈TD
∈ N#TD is then given by

FT r(VD) =

L⋂

k=1

Mrk
(VPk

)

where rk = (rα)α∈Pk
.

{1, 2, 3, 4}

{4}{1, 2, 3}

{2, 3}

{3}{2}

{1}

Figure 1.1: A tree over D = {1, 2, 3, 4}, with depth L = 3, and the associated partitions of D: P3 =
{{1}, {2}, {3}, {4}}, P2 = {{1}, {2, 3}, {4}}, P1 = {{1, 2, 3}, {4}}.

In this paper, we provide a new geometrical description of the sets FT r(VD) of tensors with fixed tree-
based rank in tensor Banach spaces. This description is compatible with the one of manifolds Mrk

(VPk
)

introduced in [9]. It is different from the ones from [24] and [14], respectively introduced for hierarchical
and tensor train formats in finite-dimensional tensor spaces. It is also different from the one introduced
by the authors in [7], that provided a different chart system. The present geometrical description is more
natural and we believe that it is more amenable to understand the geometry and topology of the different
tensor formats based on subspaces. With the present description, and under similar assumptions on the
norms of tensor spaces, Theorem 5.2 and Theorem 5.4 in [9] also hold for tree-based tensor formats, that
allows to extend the Dirac-Frenkel variational principle for tree-based tensor formats in tensor Banach spaces.

The outline of this note is as follows. We start in section 2 by recalling results from [9]. Then in sections3
we introduce a description of tree-based tensor formats FT r(VD) as an intersection of Tucker formats.
Section 4 is devoted to the geometrical description of manifolds Mr(VD) of tensors in Tucker format with
fixed rank. Finally in section 5, we introduce the new geometrical description of the manifold FT r(VD)
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of tensors in tree-based tensor format with fixed tree-based. We prove that it is an immersed manifold in
the ambient tensor Banach space and outline the extension of the Dirac-Frenkel variational principle for
tree-based tensor formats in tensor Banach spaces.

2 Preliminary results

Let D := {1, . . . , d} be a finite index set and consider an algebraic tensor space VD =
⊗

α∈D Vα generated
from vector spaces Vα, α ∈ D. Concerning the definition of the algebraic tensor space we refer to Greub
[11]. For any partition PD of D, the algebraic tensor space VD can be identified with an algebraic tensor
space generated from vector spaces Vα, α ∈ PD. Indeed, for any partition PD of D, the equality

VD =
⊗

α∈PD

Vα

holds, with Vα :=
⊗

j∈α Vj if α 6= {j}, for some j ∈ D, or Vα = Vj if α = {j} for some j ∈ D. Next we
identify D with the trivial partition {{1}, {2}, . . . , {d}}.

Remark 2.1 In [9], we considered the tensor space VD =
⊗

α∈D Vα for a given D. It is not difficult to
check that the results from [9] remain true when substituting D by any partition PD, that includes the initial
case by identifying D with the trivial partition {{1}, {2}, . . . , {d}}. More precisely, we can substitute with
minor changes along the paper “α ∈ D” by “α ∈ PD”.

Before restating Theorem 3.17 of [9] in the present framework, we recall some definitions from [9].

Let X and Y be Banach spaces. We denote by L(X,Y ) the space of continuous linear mappings from
X into Y. The corresponding operator norm is written as ‖·‖Y←X . It is well known that if Y is a Banach
space then (L(X,Y ), ‖ · ‖Y←X) is also a Banach space.

Let X be a Banach space. We denote by G(X) the Grassmann manifold of closed subspaces in X (see
Section 2 in [9]). More precisely, we say that U ∈ G(X) holds if and only if U is a closed subspace in X

and there exists a closed subspace W in X such that X = U ⊕W. Every finite-dimensional subspace of X
belongs to G(X), and we denote by Gn(X) the space of all n-dimensional subspaces of X (n ≥ 0). From
Proposition 2.11 in [9], the Banach space L(U,W ) can be identified with an element of G(L(X,X)). Hence
it is a closed subspace of L(X,X).

Assume that PD is a partition of D and (Vα, ‖ · ‖α) is a normed space for each α ∈ PD. Following [6], it
is possible to construct for each α ∈ PD a map

Umin
α : VD −→ G(Vα), v 7→ Umin

α (v)

which satisfies the following properties:

i) dimUmin
α (v) < ∞, for all v ∈ VD.

ii) v ∈
⊗

α∈PD
Umin
α (v) and if there exist subspaces Uα ⊂ Vα for each α ∈ PD such that v ∈⊗

α∈PD
Uα , then Umin

α (v) ⊂ Uα for each α ∈ PD.

The linear subspace Umin
α (v) is called a minimal subspace of v in VD. In consequence, given a fixed partition

PD ofD, we can define for each v ∈ VD its α-rank as dimUmin
α (v) for α ∈ PD. The PD-rank for each v ∈ VD

is given by the tuple (dimUmin
α (v))α∈PD

∈ N#PD .

Given r = (rα)α∈PD
∈ N#PD , we define the set of tensors in VD represented in Tucker format with a

fixed rank r as
Mr(VD) =

{
v ∈ VD : dimUmin

α (v) = rα for each α ∈ PD

}
.

