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Abstract
In the paper ‘On the Dirac–Frenkel Variational Principle on Tensor Banach Spaces’, we
provided a geometrical description of manifolds of tensors in Tucker format with fixed
multilinear (or Tucker) rank in tensor Banach spaces, that allowed to extend the Dirac–
Frenkel variational principle in the framework of topological tensor spaces. The purpose of
this note is to extend these results to more general tensor formats. More precisely, we provide
a new geometrical description of manifolds of tensors in tree-based (or hierarchical) format,
also known as tree tensor networks, which are intersections of manifolds of tensors in Tucker
format associatedwith different partitions of the set of dimensions. The proposed geometrical
description of tensors in tree-based format is compatible with the one of manifolds of tensors
in Tucker format.
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1 Introduction

Tensor methods are prominent tools in a wide range of applications involving high-
dimensional data or functions. The exploitation of low-rank structures of tensors is the basis
of many approximation or dimension reduction methods, see the surveys [2–4, 15, 18, 19]
and monograph [11]. Providing a geometrical description of sets of low-rank tensors has
many interests. In particular, it allows to devise robust algorithms for optimization [1, 24] or
construct reduced order models for dynamical systems [14].

A basic low-rank tensor format is the Tucker format. Given a collection of d vector spaces
Vν , ν ∈ D := {1, . . . , d}, and the corresponding algebraic tensor spaceVD = V1⊗ . . .⊗Vd ,

the set of tensors Mr(VD) of tensors in Tucker format with rank r = (r1, . . . , rd) is the set
of tensors v in VD such that v ∈ U1 ⊗ . . . ⊗ Ud for some subspaces Uν in the Grassmann
manifoldGrν (Vν) of rν-dimensional spaces in Vν .A geometrical description ofMr(VD) has
been introduced in [8], providing this set the structure of a C∞-Banach manifold. Tree-based
tensor formats [7], also known as tree tensor networks in physics or data science [9, 17, 20,
22], are more general low-rank tensor formats, also based on subspaces. They include the
hierarchical format [12] or the tensor-train format [21]. Sets of tensors in tree-based tensor
format are the intersection of a collection of sets of tensors in Tucker format associated
with a hierarchy of partitions given by a tree. More precisely, given a tree TD over D (see
Definition 3.2 below for a more precise description), we can define a sequence of partitions
P1, . . . ,PL of D, with L the depth of the tree, such that each element in Pk is a subset of
an element of Pk−1 (see example in Fig. 1). For each partition Pk , a tensor in VD can be
identified with a tensor in VPk :=⊗α∈Pk

Vα , that allows to define manifolds of tensors in

Tucker formatMrk (VPk )with rk ∈ N
#Pk . The setFTr(VD) of tensors inVD with tree-based

rank r = (rα)α∈TD ∈ N
#TD is then given by

FTr(VD) =
L⋂

k=1

Mrk (VPk )

where rk = (rα)α∈Pk .
In this paper, we provide a new geometrical description of the sets FTr(VD) of tensors

with fixed tree-based rank in tensor Banach spaces. This description is compatible with the
one of manifolds Mrk (VPk ) introduced in [8]. It is different from the ones from [23] and
[13], respectively introduced for hierarchical and tensor train formats in finite-dimensional
tensor spaces. It is also different from the one introduced by the authors in [6], that provided
a different chart system. The present geometrical description is more natural and we believe
that it is more amenable to understand the geometry and topology of the different tensor
formats based on subspaces. With the present description, and under similar assumptions on
the norms of tensor spaces, Theorem 5.2 and Theorem 5.4 in [8] also hold for tree-based
tensor formats, that allows to extend the Dirac–Frenkel variational principle for tree-based
tensor formats in tensor Banach spaces.

Theoutline of this note is as follows.We start inSect. 2 by recalling results from [8]. Then in
Sect. 3 we introduce a description of tree-based tensor formatsFTr(VD) as an intersection of
Tucker formats. Section4 is devoted to the geometrical description of manifoldsMr(VD) of
tensors in Tucker format with fixed rank. Finally in Sect. 5, we introduce the new geometrical
description of the manifold FTr(VD) of tensors in tree-based tensor format with fixed tree-
based. We prove that it is an immersed manifold in the ambient tensor Banach space and
outline the extension of the Dirac–Frenkel variational principle for tree-based tensor formats
in tensor Banach spaces.
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Geometry of tree-based tensor formats in tensor Banach spaces 2129

Fig. 1 A tree over
D = {1, 2, 3, 4}, with depth
L = 3, and the associated
partitions of D:
P3 = {{1}, {2}, {3}, {4}},
P2 = {{1}, {2, 3}, {4}},
P1 = {{1, 2, 3}, {4}}

{1, 2, 3, 4}

{4}{1, 2, 3}

{2, 3}

{3}{2}

{1}

2 Preliminary results

Let D := {1, . . . , d} be a finite index set and consider an algebraic tensor space VD =⊗
α∈D Vα generated fromvector spaces Vα ,α ∈ D. Concerning the definition of the algebraic

tensor space we refer to Greub [10]. For any partitionPD of D, the algebraic tensor spaceVD

can be identified with an algebraic tensor space generated from vector spaces Vα , α ∈ PD .
Indeed, for any partition PD of D, the equality

VD =
⊗

α∈PD

Vα

holds, with Vα := ⊗ j∈α Vj if α �= { j}, for some j ∈ D, or Vα = Vj if α = { j} for some
j ∈ D. Next we identify D with the trivial partition {{1}, {2}, . . . , {d}}.
Remark 2.1 In [8], we considered the tensor space VD =⊗α∈D Vα for a given D. It is not
difficult to check that the results from [8] remain true when substituting D by any partition
PD , that includes the initial case by identifying D with the trivial partition {{1}, {2}, . . . , {d}}.
More precisely, we can substitute withminor changes along the paper “α ∈ D” by “α ∈ PD”.

Before restating Theorem 3.17 of [8] in the present framework, we recall some definitions
from [8].

