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ON d-APPROACHABILITY, ENTROPY DENSITY AND B-FREE SHIFTS

JAKUB KONIECZNY, MICHAL KUPSA, AND DOMINIK KWIETNIAK ABSTRACT. We study approximation schemes for shift spaces over a finite alphabet using (pseudo)metrics connected to Ornstein's d metric. This leads to a class of shift spaces we call d-approachable. A shift space d-approachable when its canonical sequence of Markov approximations converges to it also in the d sense. We give a topological characterisation of chain mixing d-approachable shift spaces. As an application we provide a new criterion for entropy density of ergodic measures. Entropy-density of a shift space means that every invariant measure µ of such a shift space is the weak * limit of a sequence µn of ergodic measures with the corresponding sequence of entropies h(µn) converging to h(µ). We prove ergodic measures are entropy-dense for every shift space that can be approximated in the d pseudometric by a sequence of transitive sofic shifts. This criterion can be applied to many examples that were out of the reach of previously known techniques including hereditary B-free shifts and some minimal or proximal systems. The class of symbolic dynamical systems covered by our results includes also shift spaces where entropy density was established previously using the (almost) specification property.

We study approximation schemes for shift spaces over a finite alphabet A (subshifts of the full shift A ∞ over A ). For every shift space X there exists a canonically defined sequence of shifts of finite type (topological Markov approximations) converging to X in a natural topology on the space of all subshifts of A ∞ . This fact, however, is of little practical use, because dynamical properties usually do not convey from a sequence of shift spaces to its limit. Here, we consider another, stronger topology on the powerset of A ∞ which is induced by the d-pseudometric on A ∞ or one of its relatives. The pseudometric d is given for x = (x j ) ∞ j=0 , y = (y j ) ∞ j=0 ∈ A ∞ by d(x, y) = lim sup n→∞ 1 n |{0 ≤ j < n : x j = y j }|.

It is an analog of Ornstein's metric dM on A -valued stationary stochastic processes. Since d is bounded, it induces a Hausdorff pseudometric dH on the space of all nonempty subsets of A ∞ . We examine the existence of an approximating sequence in the dH sense and study its consequences. In particular, we study shift spaces we call d-approachable, which are dH -limits of their own topological Markov approximations. We provide a topological characterisation of chain mixing d-approachable shift spaces using the d-shadowing property. This can be considered as an analogue for Friedman and Ornstein's characterisation of Bernoulli processes as totally ergodic dM -limits of their own Markov approximations [START_REF] Friedman | On isomorphism of weak Bernoulli transformations[END_REF]. We prove that many specification properties imply chain mixing and d-approachability. It follows that all shift spaces with the almost specification property (this class includes all β-shifts and all mixing sofic shifts, in particular all mixing shifts of finite type) are d-approachable. In a forthcoming paper [START_REF] Konieczny | Minimal and proximal examples of d-stable and d-approachable shift spaces[END_REF], we also construct minimal and proximal examples of d-approachable shift spaces, thus proving d-approachability is a more general phenomenon than specification. Regarding consequences of dH approximation, we show that it implies convergence of simplices of invariant measures in the Hausdorff metric dH M induced by Ornstein's dM metric on the space M σ (A ∞ ) of all shift invariant measures on A ∞ . To be more precise: Write M σ (X) for the space of all Borel invariant probability measures on a shift space X and M e σ (X) for the set of ergodic measures in M σ (X). We prove that if a sequence of shift spaces (X n ) ∞ n=1 converges to X in dH , then (M σ (X n )) ∞ n=1 and (M e σ (X n )) ∞ n=1 converge in dH M to M σ (X), respectively to M e σ (X). This allows us to show that certain geometric features of the simplices of invariant measures of shift spaces in the approximating sequence are inherited by the simplex of the limit. The geometry of the space M σ (X) is, in turn, an important feature of a shift space X ⊆ A ∞ , and besides being interesting per se, it has profound connections with dynamical properties of X. It turns out that for many important shift spaces and, more generally, dynamical systems and continuous time flows on compact metric spaces, M e σ (X) is a nontrivial dense subset of M σ (X) endowed with the weak * topology, see [START_REF] Gelfert | On density of ergodic measures and generic points. Ergodic Theory Dynam[END_REF][START_REF] Li | Properties of invariant measures in dynamical systems with the shadowing property[END_REF][START_REF] Parthasarathy | On the category of ergodic measures[END_REF][START_REF] Sigmund | Generic properties of invariant measures for Axiom A diffeomorphisms[END_REF][START_REF] Ville | Étude critique de la notion de collectif[END_REF]. A stronger property is entropy density of ergodic measures introduced by Orey in 1986 [START_REF] Orey | Large deviations in ergodic theory[END_REF] and Föllmer and Orey in 1988 [START_REF] Föllmer | Large deviations for the empirical field of a Gibbs measure[END_REF]. A shift space X has entropy density of ergodic measures if for every ν ∈ M σ (X) there exists a sequence µ n ∈ M e σ (X) such that µ n → ν in the weak * topology and, in addition, the measure-theoretic entropies also converge, that is, h(µ n ) → h(ν) as n → ∞. There are examples of shift spaces with dense, but not entropy-dense sets of ergodic measures (see [START_REF] Gelfert | On density of ergodic measures and generic points. Ergodic Theory Dynam[END_REF]). In addition to being of interest in their own right, density of ergodic measures and entropy-density are strongly related to various results on large deviations and multifractal analysis [START_REF] Comman | Strengthened large deviations for rational maps and full shifts, with unified proof[END_REF][START_REF] Eizenberg | Large deviations for Z d -actions[END_REF][START_REF] Pfister | Large deviations estimates for dynamical systems without the specification property. Applications to the β-shifts[END_REF][START_REF] Pfister | Weak Gibbs measures and large deviations[END_REF]. We refer the reader to Comman's article [START_REF] Comman | Criteria for the density of the graph of the entropy map restricted to ergodic states[END_REF] and references therein for more information about that connection and more large deviations results.

We show that entropy-density of ergodic measures is a dH -closed property. This allows for a new method of proof of entropy density. So far, specification-like conditions were invoked to prove entropy-density (see [START_REF] Eizenberg | Large deviations for Z d -actions[END_REF][START_REF] Pfister | Large deviations estimates for dynamical systems without the specification property. Applications to the β-shifts[END_REF]), and our results extends that to dH limits of these shift spaces. In particular, mixing shifts of finite type are entropy-dense, hence our result shows that all d-approachable chain-mixing shift spaces are also entropy dense. This leads to a new proof of entropy density of systems with almost specification, which is now a direct consequence of entropydensity of mixing shifts of finite type and d-approachability. Since we know there are examples of minimal or proximal d-approachable shifts, we see that our technique yields entropy-density for examples which were beyond the reach of methods based on specification properties. Furthermore, we prove that there are cases where d-approachability does not necessarily hold, but it is still possible to approximate in dH with a sequence of entropy-dense shift spaces. We apply this technique to hereditary closures of B-free shifts (a class including many interesting B-free shifts, see Corollary 35 below). These shift spaces are not weakly mixing, hence they do not have d-shadowing property (we show examples that are not d-approachable, see Example 34 ). Nevertheless, using the Davenport-Erdős theorem they are easily seen to be approximated by naturally defined sequences of transitive sofic shifts, and this implies entropy-density. Note that B-free shifts do not have even the weakest version of the specification property (see [START_REF] Kwietniak | A panorama of specification-like properties and their consequences[END_REF] for a list of possibilities). Recall that an integer is B-free if it has no factor in a given set B ⊆ N. For example, the set of B sq -free integers where B sq = {p 2 : p prime} is just the set of square-free integers. Sets of B-free integers were studied by Chowla, Davenport, and Erdős, to name a few. Recently, Sarnak [START_REF] Sarnak | Three lectures on the Möbius function randomness and dynamics[END_REF] initiated the study of dynamics of a shift space X sq associated to square-free integers. Abdalauoi, Lemańczyk, and de la Rue [START_REF] Abdalauoi | A dynamical point of view on the set of B-free integers[END_REF] and Dymek et al [START_REF] Dymek | B-free sets and dynamics[END_REF] extended Sarnak's approach to B-free integers for an arbitrary B. These systems were also investigated by Avdeeva and her co-authors [START_REF] Avdeeva | Limit theorems for B-free integers and the Moebius function[END_REF][START_REF] Avdeeva | Ergodic and statistical properties of B-free numbers[END_REF], Cellarosi and Sinai [START_REF] Cellarosi | Ergodic Properties of Square-Free Numbers[END_REF], Kułaga-Przymus and her co-authors [START_REF] Kułaga-Przymus | Hereditary subshifts whose measure of maximal entropy does not have the Gibbs property[END_REF][START_REF] Kułaga-Przymus | On invariant measures for B-free systems[END_REF][START_REF] Kułaga-Przymus | Hereditary subshifts whose simplex of invariant measures is Poulsen[END_REF], Peckner [START_REF] Peckner | Uniqueness of the measure of maximal entropy for the squarefree flow[END_REF], and Keller and his co-authors [START_REF] Kasjan | Dynamics of B-free sets: a view through the window[END_REF][START_REF] Keller | Generalized heredity in B-free systems[END_REF][START_REF] Keller | Tautness for sets of multiples and applications to B-free dynamics[END_REF]. Higher dimensional analogs of B-free shifts also attracted attention, see [START_REF] Baake | Ergodic properties of visible lattice points[END_REF][START_REF] Dymek | Proximality of multidimensional B-free systems[END_REF][START_REF] Cellarosi | Ergodic properties of k-free integers in number fields[END_REF]).