3



A tensor v ∈ Mr(VD) if and only if for each α ∈ PD there exists a unique subspace Umin
α (v) ∈ Grα(Vα)

such that v ∈
⊗

α∈PD
Umin
α (v) . Observe, that

Mr

(
⊗

α∈PD

Umin
α (v)

)
=

{
v ∈

⊗

α∈PD

Umin
α (v) : dimUmin

α (v) = rα for each α ∈ PD

}

is the set of full rank tensors in the finite dimensional space
⊗

α∈PD
Umin
α (v) . Clearly,

⊗
α∈PD

Umin
α (v) is

also a normed space and it can be shown that Mr

(⊗
α∈PD

Umin
α (v)

)
is an open set in

⊗
α∈PD

Umin
α (v) ,

and hence a manifold.

Recall that for each fixed α ∈ PD, the finite dimensional vector space Umin
α (v) is linearly isomorphic to

the vector space
RdimUα(v) = Rrα

for all v ∈ Mr(VD). Hence the finite dimensional vector space
⊗

α∈PD
Umin
α (v) is linearly isomorphic to the

vector space R×α∈PD
rα . This fact allows to identify the open set of full rank tensors in R×α∈PD

rα , denoted

by R
×α∈PD

rα
∗ , with Mr

(⊗
α∈PD

Umin
α (v)

)
.

3 The set of tensors in tree-based format with fixed tree-based

rank

To introduce the set of tensors in tree-based format with fixed tree-based rank we shall use the minimal
subspaces, in particular, Proposition 2.6 in [9] (see also [6] or [12]). Let PD be a given partition of D. By
definition of the minimal subspaces Umin

α (v), α ∈ PD, we have

v ∈
⊗

α∈PD

Umin
α (v) .

For a given α ∈ PD with #α ≥ 2 and any partition Pα of α, we also have

v ∈



⊗

β∈Pα

Umin
β (v)


⊗




⊗

δ∈PD\{α}

Umin
δ (v)


 .

Given D we will denote its power set (the set of all subsets of D) by 2D. We recall a useful result on the
relation between minimal subspaces (see Section 2 in [6]).

Proposition 3.1 For any α ∈ 2D with #α ≥ 2 and any partition Pα of α, it holds

Umin
α (v) ⊂

⊗

β∈Pα

Umin
β (v) .

In order to define tree-based tensor format we introduce three definitions.

Definition 3.2 (Dimension partition tree) A tree TD is called a dimension partition tree over D if

(a) all vertices α ∈ TD are non-empty subsets of D,

(b) D is the root of TD,

(c) every vertex α ∈ TD with #α ≥ 2 has at least two sons and the set of sons of α, denoted S(α), is a
non-trivial partition of α,

(d) every vertex α ∈ TD with #α = 1 has no son and is called a leaf.

The set of leaves is denoted by L(TD).
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A straightforward consequence of Definition 3.2 is that the set of leaves L(TD) coincides with the single-
tons of D, i.e., L(TD) = {{j} : j ∈ D}.

Definition 3.3 (Levels, depth and partitions) The levels of the vertices of a dimension partition tree
TD, denoted by level(α), α ∈ TD, are integers defined such that level(D) = 0 and for any pair α, β ∈ TD such
that β ∈ S(α), level(β) = level(α)+1. The depth of the tree TD is defined as depth(TD) = maxα∈TD

level(α).
Then to each level k of TD, 1 ≤ k ≤ depth(TD), is associated a partition of D :

Pk(TD) = {α ∈ TD : level(α) = k} ∪ {α ∈ L(TD) : level(α) < k}.

Remark 3.4 Note that for any tree, P1(TD) = S(D) and Pdepth(TD)(TD) = L(TD). Also note that some of
the leaves of TD may be contained in several partitions, and if α ∈ L(TD), then α ∈ Pk(TD) for level(α) ≤
k ≤ depth(TD).

For any partition Pk(TD) of level k, 1 ≤ k ≤ depth(TD), we use the identification

VD =
⊗

α∈Pk(TD)

Vα .

This leads us to the following definition of the representation of the tensor space VD in tree-based format.

Definition 3.5 For a tensor space VD and a dimension partition tree TD, the pair (VD, TD) is called a
representation of the tensor space VD in tree-based format, and corresponds to the identification of VD with
tensor spaces

⊗
α∈Pk(TD) Vα of different levels k, 1 ≤ k ≤ depth(TD).

Remark 3.6 By Proposition 3.1, for each v ∈ VD, it holds that

v ∈
⊗

α∈P1(TD)

Umin
α (v) ⊂

⊗

α∈P2(TD)

Umin
α (v) ⊂ · · · ⊂

⊗

α∈Pdepth(TD)(TD)

Umin
α (v) .

Example 3.7 (Tucker format) In Figure 3.1, D = {1, 2, 3, 4, 5, 6} and

TD = {D, {1}, {2}, {3}, {4}, {5}, {6}}.

Here depth(TD) = 1 and P1(TD) = L(TD). This tree is related to the basic identification of VD with⊗6
j=1 Vj .

{1, 2, 3, 4, 5, 6}

{6}{5}{4}{3}{2}{1}

Figure 3.1: a dimension partition tree with depth(TD) = 1 (Tucker tree).

Example 3.8 In Figure 3.2, D = {1, 2, 3, 4, 5, 6} and

TD = {D, {1, 2, 3}, {4, 5}, {2, 3}, {1}, {2}, {3}, {4}, {5}, {6}}.

Here depth(TD) = 3, P1(TD) = {{1, 2, 3}, {4, 5}, {6}}, P2(TD) = {{1}, {2, 3}, {4}, {5}, {6}} and P3(TD) =

L(TD). This tree is related to the identification of VD with
⊗6

j=1 Vj , VD = V1 ⊗V23 ⊗ V4 ⊗ V5 ⊗ V6 and
VD = V123 ⊗V45 ⊗ V6.