Let X and Y be Banach spaces. We denote by L(X , Y ) the space of continuous linear
mappings from X into Y . The corresponding operator norm is written as ‖·‖Y←X . It is well
known that if Y is a Banach space then (L(X , Y ), ‖ · ‖Y←X ) is also a Banach space.

Let X be aBanach space.We denote byG(X) theGrassmannmanifold of closed subspaces
in X (see Section 2 in [8]). More precisely, we say that U ∈ G(X) holds if and only if U is a
closed subspace in X and there exists a closed subspace W in X such that X = U ⊕W . Every
finite-dimensional subspace of X belongs to G(X), and we denote by Gn(X) the space of
all n-dimensional subspaces of X (n ≥ 0). From Proposition 2.11 in [8], the Banach space
L(U , W ) can be identified with an element of G(L(X , X)). Hence it is a closed subspace of
L(X , X).

Assume that PD is a partition of D and (Vα, ‖ · ‖α) is a normed space for each α ∈ PD .

Following [5], it is possible to construct for each α ∈ PD a map

Umin
α : VD −→ G(Vα), v �→ Umin

α (v)

which satisfies the following properties:

i) dimUmin
α (v) < ∞, for all v ∈ VD .
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2130 A. Falcó et al.

ii) v ∈ ⊗α∈PD
Umin

α (v) and if there exist subspaces Uα ⊂ Vα for each α ∈ PD such that
v ∈ ⊗α∈PD

Uα , then Umin
α (v) ⊂ Uα for each α ∈ PD .

The linear subspace Umin
α (v) is called a minimal subspace of v inVD . In consequence, given

a fixed partition PD of D, we can define for each v ∈ VD its α-rank as dimUmin
α (v) for

α ∈ PD . The PD-rank for each v ∈ VD is given by the tuple (dimUmin
α (v))α∈PD ∈ N

#PD .

Given r = (rα)α∈PD ∈ N
#PD , we define the set of tensors in VD represented in Tucker

format with a fixed rank r as

Mr(VD) = {v ∈ VD : dimUmin
α (v) = rα for each α ∈ PD

}
.

A tensor v ∈ Mr(VD) if and only if for each α ∈ PD there exists a unique subspace
Umin

α (v) ∈ Grα (Vα) such that v ∈ ⊗α∈PD
Umin

α (v) . Observe, that

Mr

⎛

⎝
⊗

α∈PD

Umin
α (v)

⎞

⎠ =
⎧
⎨

⎩
v ∈
⊗

α∈PD

Umin
α (v) : dimUmin

α (v) = rα for each α ∈ PD

⎫
⎬

⎭

is the set of full rank tensors in the finite dimensional space
⊗

α∈PD
Umin

α (v). Assume that
‖ · ‖D is a norm on the tensor space VD and hence (VD, ‖ · ‖D) is a normed space. Clearly,⊗

α∈PD
Umin

α (v) is also a normed space and it can be shown thatMr

(⊗
α∈PD

Umin
α (v)
)
is

an open set in
⊗

α∈PD
Umin

α (v) , and hence a manifold.
Recall that for each fixed α ∈ PD, the finite dimensional vector space Umin

α (v) is linearly
isomorphic to the vector space

R
dimUα(v) = R

rα

for all v ∈ Mr(VD). Hence the finite dimensional vector space
⊗

α∈PD
Umin

α (v) is linearly

isomorphic to the vector space R
×α∈PD rα . This fact allows to identify the open set of full

rank tensors in R
×α∈PD rα , denoted by R

×α∈PD rα

∗ , with Mr

(⊗
α∈PD

Umin
α (v)
)
.

3 The set of tensors in tree-based format with fixed tree-based rank

To introduce the set of tensors in tree-based format with fixed tree-based rank we shall use
the minimal subspaces, in particular, Proposition 2.6 in [8] (see also [5] or [11]). Let PD be
a given partition of D. By definition of the minimal subspaces Umin

α (v), α ∈ PD , we have

v ∈
⊗

α∈PD

Umin
α (v) .

For a given α ∈ PD with #α ≥ 2 and any partition Pα of α, we also have

v ∈
⎛

⎝
⊗

β∈Pα

Umin
β (v)

⎞

⎠⊗
⎛

⎝
⊗

δ∈PD\{α}
Umin

δ (v)

⎞

⎠ .

Given D we will denote its power set (the set of all subsets of D) by 2D . We recall a useful
result on the relation between minimal subspaces (see Section 2 in [5]).

Proposition 3.1 For any α ∈ 2D with #α ≥ 2 and any partition Pα of α, it holds

Umin
α (v) ⊂

⊗

β∈Pα

Umin
β (v) .
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Geometry of tree-based tensor formats in tensor Banach spaces 2131

In order to define tree-based tensor format we introduce three definitions.

Definition 3.2 (Dimension partition tree) A tree TD is called a dimension partition tree over
D if

(a) all vertices α ∈ TD are non-empty subsets of D,

(b) D is the root of TD,

(c) every vertex α ∈ TD with #α ≥ 2 has at least two sons and the set of sons of α, denoted
S(α), is a non-trivial partition of α,

(d) every vertex α ∈ TD with #α = 1 has no son and is called a leaf.

The set of leaves is denoted by L(TD).

A straightforward consequence of Definition 3.2 is that the set of leaves L(TD) coincides
with the singletons of D, i.e., L(TD) = {{ j} : j ∈ D}.
Definition 3.3 (Levels, depth and partitions) The levels of the vertices of a dimension partition
tree TD , denoted by level(α), α ∈ TD , are integers defined such that level(D) = 0 and for
any pair α, β ∈ TD such that β ∈ S(α), level(β) = level(α) + 1. The depth of the tree TD is
defined as depth(TD) = maxα∈TD level(α). Then to each level k of TD , 1 ≤ k ≤ depth(TD),
is associated a partition of D :

Pk(TD) = {α ∈ TD : level(α) = k} ∪ {α ∈ L(TD) : level(α) < k}.
Remark 3.4 Note that for any tree, P1(TD) = S(D) and Pdepth(TD)(TD) = L(TD). Also note
that some of the leaves of TD may be contained in several partitions, and if α ∈ L(TD), then
α ∈ Pk(TD) for level(α) ≤ k ≤ depth(TD).

