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We report the experimental observation of modulation 
instability induced Kerr frequency comb in an all-fiber 
Fabry-Perot resonator. We fully characterized in inten-
sity and phase the frequency comb with a commercial 
10 MHz resolution heterodyne detection system to re-
veal more than 125 comb teeth within each of the modu-
lation instability side lobes. Moreover, we were able to 
reveal the fine temporal structure in phase and intensity 
of the output Turing patterns. The experimental results 
are in good agreement with numerical simulations.

http://dx.doi.org/10.1364/ao.XX.XXXXXX

Nonlinear microresonators are extremely appealing devices
to generate optical frequency combs (OFCs). Due to their high
quality factor, compact design (cavity length of hundred of µm)
and low energy consumption, they have attracted significant
attention over the last decade [1–4]. They have contributed to
enabling many applications like chip-scale dual-comb spectrom-
eters [5], high-speed data transmission [6], or broadband comb
generation for self-referencing [7]. Despite these impressive per-
formances, launching and collecting light in these chips is still
challenging, requiring advanced fiber coupling devices which
is an obstacle for applications. Another way to generate OFCs
in resonators consists in using all fiber ring cavities of tens of
meters in length, whose effective quality factor can reach several
million by including an amplifier within the cavity [8, 9]. Spectra
obtained by this technique have comparable widths to those in
microresonators, but the line-to-line spacing lies in the MHz
range, which is a limit for the many applications cited above
(like the dual-comb spectroscopy or the high-speed data trans-
mission). An interesting alternative consists in using all fiber
Fabry-Pérot (FFP) resonators of several centimeters in length,
which can be connected to photonic devices by using a standard
fiber connector with physical contact (FC/PC). Quality factors

of 32 million had been reported allowing to generate broadband
and stable OFCs with moderate pumping power in this type
of resonators [10–13]. Different types of combs can be excited
within resonators, which depends on several parameters, in-
cluding the pump power and the cavity detuning. Modulation
instability (MI) combs appear in resonators in the standard gener-
ation process of cavity solitons (CSs) under powerfull pumping
[2, 14, 15]. Broadband and ultra-stable OFCs exploiting cavity
solitons effect had been reported in these devices [10–12]. This
reveals a great potential for applications due to their easy con-
nection to fiber devices. However, the generation of CSs combs
may be tricky because it requires a bistable operation, high peak
power, and specific excitation protocols [2–4, 9, 10]. Due to
the fundamental role played by MI in the nonlinear dynamics
of resonators, MI had been deeply investigated in fiber ring
resonators [16–20]. In FFP resonators, hyperparametric modes
enhanced by Brillouin scattering had been reported [13], how-
ever, no detailed and clear observation of MI Kerr combs has
been reported. In this letter, we focus on MI process in all-fiber
Fabry-Pérot resonators mounted with standard FC/PC connec-
tors. We show a pure MI comb finely characterized by the mean
of an advanced commercial heterodyne detection system (Bril-
louin Optical Spectrum Analyser, BOSA) providing the phase
and intensity of spectra with a 10 MHz resolution. We reveal the
discrete comb structure of these MI combs and the correspond-
ing Turing patterns of only 2.1 ps period, in phase and intensity,
in the time domain. The experimental results are in good agree-
ment with the numerical simulations of the governing equations
[21–23].

The FFP cavity used for the study is depicted in Figure 1(a).
It is made from an optical single-mode fiber (SMF-28) with a
fiber length of L = 6.51 cm, a group velocity dispersion (GVD)
of β2 = −22.9 ps2 km−1 at the pump wavelength (1550 nm) and
a nonlinear coefficient of γ = 1.2 W−1 km−1. Both fiber ends are
mounted in FC/PC connectors and Bragg mirrors are deposited
at each extremity with a physical vapor deposition technique,
to achieve 99.84% reflectance over 100 nm [24]. Figure 1(b) rep-
resents a picture of a connector with its deposited mirror. The
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Fig. 1. Description of the studied FFP resonator. (a) Picture
of the device. (b) Microscope image of a deposited mirror on
the ferule. (c) Transmission function of the resonator in linear
regime. (d) Zoom on a cavity resonance.