Furthermore, it is known that ergodic measures are dense for hereditary B-free shifts by [START_REF] Kułaga-Przymus | Hereditary subshifts whose simplex of invariant measures is Poulsen[END_REF], but a proof of this fact is a consequence of a non-trivial reasoning presented in [START_REF] Kułaga-Przymus | On invariant measures for B-free systems[END_REF] and [START_REF] Dymek | B-free sets and dynamics[END_REF] (more precisely, in [START_REF] Kułaga-Przymus | On invariant measures for B-free systems[END_REF] the analysis of invariant measures was performed under some additional technical assumptions on the set B and it was later extended to the general case in [START_REF] Dymek | B-free sets and dynamics[END_REF]). We extend the main result of [START_REF] Kułaga-Przymus | Hereditary subshifts whose simplex of invariant measures is Poulsen[END_REF] in two directions: we add entropy to the picture and broaden the class of shift spaces for which this result holds (see Remark 37). Our proof is independent of [START_REF] Kułaga-Przymus | On invariant measures for B-free systems[END_REF][START_REF] Kułaga-Przymus | Hereditary subshifts whose simplex of invariant measures is Poulsen[END_REF], and [START_REF] Dymek | B-free sets and dynamics[END_REF]. As a matter of fact our methods lead to new, often shorter proofs, of many results from [START_REF] Kułaga-Przymus | On invariant measures for B-free systems[END_REF][START_REF] Kułaga-Przymus | Hereditary subshifts whose simplex of invariant measures is Poulsen[END_REF], and [START_REF] Dymek | B-free sets and dynamics[END_REF]. Furthermore, our methods can be adapted to shift spaces with an action of Z d for d ≥ 2 or a countable amenable residually finite group. This will be a subject of our future study (forthcoming paper).

The idea of using dM approximation was independently considered by Dan Thompson [START_REF] Thompson | A 'horseshoe' theorem in symbolic dynamics via single sequence techniques[END_REF], who used it in the setting of [START_REF] Climenhaga | Intrinsic ergodicity beyond specification: β-shifts, S-gap shifts, and their factors[END_REF].

This paper is organised as follows: in the next section we recall some notation and basic definitions. In Section 2 we discuss Hausdorff (pseudo)metrics dH and dH M induced by d and dM . Section 3 contains the definition and characterisation of d-approachability. In Section 4 we study consequences of dH convergence of shift spaces and dH M convergence of simplices of invariant measures. The last three sections contain applications and examples illustrating our approach. In Section 5 we show that our results contain previous results on entropy-density of shift spaces with a variant of the specification property. Section 6 discusses approximation schemes and entropy density of B-free shifts and their hereditary closures. In Section 7 we show that topologically mixing S-gap shifts are another example of a shift space allowing for a natural dH -approximation by a sequence of mixing shifts of finite type.

1. DEFINITIONS 1.1. General. We let N denote the set of positive integers and N 0 = N ∪ {0}.

Shift spaces and languages.

Let A be a finite set, henceforth referred to as the alphabet. The full shift A ∞ is the set of all A -valued infinite sequences indexed by nonnegative integers. We endow A ∞ with the product topology coming from the discrete topology on A . A metric on A ∞ compatible with the product topology is

ρ(x, y) = 0, if x = y, 2 -min{j:xj =yj } , otherwise.
We consider A ∞ a dynamical system under the action of the shift transformation σ : A ∞ → A ∞ , where σ(x) j = x j+1 for every x = (x i ) ∞ i=0 ∈ A ∞ and j ≥ 0. A shift space over A is a nonempty, closed, and shift invariant subset of A ∞ . An block or a word over A is a finite sequence of symbols from A . The length of a word w over A is denoted by |w|. The concatenation of words u and v is denoted simply as uv. We agree that the empty word has length 0. Given x ∈ X and i, j ∈ N 0 with i < j we set x [i,j) to be the word w = w 1 . . . w n ∈ A n such that n = j -i and x i+k-1 = w k for all 1 ≤ k ≤ n. We say that a word ω ∈ A n appears in a shift space X ⊆ A ∞ if there exists some x ∈ X and ∈ N 0 such that ω = x [ , +n) . For n ∈ N, we write B n (X) ⊆ A n for the set of blocks of length n appearing in X. The language of a shift space X ⊆ A ∞ is the set B(X) of finite words over A that appear in X. A shift space X is transitive if for every words u, w ∈ B(X) there is a word v such that uvw ∈ B(X). We say that a shift space X is topologically mixing if for every words u, w ∈ B(X) there is N ∈ N 0 such that for every n ≥ N there is a word v satisfying uvw ∈ B(X) and |v| = n.

1.3. Shifts of finite type. Recall that every family F of finite words over A determines the collection X F consisting of such sequences x = (x i ) ∞ i=0 ∈ A ∞ that no word from F appears in x is either empty or a shift space. Conversely, for every shift space X there is a family F of finite words such that X = X F . A shift space X is a shift of finite type if there exists a finite set F such that X = X F . 1.4. Ergodic properties of shift spaces. The set of all Borel probability measures on a shift space X is denoted by M(X). We equip M(X) with the weak * topology, which is known to be metrizable and compact. The set of shift invariant probability measures supported on a shift space X ⊆ A ∞ is denoted by M σ (X) and M e σ (X) stands for the set of ergodic σ-invariant measures on X.

A point x ∈ A ∞ is generic for an ergodic measure µ ∈ M e σ (A ∞ ), if for every continuous function f :

A ∞ → R the sequence 1 N N -1 j=0 f (σ n (x)) converges as N → ∞ to A ∞ f dµ.
Every ergodic measure has a generic point. Given µ ∈ M σ (A ∞ ), we let h(µ) denote the Kolmogorov-Sinai entropy of µ.

The ergodic measures are entropy dense if for every measure µ ∈ M σ (X), every neighborhood U of µ in M σ (X) and every ε > 0 there is an ergodic measure ν ∈ U with |h(ν) -h(µ)| < ε.

Let us point out that property of having entropy-dense ergodic measures is preserved by conjugacy. In other words, two conjugated dynamical systems either both have entropy dense ergodic measures or both do not have this property. 1.5. Hereditary shifts. Suppose that A is additionally equipped with a (total) order ≤. In particular, if A = {0, 1} then ≤ is the usual order. We equip A ∞ with coordinate-wise partial order also denoted by ≤. This means that for x, y ∈ A ∞ we have x ≤ y if and only if x i ≤ y i for all i ∈ N 0 . A shift space X ⊆ A ∞ is hereditary if for every x ∈ X and y ∈ A ∞ with y ≤ x we have y ∈ X. The hereditary closure X of X is the smallest hereditary shift containing X and consists of those y ∈ A ∞ for which there exists x ∈ X with y ≤ x. For more details, see [START_REF] Kwietniak | Topological entropy and distributional chaos in hereditary shifts with applications to spacing shifts and beta shifts[END_REF].

1.6. Sofic shifts. An (oriented) A -labelled (multi)graph G = (V, E, τ ) consists of a vertex set V , an edge set E and a label map τ : E → A . Each edge e ∈ E has two endpoints i(e), t(e) ∈ V , sometimes called, respectively, the initial vertex and the terminal vertex of e. A path of length (finite or infinite) in G is a sequence of edges e 1 , e 2 , . . . such that for each i < , the terminal vertex of e i is the same as the initial vertex of e i+1 , equivalently, a sequence of edges e 1 , e 2 , . . . is a path if there exists a sequence of vertices v 1 , v 2 , • • • ∈ V such that i(e i ) = v i and t(e i ) = v i+1 for every i < .

The shift X G ⊆ A ∞ corresponding to G consists of all sequences x ∈ A ∞ such that there exists an infinite path e 1 , e 2 , . . . on G such that x i = τ (e i+1 ) for each i ∈ N 0 . That is, the shift space X G is obtained by reading off labels of all infinite paths on G. A shift space is a sofic shift if there exists a labelled graph G such that X = X G . Then we also say that X is presented by G. Every shift of finite type is sofic. A sofic shift is transitive if and only if it can be presented by a (strongly) connected graph (each pair of vertices can be connected by a path), see [START_REF] Lind | An introduction to symbolic dynamics and coding[END_REF]Prop. 3.3.11]. A sofic shift is topologically mixing if and only if it can be presented by a (strongly) connected graph such that there are two closed paths on G of coprime lengths. 1.7. Markov approximations. We recall the topological approximation scheme of shift spaces by canonically defined sequences of shifts of finite type (see [START_REF] Chazottes | Finite type approximations of Gibbs measures on sofic subshifts[END_REF], [16, p. 111], or [START_REF] Kůrka | Topological and symbolic dynamics[END_REF] for more details).

Given a shift space X ⊆ A ∞ and a family F of finite words over A such that X = X F one sets F [n] to be the set of all words w in F with the length |w| ≤ n+1. Clearly, the shift space

X M n = X F [n]
is a shift of finite type whose language has the same words of length at most n + 1 as X. The shift space X M n is called the n-th (topological) Markov approximation of X or finite type approximation of order n to X.

Alternative description of X M n uses Rauzy graphs. The n-th Rauzy graph of X is a labelled graph

G n = (V n , E n , τ n ), where V n = B n (X), E n = B n+1 (X)
, and for w = w 0 w 1 . . . w n ∈ E n we set the initial vertex i(w) of w to be w 0 . . . w n-1 ∈ V n , the terminal vertex t(w) of w is w 1 . . . w n ∈ V n , and the label τ n (w) = w 0 ∈ A . The shift space X n presented by G n is clearly sofic, and by Proposition 3.62 in [START_REF] Kůrka | Topological and symbolic dynamics[END_REF], it satisfies B j (X n ) = B j (X) for j = 1, . . . , n + 1. It is now easy to see that X n is the n-th topological Markov approximations for X.