For any partition Pk(TD) of level k, 1 ≤ k ≤ depth(TD), we use the identification

VD =
⊗

α∈Pk (TD)

Vα .

This leads us to the following definition of the representation of the tensor space VD in
tree-based format.

Definition 3.5 For a tensor space VD and a dimension partition tree TD , the pair (VD, TD)

is called a representation of the tensor space VD in tree-based format, and corresponds to
the identification of VD with tensor spaces

⊗
α∈Pk (TD) Vα of different levels k, 1 ≤ k ≤

depth(TD).

Remark 3.6 By Proposition 3.1, for each v ∈ VD, it holds that

v ∈
⊗

α∈P1(TD)

Umin
α (v) ⊂

⊗

α∈P2(TD)

Umin
α (v) ⊂ · · · ⊂

⊗

α∈Pdepth(TD )(TD)

Umin
α (v) .

Example 3.7 (Tucker format) In Fig. 2, D = {1, 2, 3, 4, 5, 6} and
TD = {D, {1}, {2}, {3}, {4}, {5}, {6}}.

Here depth(TD) = 1 and P1(TD) = L(TD). This tree is related to the basic identification of
VD with

⊗6
j=1 Vj .
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2132 A. Falcó et al.

Fig. 2 A dimension partition tree
with depth(TD) = 1 (Tucker tree)

{1, 2, 3, 4, 5, 6}

{6}{5}{4}{3}{2}{1}

Fig. 3 A dimension partition tree
with depth(TD) = 3

{1, 2, 3, 4, 5, 6}

{6}{4, 5}

{5}{4}

{1, 2, 3}

{2, 3}

{3}{2}

{1}

Example 3.8 In Fig. 3, D = {1, 2, 3, 4, 5, 6} and
TD = {D, {1, 2, 3}, {4, 5}, {2, 3}, {1}, {2}, {3}, {4}, {5}, {6}}.

Here depth(TD) = 3, P1(TD) = {{1, 2, 3}, {4, 5}, {6}}, P2(TD) = {{1}, {2, 3}, {4}, {5}, {6}}
and P3(TD) = L(TD). This tree is related to the identification of VD with

⊗6
j=1 Vj ,

VD = V1 ⊗ V23 ⊗ V4 ⊗ V5 ⊗ V6 and VD = V123 ⊗ V45 ⊗ V6.

Let N0 := N∪{0} denote the set of non-negative integers. For each v ∈ VD , we have that

(dimUmin
α (v))α∈2D\{∅} is in N

2#D−1
0 .

Definition 3.9 (Tree-based rank) For a given dimension partition tree TD over D, we define
the tree-based rank of a tensor v ∈ VD by the tuple rankTD (v) := (dimUmin

α (v))α∈TD ∈
N
#TD
0 .

Definition 3.10 (Admissible ranks)A tuple r := (rα)α∈TD ∈ N
#TD is said to be an admissible

tuple for TD if there exists v ∈ VD such that dimUmin
α (v) = rα for all α ∈ TD . The set of

admissible ranks for the representation (VD, TD) of the tensor space VD is denoted by

AD(VD, TD) := {(dimUmin
α (v))α∈TD : v ∈ VD}.

Definition 3.11 Let TD be a given dimension partition tree and fix some tuple r ∈
AD(VD, TD). Then the set of tensors of fixed tree-based rank r is defined by

FTr(VD, TD) := {v ∈ VD : dimUmin
α (v) = rα for all α ∈ TD

}
(3.1)

and the set of tensors of tree-based rank bounded by r is defined by

FT≤r(VD, TD) := {v ∈ VD : dimUmin
α (v) ≤ rα for all α ∈ TD

}
. (3.2)

For r, s ∈ N
#TD
0 we write s ≤ r if and only if sα ≤ rα for all α ∈ TD . Then for a fixed

r ∈ AD(VD, TD), we have

FT≤r(VD, TD) :=
⋃

s≤r
s∈AD(VD ,TD)

FTs(VD, TD). (3.3)
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Geometry of tree-based tensor formats in tensor Banach spaces 2133

Fig. 4 A dimension partition tree
with depth(TD) = 2

{1, 2, 3, 4, 5, 6}

{2, 3, 4, 5, 6}

{6}{5}{4}{3}{2}

{1}

For each partition Pk(TD) of D, 1 ≤ k ≤ depth(TD), we can introduce a set of tensors in
Tucker format with fixed rank rk := (rα)α∈Pk (TD) given by

Mrk (VD,Pk(TD)) = {v ∈ VD : dimUmin
α (v) = rα for α ∈ Pk(TD)}.

Theorem 3.12 For a dimension partition tree TD and for r = (rα)α∈TD ∈ AD(VD, TD),

FTr(VD, TD) =
depth(TD)⋂

k=1

Mrk (VD,Pk(TD)).

Remark 3.13 We point out that in [8] we introduce a representation of VD in Tucker format.
Letting T Tucker

D be the Tucker dimension partition tree (see example 3.7) and given r ∈
AD(VD, T Tucker

D ), the set of tensors with fixed Tucker rank r is defined by

Mr(VD) := FTr(VD, T Tucker
D ) = {v ∈ VD : dimUmin

k (v) = rk, k ∈ L(T Tucker
D )
}
.

This leads to the following representation of VD in Tucker format:

VD =
⋃

r∈AD(VD ,T Tucker
D )

Mr(VD).

Note that for any tree TD with depth(TD) = 1,

Mrdepth(TD )
(VD,Pdepth(TD)(TD)) = Mrdepth(TD )

(VD).

Finally, we need to take into account the following situation. Let TD be the rooted tree
given in Fig. 4. For this rooted tree we have depth(TD) = 2 and also

P1(TD) = {{1}, {2, 3, 4, 5, 6}},
P2(TD) = {{1}, {2}, {3}, {4}, {5}, {6}}.