LetN0 := N∪{0} denote the set of non-negative integers. For each v ∈ VD, we have that (dimUmin
α (v))α∈2D\{∅}

is in N2#D−1
0 .

Definition 3.9 (Tree-based rank) For a given dimension partition tree TD over D, we define the tree-

based rank of a tensor v ∈ VD by the tuple rankTD
(v) := (dimUmin

α (v))α∈TD
∈ N

#TD

0 .

5



{1, 2, 3, 4, 5, 6}

{6}{4, 5}

{5}{4}

{1, 2, 3}

{2, 3}

{3}{2}

{1}

Figure 3.2: A dimension partition tree with depth(TD) = 3.

Definition 3.10 (Admissible ranks) A tuple r := (rα)α∈TD
∈ N#TD is said to be an admissible tuple for

TD if there exists v ∈ VD such that dimUmin
α (v) = rα for all α ∈ TD. The set of admissible ranks for the

representation (VD, TD) of the tensor space VD is denoted by

AD(VD, TD) := {(dimUmin
α (v))α∈TD

: v ∈ VD}.

Definition 3.11 Let TD be a given dimension partition tree and fix some tuple r ∈ AD(VD, TD). Then the
set of tensors of fixed tree-based rank r is defined by

FT r(VD, TD) :=
{
v ∈ VD : dimUmin

α (v) = rα for all α ∈ TD

}
(3.1)

and the set of tensors of tree-based rank bounded by r is defined by

FT ≤r(VD, TD) :=
{
v ∈ VD : dimUmin

α (v) ≤ rα for all α ∈ TD

}
. (3.2)

For r, s ∈ N
#TD

0 we write s ≤ r if and only if sα ≤ rα for all α ∈ TD. Then for a fixed r ∈ AD(VD, TD),
we have

FT ≤r(VD, TD) :=
⋃

s≤r
s∈AD(VD ,TD)

FT s(VD, TD). (3.3)

For each partition Pk(TD) of D, 1 ≤ k ≤ depth(TD), we can introduce a set of tensors in Tucker format with
fixed rank rk := (rα)α∈Pk(TD) given by

Mrk
(VD,Pk(TD)) = {v ∈ VD : dimUmin

α (v) = rα for α ∈ Pk(TD)}.

Theorem 3.12 For a dimension partition tree TD and for r = (rα)α∈TD
∈ AD(VD, TD),

FT r(VD, TD) =

depth(TD)⋂

k=1

Mrk
(VD,Pk(TD)).

Remark 3.13 We point out that in [9] we introduce a representation of VD in Tucker format. Letting
TTucker

D be the Tucker dimension partition tree (see example 3.7) and given r ∈ AD(VD, TTucker

D ), the set of
tensors with fixed Tucker rank r is defined by

Mr(VD) := FT r(VD, TTucker

D ) =
{
v ∈ VD : dimUmin

k (v) = rk, k ∈ L(TTucker

D )
}
.

This leads to the following representation of VD in Tucker format:

VD =
⋃

r∈AD(VD ,TTucker

D
)

Mr(VD).

Note that for any tree TD with depth(TD) = 1,

Mrdepth(TD)
(VD,Pdepth(TD)(TD)) = Mrdepth(TD)

(VD).

6



Finally, we need to take into account the following situation. Let TD be the rooted tree given in Figure 3.3.
For this rooted tree we have depth(TD) = 2 and also

P1(TD) = {{1}, {2, 3, 4, 5, 6}},

P2(TD) = {{1}, {2}, {3}, {4}, {5}, {6}}.

From Lemma 2.4 in [6] it can be shown that dimUmin
{1} (v) = dimUmin

{2,3,4,5,6}(v) holds for all v ∈ VD. Hence

FT r(VD, TD) = Mr1(VD,P1(TD)) ∩Mr2(VD,P2(TD)) = Mr2(VD,P2(TD))

holds because

Mr1(VD,P1(TD)) = {v ∈ VD : dimUmin
{1} (v) = r{1} = dimUmin

{2,3,4,5,6}(v)}

contains

Mr2(VD,P2(TD)) = {v ∈ VD : dimUmin
{i} (v) = r{i}, 1 ≤ i ≤ 6}.

Thus in order to avoid this situation we introduce the following definition.

{1, 2, 3, 4, 5, 6}

{2, 3, 4, 5, 6}

{6}{5}{4}{3}{2}

{1}

Figure 3.3: A dimension partition tree with depth(TD) = 2.

Definition 3.14 For a dimension partition tree TD and for r = (rα)α∈TD
∈ AD(VD, TD), we will say that

FT r(VD, TD) is a proper set of tree-based tensors with a fixed tree-based rank r if

FT r(VD, TD) 6= Mrk
(VD,Pk(TD)) holds for 1 ≤ k ≤ depth(TD).

4 The manifold of tensors in Tucker format with fixed rank

In this section we start by introducing the geometric structure of the set of tensors in Tucker format with
fixed rank in our framework. Next, we give an equivalent result that allows us to provide a manifold structure
to a proper set of tree-based tensors with a fixed tree-based rank.

Assume that PD is a partition of D and (Vα, ‖ · ‖α) is a normed space for each α ∈ PD. We will
consider the product space×α∈PD

Vα equipped with the product topology induced by the maximum norm
‖(vα)α∈PD

)‖× = maxα∈PD
‖vα‖α. Then, from Theorem 3.17 in [9], we have the following result.