linear transfer function is shown in Figure 1(c) and (d). This ar-
chitecture leads to a resonator with a 5 MHz linewidth resonance,
spaced by a free spectral range (FSR) equal to 1.57 GHz, corre-
sponding to a finesse of 314 and a quality factor of 38 million.
The parameters of this cavity are comparable to those reported
in the literature [10–13]. The great advantage of this resonator
is its «plug and play» feature, characteristic of an all-fiber pho-
tonic device, which is a very convenient feature compare to
ring-microresonator where the coupling can be a real challenge
and necessitate a prism fiber taper.

The FFP resonator is implanted in the experimental setup
described in Figure 2. A train of 70 ps almost-square pulses
[Fig. 2(b)] is generated at 1550 nm by a 0.1 kHz linewidth tun-
able CW laser (laser BASIK E15 from NKT photonics), and an
intensity modulator driven by an electrical pulse generator. The
pulses are amplified through two EDFAs, and a filter is used to
remove the amplified spontaneous emission in excess at the out-
put of the first amplifier. The pump pulses are finally launched
within the cavity through the FC/PC connectors. A frequency
synthesizer allows to set the repetition rate very accurately (in
the Hz range) in a way that the pulses perfectly overlap in the
cavity at each round trip. This pulsed-pump operation allows
to reach high intracavity power, necessary to trigger nonlinear
effects, with a moderate average power [10], and then, limits the
beam fluence sent to the mirrors. A polarization controller is
used to send the input signal along one of the polarization axis
of the FFP resonator. At the output of the cavity, the signal is
split with a 50/50 coupler. One part is used to achieve spectral
measurements with a BOSA, a high-resolution (10 MHz) com-
plex optical spectrum analyzer. The second part is monitored
with a 5 GHz bandwidth photodiode (Thorlabs DET08CFC/M)
and connected to a PID (proportional–integral–derivative) servo
to set the laser frequency at a certain detuning. When required, a
fiber Bragg grating (FBG), centered at the pump wavelength and
of 50 GHz width at FWHM, was used as a notch filter to remove
the pump in order to only record the new spectral components
generated during the nonlinear process.

In order to analyze the nonlinear dynamics of the system, we
scanned the laser across the resonance (from blue to red detun-
ing) as in [2, 10]. Firstly, we record the nonlinear transmission
as a function of the frequency detuning, without the FBG [blue
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Fig. 2. (a) Experimental setup. EPG: Electrical Pulse Gener-
ator; IM: Intensity Modulator; EDFA: Erbium Doped Fiber
Amplifier; PC: Polarization Controller; OI: Optical Isolator;
FBG: Fiber Bragg Grating; PD: Photo-diode; BOSA: Brillouin
Optical Spectrum Analyser; OSO: Optical Sampling Oscillo-
scope. (b) Pulse train pump measured with the OSO.