From Lemma 2.4 in [5] it can be shown that dimUmin{1} (v) = dimUmin{2,3,4,5,6}(v) holds for all
v ∈ VD . Hence

FTr(VD, TD) = Mr1(VD,P1(TD)) ∩ Mr2(VD,P2(TD)) = Mr2(VD,P2(TD))

holds because

Mr1(VD,P1(TD)) = {v ∈ VD : dimUmin{1} (v) = r{1} = dimUmin{2,3,4,5,6}(v)}
contains

Mr2(VD,P2(TD)) = {v ∈ VD : dimUmin{i} (v) = r{i}, 1 ≤ i ≤ 6}.
Thus in order to avoid this situation we introduce the following definition.
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2134 A. Falcó et al.

Definition 3.14 For a dimension partition tree TD and for r = (rα)α∈TD ∈ AD(VD, TD), we
will say that FTr(VD, TD) is a proper set of tree-based tensors with a fixed tree-based rank
r if

FTr(VD, TD) �= Mrk (VD,Pk(TD)) holds for 1 ≤ k ≤ depth(TD).

4 Themanifold of tensors in Tucker format with fixed rank

In this section we start by introducing the geometric structure of the set of tensors in Tucker
format with fixed rank in our framework. Next, we give an equivalent result that allows us
to provide a manifold structure to a proper set of tree-based tensors with a fixed tree-based
rank.

Assume that PD is a partition of D and (Vα, ‖ · ‖α) is a normed space for each α ∈ PD .

We will consider the product space×α∈PD Vα equipped with the product topology induced
by the maximum norm ‖(vα)α∈PD )‖× = maxα∈PD ‖vα‖α. Then, from Theorem 3.17 in [8],
we have the following result.

Theorem 4.1 Assume that PD is a partition of D, (Vα, ‖ · ‖α) is a normed space for each
α ∈ PD and that ‖ · ‖D is a norm on the tensor space VD = ⊗α∈PD

Vα such that the tensor
product map

⊗

α∈PD

:
(×

α∈PD

Vα, ‖·‖×

)

−→
( ⊗

α∈PD

Vα , ‖·‖D

)

, (4.1)

is continuous. Then there exists a C∞-atlas {U(v), ξ̃v}v∈Mr(VD) for Mr(VD) and hence
Mr(VD) is a C∞-Banach manifold modelled on a Banach space

(×
α∈PD

L(Uα,Wα)

)

× R
×α∈PD rα .

Here Uα ∈ Grα (Vα) and Vα‖·‖α = Uα ⊕ Wα, where Vα‖·‖α is the completion of Vα for
α ∈ PD .

To define a manifold structure (see [16]) we did not require that the vector spaces involved
as coordinates are the same or even linearly isomorphic. In our case, we have that Umin

α (v)
is linearly isomorphic to Umin

α (w) for all w ∈ Mr(VD). Thus, we fix one Uα = Umin
α (v)

and hence it can be shown that L(Uα,Wα) is linearly isomorphic to L(Umin
α (w), Wmin

α (w))

for all w ∈ Mr(VD), where Wmin
α (w) is linearly isomorphic to Wα and satisfies Vα‖·‖α =

Umin
α (w) ⊕ Wmin

α (w). Moreover,
⊗

α∈PD
Uα is linearly isomorphic to

⊗
α∈PD

Umin
α (w)

for all w ∈ Mr(VD). In consequence, Mr(VD) has a geometric structure modelled on the
Banach space

(×
α∈PD

L(Uα,Wα)

)

×
⊗

α∈PD

Uα ,

which is linearly isomorphic to
(×

α∈PD

L(Uα,Wα)

)

× R
×α∈PD rα .
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Geometry of tree-based tensor formats in tensor Banach spaces 2135

The atlas {U(v), ξ̃v}v∈Mr(VD) from Theorem 4.1 is composed by a subsetU(v) ⊂ Mr(VD)

containing v and a bijection ξ̃v from U(v) to the open set
(×

α∈PD

L(Uα,Wα)

)

× Mr

⎛

⎝
⊗

α∈PD

Uα

⎞

⎠ ,

which is contained in the Banach space
(×

α∈PD

L(Uα,Wα)

)

×
⊗

α∈PD

Uα .

From Lemma 3.12 in [8], for w ∈ U(v), we have ξ̃v(w) = ((Lα)α∈PD ,u) if and only if

w = ξ̃−1
v ((Lα)α∈PD ,u) =

⎛

⎝
⊗

α∈PD

exp(Lα)

⎞

⎠ (u).

In particular, we have ξ̃v(v) = ((0α)α∈PD , v),where 0α denotes the zero map inL(Uα,Wα).

We recall that VD
‖·‖D = VD‖·‖D

denotes the tensor Banach space obtained as the com-
pletion of the algebraic tensor space VD under the norm ‖ · ‖D . In the case where VD is
finite dimensional, VD‖·‖D

= VD . Otherwise, VD � VD‖·‖D
. Our next step is, given a fixed

partition PD of D, to identify the Banach space
Ś

α∈PD
L(Uα,Wα) with a closed subspace

of the Banach algebra L(VD‖·‖D
,VD‖·‖D

). To this end, we need to proceed in the framework
of Section 4 in [8]. First, we recall the definition of injective norm (Definition 4.9 in [8])
stated in the present framework.

Definition 4.2 Let Vα be a Banach space with norm ‖·‖α for α ∈ PD . Then for v ∈ V =⊗
α∈PD

Vα define ‖·‖∨((Vα)α∈PD ) by

‖v‖∨((Vα)α∈PD ) := sup

{∣
∣
(⊗

α∈PD
ϕα

)
(v)
∣
∣

∏
α∈PD

‖ϕα‖∗
α

: 0 �= ϕα ∈ V∗
α, α ∈ PD

}

, (4.2)

where V∗
α is the continuous dual of Vα .

LetW andU be closed subspaces of aBanach space X such that X = U⊕W .Fromnowon,
we will denote by PU⊕W the projection ontoU along W . Then we have PW⊕U = idX − PU⊕W .

The proof of the next result uses Proposition 2.8, Lemma 4.13 and Lemma 4.14 in [8].