ALTERNATIVE (PSEUDO)METRICS FOR

A ∞ AND M σ (A ∞ ) AND THEIR HYPERSPACES 2.1. The functions d, d, and dM . We now discuss pre-and pseudometric d and d for the space A ∞ and Ornstein's metric dM on M σ (A ∞ ). These functions are not compatible with the natural topologies on A ∞ and M σ (A ∞ ), which are the product topology and the weak * topology, respectively. Note that usually dM is also denoted by d, but as we will juggle between d and dM a lot, we decided to change the notation to avoid confusion. We call dM the 'd-bar distance for measures' and its pseudometric version for A ∞ , we call 'pointwise d-bar'.

Given

x = (x n ) ∞ n=0 , y = (y n ) ∞ n=0 ∈ A ∞ we define d(x, y) = lim sup n→∞ 1 n |{0 ≤ j < n : x j = y j }|, d(x, y) = lim inf n→∞ 1 n |{0 ≤ j < n : x j = y j }|. The function d is only a premetric, that is, d is a real-valued, nonnegative, symmetric function on A ∞ × A ∞ vanishing on the diagonal {(x, y) ∈ A ∞ × A ∞ : x = y}.
It is easy to see that the triangle inequality fails for d on A ∞ . The function d is a pseudometric, that is, d is a premetric satisfying the triangle inequality and the

implication d(x, y) = 0 =⇒ x = y fails, so d is not a metric on A ∞ if A has at least two elements. Furthermore, d, d : A ∞ × A ∞ → [0, 1] are both shift invariant, that is, d(x, y) = d(σ(x), σ(y)) and d(x, y) = d(σ(x), σ(y)) for all x, y ∈ A ∞ .
The distance function dM is defined using joinings. We say that a measure λ on A ∞ × A ∞ is a joining of shift invariant measures µ and ν, if λ is σ × σ-invariant and µ and ν are the marginal measures for λ under the projection to the first, respectively the second, coordinate. By J(µ, ν) we denote the set of all joinings of µ and ν. It is a non-empty set because the product measure µ×ν is always a joining of µ and ν. We can now define dM distance on M σ (A ∞ ) as follows:

dM (µ, ν) = inf λ∈J(µ,ν) A ∞ ×A ∞ d 0 (x, y) dλ,
where d 0 (x, y) = 1 if x 0 = y 0 and d 0 (x, y) = 0 otherwise. It is well-known that the dM is a metric on M σ (A ∞ ) and the convergence in this metric implies weak * convergence. This metric was introduced by Don Ornstein (for more details, see [START_REF] Ornstein | Ergodic theory, randomness, and dynamical systems[END_REF]). Furthermore, the space M σ (A ∞ ) under the dM -metric is complete but not separable, in particular the space M σ (A ∞ ) endowed with dM is not compact. The space M e σ (A ∞ ) ⊆ M σ (A ∞ ) of ergodic measures is dM -closed, as are the spaces of strong-mixing and Bernoulli measures on

A ∞ . Entropy function µ → h(µ) is continuous on M σ (A ∞ ) under dM .
2.2. Hausdorffication of d, d, and dM . In order to introduce the notion of approximation of one shift with another, we extend the functions dM , d and d so that they make sense for pairs of subsets of A ∞ and M σ (A ∞ ) following the well-known construction of the Hausdorff metric.

In general, a Hausdorff premetric may be defined on the powerset of any bounded premetric (or pseudometric, or metric) space. If (Z, ρ) is a set equipped with a bounded premetric, then we define the Hausdorff premetric ρ H induced by ρ on the space of all nonempty subsets of Z. For a point z ∈ Z and nonempty A, B ⊆ Z, we put

ρ(z, B) = inf b∈B ρ(z, b), and ρ H (A, B) = max sup a∈A ρ(a, B), sup b∈B ρ(b, A) .
The function ρ H is a premetric, which becomes a pseudometric whenever Z is a bounded pseudometric space. Even if ρ is a bounded metric on Z, its Hausdorff counterpart induced on the powerset of Z might still be only a pseudometric. This is because for nonempty A, B ⊂ Z we have ρ(A, B) = ρ(A, B), where (•) is the closure operator naturally defined on the powerset of (Z, ρ). Nevertheless, if ρ is a bounded metric, then the Hausdorff pseudometric ρ H induced by ρ becomes a metric when restricted to the set CL(Z, ρ) of closed nonempty subsets of (Z, ρ). We apply these ideas to the metric space (M σ (A ∞ ), dM ), the pseudometric space (A ∞ , d), and the premetric space (A ∞ , d) obtaining a metric dH M on the space CL(M σ (A ∞ ), dM ) of nonempty closed subsets of (M σ (A ∞ ), dM ) together with a pseudometric dH and a premetric d H on the set of all nonempty subsets of A ∞ . Below, we discuss some properties of the convergence of sets with respect to the Hausdorff metric ρ H in case when (Z, ρ) is not necessarily compact bounded pseudometric space. In this setting some properties, well-known in the compact case, fail. For example, equivalent metrics, that is metrics ρ, ρ inducing the same topology on Z may induce non-homeomorphic spaces (CL(Z), ρ H ) and (CL(Z), ρH ).

The following propositions gathers some properties of the Hausdorff metric. Proofs can be found in the literature (see [24, §2.15]). Proposition 1. Let (Z, ρ) be a bounded metric space. If (Z, ρ) is a complete metric space, then so is (CL(Z), ρ H ).

It follows from Proposition 1 that the Hausdorff metric dH

M induced for CL(M σ (A ∞ )) by dM is complete. Therefore the usual Cauchy condition provides a criterion for convergence, but even if we know that

(M σ (X k )) ∞ k=1 converges in dM to some M ∈ CL(M σ (A ∞ ), dM ), it is not clear if there exists a shift space X ⊆ A ∞ such that M = M σ (X). Nevertheless, if X 1 ⊇ X 2 ⊇ . . ., then we can set X to be the intersection of all X n 's. Proposition 2. If (X n ) ∞ n=1 is a decreasing sequence of shift spaces over A , then X = ∞ n=1 X n is a nonempty shift space such that M σ (X) = ∞ n=1 M σ (X n ). Proof. Since X 1 ⊇ X 2 ⊇ . . . ⊇ X, we have M σ (X) = M σ ( ∞ n=1 X n ) ⊆ ∞ n=1 M σ (X n ). On the other hand, if µ ∈ ∞ n=1 M σ (X n ), then µ(X n ) = 1 for every n ≥ 1. There- fore µ(X) = 1. It follows that µ ∈ M σ (X). Lemma 3. If (X n ) ∞
n=1 is a decreasing sequence of shift spaces over A such that the sequence

(M σ (X n )) ∞ n=1 is dH M -Cauchy, then X = ∞ n=1 X n is a shift space such that dH M (M σ (X n ), M σ (X)) → 0 as n → ∞. Proof. It follows from Proposition 1 that (M σ (X k )) ∞ k=1 converges to some M ∈ CL(A ∞ , dM ) with respect to dH M .
Using Proposition 2 we can easily identify this limit with M σ (X).

d-APPROACHABILITY

In this section, we introduce d-approachable shift spaces which are limits of their own canonical finite type approximations not only in the 'usual' Hausdorff metric topology, but also in the topology given by dH -pseudometric. Definition 4. We say that a shift space

X ⊆ A ∞ is d-approachable if the sequence X M 1 , X M 2 , . . . of its Markov approximations of X satisfies dH (X M n , X) → 0 as n → ∞.
Clearly, every shift of finite type is d-approachable. More examples of d-approachable shift spaces will follow from the characterisation of chain-mixing d-approachable shift spaces by a notion we call d-shadowing. The d-shadowing property is closely related to the average shadowing property introduced by Blank [START_REF] Blank | Metric properties of ε-trajectories of dynamical systems with stochastic behaviour[END_REF] and discussed in more detail in [START_REF] Kulczycki | On almost specification and average shadowing properties[END_REF]. Actually, following the ideas presented in [START_REF] Kulczycki | On almost specification and average shadowing properties[END_REF], one can prove that a shift space X with the average shadowing property also has d-shadowing. Furthermore, for a surjective shift space X (that is, when σ(X) = X), d-shadowing implies the average shadowing property. We leave the details to an interested reader. We decided to use d-shadowing because it is much easier to use for symbolic system 1 and allows us to keep our paper self-contained by avoiding a very technical detour to topological dynamics. Definition 5. A shift space X has the d-shadowing property if for every ε > 0 there is N ∈ N such that for every sequence (w (j) ) ∞ j=1 of words in B(X) satisfying |w (j) | ≥ N for j = 1, 2, . . . there is x ∈ X such that setting x = w (1) w (2) w (3) . . . we have d(x, x ) < ε.

It is easy to see that d-shadowing implies d-approachability, but to prove the converse we need an additional assumption. We say that a shift space is chain transitive (respectively, chain mixing) if X M n is transitive (respectively, topologically mixing) for all but finitely many n's. For shift spaces this definition is equivalent to the usual one phrased in terms of δ-chains (see [START_REF] Kůrka | Topological and symbolic dynamics[END_REF]).