line in Fig. 3(a)]. As expected, the nonlinear transfer function is
tilted. This phenomenon is accentuated in FP cavity due to the
two-way light circulation which induces cross-phase modula-
tion (XPM) [21, 25]. We compared these results with numerics
[black dashed line in Fig. 3(a)] (see simulation part below) and
found a perfect agreement. In order to focus on the evolution
of the new spectral components, we insert the FBG at the cavity
output. In this way, we can experimentally identify the detuning
range for which new frequency modes are generated. By setting
the pump power just above the cavity MI threshold, we see
that new spectral components are generated over a very limited
frequency range, i.e. cavity detuning [filled yellow curve in
Fig. 3(a)]. Hence, MI exists from -2.9 MHz to -5 MHz (compared
to the central frequency of the linear resonance). To confirm
this, we estimate the frequency range over which the MI pro-
cess might appear by performing a linear stability analysis as
in [22] [filled red plot in Fig. 3(a)]. We find that MI can exist
from -2.2 MHz to -3.8 MHz which is very close to the range we
measured in experiments. In order to get a deeper insight into
the dynamics of this system, we show in Figure 3(b) the evolu-
tion of the system for different pump powers. The filled yellow
curve in Figure 3(a), corresponding to 4.5 W, is reported in Fig-
ure 3(b) for the sake of clarity. Increasing the pump power to
9 W [orange filled curve in Fig. 3(b)] leads to a broadened span
of existence of MI without significant modification of the curve
shape. This means that MI is the only nonlinear regime involved
in the generation of new spectral components. Increasing the
pump power to 13 W [blue filled curve in Fig. 3(b)], leads to a
significant modification of the curve shape, thus of the dynamics
of the system. We observe three different regions [(i), (ii), (iii) in
Fig. 3(b)] corresponding to different comb structures according
to the classic scan shape where the comb evolves as the function
of the detuning [filled blue plot in Fig. 3(b)] [2, 4, 10, 14, 15, 26].
At first (i), the transmission increases with a smooth slope, corre-
sponding to a MI comb formation; (ii) then, chaotic transmission
variation appears and produces a chaotic comb; (iii) finally, at
the top of the nonlinear resonance, the transmission brutally
drops and reach a plateau corresponding to a characteristic step
revealing the existence of CSs [4, 26].
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Fig. 3. Transmission functions in nonlinear regime. (a) Mea-
surements with Pin = 4.5 W. The black dashed line plot is
obtained by numerics. The blue solid line plot is obtained by
measuring the optical power at the cavity output without any
filter. The filled color plots are obtained by filtering the out-
put signal with an FBG to remove the pump component and
observe new spectral components evolution. The filled red
plot is obtained by calculating the frequency range where MI
process appears. (b) New spectral components evolution at
different input power.

As we aim at investigating modulation instability, we lower
the pump power just above the MI threshold (4.5 W). We switch
the PID on to set the detuning at -3.5 MHz [Fig. 3(b)]. Thereby,
we measured the output complex optical spectra with a BOSA.
It is represented in Figure 4(a). We see the two MI bands on
each side of the pump shifted by fMI = 464 GHz. As the pump
power is slightly above the cavity threshold, we also see har-
monics at twice this frequency shift which are due to cascaded
four-wave-mixing between the MI bands and the pump. An
interesting feature lies in the particular shape of the subcombs
with a cardinal sinus-like shape [Fig. 4(c)]. We checked numeri-
cally that this is due to the square pulse spectrum of the pump
which is repeated during the MI process (this feature does not
appear during continuous pumping). The high spectral reso-
lution of the BOSA allows for the distinction of each tooth of
the frequency subcombs, separated by 1.58 ± 0.062 GHz, which
corresponds to the FSR of the cavity [Fig. 4(b)]. Thus, we are able
to observe more than 125 teeth in each MI side band with a high
signal-to-noise ratio of up to 60 dB [Fig. 4(a) and (b)]. The BOSA
also measures the spectral phase of the output signal [orange
dots in Fig. 4(a) and (c)]. To obtain these results, we measure
the spectral phase on each lobe independently in order to main-
tain the coherence between each subcomb, and we suppress the
linear component caused by a delay in the measurement. One
observes that the spectral phase is quite flat even if there are
phase jumps between the subcomb’s lobes. Using this complex
spectrum measurement, we can now calculate the electric field
trace in the time domain to reveal the Turing pattern features of
the MI process. In Figure 5(a), we see periodic temporal patterns
are visible on the top of the pump pulses [blue line in Fig. 5(a)].
The oscillations period is equal to 1/ fMI = 2.1 ps, which cor-
responds to the inverse of the MI frequency shift [Fig. 4 (a)].
As the BOSA is only able to measure the phase of the spectral
envelope, we obtain an unique pulse with Turing patterns at its
top. However, we can notice that the complete electric field at
the cavity output is composed of a train of this pattern with a
frequency equals to frep (= 1.57 GHz). Concerning, the temporal
phase represented in orange lines in Figure 5(a), one observes
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Fig. 4. Observed and simulated spectrum at the resonator
output. (a): Full observed MI spectrum. (b): Zoom on the
teeth of the observed spectrum. (c): Zoom on an observed MI
subcomb. (d): Zoom on the teeth of the simulated spectrum.
(e): Zoom on a simulated MI subcomb. (f): Full simulated MI
spectrum.

periodic oscillations with a 2 radians amplitude, in phase op-
position with the signal amplitude modulation. Note that in
addition to the complex information, the BOSA system allows
the observation of short time modulations (2.1 ps), which would
not be possible with a system based on a photodiode and an
oscilloscope.