Lemma 4.3 Assume that (Vα, ‖ · ‖α) is a normed space for each α ∈ PD and let ‖ · ‖D be a
norm on the tensor space VD = ⊗α∈PD

Vα such that

‖·‖∨((Vα)α∈PD ) � ‖·‖D , (4.3)

holds. Let Uα ∈ Grα (Vα) and Vα‖·‖α = Uα ⊕ Wα, where Vα‖·‖α is the completion of Vα for
α ∈ PD . Then for each α ∈ PD we have

L (Uα,Wα) ⊗ span{id[α]} ∈ G

(
L(VD‖·‖D

,VD‖·‖D
)
)

where id[α] :=⊗β∈PD\{α} idVβ . Furthermore,

⊕

α∈PD

L (Uα,Wα) ⊗ span{id[α]} ∈ G

(
L(VD‖·‖D

,VD‖·‖D
)
)

.
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Proof To prove the lemma, for a fixed α ∈ PD, note that idVα = PUα⊕Wα
+ PWα⊕Uα

and
write

idVD‖·‖D
= idVα ⊗ id[α].

SinceUα is a finite dimensional space, PUα⊕Wα
is a finite rank projection and hence PUα⊕Wα

⊗
id[α] ∈ L(VD‖·‖D

,VD‖·‖D
). Then by proceeding as in the proof of Lemma 4.13 in [8] we

obtain that

PWα⊕Uα
⊗ id[α] ∈ L(VD‖·‖D

,VD‖·‖D
).

Now, define the linear and bounded map

Pα : L(VD‖·‖D
,VD‖·‖D

) −→ L(VD‖·‖D
,VD‖·‖D

)

as Pα(L) = (PWα⊕Uα
⊗ id[α]) ◦ L ◦ (PUα⊕Wα

⊗ id[α]). It satisfies Pα ◦ Pα = Pα and

Pα(L(VD‖·‖D
,VD‖·‖D

)) = L (Uα,Wα) ⊗ span{id[α]}.

Proposition 2.8(b) in [8] implies that L (Uα,Wα) ⊗ span{id[α]} ∈ G

(
L(VD‖·‖D

,VD‖·‖D
)
)

.

Observe that for α, β ∈ PD with α �= β we have

(L (Uα,Wα) ⊗ span{id[α]}) ∩ (L
(
Uβ,Wβ

)⊗ span{id[β]}) = {0}.
By Lemma 4.14 in [8] we have

⊕

α∈PD

L (Uα,Wα) ⊗ span{id[α]} ∈ G

(
L(VD‖·‖D

,VD‖·‖D
)
)

.

This proves the lemma. ��
Lemma 4.3 allows to introduce the following linear isomorphism:

� : ×
α∈PD

L(Uα,Wα) −→
⊕

α∈PD

L (Uα,Wα) ⊗ span{id[α]}, (Lα)α∈PD �→
∑

α∈PD

Lα ⊗ id[α].

where id[α] :=⊗β∈PD\{α} idVβ for α ∈ PD . The next proposition gives us a useful property
of the elements in the image of the map �.

Proposition 4.4 Assume that PD is a partition of D, (Vα, ‖ · ‖α) is a normed space for each
α ∈ PD and ‖ · ‖D is a norm on the tensor space VD = ⊗α∈PD

Vα such that (4.3) holds.
Then for each (Lα)α∈PD ∈ ×α∈PD L(Uα,Wα) it holds that

exp(�
(
(Lα)α∈PD )

) =
⊗

α∈PD

exp(Lα).

Proof Put L := �
(
(Lα)α∈PD

) = ∑α∈PD
Lα ⊗ id[α] and observe that for each α ∈ PD it

holds

exp(Lα ⊗ id[α]) =
∞∑

n=0

1

n! (Lα ⊗ id[α])n =
( ∞∑

n=0

1

n! Ln
α

)

⊗ id[α] = exp(Lα) ⊗ id[α].

Moreover for α, β ∈ PD and α �= β we have

(Lα ⊗ id[α]) ◦ (Lβ ⊗ id[β]) = (Lβ ⊗ id[β]) ◦ (Lα ⊗ id[α]) = Lα ⊗ Lβ ⊗
⎛

⎝
⊗

δ∈PD\{α,β}
idVδ

⎞

⎠ .
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Finally, by seing PD as an ordered set, and by denoting
⊙n

i=1 Ai := A1 ◦ A2 ◦ · · · ◦ An is
the composition of maps Ai , 1 ≤ i ≤ n, we have

exp (L) =
⊙

α∈PD

exp(Lα ⊗ id[α]) =
⊙

α∈PD

exp(Lα) ⊗ id[α] =
⊗

α∈PD

exp(Lα).

Note that since operators exp(Lα) ⊗ id[α] and exp(Lβ) ⊗ id[β] commute for any α, β ∈ PD ,
the above result is independent of the chosen order on PD . This proves the proposition. ��

To simplify notation, let

EPD :=
⎛

⎝
⊕

α∈PD

L (Uα,Wα) ⊗ span{id[α]}
⎞

⎠ .

Recall that ξ̃v is a bijection from U(v) to the open set
(×

α∈PD

L(Uα,Wα)

)

× Mr

⎛

⎝
⊗

α∈PD

Uα

⎞

⎠ .

Hence the map ξv := (� × id) ◦ ξ̃v, where id : Mr

(⊗
α∈PD

Uα

) −→ Mr

(⊗
α∈PD

Uα

)

is the identity map, is a bijection from U(v) to the open set

EPD × Mr

⎛

⎝
⊗

α∈PD

Uα

⎞

⎠ .

For each w ∈ U(v), we have ξ̃v(w) = ((Lα)α∈PD ,u) for some (Lα)α∈PD ∈(×α∈PD L(Uα,Wα)
)
and u ∈ Mr

(⊗
α∈PD

Uα

)
. Then, letting L := �((Lα)α∈PD ),

w = ξ−1
v (L,u) = ξ−1

v (�((Lα)α∈PD ),u)

= ((� × id) ◦ ξ̃v)
−1(�((Lα)α∈PD ),u) = ξ̃−1

v ((Lα)α∈PD ,u).