Theorem 4.1 Assume that PD is a partition of D, (Vα, ‖ · ‖α) is a normed space for each α ∈ PD and that
‖ · ‖D is a norm on the tensor space VD =

⊗
α∈PD

Vα such that the tensor product map

⊗

α∈PD

:

(

×
α∈PD

Vα, ‖·‖×

)
−→

( ⊗

α∈PD

Vα , ‖·‖D

)
, (4.1)

is continuous. Then there exists a C∞-atlas {U(v), ξ̃v}v∈Mr(VD) for Mr(VD) and hence Mr(VD) is a
C∞-Banach manifold modelled on a Banach space

(

×
α∈PD

L(Uα,Wα)

)
× R×α∈PD

rα .

Here Uα ∈ Grα(Vα) and Vα‖·‖α
= Uα ⊕Wα, where Vα‖·‖α

is the completion of Vα for α ∈ PD.
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To define a manifold structure (see [17]) we did not require that the vector spaces involved as coordinates
are the same or even linearly isomorphic. In our case, we have that Umin

α (v) is linearly isomorphic to Umin
α (w)

for all w ∈ Mr(VD). Thus, we fix one Uα = Umin
α (v) and hence it can be shown that L(Uα,Wα) is linearly

isomorphic to L(Umin
α (w),Wmin

α (w)) for all w ∈ Mr(VD), where Wmin
α (w) is linearly isomorphic to Wα and

satisfies Vα‖·‖α
= Umin

α (w) ⊕Wmin
α (w). Moreover,

⊗
α∈PD

Uα is linearly isomorphic to
⊗

α∈PD
Umin
α (w)

for all w ∈ Mr(VD). In consequence, Mr(VD) has a geometric structure modelled on the Banach space

(

×
α∈PD

L(Uα,Wα)

)
×
⊗

α∈PD

Uα ,

which is linearly isomorphic to (

×
α∈PD

L(Uα,Wα)

)
× R×α∈PD

rα .

The atlas {U(v), ξ̃v}v∈Mr(VD) from Theorem 4.1 is composed by a subset U(v) ⊂ Mr(VD) containing v

and a bijection ξ̃v from U(v) to the open set

(

×
α∈PD

L(Uα,Wα)

)
×Mr

(
⊗

α∈PD

Uα

)
,

which is contained in the Banach space

(

×
α∈PD

L(Uα,Wα)

)
×
⊗

α∈PD

Uα .

From Lemma 3.12 in [9], for w ∈ U(v), we have ξ̃v(w) = ((Lα)α∈PD
,u) if and only if

w = ξ̃−1v ((Lα)α∈PD
,u) =

(
⊗

α∈PD

exp(Lα)

)
(u).

In particular, we have ξ̃v(v) = ((0α)α∈PD
,v), where 0α denotes the zero map in L(Uα,Wα).

We recall that VD
‖·‖D

= VD‖·‖D
denotes the tensor Banach space obtained as the completion of the

algebraic tensor space VD under the norm ‖ · ‖D. In the case where VD is finite dimensional, VD‖·‖D
= VD.

Otherwise, VD ( VD‖·‖D
. Our next step is, given a fixed partition PD of D, to identify the Banach space

×α∈PD
L(Uα,Wα) with a closed subspace of the Banach algebra L(VD‖·‖D

,VD‖·‖D
). To this end, we need

to proceed in the framework of Section 4 in [9]. First, we recall the definition of injective norm (Definition
4.9 in [9]) stated in the present framework.

Definition 4.2 Let Vα be a Banach space with norm ‖·‖α for α ∈ PD. Then for v ∈ V =
⊗

α∈PD
Vα

define ‖·‖∨((Vα)α∈PD
) by

‖v‖∨((Vα)α∈PD
) := sup

{∣∣(⊗
α∈PD

ϕα

)
(v)
∣∣

∏
α∈PD

‖ϕα‖∗α
: 0 6= ϕα ∈ V∗α, α ∈ PD

}
, (4.2)

where V∗α is the continuous dual of Vα.

Let W and U be closed subspaces of a Banach space X such that X = U ⊕ W. From now on, we will
denote by P

U⊕W
the projection onto U along W. Then we have P

W⊕U
= idX − P

U⊕W
. The proof of the next

result uses Proposition 2.8, Lemma 4.13 and Lemma 4.14 in [9].
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Lemma 4.3 Assume that (Vα, ‖ · ‖α) is a normed space for each α ∈ PD and let ‖ · ‖D be a norm on the
tensor space VD =

⊗
α∈PD

Vα such that

‖·‖∨((Vα)α∈PD
) . ‖·‖D , (4.3)

holds. Let Uα ∈ Grα(Vα) and Vα‖·‖α
= Uα⊕Wα, where Vα‖·‖α

is the completion of Vα for α ∈ PD. Then
for each α ∈ PD we have

L (Uα,Wα)⊗ span{id[α]} ∈ G
(
L(VD‖·‖D

,VD‖·‖D
)
)

where id[α] :=
⊗

β∈PD\{α}
idVβ

. Furthermore,

⊕

α∈PD

L (Uα,Wα)⊗ span{id[α]} ∈ G
(
L(VD‖·‖D

,VD‖·‖D
)
)
.

Proof. To prove the lemma, for a fixed α ∈ PD, note that idVα
= P

Uα⊕Wα
+ P

Wα⊕Uα
and write

idVD‖·‖D

= idVα
⊗ id[α].

Since Uα is a finite dimensional space, P
Uα⊕Wα

is a finite rank projection and hence P
Uα⊕Wα

⊗ id[α] ∈
L(VD‖·‖D

,VD‖·‖D
). Then by proceeding as in the proof of Lemma 4.13 in [9] we obtain that

P
Wα⊕Uα

⊗ id[α] ∈ L(VD‖·‖D
,VD‖·‖D

).