Our main result in this section characterises chain mixing d-approachable shift spaces. As mentioned above, this characterisation is a topological counterpart of the result saying that a totally ergodic shift invariant probability measure is Bernoulli if and only if its canonical k-step Markov approximations converge to µ with respect to dM . stated for continuous maps acting on compact metric spaces) definition of some properties (e.g. chain transitivity, chain mixing, specification and its variants), we will present equivalent definitions adapted to the symbolic dynamics setting. Theorem 6. For a shift space X ⊆ A ∞ the following conditions are equivalent:

(1) There exists a descending sequence (X n ) ∞ n=1 of mixing sofic shifts such that X = ∞ n=1 X n and dH (X, X n ) → 0 as n → ∞, (2) σ(X) = X and X has the d-shadowing property, (3) X is chain mixing and d-approachable.

As a consequence of Theorem 6 we obtain that a transitive, but not topologically mixing shift of finite type is an example of a d-approachable shift space which is not chain mixing, hence it does not have the d-shadowing property. In Example 11 we show that there are non-d-approachable transitive sofic shifts. It follows that condition 1 in Theorem 6 can not be relaxed.

The proof of the following lemma is straightforward. We will later generalise it in Section 5, see Lemma 22 there. Lemma 7. Every mixing sofic shift space has the d-shadowing property.

Proof. Recall that the condition saying that X is a mixing shift space implies that there exists k ≥ 0 such that for every two words u, w ∈ B(X) one can find2 a word v of length k such that uvw ∈ B(X). Fix ε > 0. Let N be such that k/N < ε. Let (w (j) ) ∞ j=1 be a sequence of words in B(X) satisfying |w (j) | ≥ N for j = 1, 2, . . .. For j = 1, 2, . . ., we set (j) = |w (j) | and let u (j) = w (j) 1 . . . w (j) (j)-k be the prefix of w (j) of length (j) -k. Using the above-mentioned property of mixing sofic shifts we can find a sequence (v (j) ) ∞ j=1 of words of length k such that

x = u (1) v (1) u (2) v (2) . . . u (n) v (n) . . .
belongs to X. We also have d(x, w (1) w (2) . . . w (n) . . .) ≤ k/N < ε.

The proof of the next lemma is adapted from the proof of [36, Lemma 25].

Lemma 8. If X ⊆ A ∞ is a shift space such that there exists a sequence (X n ) ∞ n=1 of shift spaces with the d-shadowing property such that X ⊆ X n for every n ∈ N and dH (X, X n ) → 0 as n → ∞, then X also has d-shadowing.

Proof. Fix ε > 0. Let N ∈ N be such that for every n ≥ N we have [START_REF] Abdalauoi | A dynamical point of view on the set of B-free integers[END_REF] dH (X,

X n ) < ε/2. Use d-shadowing of X N to find M ≥ 0 such that if y = w (1) w (2) w (3) . . . ∈ A ∞ satisfies w (j) ∈ B(X N ) and |w (j) | ≥ M for every j ∈ N then one can find x ∈ X N satisfying (2) d(x, y) < ε/2.
Since B(X) ⊆ B(X N ), we can apply (1) and ( 2) to y = w (1) w (2) w (3) . . . ∈ A ∞ satisfying w (j) ∈ B(X) and |w (j) | ≥ M for every j ∈ N. It follows that there is x ∈ X such that d(x, y) < ε.

The proof of the following lemma is adapted from the proof of [31, Lemma 3.1].

Lemma 9. If a shift space X ⊆ A ∞ has the d-shadowing property and σ(X) = X, then X is chain mixing.

Proof. Assume that σ(X) = X. Recall that X is chain mixing if and only if X × X is chain transitive. Note that it is enough to prove that X is chain transitive, because if X has d-shadowing and σ(X) = X, then the same holds for X × X. Fix n.

We will show that the Markov approximation X n is transitive, that is, for every u, w ∈ B n-1 (X) there is a word v such that every word of length n appearing in uvw belongs to B n (X). Fix 0 < ε < 1/(4n). Use d-shadowing to find N for that ε.

Set n 0 := max{N, n} and n j = 2 j n 0 for j ∈ N. For j ≥ 0 let w (2j) be any word in B(X) such that |w (2j) | = n 2j and u is the prefix of w (2j) and let w (2j+1) be any word in B(X) such that |w (2j+1) | = n 2j+1 and w is the suffix of w (2j+1) (the latter word exists because σ(X) = X). Thus for every j ∈ N 0 we have words u (2j) , v (2j+1) such that w (2j) = uu (2j) and w (2j+1) = v (2j+1) w.

Let y = w (0) w (1) w (2) . . .. Write ξ(0) = 0 and

ξ(k + 1) = |w (0) | + . . . + |w (k) |.
Therefore

y [ξ(2j),ξ(2j+1)) y [ξ(2j+1),ξ(2j+2)) = w (2j) w (2j+1) = uu (2j) v (2j+1) w.
By the d-shadowing property there is x ∈ X such that d(x, y) < ε. We claim that there exists j ≥ 0 such that for some ξ(2j) + n ≤ p < ξ(2j + 1) -n and ξ(2j + 1) ≤ q < ξ(2j + 2) -2n we have

x [p,p+n) = y [p,p+n) and x [q,q+n) = y [q,q+n) .

It follows that y

[ξ(2j)p) x [p,q+n) y [q+n,ξ(2j+2)) ∈ B(X n ).
If the claim is false, then easy computations show that d(x, y) ≥ ε, which would be a contradiction. This completes our proof.

Lemma 10. Every shift space with the d-shadowing property is d-approachable.

Proof. Let X be a shift space with the d-shadowing property. We need to show that dH (X M n , X) → 0 as n → ∞. Fix ε > 0. For this ε we choose N using the d-shadowing property. Let n ≥ N . Since X ⊆ X M n it is enough to check that if x ∈ X M n then one can find y ∈ X with d(x, y) < ε. Hence we fix x ∈ X M n and define the sequence w (j+1) = x [nj,n(j+1)) = x nj x nj+1 . . . x n(j+1)-1 for j = 0, 1, 2, . . .. Since for each k ≥ 1 we have w (k) ∈ B n (X), because B n (X n ) = B n (X), we can apply d-shadowing to find y ∈ X such that d(x, y) = d(w (1) w (2) w (3) . . . , y) < ε.

It follows dH (X M

n , X) < ε for n ≥ N as needed.

We finish this section with the proof of the characterisation theorem.

Proof of Theorem 6. (1) =⇒ (2) First, note that σ(X) = X because σ(X n ) = X n whenever X n is a mixing sofic shift and σ is finite-to-one. Note that for every n ∈ N the shift space X n has the d-shadowing property by Lemma 7. Then we apply Lemma 8. ( 2) =⇒ (3) It follows from Lemmas 10 and 9. (3) =⇒ (1) It is straightforward consequence of the fact that Markov approximations for a chain mixing shift space are mixing sofic shifts.

In the next section we will see that if a shift space X ⊆ A ∞ is d-approachable and chain transitive, then its ergodic measures are entropy-dense.

Example 11. We show that even very simple transitive sofic shift may have Markov approximations that are away in d. This example also shows that we cannot replace mixing sofic shifts in Theorem 6 by transitive sofic shifts.

The shift space X is defined as the set of all sequences x ∈ {0, 1} ∞ such that x ∈ X if and only if x 2i = 0 for every i ≥ 0 or x 2i+1 = 0 for every i ≥ 0. Clearly, X = X is an hereditary transitive sofic shift, which is not topologically mixing. Given k ∈ N, we define a periodic point

y (k) = y (k) 0 y (k) 1 . . . = ((10) k+1 0 2k+1 ) ∞ .
We note that y (k) ∈ X M 2k for every k ∈ N. By definition, for every k ∈ N and j > 0, the symbol 1 occurs 2j(k + 1) times in the block y (k) [0,2j(4k+3)) . These occurrences are evenly distributed among even and odd positions. Therefore for every x ∈ X = X and j ∈ N we have

d Ham (y (k) [0,2j(4k+3) x [0,2j(4k+3) ) ≥ j(k + 1) j(8k + 6) ≥ 1 8 ,
It follows immediately that for every k ∈ N we have

d(y (k) , x) ≥ 1 8 . Therefore for each k ∈ N it holds d H (X, X M 2k ) ≥ 1 8 ,
that is, X is an example of a non-d-approachable transitive sofic shift. In addition, since every point y (k) is generic for an ergodic measure ν (k) on X M 2k we can conclude that for each k ∈ N it holds

dH M (M σ (X), M σ (X M 2k )) ≥ 1 8 
.

It means that we can replace Markov approximation by the approximation by sofic shifts only if these sofic shift are mixing as in condition 1 of Theorem 6.

APPROXIMATION AND ENTROPY-DENSITY

In this section, we discuss approximation schemes of shift spaces related to pseudometric d and metric dM . Then we show that these approximation schemes allow for a transfer of entropy density.

Recall that a sequence of shift spaces (X n ) ∞ n=1 ⊆ A ∞ converges to a shift space X ⊆ A ∞ in the usual hyperspace topology if ρ H (X n , X) → 0 as n → ∞, where ρ H is the Hausdorff metric corresponding to any metric ρ compatible with the product topology on A ∞ . Similarly, we define the convergence in the usual hyperspace topology of M σ (A ∞ ), and we have that M σ (X n ) converges to M σ (X) as n → ∞ if D H (X n , X) → 0 as n → ∞, where D H is the Hausdorff metric corresponding to an arbitrary metric D compatible with the weak * topology on M σ (A ∞ ) (we can replace D by any other compatible metric).