Thus, thanks to Proposition 4.4, we deduce that the equality

w = ξ−1
v (�((Lα)α∈PD ),u) =

⎛

⎝
⊗

α∈PD

exp(Lα)

⎞

⎠ (u) (4.4)

is equivalent to

w = ξ−1
v (L,u) = exp(L)(u), (4.5)

where L = ∑α∈PD
Lα ⊗ id[α] is a Laplacian-like map. In consequence, every tensor in

Tucker format is locally characterised by a full-rank tensor and a Laplacian-like map. To
conclude, we can re-state Theorem 4.1 as follows.

Theorem 4.5 Assume that PD is a partition of D, (Vα, ‖ · ‖α) is a normed space for each
α ∈ PD and let ‖ · ‖D be a norm on the tensor space VD = ⊗α∈D Vα such that (4.3)
holds. Then there exists a C∞-atlas {U(v), ξv}v∈Mr(VD) for Mr(VD) and hence Mr(VD) is
a C∞-Banach manifold modelled on a Banach space

EPD × R
×α∈PD rα ,

here Uα ∈ Grα (Vα) and Vα‖·‖α = Uα ⊕ Wα, where Vα‖·‖α is the completion of Vα for
α ∈ PD .

123



2138 A. Falcó et al.

Observe that for any partition PD of D, from Lemma 4.3, the Banach space EPD is a
closed linear subspace of the Banach space L(VD‖·‖D

,VD‖·‖D
).

5 The geometry of tree-based tensor format

For a dimension partition tree TD and for r = (rα)α∈TD ∈ AD(VD, TD), assume that
FTr(VD, TD) is a proper set of tree-based tensors with a fixed tree-based rank r such that

FTr(VD, TD) =
depth(TD)⋂

k=1

Mrk (VD,Pk(TD)).

Assume that (Vα, ‖ · ‖α) is a normed space for each α ∈ Pk(TD) and that ‖ · ‖D is a norm
on the tensor space VD = ⊗α∈Pk (TD) Vα such that (4.3) holds for 1 ≤ k ≤ depth(TD).

From Theorem 4.5 we have that for each 1 ≤ k ≤ depth(TD) the collection Ak =
{(U(k)(v), ξ (k)

v )}v∈Mrk (VD ,TD) is a C∞-atlas for Mrk (VD, TD) and hence Mrk (VD, TD) is a
C∞-Banach manifold modelled on

⎛

⎝
⊕

α∈Pk (TD)

L (Uα,Wα) ⊗ span{id[α]}
⎞

⎠× R

Ś

α∈Pk (TD ) rα ,

where Uα = Umin
α (v) is a rα-dimensional subspace of Vα for each α ∈ Pk(TD) where

v ∈ ⊗α∈Pk (TD) Uα and Wα is a closed subspace of Vα‖·‖α such that Vα‖·‖α = Uα ⊕ Wα,

where Vα‖·‖α is the completion of Vα for α ∈ Pk(TD).

To simplify notation, here we write

Ek :=
⎛

⎝
⊕

α∈Pk (TD)

L (Uα,Wα) ⊗ span{id[α]}
⎞

⎠

for 1 ≤ k ≤ depth(TD). Next, we characterise the elements in the product set

depth(TD)⋂

k=1

ξ (k)
v (U(k)(v)) =

⎛

⎝
depth(TD)⋂

k=1

Ek

⎞

⎠×
⎛

⎝
depth(TD)⋂

k=1

Mrk

⎛

⎝
⊗

α∈Pk (TD)

Uα

⎞

⎠

⎞

⎠ .

Let O := ⋂depth(TD)

k=1 Mrk

(⊗
α∈Pk (TD) Uα

)
and E := ⋂depth(TD)

k=1 Ek . Then we have the

following result.

Lemma 5.1 Let TD be a dimension partition tree with depth(TD) ≥ 2, and r = (rα)α∈TD ∈
AD(VD, TD) such that FTr(VD, TD) is a proper set of tree-based tensors with a fixed tree-
based rank r. Assume that (Vα, ‖ · ‖α) is a normed space for each α ∈ TD \ {D} and
that ‖ · ‖D is a norm on the tensor space VD = ⊗α∈Pk (TD) Vα such that (4.3) holds for
1 ≤ k ≤ depth(TD). Then for each v ∈ FTr(VD, TD) we have that

depth(TD)⋂

k=1

ξ (k)
v (U(k)(v)) = E × O

is an open set of the Banach space E × ⊗δ∈P1(TD) Uδ .
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Proof First we claim that O is an open set in
⊗

δ∈P1(TD) Uδ . To prove the claim, recall

thatMrk

(⊗
α∈Pk (TD) Uα

)
is an open set in the finite dimensional space

⊗
δ∈Pk (TD) Uδ for

1 ≤ k ≤ depth(TD). By using Remark 3.6 we have

depth(TD)⋂

k=1

⊗

α∈Pk (TD)

Uα =
depth(TD)⋂

k=1

⊗

α∈Pk (TD)

Umin
α (v) =

⊗

δ∈P1(TD)

Umin
δ (v) =

⊗

δ∈P1(TD)

Uδ .

Now, put 	 = depth(TD) and consider

O	,	−1 := Mr	

⎛

⎝
⊗

α∈P	(TD)

Uα

⎞

⎠ ∩ Mr	−1

⎛

⎝
⊗

α∈P	−1(TD)

Uα

⎞

⎠

which is equal to

O	,	−1 =
⎛

⎝Mr	

⎛

⎝
⊗

α∈P	(TD)

Uα

⎞

⎠ ∩
⊗

α∈P	−1(TD)

Uα

⎞

⎠ ∩ Mr	−1

⎛

⎝
⊗

α∈P	−1(TD)

Uα

⎞

⎠ ,

where

Mr	

⎛

⎝
⊗

α∈P	(TD)

Uα

⎞

⎠ ∩
⊗

α∈P	−1(TD)

Uα

is an open set in
⊗

α∈P	−1(TD) Uα ⊂ ⊗α∈P	(TD) Uα . Next, let

O	,	−2 = O	,	−1 ∩ Mr	−2

⎛

⎝
⊗

α∈P	−2(TD)

Uα

⎞

⎠

=
⎛

⎝O	,	−1 ∩
⊗

α∈P	−2(TD)

Uα

⎞

⎠ ∩ Mr	−2

⎛

⎝
⊗

α∈P	−2(TD)

Uα

⎞

⎠ .