Now, define the linear and bounded map

Pα : L(VD‖·‖D
,VD‖·‖D

) −→ L(VD‖·‖D
,VD‖·‖D

)

as Pα(L) = (P
Wα⊕Uα

⊗ id[α]) ◦ L ◦ (P
Uα⊕Wα

⊗ id[α]). It satisfies Pα ◦ Pα = Pα and

Pα(L(VD‖·‖D
,VD‖·‖D

)) = L (Uα,Wα)⊗ span{id[α]}.

Proposition 2.8(b) in [9] implies that L (Uα,Wα) ⊗ span{id[α]} ∈ G
(
L(VD‖·‖D

,VD‖·‖D
)
)
. Observe that

for α, β ∈ PD with α 6= β we have

(L (Uα,Wα)⊗ span{id[α]}) ∩ (L (Uβ ,Wβ)⊗ span{id[β]}) = {0}.

By Lemma 4.14 in [9] we have

⊕

α∈PD

L (Uα,Wα)⊗ span{id[α]} ∈ G
(
L(VD‖·‖D

,VD‖·‖D
)
)
.

This proves the lemma.

Lemma 4.3 allows to introduce the following linear isomorphism:

∆ : ×
α∈PD

L(Uα,Wα) −→
⊕

α∈PD

L (Uα,Wα)⊗ span{id[α]}, (Lα)α∈PD
7→

∑

α∈PD

Lα ⊗ id[α].

where id[α] :=
⊗

β∈PD\{α}
idVβ

for α ∈ PD. The next proposition gives us a useful property of the elements
in the image of the map ∆.

Proposition 4.4 Assume that PD is a partition of D, (Vα, ‖ · ‖α) is a normed space for each α ∈ PD and
‖ · ‖D is a norm on the tensor space VD =

⊗
α∈PD

Vα such that (4.3) holds. Then for each (Lα)α∈PD
∈

×α∈PD
L(Uα,Wα) it holds that

exp(∆ ((Lα)α∈PD
)) =

⊗

α∈PD

exp(Lα).
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Proof. Put L := ∆ ((Lα)α∈PD
) =

∑
α∈PD

Lα ⊗ id[α] and observe that for each α ∈ PD it holds

exp(Lα ⊗ id[α]) =

∞∑

n=0

1

n!
(Lα ⊗ id[α])

n =

(
∞∑

n=0

1

n!
Ln
α

)
⊗ id[α] = exp(Lα)⊗ id[α].

Moreover for α, β ∈ PD and α 6= β we have

(Lα ⊗ id[α]) ◦ (Lβ ⊗ id[β]) = (Lβ ⊗ id[β]) ◦ (Lα ⊗ id[α]) = Lα ⊗ Lβ ⊗




⊗

δ∈PD\{α,β}

idVδ



 .

Finally, by seing PD as an ordered set, and by denoting
⊙n

i=1 Ai := A1 ◦A2 ◦ · · · ◦An is the composition of
maps Ai, 1 ≤ i ≤ n, we have

exp (L) =
⊙

α∈PD

exp(Lα ⊗ id[α]) =
⊙

α∈PD

exp(Lα)⊗ id[α] =
⊗

α∈PD

exp(Lα).

Note that since operators exp(Lα)⊗ id[α] and exp(Lβ)⊗ id[β] commute for any α, β ∈ PD, the above result
is independent of the chosen order on PD. This proves the proposition.

To simplify notation, let

EPD
:=

(
⊕

α∈PD

L (Uα,Wα)⊗ span{id[α]}

)
.

Recall that ξ̃v is a bijection from U(v) to the open set

(

×
α∈PD

L(Uα,Wα)

)
×Mr

(
⊗

α∈PD

Uα

)
.

Hence the map ξv := (∆× id) ◦ ξ̃v, where id : Mr

(⊗
α∈PD

Uα

)
−→ Mr

(⊗
α∈PD

Uα

)
is the identity map,

is a bijection from U(v) to the open set

EPD
×Mr

(
⊗

α∈PD

Uα

)
.

For each w ∈ U(v), we have ξ̃v(w) = ((Lα)α∈PD
,u) for some (Lα)α∈PD

∈
(
×α∈PD

L(Uα,Wα)
)
and

u ∈ Mr

(⊗
α∈PD

Uα

)
. Then, letting L := ∆((Lα)α∈PD

),

w = ξ−1
v

(L,u) = ξ−1
v

(∆((Lα)α∈PD
),u) = ((∆× id) ◦ ξ̃v)

−1(∆((Lα)α∈PD
),u) = ξ̃−1

v
((Lα)α∈PD

,u).

Thus, thanks to Proposition 4.4, we deduce that the equality

w = ξ−1v (∆((Lα)α∈PD
),u) =

(
⊗

α∈PD

exp(Lα)

)
(u) (4.4)

is equivalent to

w = ξ−1
v

(L,u) = exp(L)(u), (4.5)

where L =
∑

α∈PD
Lα⊗id[α] is a Laplacian-like map. In consequence, every tensor in Tucker format is locally

characterised by a full-rank tensor and a Laplacian-like map. To conclude, we can re-state Theorem 4.1 as
follows.
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Theorem 4.5 Assume that PD is a partition of D, (Vα, ‖ · ‖α) is a normed space for each α ∈ PD and let
‖ · ‖D be a norm on the tensor space VD =

⊗
α∈D Vα such that (4.3) holds. Then there exists a C∞-atlas

{U(v), ξv}v∈Mr(VD) for Mr(VD) and hence Mr(VD) is a C∞-Banach manifold modelled on a Banach space

EPD
× R×α∈PD

rα ,

here Uα ∈ Grα(Vα) and Vα‖·‖α
= Uα ⊕Wα, where Vα‖·‖α

is the completion of Vα for α ∈ PD.

