
HAL Id: hal-03919679
https://hal.science/hal-03919679

Submitted on 3 Jan 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Treating inequality constraint in a continuous medium
with a coupled X-FEM/Level-Set strategy

Nicolas Bonfils, Nicolas Chevaugeon, Nicolas Moes

To cite this version:
Nicolas Bonfils, Nicolas Chevaugeon, Nicolas Moes. Treating inequality constraint in a continuous
medium with a coupled X-FEM/Level-Set strategy. 4th European Conference on Computational
Mechanics (ECCM 2010), May 2010, Paris, France. �hal-03919679�

https://hal.science/hal-03919679
https://hal.archives-ouvertes.fr


ECCM 2010
IV European Conference on Computational Mechanics

Palais des Congrès, Paris, France, May 16-21, 2010

Treating inequality constraint in a continous medium with a coupled
X-FEM/Level-Set strategy

N. Bonfils1, N. Chevaugeon1, N. Moës1

1 GeM, Ecole Centrale de Nantes, 1 rue de la Noë 44321 Nantes, {nicolas.bonfils, nicolas.chevaugeon, nicolas.moes}@ec-nantes.fr

Introduction

The aim of this study is to propose a new approach to deal with continuum media subject to a kinematic
inequality constraint γ(K)≤ 0, where K may be any kinematic second-order tensor. This kind of problem
is similar to a constrained minimization problem with inequality constraints. It is equivalent to :

inf
u∈S

Π(u)

with S = {u | γ(K) ≤ 0} and Π(u) the total potential energy of the sytem. The common approaches to
imposing the inequality constraints classicaly the lagrange multiplier method [1], the penalty method
[2], and the augmented lagrangian method [3]. Excluding the penalty method, all this approaches lead to
variational inequalities because we do not know a priori the shape of the active constraint and unactive
constraint zone in the medium. To take into account such a constraint the elastic strain energy function
ψ can be split into two distinct parts :

ψ(C) = ψ
r(C)+ I−(γ(K))

with ψr, the parent or regular potential, C, the right Cauchy-Green tensor, and I−(x), the characteristic
function of R− such that :

I−(x) =
{

0 if x≤ 0
+∞ else

The level-set approach

The strategy proposed here is to split the whole domain Ω into two distinct subdomains separated by Γ.
The first domain denoted by Ωc is the constrained zone or active zone where an equality constraint is
imposed. The second domain denoted by Ωl is the unconstrained or unactive zone, where no constraints
are imposed.

The two subdomains are separated by the interface Γ, located by the iso-zero of a level-set function [4].
On each subdomains, we have:

ψ(C) = ψ
r(C)+ I0(γ(K) ∀x ∈Ωc

ψ(C) = ψ
r(C) ∀x ∈Ωl
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with,

I0(x) =
{

0 if x = 0
+∞ else

The location of the interface Γ becomes an unknown of the problem and, thus, we are looking for the
exact position of the interface such that the total potential energy is stationary :

inf
u∈S′

Π(u,Γ) avec S′ = {u | γ(K) = 0 sur Ωc} (1a)

DδqnΠ(u(Γ),Γ) = 0 ∀ δqn (1b)

where DδqnΠ indicates the directional derivative of Π in the direction of δqn, where δqn denotes a velocity
field modifying the location of the interface Γ.

Starting from an initial position Γ0 of the interface, we search the exact position iteratively. At each
step of the algorithm a velocity is computed form the stationary condition (1) and a level-set equation is
solved to find the new location of the interface.

First results and future prospects

We have applied the method described above to solve a simple one dimensional problem in the small
strain elastostatic setting. We wish to limit the uniaxial strain of a truss by an arbitrary value α under
a prescribed load. Since we know the exact solution, we can compare it to the numerical one. The
first results are promising since the presented strategy provides a convergence rate equals to the optimal
rate of convergence in spite of the lack of regularity of the exact solution. The level-set localization
of the interface and a correct enrichment of the finite element approximation [5] permits the optimal
convergence. Compared to an augmented Lagrangian method coupled with an active-set algorithm [6],
we obtain a significant gain in accuracy. Preliminary results have been obtained for two dimensional
cases and will be presented.

References

[1] Computational Contact and Impact Mechanics: Fundamentals of Modeling Interfacial Phenomena in Nonlin-
ear Finite Element Analysis, T. A. Laursen, Springer-Verlag, Heidelberg, 2002.

[2] Contact problems in elasticity: a study of variational inequalities and finite element methods, N. Kikuchi , J.
T. Oden, SIAM Publication, Philadelphia, 1988.

[3] A mixed formulation for frictional contact problems prone to Newton like solution methods, Computer Methods
in Applied Mechanics and Engineering, P. Alart, A. Curnier, vol. 92, 353-375, 1991.

[4] Modeling holes and inclusions by level sets in the extended finite element method, N. Sukumar, D.L. Chopp,
N. Moës, T. Belytschko, Comp. Methods Appl. Mech. Engrg. 190, 6183-6200, 2001.

[5] A computational approach to handle complex microstructure geometries, N. Moës, M. Cloirec , P. Cartraud,
J. Remacle, Comput. Meth. Appl. Mech. Eng., vol. 192, 3163-3177, 2003.

[6] Problèmes de contact frottant en grandes transformations : du continu au discret. Revue Européenne des
Element Finis, H. Ben Dhia, I. Vautier, M. Zarroug, vol 9; n◦1-3, 243-261, 2000.

2