In order to validate these experimental results, we per-
formed numerical simulations by solving two coupled counter-
propagating nonlinear Schrödinger equations [21, 22]:

∂F
∂z

+ β1
∂F
∂t

+ i
β2
2

∂2F
∂t2 = iγ(|F|2 + G|B|2)F (1)

− ∂B
∂z

+ β1
∂B
∂t

+ i
β2
2

∂2B
∂t2 = iγ(|B|2 + G|F|2)B (2)

where F(z, t) and B(z, t) are the forward and the backward fields
in the cavity, respectively, β−1

1 = c
n is the group velocity (c

and n are speed of light in vacuum and the effective refractive
index of the fiber mode), β2 is the GVD coefficient, γ is the
nonlinear parameter and G=2 is the grating-parameter which
describes XPM. The governing equations are supplemented with
appropriate boundary conditions at the left and right mirrors:

F(0, t) = θEin + ρB(0, t) (3)

B(L, t) = ρeiϕ0 F(L, t) (4)

where, θ and ρ are the transmission and reflection coefficients,
respectively; the cavity phase ϕ0 accounts for the phase acquired
during the propagation 4πnL

λ (where λ is the pump wavelength)
and any possible contribution from the mirrors. The transmitted
field Eout(t) can be expressed as:

Eout(t) = θF(L, t) (5)



We solved Eqs. (1-4) by means of a finite-difference predictor-
corrector scheme [23]. The used parameters are the same as those
of the cavity: ρ = 0.9950; θ = 0.0396; γ = 1.2 × 10−3 W−1 m−1;
β2 = −2.29 × 10−26 s2 m−1; L = 6.51 × 10−2 m; n = 1.4582;
and λ = 1550 × 10−9 m. Figures 4(d),(e),(f) show the numerical
results in the spectral domain, to be compared with the exper-
imental ones shown in Figures 4(c),(b),(a), respectively. The
output spectrum from numerics is very similar to the experimen-
tal one. More specifically, as far as the cardinal sine-like shapes
and the phase which is quite flat with phase jumps between the
subcomb’s lobes [Fig. 4(b) and (d)]. The MI bands are shifted by
fMI = 451 GHz from the pump which is very close to the exper-
imental measurement (464 GHz). In the time domain [Fig. 5(b)],
the period of the modulations is in perfect agreement with the
experiments. The modulations exhibit an almost constant inten-
sity in the numerics but vary in experiments. The phase shows a
very similar profile to the experiments, except that it is this time
in phase with the signal amplitude modulation. These slight dis-
crepancies may be due to small fluctuations in the stabilization
system and/or the shape of the input pump pulses not being
perfectly flat and/or a slight disagreement regarding the pump
power value.
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Fig. 5. Full field output pulse. (a) Experiment. (b) Numerics.
Blue line: signal amplitude; orange line: temporal phase

In summary, we have studied MI-induced Kerr combs in
an all-fiber Fabry-Perot resonator consisting of a standard 6.51-
centimeter SMF-28 mounted on FC/PC connectors. Highly re-
flective mirrors deposited on both connector ferrules lead to a
quality factor of 38.5 million, in the same range as for microres-
onators [2]. We characterized the frequency comb in intensity
and phase using a commercial 10 MHz resolution heterodyne
detection system (BOSA) to clearly distinguish each tooth of the
comb. We then show the fine temporal structure of only 2.1 ps
period in phase and intensity of the Turing patterns. These re-
sults were confirmed by numerical simulations based on coupled
nonlinear Schrödinger equations. This research contributes to a
better understanding of the dynamics of the modulation insta-
bility process in high Q-factor all-fiber Fabry-Perot resonators.
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