Observe that for any partition PD of D, from Lemma 4.3, the Banach space EPD
is a closed linear

subspace of the Banach space L(VD‖·‖D
,VD‖·‖D

).

5 The geometry of tree-based tensor format

For a dimension partition tree TD and for r = (rα)α∈TD
∈ AD(VD, TD), assume that FT r(VD, TD) is a

proper set of tree-based tensors with a fixed tree-based rank r such that

FT r(VD, TD) =

depth(TD)⋂

k=1

Mrk
(VD,Pk(TD)).

Assume that (Vα, ‖ · ‖α) is a normed space for each α ∈ Pk(TD) and that ‖ · ‖D is a norm on the tensor
space VD =

⊗
α∈Pk(TD) Vα such that (4.3) holds for 1 ≤ k ≤ depth(TD).

FromTheorem 4.5 we have that for each 1 ≤ k ≤ depth(TD) the collectionAk = {(U (k)(v), ξ
(k)
v )}v∈Mrk

(VD ,TD)

is a C∞-atlas for Mrk
(VD, TD) and hence Mrk

(VD, TD) is a C∞-Banach manifold modelled on



⊕

α∈Pk(TD)

L (Uα,Wα)⊗ span{id[α]}



× R×α∈Pk(TD) rα ,

where Uα = Umin
α (v) is a rα-dimensional subspace of Vα for each α ∈ Pk(TD) where v ∈

⊗
α∈Pk(TD) Uα

and Wα is a closed subspace of Vα‖·‖α
such that Vα‖·‖α

= Uα ⊕ Wα, where Vα‖·‖α
is the completion of

Vα for α ∈ Pk(TD).

To simplify notation, here we write

Ek :=




⊕

α∈Pk(TD)

L (Uα,Wα)⊗ span{id[α]}




for 1 ≤ k ≤ depth(TD). Next, we characterise the elements in the product set

depth(TD)⋂

k=1

ξ(k)v (U (k)(v)) =




depth(TD)⋂

k=1

Ek


×




depth(TD)⋂

k=1

Mrk




⊗

α∈Pk(TD)

Uα




 .

Let O :=
⋂depth(TD)

k=1 Mrk

(⊗
α∈Pk(TD) Uα

)
and E :=

⋂depth(TD)
k=1 Ek. Then we have the following result.

Lemma 5.1 Let TD be a dimension partition tree with depth(TD) ≥ 2, and r = (rα)α∈TD
∈ AD(VD, TD)

such that FT r(VD, TD) is a proper set of tree-based tensors with a fixed tree-based rank r. Assume that
(Vα, ‖ · ‖α) is a normed space for each α ∈ TD \ {D} and that ‖ · ‖D is a norm on the tensor space
VD =

⊗
α∈Pk(TD) Vα such that (4.3) holds for 1 ≤ k ≤ depth(TD). Then for each v ∈ FT r(VD, TD) we

have that
depth(TD)⋂

k=1

ξ(k)
v

(U (k)(v)) = E×O

is an open set of the Banach space E×
⊗

δ∈P1(TD) Uδ .
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Proof. First we claim thatO is an open set in
⊗

δ∈P1(TD) Uδ . To prove the claim, recall thatMrk

(⊗
α∈Pk(TD) Uα

)

is an open set in the finite dimensional space
⊗

δ∈Pk(TD) Uδ for 1 ≤ k ≤ depth(TD). By using Remark 3.6
we have

depth(TD)⋂

k=1

⊗

α∈Pk(TD)

Uα =

depth(TD)⋂

k=1

⊗

α∈Pk(TD)

Umin
α (v) =

⊗

δ∈P1(TD)

Umin
δ (v) =

⊗

δ∈P1(TD)

Uδ .

Now, put ℓ = depth(TD) and consider

Oℓ,ℓ−1 := Mrℓ




⊗

α∈Pℓ(TD)

Uα


 ∩Mrℓ−1




⊗

α∈Pℓ−1(TD)

Uα




which is equal to

Oℓ,ℓ−1 =



Mrℓ




⊗

α∈Pℓ(TD)

Uα



 ∩
⊗

α∈Pℓ−1(TD)

Uα



 ∩Mrℓ−1




⊗

α∈Pℓ−1(TD)

Uα



 ,

where

Mrℓ




⊗

α∈Pℓ(TD)

Uα



 ∩
⊗

α∈Pℓ−1(TD)

Uα

is an open set in
⊗

α∈Pℓ−1(TD) Uα ⊂
⊗

α∈Pℓ(TD) Uα . Next, let

Oℓ,ℓ−2 = Oℓ,ℓ−1 ∩Mrℓ−2




⊗

α∈Pℓ−2(TD)

Uα




=


Oℓ,ℓ−1 ∩

⊗

α∈Pℓ−2(TD)

Uα


 ∩Mrℓ−2




⊗

α∈Pℓ−2(TD)

Uα


 .