We will consider four new ways in which a sequence of shift spaces (X n ) ∞ n=1 ⊆ A ∞ can approximate a shift space X ⊆ A ∞ . These ways are given by the following conditions

lim n→∞ dH M (M σ (X n ), M σ (X)) = 0, (3) 
lim n→∞ dH M (M e σ (X n ), M e σ (X)) = 0, (4) lim n→∞ d H (X n , X) = 0, (5) lim n→∞ dH (X n , X) = 0. ( 6 
)
Our aim is to show that (6) =⇒ (5) =⇒ ((4) ⇐⇒ (3)), and any of these modes of convergence allows us to infer entropy-density for X provided that entropy-density holds for X n for all n. We stress that our scheme does not require the approximation to be monotone, that is we do not require X 1 ⊇ X 2 ⊇ . . . and X = X n , although in practice it often is. Bearing in mind future applications, we also include a result (Corollary 17) dealing with monotone limits of shift spaces.

Our first main result states that dH M -convergence for simplices of invariant measures given by (3) preserves entropy-density. Theorem 12. Let (X k ) ∞ k=1 and X be shift spaces over

A such that dH M (M σ (X k ), M σ (X)) → 0 as k → ∞.
If ergodic measures are entropy-dense in M σ (X k ) for each k ∈ N, then ergodic measures are entropy-dense in M σ (X).

A key component of the proof of Theorem 12 is the fact that for every shift space X, we have the equality

dH M (M σ (X k ), M σ (X)) = dH M (M e σ (X k ), M e σ (X)
), which implies the equivalence (4) ⇐⇒ (3). This is established in the two following lemmas.

Lemma 13. Let Y ⊆ A ∞ be a shift space and let µ ∈ M e σ (A ∞ ) be an ergodic measure. Then dM (µ, M e σ (Y )) = dM (µ, M σ (Y )). Proof. It is enough to show that for every µ ∈ M e σ (A ∞ ) and ν ∈ M σ (Y ) there exists ν ∈ M e σ (Y ) such that dM (µ, ν ) ≤ dM (µ, ν). Let λ be a joining which realises the dM distance between µ ∈ M e σ (A ∞ ) and ν ∈ M σ (Y ), i.e.,

dM (µ, ν) = A ∞ ×Y d 0 (x, y) d λ(x, y).
Let ξ be the ergodic decomposition of λ. We have

A ∞ ×Y d 0 (x, y) d λ(x, y) = M e σ×σ (A ∞ ×Y ) A ∞ ×Y d 0 (x, y) dλ(x, y) d ξ(λ).
Let E be the set of all λ ∈ M e σ×σ (A ∞ × Y ) such that

A ∞ ×Y d 0 (x, y) dλ(x, y) ≤ dM (µ, ν).
It is clear that E satisfies ξ(E) > 0. Additionally, since µ is ergodic, for ξ-a.e. λ ∈ M e σ×σ (A ∞ × Y ) the push forward of λ through the projection onto the first coordinate is µ. Hence, there exists λ ∈ M e σ×σ (A ∞ ×Y ) such that (π A ∞ ) * (λ ) = µ and

A ∞ ×Y d 0 (x, y) dλ (x, y) ≤ dM (µ, ν). Let ν = (π Y ) * (λ ).
Then ν is an ergodic measure supported on Y and λ is a joining of µ and ν . Consequently, dM (µ, ν ) ≤ dM (µ, ν). Since M e σ (X) ⊂ M σ (X) we have sup

µ∈M e σ (X) dM (µ, M σ (Y )) ≤ sup µ∈Mσ(X) dM (µ, M σ (Y )),
and the same inequality with the roles of X and Y reversed. These inequalities, together with [START_REF] Blank | Metric properties of ε-trajectories of dynamical systems with stochastic behaviour[END_REF] give us

dH (M e σ (X), M e σ (Y )) = max sup µ∈M e σ (X) dM (µ, M σ (Y )), sup ν∈M e σ (Y ) dM (ν, M σ (X)) ≤ dH M (M σ (X), M σ (Y )). It remains to prove that for every µ ∈ M σ (X), there exists ν ∈ M σ (Y ) such that dM (µ, ν) ≤ dH M (M e σ (X), M e σ (Y ))
. This is sufficient, since the roles of X and Y are interchangeable meaning that

dH M (M σ (X), M σ (Y )) ≤ dH (M e σ (X), M e σ (Y )).
Recall that finite convex combinations of ergodic measures are weak * dense in M σ (X). Therefore we have

µ = lim n→∞ j∈I(n) α (n) j µ (n) j ,
where I(n) is a finite set for every n ∈ N, furthermore, for a fixed n and for each j ∈ I(n) we have µ

(n) j ∈ M e σ (X), α (n) j 
> 0, and j∈I(n) α

(n) j = 1. By our assumption, to every µ

(n) j corresponds an ergodic measure ν (n) j
∈ M e σ (Y ) and a joining λ

(n) j ∈ J(µ (n) j , ν (n) j ) with (8) dM (µ (n) j , ν (n) j ) = X×Y d 0 (x, y) dλ (n) j (x, y) ≤ dM (M e σ (X), M e σ (Y )).
For each n ∈ N define

λ (n) = j∈I(n) α (n) j λ (n) j .
Using compactness of M σ×σ (X × Y ) we may assume that the sequence (λ (n) ) n∈N weak * converges to some λ ∈ M σ×σ (X × Y ). By the definition of weak * topology, it follows immediately that ( 9)

X×Y d 0 (x, y) d λ(x, y) = lim n→∞ X×Y d 0 (x, y) dλ (n) (x, y).
It is easy to see that λ is a joining of µ with ν = (π Y ) * ( λ) ∈ M σ (Y ). Definition of λ (n) yields that for every n ∈ N we have ( 10)

X×Y d 0 (x, y) dλ (n) (x, y) = j∈I(n) α (n) j X×Y d 0 (x, y)λ (n) j (x, y).
Combining ( 8), [START_REF] Cellarosi | Ergodic properties of k-free integers in number fields[END_REF], and (10) we obtain

X×Y d 0 (x, y) d λ(x, y) ≤ dH M (M e σ (X), M e σ (Y )). Hence, for each µ ∈ M σ (X) we have ν ∈ M σ (Y ) such that dM (µ, ν) ≤ dH M (M e σ (X), M e σ (Y )).
Now, having Lemma 14 at our disposal, we proceed with the proof of Theorem 12.

Proof of Theorem 12. Fix ε > 0 and ν ∈ M σ (X). Let D be any metric compatible with the weak * topology on M σ (A ∞ ). Since the entropy function µ → h(µ) is uniformly continuous on M σ (A ∞ ) endowed with the metric dM [START_REF] Rudolph | Fundamentals of measurable dynamics: Ergodic theory on Lebesgue spaces[END_REF], we can find

δ 1 > 0 such that |h(µ) -h(µ )| < ε/3 for any µ, µ ∈ M σ (A ∞ ) with d(µ, µ ) ≤ δ 1 .
By [START_REF] Rudolph | Fundamentals of measurable dynamics: Ergodic theory on Lebesgue spaces[END_REF]Theorem 7.7], there exists δ 2 > 0 such that D(µ, µ ) < ε/3 for any µ, µ ∈ M σ (A ∞ ) with dM (µ, µ ) ≤ δ 2 . Put δ = min(δ 1 , δ 2 ) and fix k ∈ N such that (cf. Lemma 14) [START_REF] Climenhaga | Intrinsic ergodicity beyond specification: β-shifts, S-gap shifts, and their factors[END_REF] dH

M (M σ (X k ), M σ (X)) = dH M (M e σ (X k ), M e σ (X)) < δ. By (11), there exists µ ∈ M σ (X k ) such that dM (ν, µ) < δ, whence (12) D(ν, µ) < ε/3 and |h(ν) -h(µ)| < ε/3. Since M e σ (X k ) is entropy-dense in M σ (X k ), there exists µ ∈ M e σ (X k ) that satisfies (13) D(µ, µ ) < ε/3 and |h(µ) -h(µ )| < ε/3.
By another application of ( 11), there exists ν ∈ M e σ (X) such that dM (ν , µ ) < δ, so ( 14)

D(ν , µ ) < ε/3 and |h(ν ) -h(µ )| < ε/3.
Combining ( 12), [START_REF] Comman | Criteria for the density of the graph of the entropy map restricted to ergodic states[END_REF], and ( 14) we conclude that

D(ν, ν ) < ε and |h(ν) -h(ν )| < ε.
Note that Theorem 12 only transfers entropy density from sequences of simplices to their dH M -limits. It turns out that very useful bounds for dH M are provided by d H and dH . These bounds yield immediately the implications ( 6) =⇒ (5) =⇒ (3). This allows us to work directly with shift spaces bypassing the need of determining their simplices of invariant measures.