In a similar way as above,O	,	−2 is an open set in
⊗

α∈P	−2(TD) Uα .By induction, we prove

thatO = O	,1 is an open set in
⊗

δ∈P1(TD) Umin
δ (v) and the claim follows. To conclude, from

Lemma 4.3, Ek is a closed linear space of L(VD‖·‖D
,VD‖·‖D

) for 1 ≤ k ≤ depth(TD). Hence

E :=⋂depth(TD)

k=1 Ek is a linear closed subspace in the Banach spaceL(VD‖·‖D
,VD‖·‖D

).Thus,
E is also a Banach space. Since E×O is an open set in the Banach space E×⊗δ∈P1(TD) Uδ

the lemma follows. ��
Given L ∈ E, for each 1 ≤ k ≤ depth(T ) there exists a unique

(L(k)
α )α∈Pk (TD) ∈ ×

α∈Pk (TD)

L(Uα,Wα)

such that

L = �((L(k)
α )α∈Pk (TD)) =

∑

α∈Pk (TD)

L(k)
α ⊗ id[α]

holds. From (4.5), each (L,u) ∈ E × O satisfies that

(ξ (k)
v )−1((L,u)) = exp(L)(u) ∈ U(k)(v)
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for 1 ≤ k ≤ depth(TD). Hence the image of (L,u) by (ξ
(k)
v )−1 is independent on the index

k. Thus (ξ
(k)
v )−1 is a bijection that maps E × O onto a subset W(v) ⊂ ⋂depth(TD)

l=1 U(l)(v)
containing v for each 1 ≤ k ≤ depth(TD). It allows to we define the bijection

ξv : W(v) −→ E × O

by ξv(w) = ξ
(k)
v (exp(L)(u)) = (L,u).

Then the following result is straightforward.

Theorem 5.2 Let TD be a dimension partition tree with depth(TD) ≥ 2, and r = (rα)α∈TD ∈
AD(VD, TD) such that FTr(VD, TD) is a proper set of tree-based tensors with a fixed tree-
based rank r. Assume that (Vα, ‖ · ‖α) is a normed space for each α ∈ TD \ {D} and that
‖ · ‖D is a norm on the tensor space VD = ⊗α∈Pk (TD) Vα is such that (4.3) holds for
1 ≤ k ≤ depth(TD). Then the collection

B = {(W(v), ξv)}v∈FTr(VD ,TD)

is a C∞-atlas for FTr(VD, TD), and hence FTr(VD, TD) is a C∞-Banach manifold modelled
on

E × R

Ś

α∈P1(TD ) rα .

HereUα is a rα-dimensional subspace ofVα for each α ∈ TD\{D} where v ∈ ⊗α∈Pk (TD) Uα

for 1 ≤ k ≤ depth(TD) and Wα is a closed subspace of Vα‖·‖α such that Vα‖·‖α = Uα ⊕Wα,

where Vα‖·‖α is the completion of Vα for α ∈ TD \ {D}.

5.1 FTr(VD, TD) as embedded sub-manifold ofMrk(VD,Pk(TD)) for
1 ≤ k ≤ depth(TD)

Since FTr(VD, TD) ⊂ Mrk (VD,Pk(TD)), for 1 ≤ k ≤ depth(TD), the natural ambi-
ent space of the manifold FTr(VD, TD) is any manifold Mrk (VD,Pk(TD)) for 1 ≤
k ≤ depth(TD). In order to prove that FTr(VD, TD) is an embedded sub-manifold of
Mrk (VD,Pk(TD)) for 1 ≤ k ≤ depth(TD), we consider the natural inclusion map
i : FTr(VD, TD) −→ Mrk (VD,Pk(TD)) given by i(v) = v. Then, from Theorem 3.5.7
in [16], we only need to check the following two conditions for each 1 ≤ k ≤ depth(TD) :
(C1) The map i should be an immersion. From Proposition 4.1 in [8], it is true when the

linear map

Tvi = (ξv ◦ i ◦ ξ−1
v )′(ξv(v)) : TvFTr(VD, TD) −→ TvM rk (VD,Pk(TD))

is injective and Tvi(TvFTr(VD, TD)) ∈ G
(
TvM rk (VD,Pk(TD))

)

(C2) The map

i : FTr(VD, TD) −→ i (FTr(VD, TD))

is a topological homeomorphism.

Since i : FTr(VD, TD) −→ i (FTr(VD, TD)) is the identity map then it is clearly an
homeomorphism and (C2) holds. To prove that (C1) is also true, first we claim that the
natural inclusion map i is also written in local coordinates as the natural inclusion map.
Indeed, for v ∈ FTr(VD, TD), the open setW(v) ⊂⋂depth(TD)

	=1 U(	)(v) ⊂ FTr(VD, TD) and
hence

i : W(v) −→ U(k)(v)
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is the identity map onW(v), that is, i|W(v) = idW(v). Thus

(ξ (k)
v ◦ i ◦ ξ−1

v ) : E × O −→ Ek × Mrk

⎛

⎝
⊗

α∈Pk (TD)

Uα

⎞

⎠

is the natural inclusion map and the claim follows. Hence its derivative

Tvi = (ξv ◦ i ◦ ξ−1
v )′(ξv(v)) : E ×

⎛

⎝
⊗

α∈P1(TD)

Uα

⎞

⎠ −→ Ek ×
⎛

⎝
⊗

α∈Pk (TD)

Uα

⎞

⎠

is also the natural inclusion map which is clearly injective.
In consequence, to obtain (C1) we only need to prove that for each v ∈ FTr(VD, TD) the

tangent space

TvFTr(VD, TD) = E ×
⊗

α∈P1(TD)

Uα

belongs to

G

⎛

⎝Ek ×
⊗

α∈Pk (TD)

Uα

⎞

⎠ = G (Ek) × G

⎛

⎝
⊗

α∈Pk (TD)

Uα

⎞

⎠ .