In a similar way as above, Oℓ,ℓ−2 is an open set in
⊗

α∈Pℓ−2(TD) Uα . By induction, we prove that O = Oℓ,1

is an open set in
⊗

δ∈P1(TD) U
min
δ (v) and the claim follows. To conclude, from Lemma 4.3, Ek is a closed

linear space of L(VD‖·‖D
,VD‖·‖D

) for 1 ≤ k ≤ depth(TD). Hence E :=
⋂depth(TD)

k=1 Ek is a linear closed

subspace in the Banach space L(VD‖·‖D
,VD‖·‖D

). Thus, E is also a Banach space. Since E×O is an open

set in the Banach space E×
⊗

δ∈P1(TD) Uδ the lemma follows.

Given L ∈ E, for each 1 ≤ k ≤ depth(T ) there exists a unique

(L(k)
α )α∈Pk(TD) ∈ ×

α∈Pk(TD)

L(Uα,Wα)

such that
L = ∆((L(k)

α )α∈Pk(TD)) =
∑

α∈Pk(TD)

L(k)
α ⊗ id[α]

holds. From (4.5), each (L,u) ∈ E×O satisfies that

(ξ(k)
v

)−1((L,u)) = exp(L)(u) ∈ U (k)(v)

for 1 ≤ k ≤ depth(TD). Hence the image of (L,u) by (ξ
(k)
v )−1 is independent on the index k. Thus (ξ

(k)
v )−1 is a

bijection that maps E×O onto a subsetW(v) ⊂
⋂depth(TD)

l=1 U (l)(v) containing v for each 1 ≤ k ≤ depth(TD).
It allows to we define the bijection

ξv : W(v) −→ E×O

by ξv(w) = ξ
(k)
v (exp(L)(u)) = (L,u).

Then the following result is straightforward.
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Theorem 5.2 Let TD be a dimension partition tree with depth(TD) ≥ 2, and r = (rα)α∈TD
∈ AD(VD, TD)

such that FT r(VD, TD) is a proper set of tree-based tensors with a fixed tree-based rank r. Assume that
(Vα, ‖ · ‖α) is a normed space for each α ∈ TD \ {D} and that ‖ · ‖D is a norm on the tensor space
VD =

⊗
α∈Pk(TD) Vα is such that (4.3) holds for 1 ≤ k ≤ depth(TD). Then the collection

B = {(W(v), ξv)}v∈FT r(VD ,TD)

is a C∞-atlas for FT r(VD, TD), and hence FT r(VD, TD) is a C∞-Banach manifold modelled on

E× R×α∈P1(TD) rα .

Here Uα is a rα-dimensional subspace of Vα for each α ∈ TD \ {D} where v ∈
⊗

α∈Pk(TD)Uα for 1 ≤

k ≤ depth(TD) and Wα is a closed subspace of Vα‖·‖α
such that Vα‖·‖α

= Uα ⊕Wα, where Vα‖·‖α
is the

completion of Vα for α ∈ TD \ {D}.

5.1 FT r(VD, TD) as embedded sub-manifold of Mrk
(VD,Pk(TD)) for 1 ≤ k ≤

depth(TD)

Since FT r(VD, TD) ⊂ Mrk
(VD,Pk(TD)), for 1 ≤ k ≤ depth(TD), the natural ambient space of the man-

ifold FT r(VD, TD) is any manifold Mrk
(VD,Pk(TD)) for 1 ≤ k ≤ depth(TD). In order to prove that

FT r(VD, TD) is an embedded sub-manifold of Mrk
(VD,Pk(TD)) for 1 ≤ k ≤ depth(TD), we consider the

natural inclusion map i : FT r(VD, TD) −→ Mrk
(VD,Pk(TD)) given by i(v) = v. Then, from Theorem 3.5.7

in [17], we only need to check the following two conditions for each 1 ≤ k ≤ depth(TD) :

(C1) The map i should be an immersion. From Proposition 4.1 in [9], it is true when the linear map

Tvi = (ξv ◦ i ◦ ξ−1
v

)′(ξ
v
(v)) : TvFT r(VD, TD) −→ TvMrk

(VD,Pk(TD))

is injective and Tvi(TvFT r(VD, TD)) ∈ G (TvMrk
(VD,Pk(TD)))

(C2) The map
i : FT r(VD, TD) −→ i (FT r(VD, TD))

is a topological homeomorphism.

Since i : FT r(VD, TD) −→ i (FT r(VD, TD)) is the identity map then it is clearly an homeomorphism
and (C2) holds. To prove that (C1) is also true, first we claim that the natural inclusion map i is also
written in local coordinates as the natural inclusion map. Indeed, for v ∈ FT r(VD, TD), the open set

W(v) ⊂
⋂depth(TD)

ℓ=1 U (ℓ)(v) ⊂ FT r(VD, TD) and hence

i : W(v) −→ U (k)(v)

is the identity map on W(v), that is, i|W(v) = idW(v). Thus

(ξ(k)
v

◦ i ◦ ξ−1
v

) : E×O −→ Ek ×Mrk




⊗

α∈Pk(TD)

Uα





is the natural inclusion map and the claim follows. Hence its derivative

Tvi = (ξv ◦ i ◦ ξ−1v )′(ξv(v)) : E×




⊗

α∈P1(TD)

Uα


 −→ Ek ×




⊗

α∈Pk(TD)

Uα




is also the natural inclusion map which is clearly injective.

In consequence, to obtain (C1) we only need to prove that for each v ∈ FT r(VD, TD) the tangent space

TvFT r(VD, TD) = E×
⊗

α∈P1(TD)

Uα
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belongs to

G



Ek ×
⊗

α∈Pk(TD)

Uα



 = G (Ek)×G




⊗

α∈Pk(TD)

Uα



 .