Proposition 15. If X and Y are shift spaces over

A then dH M (M e σ (X), M e σ (Y )) ≤ d H (X, Y ) ≤ dH (X, Y ). Proof.
The second inequality is obvious. We turn to the proof of the first one. Let µ ∈ M e σ (X) and fix ∆ > d H (X, Y ). Pick a µ-generic point x. By our assumptions, there is a point ȳ ∈ Y such that d(x, ȳ) < ∆. Let (n k ) k≥1 be a strictly increasing sequence of integers such that

d(x, ȳ) = lim k→∞ 1 n k |{0 ≤ j < n k : xj = ȳj }| < ∆.
Passing to a subsequence if necessary, we assume that the point

(x, ȳ) ∈ X × Y generates a measure λ ∈ M σ×σ (X × Y ), that is, the sequence of measures λk = 1 n k n k -1 j=0 δ (σ×σ) j (x,ȳ) weak * converges to λ as k → ∞. Let ν = (π Y ) * ( λ) ∈ M σ (Y ).
Then λ is a joining of µ and ν. It follows from Lemma 14 that

dM (µ, M e σ (Y )) = dM (µ, M σ (Y )) ≤ dM (µ, ν) ≤ X×Y d 0 (x, y) d λ(x, y) = lim k→∞ X×Y d 0 (x, y) d λk (x, y) = d(x, ȳ) < ∆.
Since ∆ > d(X, Y ) and µ ∈ M e σ (X) were arbitrary we have sup

µ∈M e σ (X) dM (µ, M e σ (Y )) ≤ d H (X, Y ).
Noting that the roles of X and Y are interchangeable, we see that

dH M (M e σ (X), M e σ (Y )) = max sup µ∈M e σ (X) dM (µ, M e σ (Y )), sup ν∈M e σ (Y ) dM (ν, M e σ (X)) ≤ d H (X, Y ).
In practice, we will not apply Theorem 12 directly, instead we will invoke one of the corollaries obtained from Theorem 12 and Proposition 15. The first one is immediate.

Corollary 16. Let (X n ) ∞
n=1 be a sequence of shift spaces over A with entropy-density such that for a shift space X ⊆ A ∞ we have

lim n→∞ d H (X n , X) = 0.

Then dH

M (M e σ (X n ), M e σ (X)) → 0 as n → ∞ and the ergodic measures are entropydense for X.

Before stating the second practical corollary to Theorem 12, note that if (X n ) ∞ n=1 is a sequence of shift spaces satisfying the Cauchy condition with respect to dH or d H , then using Proposition 15 we get that M σ (X n ) ∞ n=1 satisfies the Cauchy condition for dH M , so the latter sequence converges in dH M to some nonempty compact subset of M σ (A ∞ ). Yet, it is not easy to identify the limit with M σ (X) for some shift space X, unless X 1 ⊇ X 2 ⊇ . . .. Under this additional assumption the following result is immediately follows from Lemma 3 and Corollary 16.

Corollary 17. Let (X n ) ∞ n=1 be a decreasing sequence of shift spaces over A such that ∞ n=1 d H (X n , X n+1 ) < ∞, Then X = ∞ n=1
X n is a shift space such that dH M (M e σ (X n ), M e σ (X)) → 0 as n → ∞. Furthermore, if ergodic measures are entropy dense for X n and each n ≥ 1, then entropy-density holds also for X.

We also find the following observation useful. We stress that neither d nor d H obey the triangle inequality, so the assumptions of Corollary 18 do not guarantee that d H (X, Y ) = 0.

Corollary 18. Suppose that (X k ) ∞ k=1 and X, Y are shift spaces over A such that d H (X k , X) and d H (X k , Y ) tend to zero as k → ∞. Then M σ (X) = M σ (Y ).
Proof. It is a straightforward consequence of Proposition 15.

In order to apply Theorem 12 or one of its Corollaries we still need to single out a class of shift spaces for which entropy-density is easily verifiable and then describe a family of shift spaces X such that for some sequence (X k ) ∞ k=1 of shift spaces in the aforementioned class of shift spaces we have dH M (M e σ (X k ), M e σ (X)) → 0 as k → ∞. A class of shifts where entropy-density is easy to demonstrate is the family of transitive sofic shifts. The result is known even in a greater generality, see [START_REF] Eizenberg | Large deviations for Z d -actions[END_REF][START_REF] Pfister | Large deviations estimates for dynamical systems without the specification property. Applications to the β-shifts[END_REF]. The proofs given in [START_REF] Eizenberg | Large deviations for Z d -actions[END_REF][START_REF] Pfister | Large deviations estimates for dynamical systems without the specification property. Applications to the β-shifts[END_REF] simplify in the special case needed here (cf. proof of Theorem 7.12 in [START_REF] Rudolph | Fundamentals of measurable dynamics: Ergodic theory on Lebesgue spaces[END_REF]).

Proposition 19. Every transitive sofic shift space over a finite alphabet has entropydense set of ergodic measures.

In applications, we will use either Corollary 16 or Corollary 17 together with Proposition 19. For further reference we formulate our observation as a proposition.

Corollary 20. Let (X k ) ∞ k=1 be a sequence of transitive sofic shifts over A . If X is a shift space over A such that d H (X k , X) → 0 as k → ∞ then ergodic measures are entropy-dense in M σ (X).

As the first application of Corollary 20 we may now prove entropy-density of all d-approachable and chain transitive shift-spaces.

Proposition 21. If a shift space X ⊆ A ∞ is d-approachable and chain transitive, then its ergodic measures are entropy-dense.

Proof. Apply Corollary 20 with X k = X M k .

d-APPROACHABILITY AND SPECIFICATION

We prove that shift spaces satisfying popular variants of the specification property (specification and almost specification) are d-approachable. Note that the definitions below are adapted to the symbolic setting. These formulations are equivalent, but slightly different than the ones usually used for general compact dynamical systems. For more background on the specification property and its relatives we refer the reader to the survey paper [START_REF] Kwietniak | A panorama of specification-like properties and their consequences[END_REF].

A shift space X ∈ A ∞ has the specification property if there is k ∈ N such that for any words u, w ∈ B(X) one can find a word v of length k such that uvw ∈ B(X). A shift space X has the almost specification property if there is a mistake function g : N → N, which is a nondecreasing function with g(n)/n → 0 as n → ∞ and such that for any words u, w ∈ B(X) there are words u , w satisfying |u| = |u |, |v| = |v |, d Ham (u, u ) ≤ g(|u|), and d Ham (w, w ) ≤ g(|w|), such that u w ∈ B(X).

Here and elsewhere, d Ham stands for the normalised Hamming distance, that is

d Ham (u, w) = 1 n |{1 ≤ j ≤ n : u j = w j }|,
where n = |u| = |w|.

A prototype for the almost specification property was the g-almost product property introduced in the context of general (not-necessarily symbolic) dynamical systems by Pfister and Sullivan in [START_REF] Pfister | On the topological entropy of saturated sets[END_REF]. Later, Thompson [START_REF] Thompson | Irregular sets, the β-transformation and the almost specification property[END_REF] proposed to slightly modify this notion and renamed it the almost specification property. We follow Thompson, hence our almost specification property is logically weaker (less restrictive) than the notion introduced by Pfister and Sullivan. The standard examples of shift spaces with the almost specification property are β-shifts (see [START_REF] Pfister | Large deviations estimates for dynamical systems without the specification property. Applications to the β-shifts[END_REF]). For shift spaces it is easy to see that the specification property implies almost specification. For a generic β > 1 the β-shift X β is an example of a shift space with almost specification but without specification (see [START_REF] Schmeling | Symbolic dynamics for β-shifts and self-normal numbers[END_REF]).

Both specification properties defined above are known to imply entropy-density. For shifts with the specification property it was first proved in [START_REF] Eizenberg | Large deviations for Z d -actions[END_REF]. The almost specification property implies entropy density because it implies the approximate product property, and the latter implies entropy-density by Theorem 2.1 of [START_REF] Pfister | Large deviations estimates for dynamical systems without the specification property. Applications to the β-shifts[END_REF].

It is also easy to see that each of the specification properties considered here implies the d-shadowing property (actually, the proof of Lemma 7 applies almost verbatim).

Lemma 22. For a shift space X ⊆ A ∞ specification implies almost specification. If a shift space X ⊆ A ∞ has the almost specification property, then it has also the d-shadowing property.

By Theorem 6, every shift space X with the almost specification property such that σ(X) = X is d-approachable. Unfortunately, this the latter condition (i.e., surjectivity) is not necessarily satisifed by a shift space with almost specification. For example, the shift space X = {0 ∞ , 10 ∞ } ⊆ {0, 1} ∞ has the almost specification property, but σ(X) = X. Therefore we need to assume σ(X) = X in our next result.

Proposition 23. Let X ⊆ A ∞ be a shift space with the almost specification property. If σ(X) = X, then X is d-approachable and chain mixing. Proof. By Lemma 22 X has the d-shadowing property. Hence X satisfies condition 2 of Theorem 6, so we conclude that X is d-approachable.

Remark 24. One may wonder if d-shadowing or d-approachability implies uniqueness of the measure of maximal entropy. It follows from Proposition 23 and examples of surjective shift spaces with the almost specification property and multiple measures of maximal entropy presented in [START_REF] Kwietniak | On entropy of dynamical systems with almost specification[END_REF] and [START_REF] Pavlov | On intrinsic ergodicity and weakenings of the specification property[END_REF] that this is not the case.

We can now show that the entropy-density results from [START_REF] Eizenberg | Large deviations for Z d -actions[END_REF][START_REF] Pfister | Large deviations estimates for dynamical systems without the specification property. Applications to the β-shifts[END_REF] are simple consequences of entropy-density of transitive sofic shifts combined with d-approachability.

Corollary 25. If X ⊆ A ∞ is a shift space with the almost specification property, then X has entropy-dense set of ergodic measures.

Proof. Let X + be the measure-center of X, that is,

X + = X \ {U ⊆ A ∞ : U open and µ(U ) = 0 for every µ ∈ M σ (X)}.
Clearly, M σ (X) = M σ (X + ). Furthermore, a shift space X has the almost specification property if and only if X + does (see [START_REF] Wu | On various definitions of shadowing with average error in tracing[END_REF]Theorem 6.7] and [START_REF] Kulczycki | On almost specification and average shadowing properties[END_REF]Theorem 5.1]). To finish the proof note that σ(X + ) = X + because recurrent points are dense in X + by the Poincaré Recurrence Theorem.