Clearly

⊗

α∈P1(TD)

Uα ∈ G

⎛

⎝
⊗

α∈Pk (TD)

Uα

⎞

⎠ ,

because
⊗

α∈Pk (TD) Uα is a finite dimensional vector space. From Lemma 4.3 we have

Ek ∈ G

(
L(VD‖·‖D

,VD‖·‖D
)
)

for 1 ≤ k ≤ depth(TD). The second statement of Lemma 4.14 in [8] implies

E =
depth(TD)⋂

k=1

Ek ∈ G

(
L(VD‖·‖D

,VD‖·‖D
)
)

.

Thus we have the following theorem.

Theorem 5.3 Let TD be a dimension partition tree over D and r ∈ AD(VD, TD) such that
FTr(VD, TD) is a proper set of tree-based tensors with a fixed tree-based rank r. Assume
that (Vα, ‖ · ‖α) is a normed space for each α ∈ TD \ {D} and let ‖ · ‖D be a norm on the
tensor space VD such that (4.3) holds for 1 ≤ k ≤ depth(TD). Then FTr(VD, TD) is an
embedded sub-manifold of Mrk (VD,Pk(TD)) for 1 ≤ k ≤ depth(TD).

Observe that we can also consider the natural inclusion map i from Mrk (VD,Pk(TD))

to VD‖·‖D
. Under the assumptions of Theorem 5.3, by using Theorem 4.14 of [8], we

have that Mrk (VD,Pk(TD)) is an immersed sub-manifold of VD‖·‖D
and, for each v ∈

Mrk (VD,Pk(TD)), the tangent space

TvMrk (VD,Pk(TD)) = Ek ×
⎛

⎝
⊗

α∈Pk (TD)

Uα

⎞

⎠
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is linearly isomorphic to the linear space Tvi
(
TvMrk (VD,Pk(TD))

) ∈ G(VD‖·‖D
). More-

over,

depth(TD)⋂

k=1

TvMrk (VD,Pk(TD)) =
depth(TD)⋂

k=1

⎛

⎝Ek ×
⎛

⎝
⊗

α∈Pk (TD)

Uα

⎞

⎠

⎞

⎠

=
⎛

⎝
depth(TD)⋂

k=1

Ek

⎞

⎠×
⎛

⎝
depth(TD)⋂

k=1

⊗

α∈Pk (TD)

Uα

⎞

⎠

= E ×
⎛

⎝
⊗

α∈P1(TD)

Uα

⎞

⎠ = TvFTr(VD, TD).

Then, by using that Tvi is injective, we obtain

Tvi (TvFTr(VD, TD)) = Tvi

⎛

⎝
depth(TD)⋂

k=1

TvMrk (VD,Pk(TD))

⎞

⎠

=
depth(TD)⋂

k=1

Tvi
(
TvMrk (VD,Pk(TD))

) ∈ G(VD‖·‖D
),

also by Lemma 4.14 in [8], and it is linearly isomorphic to TvFTr(VD, TD). Thus, also
FTr(VD, TD) is an immersed sub-manifold of VD‖·‖D

. Hence we have the following result.

Corollary 5.4 Let TD be a dimension partition tree over D and r ∈ AD(VD, TD) such that
FTr(VD, TD) is a proper set of tree-based tensors with a fixed tree-based rank r. Assume
that (Vα, ‖ · ‖α) is a normed space for each α ∈ TD \ {D} and let ‖ · ‖D be a norm on the
tensor space VD such that (4.3) holds for 1 ≤ k ≤ depth(TD). Then FTr(VD, TD) is an
immersed sub-manifold of VD‖·‖D

.

5.2 On the Dirac–Frenkel variational principle

To extend Dirac–Frenkel Variational Principle for a proper set of tree-based tensors with a
fixed tree-based rank, we consider the abstract ordinary differential equation in a reflexive

tensor Banach space VD‖·‖D
= VD

‖·‖D
, given by

u̇(t) = F(t,u(t)), for t ≥ 0, (5.1)

u(0) = u0, (5.2)

wherewe assumeu0 �= 0 andF : [0,∞)×VD‖·‖D
−→ VD‖·‖D

satisfying the usual conditions
to have existence and uniqueness of solutions. Let TD be a dimension partition tree over D
and r ∈ AD(VD, TD) such that FTr(VD, TD) is a proper set of tree-based tensors with a
fixed tree-based rank r. Assume that (Vα, ‖ · ‖α) is a normed space for each α ∈ TD \ {D}
and let ‖ · ‖D be a norm on the tensor spaceVD such that (4.3) holds for 1 ≤ k ≤ depth(TD).

We want to approximate u(t), for t ∈ I := (0, T ) for some T > 0, by a differentiable
curve t �→ vr (t) from I to FTr(VD, TD), where r ∈ AD(VD, TD) (r �= 0), such that
vr (0) = v0 ∈ FTr(VD, TD) is an approximation of u0.
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To construct a reduced ordermodel of (5.1)–(5.2) over the BanachmanifoldFTr(VD, TD)

we consider the natural inclusion map

i : FTr(VD, TD) −→ VD‖·‖D
.

SinceFTr(VD, TD) is an immersed sub-manifold inVD‖·‖D
, from Theorem 3.5.7 in [16], we

have

Tvi (TvFTr(VD, TD)) ∈ G(VD‖·‖D
).

By using that F(t, vr (t)) ∈ VD‖·‖D
, for each t ∈ I , together the fact that

Z(D)(vr (t)) := Tvr (t)i
(
Tvr (t)FTr(VD, TD)

)

is a closed linear subspace in VD‖·‖D
, we have the existence of a v̇r (t) ∈ Z(D)(vr (t)) such

that

‖v̇r (t) − F(t, vr (t))‖D = min
v̇∈Z(D)(vr (t))

‖v̇ − F(t, vr (t))‖D . (5.3)

Equation (5.3) extends the variational principle of Dirac–Frenkel to the Banach manifold
FTr(VD, TD).
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