Clearly

⊗

α∈P1(TD)

Uα ∈ G




⊗

α∈Pk(TD)

Uα



 ,

because
⊗

α∈Pk(TD) Uα is a finite dimensional vector space. From Lemma 4.3 we have

Ek ∈ G
(
L(VD‖·‖D

,VD‖·‖D
)
)

for 1 ≤ k ≤ depth(TD). The second statement of Lemma 4.14 in [9] implies

E =

depth(TD)⋂

k=1

Ek ∈ G
(
L(VD‖·‖D

,VD‖·‖D
)
)
.

Thus we have the following theorem.

Theorem 5.3 Let TD be a dimension partition tree over D and r ∈ AD(VD, TD) such that FT r(VD, TD)
is a proper set of tree-based tensors with a fixed tree-based rank r. Assume that (Vα, ‖ · ‖α) is a normed space
for each α ∈ TD \ {D} and let ‖ · ‖D be a norm on the tensor space VD such that (4.3) holds for 1 ≤ k ≤
depth(TD). Then FT r(VD, TD) is an embedded sub-manifold of Mrk

(VD,Pk(TD)) for 1 ≤ k ≤ depth(TD).

Observe that we can also consider the natural inclusion map i from Mrk
(VD,Pk(TD)) to VD‖·‖D

. Under

the assumptions of Theorem 5.3, by using Theorem 4.14 of [9], we have thatMrk
(VD,Pk(TD)) is an immersed

sub-manifold of VD‖·‖D
and, for each v ∈ Mrk

(VD,Pk(TD)), the tangent space

TvMrk
(VD,Pk(TD)) = Ek ×




⊗

α∈Pk(TD)

Uα




is linearly isomorphic to the linear space Tvi (TvMrk
(VD,Pk(TD))) ∈ G(VD‖·‖D

). Moreover,

depth(TD)⋂

k=1

TvMrk
(VD,Pk(TD)) =

depth(TD)⋂

k=1


Ek ×




⊗

α∈Pk(TD)

Uα






=




depth(TD)⋂

k=1

Ek


×




depth(TD)⋂

k=1

⊗

α∈Pk(TD)

Uα




= E×




⊗

α∈P1(TD)

Uα


 = TvFT r(VD, TD).

Then, by using that Tvi is injective, we obtain

Tvi (TvFT r(VD, TD)) = Tvi




depth(TD)⋂

k=1

TvMrk
(VD,Pk(TD))




=

depth(TD)⋂

k=1

Tvi (TvMrk
(VD,Pk(TD))) ∈ G(VD‖·‖D

),

also by Lemma 4.14 in [9], and it is linearly isomorphic to TvFT r(VD, TD). Thus, also FT r(VD, TD) is an
immersed sub-manifold of VD‖·‖D

. Hence we have the following result.
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Corollary 5.4 Let TD be a dimension partition tree over D and r ∈ AD(VD, TD) such that FT r(VD, TD)
is a proper set of tree-based tensors with a fixed tree-based rank r. Assume that (Vα, ‖ · ‖α) is a normed
space for each α ∈ TD \ {D} and let ‖ · ‖D be a norm on the tensor space VD such that (4.3) holds for
1 ≤ k ≤ depth(TD). Then FT r(VD, TD) is an immersed sub-manifold of VD‖·‖D

.

5.2 On the Dirac–Frenkel Variational Principle

To extend Dirac–Frenkel Variational Principle for a proper set of tree-based tensors with a fixed tree-based
rank, we consider the abstract ordinary differential equation in a reflexive tensor Banach space VD‖·‖D

=

VD
‖·‖D

, given by

u̇(t) = F(t,u(t)), for t ≥ 0, (5.1)

u(0) = u0, (5.2)

where we assume u0 6= 0 and F : [0,∞) × VD‖·‖D
−→ VD‖·‖D

satisfying the usual conditions to have

existence and uniqueness of solutions. Let TD be a dimension partition tree over D and r ∈ AD(VD, TD)
such that FT r(VD, TD) is a proper set of tree-based tensors with a fixed tree-based rank r. Assume that
(Vα, ‖ · ‖α) is a normed space for each α ∈ TD \ {D} and let ‖ · ‖D be a norm on the tensor space VD such
that (4.3) holds for 1 ≤ k ≤ depth(TD).

We want to approximate u(t), for t ∈ I := (0, T ) for some T > 0, by a differentiable curve t 7→ vr(t)
from I to FT r(VD, TD), where r ∈ AD(VD, TD) (r 6= 0), such that vr(0) = v0 ∈ FT r(VD, TD) is an
approximation of u0.

To construct a reduced order model of (5.1)–(5.2) over the Banach manifold FT r(VD, TD) we consider
the natural inclusion map

i : FT r(VD, TD) −→ VD‖·‖D
.

Since FT r(VD, TD) is an immersed sub-manifold in VD‖·‖D
, from Theorem 3.5.7 in [17], we have

Tvi (TvFT r(VD, TD)) ∈ G(VD‖·‖D
).

By using that F(t,vr(t)) ∈ VD‖·‖D
, for each t ∈ I, together the fact that

Z(D)(vr(t)) := Tvr(t)i
(
Tvr(t)FT r(VD, TD)

)

is a closed linear subspace in VD‖·‖D
, we have the existence of a v̇r(t) ∈ Z(D)(vr(t)) such that

‖v̇r(t)− F(t,vr(t))‖D = min
v̇∈Z(D)(vr(t))

‖v̇− F(t,vr(t))‖D. (5.3)

Equation (5.3) extends the variational principle of Dirac-Frenkel to the Banach manifold FT r(VD, TD).
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