ENTROPY DENSITY OF B-FREE SHIFTS

In this section, we demonstrate the utility of our approach by showing that for every B-free shift X B , its hereditary closure XB has entropy-dense set of ergodic measures. Since it is quite common that X B = XB , we obtain many examples of entropy-dense B-free shifts. In fact, we show more, namely that the invariant measures on XB are also the space of shift-invariant measures on a potentially larger shift space X * B . Throughout this section we work with the alphabet A = {0, 1}. Recall that the hereditary closure of a shift space X ⊆ {0, 1} ∞ is defined as

X = {y ∈ {0, 1} ∞ | ∃x ∈ X y ≤ x},
where the order ≤ on {0, 1} ∞ is defined coordinatewise, meaning that y ≤ x if y i ≤ x i for all i ∈ N 0 . A shift space is hereditary if it coincides with its own hereditary closure. Given a set B ⊆ N, we say that a positive integer number is B-free if it is not a multiple of any of the member of B. The set of all B-free numbers is denoted by F B ⊆ N 0 , that is,

F B = N 0 \ b∈B bN 0 .
We The characteristic sequence of F B is denoted by η B := 1 F B , and we think of it as of an element of the full-shift {0, 1} ∞ . The orbit closure X B ⊆ {0, 1} ∞ of η B is called the B-free shift. Given an enumeration of B = {b 1 , b 2 , . . . , } with b i < b j for i < j and k ∈ N we let B|k = {b 1 , . . . , b k } denote the set of the k smallest elements of B and let F B|k ⊆ N 0 stand for the set B|k-free integers. Let us write η B|k ∈ {0, 1} ∞ for the characteristic function of F B|k . Note that η B|k is a periodic point in {0, 1} ∞ hence the B|k-free shift X B|k is just the orbit of η B|k . We clearly have F B ⊆ F B|k , hence η B ≤ η B|k and XB ⊆ XB|k . It also turns out that for every k ∈ N the hereditary shifts XB|k are transitive and sofic. This was first noticed in [START_REF] Dymek | B-free sets and dynamics[END_REF] (transitivity in Proposition 3.17 and soficity in §3.4.1). We provide an independent proof of a slightly more general fact. Proposition 26. Let x ∈ {0, 1} ∞ be such that σ n (x) = x for some n ≥ 1. If X = {σ j (x) : j = 0, 1, . . . , n -1} is the orbit of x, then its hereditary closure X is a transitive sofic shift. Furthermore, X = {y ∈ {0, 1} ∞ : y ≤ σ j (x) for some 0 ≤ j < n}. If σ(x) = x, then X is not mixing.

Proof. It is enough to notice that X is presented by a labelled graph with vertices denoted v 0 , v 1 , . . . , v n-1 and edges and their labels defined as follows: for each 0 ≤ j < n we put one edge from v j to v j+1 mod n labeled with 0 and in case that x j = 1 we add one more edge labelled with 0.

A key fact about B-free integers which allows our argument to work is that the periodic sets F B|k approximate F B with respect to the premetric d. This is a consequence of a classical result of Davenport and Erdős.

Theorem 27 (Davenport-Erdős, see [START_REF] Davenport | On sequences of positive integers[END_REF][START_REF] Davenport | On sequences of positive integers[END_REF]).

Let B = {b 1 , b 2 , . . . } ⊆ N. Then d(F B|k \ F B ) → 0 as k → ∞.
Observing that d(F B|k \ F B ) = d(η B|k , η B ) we see that the characteristic function η B is the d-limit of a sequence of periodic points η B|k . Furthermore, we can reformulate Davenport-Erdős theorem in terms of the premetric d H .

Corollary 28. Let

B = {b 1 , b 2 , . . . } ⊆ N. Then d H ( XB|k , XB ) → 0 as k → ∞. Proof. Fix k ∈ N. We claim that d H ( XB|k , XB ) ≤ d(η B|k , η B ).
Since XB ⊆ XB|k it is enough to show that for every x ∈ XB|k there is y ∈ XB satisfying d(x, y) ≤ d(η B|k , η B ). To this end, take x ∈ XB|k . By Proposition 26 there exists m ≥ 0 such that σ m (η B|k ) ≥ x coordinatewise. Consider y ∈ {0, 1} ∞ defined by the formula

y i = x i if (η B|k ) i+m = (η B ) i+m , 0 otherwise, i.e. if (η B|k ) i+m = 1 = 0 = (η B ) i+m .
We immediately see that y ≤ σ m (η B ) coordinatewise, hence y ∈ XB . It is also clear

that d(x, y) ≤ d(η B|k , η B ) = d(F B|k \ F B ). We use Davenport-Erdős theorem to conclude that d H ( XB|k , XB ) → 0 as k → ∞.
Before we state our main result regarding B-free shifts, let us first discuss some technical issues caused by the fact that the "d H -approximation" appearing in [START_REF] Bergelson | Rationally almost periodic sequences, polynomial multiple recurrence and symbolic dynamics[END_REF] and Corollary 28 does not uniquely determine its "limit". On the other hand, we claim that x / ∈ XB . For the sake of contradiction, suppose that x ∈ XB . Since XB is finite, there exists m ∈ N 0 such that x ≤ σ m (η B ) coordinatewise. Since n ∈ F B for n ≥ l and l -1 ∈ A, it follows that m = 0. However, p ∈ A while p ∈ F B so m = 0, which is the sought contradiction.

Theorem 33. Let B ⊆ N. Then ergodic measures are entropy-dense for XB and

M σ ( XB ) = M σ ( X * B ) = ∞ k=1 M σ ( XB|k ).
Proof. The second equality is a consequence of Proposition 2 and Lemma 30. Fix k ∈ N. We have

XB ⊆ X * B ⊆ XB|k . It follows that we have d( XB|k , X * B ) ≤ d( XB|k , XB ).
In particular, by Corollary 28 all "distances" above tend to 0 as k → ∞ and M σ ( XB ) = M σ ( X * B ) by Corollary 18. We finish the proof applying Corollary 20.

Example 34. Note that for XB we have only a d H -approximation by transitive sofic shifts, which are not mixing. It raises a question, whether X B or XB can be d-approachable. Note that the shift space in Example 11 can be equivalently defined as XB , where B = {2} showing that hereditary closures of some B-free shifts are non-d-approachable . We will extended this example and prove that there exists an infinite set B such that XB is not d-approachable. Let b 1 = 2 and pick b

2 , b 3 , . . . such that (16) ∞ k=2 1 b k < 1/32.
Note that [START_REF] Denker | Ergodic theory on compact spaces[END_REF] ensures that dH ( X{2} , XB ) < 1/32. In particular, for n large enough, there is a word u ∈ B( XB ) with |u| = 2n such that d Ham ((01) n , u) < 1/4. In particular, at least half among the even entries in u are occupied by 1. In other words,

|{1 ≤ j ≤ n : u 2j = 1}| ≥ 1 2 n.
By heredity of XB , the periodic point y = (u0 2n-1 ) ∞ belongs to ( XB ) M 2n . Reasoning as in Example 11 we obtain d(y, x) ≥ 1/16 for every x ∈ X{2} . It implies that dH (( XB ) M 2n , X{2} ) ≥ 1/16 yielding dH (( XB ) M 2n , XB ) > 1/32, for n large enough. So the Markov approximations are d-far from XB . Note that we can choose B that consists of pairwise prime numbers and still satisfies [START_REF] Denker | Ergodic theory on compact spaces[END_REF]. For such a set B we have XB = X B and the B-free shift X B is not d-approachable.

So far we have discussed only the hereditary closure XB of X B . In general, X B does not need to be hereditary, as shown by the example B = N ≥3 where X B is the (finite) orbit of the point 011000 . . . and hence does not contain the point 01000 . . .. Nevertheless, for many examples of the sets F B studied in the literature the associated B-free shift turns out to be hereditary (e.g. the squarefree shift or shifts associated with abundant numbers, see [START_REF] Dymek | B-free sets and dynamics[END_REF]). For the record, we note a version of Theorem 33 for these shifts. But first, note that every hereditary shift contains the fixed point 0 ∞ , and since every B-free shift has a unique minimal subsystem (by Theorem A in [START_REF] Dymek | B-free sets and dynamics[END_REF]), the set {0 ∞ } must be the unique minimal subset for a hereditary B-free shift. In other words, an hereditary Bfree shift must be proximal. For B-free shifts proximality is equivalent to the fact that the set B contains an infinite pairwise co-prime subset. Therefore hoping for X B = XB we have to assume the latter condition. Proof. By Theorem C in [START_REF] Dymek | B-free sets and dynamics[END_REF], for every B ⊆ N there is a unique taut B ⊆ N such that XB ⊆ XB and M σ ( XB ) = M σ ( XB ). Therefore we may assume that B is taut and proximal. Then we use a recent result of Keller [START_REF] Keller | Generalized heredity in B-free systems[END_REF]Corollary 2], who complemented some results from [START_REF] Dymek | B-free sets and dynamics[END_REF] by showing that if B is taut and X B is proximal, then X B is hereditary, that is X B = XB . We finish the proof by applying Theorem 33.

Remark 36. Note that M σ (X B ) may be trivial, that is, its unique element may be the Dirac measure concentrated on the fixed point 0 ∞ . This is the case when B is Behrend (see [18, p. 5437]).

Remark 37. Note that Theorem 33 remains true if we replace XB by any shift space which is the hereditary closure of the orbit closure of a characteristic function of a set A ⊆ N 0 such that there exists a sequence of periodic sets (A k ) ∞ k=1 satisfying A ⊆ A k for every k ∈ N, d(A k , A) → 0 (k → ∞).

Such shift spaces have been already considered in the literature [START_REF] Kulczycki | Entropy of subordinate shift spaces[END_REF][START_REF] Kwietniak | Generic points for dynamical systems with average shadowing[END_REF]. A closely related notion of a rational set (a subset of N whose characteristic function can be d-approximated by periodic characteristic functions) also attracted attention, see [START_REF] Bergelson | Squarefree numbers, IP sets and ergodic theory[END_REF][START_REF] Bergelson | Rationally almost periodic sequences, polynomial multiple recurrence and symbolic dynamics[END_REF][START_REF] Deka | Some properties of regular and rational sets[END_REF].

INNER d-APPROACHABILITY

So far we have considered shift spaces, which are approximated from the outside, that is, approximating subshifts are not contained in the approximated shift space. Inspired by an idea of approximation given by Dan Thompson in his unpublished manuscript [START_REF] Thompson | A 'horseshoe' theorem in symbolic dynamics via single sequence techniques[END_REF] we are going to show that every topologically mixing S-gap shift is approximated in the dH sense by a sequence of shift spaces of finite type contained in X S . We call this property inner d-approachability.

We say that a shift space X ⊆ A ∞ is inner d-approachable if it contains a sequence (X n ) ∞ n=1 of mixing shifts of finite type such that ∞ n=1

X n = X and lim n→∞ dH (X n , X) = 0.

Given S ⊆ N, we write S = {n 1 , n 2 , . . .} with n i < n i+1 for i < |S|, where |S| stands for the cardinality of S (|S| = ∞ if S is infinite). The S-gap shift X S is a shift space over {0, 1} consisting of all sequences such that the number of 0s between any two successive occurrences of the symbol 1 belongs to S. Equivalently, {10 n 1 : n / ∈ S} is the collection of forbidden sequences for X S . By [START_REF] Jung | On the existence of open and bi-continuing codes[END_REF]Example 3.4], X S is topologically mixing if and only if gcd{n + 1 : n ∈ S} = 1, and topologically mixing X S has the specification property if and only if sup i |n i -n i+1 | < ∞. Note that all sequences in X S are labels of infinite paths in of the labelled directed graph G S = (V, E S ), where V = {v j : 0 ≤ j ≤ |S|} is the set of vertices and there is an edge v i → v j in E S if and only if j = i + 1 or i ∈ S and j = 0. We label each edge v i → v i+1 with 0 and all other edges with 1.

Proposition 38. Every mixing S-gap shift is inner d-approachable.

Proof. Assume that S = {s 1 , s 2 , . . .} is infinite, s i < s i+1 for every i ∈ N, and gcd{n + 1 : n ∈ S} = 1 (if S is finite, then X S is a shift of finite type). Let N be such that gcd{s 1 + 1, . . . , s N + 1} = 1 . Let L > 0 be the smallest integer such that for every ≥ L there are nonnegative integers α 1 , . . . , α N such that α 1 (s 1 + 1) + . . . + α N (s N + 1) = .

It follows that for every ≥ L there are r ∈ N and q 1 , . . . , q r ∈ {s 1 , . . . , s N } such that the word Furthermore, for every n ≥ N the shift space X n is a mixing shift of finite type. Fix ε > 0. Let M ≥ N be such that 1/s M < ε/2. Let K ≥ M satisfy (L+s M )/s K < ε/2. We claim that for every k ≥ K we have dH (X k , X) ≤ ε.

Note that our proof is finished once we show that the claim holds. For a proof of our claim fix k ≥ K. Let x ∈ X. Since d is σ-invariant we assume that x = 10 t1 10 t2 1 . . . 10 tj 1 . . . , that is, we assume that x begins with 1 and contains infinitely many 1s. The proof is similar, if the symbol 1 occurs in x only finitely many times. Note that x / ∈ X k means that for some j ∈ N we have t j ∈ S \ {s 1 , . . . , s k }.

We will construct, for each j such that t j ∈ S \ {s 1 , . . . , s k }, a word v j with |v j | = t j such that d Ham (v j , 0 tj ) < ε and 1v j 1 ∈ B(X S [k]). Put also v j = 0 tj if t j ∈ {s 1 , . . . , s k }. Once this is accomplished, we set x = 1v 1 1v 2 1 . . . . It is now enough to observe that x ∈ X S[k] and d(x, x ) ≤ sup j d Ham (v j , 0 tj ).

Fix j such that t j ∈ S \ {s 1 , . . . , s k }. Let be the unique integer such that L ≤ < L + s M and t j + 1is divisible by (s M + 1). We replace the suffix 0 -1 1 of 10 tj 1 by a word w with |w| = having the form as in [START_REF] Deka | Some properties of regular and rational sets[END_REF]. The remaining prefix of 10 tj 1 now has the form 10 tj +1- where t j + 1 -= p(s M + 1) for some p ≥ 1. Therefore we may replace 0 tj +1-by (0 s M 1) p .

We have found a word v with |v| = t j such that u = 1v1 = 1(0 s M 1) p 0 q1 10 q2 1 . . . 0 qr 1 ∈ B(X S [k]).

Note that

d Ham (0 tj , v) ≤ 1 t j (t j /(s M + 1) + (L + s M )) < ε, which completes the proof.

Corollary 39. Every mixing S-gap shift has entropy dense set of ergodic measures.

Lemma 14 .

 14 If X and Y are shift spaces over A , then dH M (M σ (X), M σ (Y )) = dH M (M e σ (X), M e σ (Y )). Proof. It follows from Lemma 13 that (7) dH (M e σ (X), M e σ (Y )) = max sup µ∈M e σ (X) dM (µ, M σ (Y )), sup ν∈M e σ (Y )dM (ν, M σ (X)) .

  say that B is primitive if for each b, b ∈ B with b = b we have that b does not divide b . A set B ⊆ N is taut if for every b 0 ∈ B we have d

Example 32 .

 32 Let p be a large prime number (for instance p = 107), put l = (p -2)(p -1), and B = {p -2, p -1, p} ∪ {n ≥ l : p n}. Consider the characteristic sequence x = 1 A ∈ {0, 1} ∞ of the set A ⊆ N 0 given byA = {j ∈ N 0 : 0 ≤ j < l} \ (p -2)N ∪ (p -1)N ∪ (pN -1) .Then x ∈ X * B , because for any finite B ⊆ B we can find n ∈ N with n ≡ 1 mod p and n ≡ 0 mod b for all b ∈ B \ {p}.

Corollary 35 .

 35 If B contains an infinite sequence of pairwise co-prime integers, then ergodic measures are entropy-dense in M σ (X B ).

  [START_REF] Deka | Some properties of regular and rational sets[END_REF] w = 0 q1 10 q2 1 . . . 0 qr 1 satisfies w ∈ B(X S ) and |w| = . Set S[n] = {s 1 , . . . , s n } and let X n be the S-gap shift generated by S[n]. Clearly X 1 ⊆ X 2 ⊆ X 3 ⊆ . . . and ∞ n=1 X n = X S .

We will apply similar strategy to several other notions: instead of presenting a general (that is,

This property is called the specification property and we discuss it in more detail in Section 5.

ACKNOWLEDGMENTS

We are grateful to Dan Thompson for sharing his unpublished manuscript [55]. We would like to thank Aurelia Dymek for her remarks that helped us to improve this paper. D. Kwietniak was supported by the National Science Centre (NCN) Opus grant no. 2018/29/B/ST1/01340. J. Konieczny is working within the framework of the LABEX MILYON (ANR-10-LABX-0070) of Université de Lyon, within the program "Investissements d'Avenir" (ANR-11-IDEX-0007) operated by the French National Research Agency (ANR). He also acknowledges support from the Foundation for Polish Science (FNP).

Remark 29. Observe that we can consider a whole spectrum of intermediate shift spaces associated to B. Namely, for k ∈ N we put

These sets are again shift-invariant and hereditary. Moreover, setting

B . We will see later (see Remark 31) that the second inclusion in (15) may be strict. As far as we know, only the sets X B , XB , and X(1) B have appeared in the literature before. The shift space X(1) B is the largest shift-space related to B-free constructions. It is usually called the B-admissible shift and its elements are B-admissible sequences (see [START_REF] Dymek | B-free sets and dynamics[END_REF]). Let us also point out that the hierarchy introduced above is still rather rough: given any countable family C of subsets of B, the intersection B ∈C XB is a hereditary shift space that contains X B . Lemma 30. For B ⊆ N we have

Proof. Fix n ∈ N. We have

It follows that

XB|k .

Assume that x ∈ XB|k for every k ∈ N. Take any finite set B ⊆ B. Then there exists n ∈ N such that B ⊆ (B|n), hence XB|n ⊆ XB . We conclude that x ∈ XB for every finite set B ⊆ B. Therefore

which finishes the proof.

Remark 31. All the hierarchy [START_REF] Davenport | On sequences of positive integers[END_REF] collapses to a single shift-space (X B = X(1) B ) whenever B is a taut set containing an infinite set of pairwise coprime integers (see [START_REF] Dymek | B-free sets and dynamics[END_REF]Theorem B] and [START_REF] Keller | Generalized heredity in B-free systems[END_REF]Corollary 2], cf. proof of Corollary 35 below). However, in general, each inclusion in (15) can be strict. For the example showing that the first inclusion may be strict see [START_REF] Dymek | B-free sets and dynamics[END_REF]. We show that X * B can differ from the B-admissible shift X