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SUBSTITUTIVE SYSTEMS AND A FINITARY VERSION OF COBHAM'S

THEOREM

JAKUB BYSZEWSKI, JAKUB KONIECZNY, AND EL�BIETA KRAWCZYK

Abstract. We study substitutive systems generated by nonprimitive substitutions and show that
transitive subsystems of substitutive systems are substitutive. As an application we obtain a com-
plete characterisation of the sets of words that can appear as common factors of two automatic
sequences de�ned over multiplicatively independent bases. This generalises the famous theorem of
Cobham.

Introduction

Let A be a �nite alphabet, let A ∗ be the set of �nite words over A and let A ω be the set of
sequences (an)n>0 with values in A . We say that a dynamical system X ⊆ A ω is substitutive if it
arises as the orbit closure of a substitutive sequence. Such systems were extensively studied in the
context of primitive substitutions [28, 29, 33], necessarily restricting such studies to minimal systems.
There is also a close relationship between substitutive systems and D0L-systems, studied e.g. in
[26]. In the recent years there has been growing interest in the study of nonminimal substitutive
systems, e.g. with connection to Bratteli diagrams [7] and tiling spaces [31]. Nevertheless, it seems
that treatments of substitutive systems arising from nonprimitive substitutions are still scarce.
In particular, the following basic question seems not to have been studied: Is every transitive
subsystem of a substitutive system substitutive? In other words, if X is a substitutive system and x
is a sequence in X, is there a substitutive sequence y such that x and y have the same set of factors?
The same question can be posed for k-automatic systems (for the precise de�nitions of substitutive
and k-automatic systems see Section 1). Note that substitutive systems may contain uncountably
many points, while the number of substitutive sequences is countable, and so most sequences in a
substitutive system will often not be substitutive.

The aim of this paper is twofold. First, we study general substitutive systems and provide a
positive answer to the above question. Second, we apply this result to obtain a �nitary version of
the classical theorem of Cobham, answering a question posed by Shallit1 (see also the discussion in
[32]).

We focus our study on noninvertible substitutive systems, but we brie�y present analogous results
for invertible systems as well. Noninvertible substitutive systems have a considerably more compli-
cated and interesting dynamical structure than the invertible ones. For instance, it follows from [31]
that the number of subsystems of an invertible substitutive system is �nite (see Remark 2.14), while
noninvertible substitutive systems can have in�nitely many subsystems (see e.g. Example 2.5).

Throughout the article, we only consider substitutions that are growing (i.e. substitutions ϕ : A →
A ∗ such that the length of the words ϕn(a) tends to in�nity for all letters a ∈ A ). We do not know
what happens when this assumption is removed, though we would not be surprised if it could be
shown that Theorem A below continues to hold.
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Our �rst main result yields the following description of transitive subsystems of substitutive
systems.

Theorem A. Every transitive subsystem of a substitutive system is substitutive. Every transitive
subsystem of a k-automatic system is k-automatic.

In fact, we obtain a much more precise description of substitutive (resp., k-automatic) sequences
generating such subsystems. We present here a simpli�ed version of the result in the noninvertible
case (for more details see Proposition 2.6 and the proof of Proposition 2.8).

Theorem B. Let x be a substitutive sequence produced by a substitution ϕ : A → A ∗, and let X
be the orbit closure of x. There exists a power τ = ϕm of ϕ and a �nite set of words W ⊂ A ∗ such
that every transitive subsystem Y ⊂ X can be generated by a sequence y ∈ X that is a su�x of a
biin�nite sequence of the form

· · · τ2(v)τ(v)vabwτ(w)τ2(w) · · · (1)

for some v ∈W , w ∈W \ {ε}, and a, b ∈ A ∪ {ε}.

Substitutive sequences of such a form have been considered before in speci�c contexts. Let x be a
substitutive sequence over an alphabet A . A sequence z in the orbit closure of x is called extremal
if it is lexicographically minimal with respect to some total order on the alphabet A . In [16] it was
shown that (under some additional assumptions) all extremal sequences are substitutive. We note
here a curious observation that all extremal sequences in (purely) substitutive systems considered
in [16] are of the form (1) ([16, Lemma 9]).

In the second part of the article we restrict our attention to automatic sequences. One of the most
fundamental results about automatic sequences is Cobham's theorem, which gives a strong relation
between k-automaticity of a sequence and the chosen base k. Recall that two integers k, l > 2
are called multiplicatively independent if they are not both powers of the same integer. Cobham's
theorem states that a sequence is simultaneously automatic with respect to two multiplicatively
independent bases if and only if it is ultimately periodic [14]. This result has sparked a lot of
research and has been generalised to a variety of di�erent settings. An extension of Cobham's
theorem to the class of substitutive sequences was obtained by Durand in 2011 [17].

A considerable e�ort went also into strengthening Cobham's original theorem. Let x and y be
two automatic sequences de�ned over multiplicatively independent bases. In [22], Fagnot showed
that for the claim of Cobham's theorem to hold for x and y it is su�cient that they contain the same
factors; that is, if the languages L (x) and L (y) coincide, then both x and y are ultimately periodic.
In [11] the �rst- and second-named authors showed that the claim of Cobham's theorem holds if
the sequences x and y agree on a set of upper density 1. In the spirit of Shallit's question, Mol,
Rampersad, Shallit and Stipulanti obtained in [32] an explicit bound on the length of a common
pre�x of x and y that depends on the number of states in the automata generating x and y. They
further asked for a characterisation of the set L (x) ∩L (y) of common factors of x and y. Since
all ultimately periodic sequences are k-automatic for all k > 2, it is clear that we cannot hope for
a bound on the length of common factors of x and y. We might hope, however, that the set of
common factors exhibits some simple periodic-like structure.

In this paper, we show the following �nitary version of Cobham's theorem, which provides a
complete characterisation of the sets of words that can appear as common factors of two automatic
sequences de�ned over multiplicatively independent bases. In particular, this set can always be
described by a �nite amount of data.

Theorem C. Let k, l > 2 be multiplicatively independent integers, let A be an alphabet, and let
U ⊂ A ∗. The following conditions are equivalent:
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(i) there exist a k-automatic sequence x and an l-automatic sequence y such that U is the set
of common factors of x and y;

(ii) the set U is a �nite union of sets of the form L (ωvuwω), where u, v, w are (possibly empty)
words over A and ωvuwω = · · ·uuuvwww · · · .

Note that Cobham's theorem follows immediately from Theorem C. One of the crucial ingredients
in the proof of Theorem C is Theorem A applied to k-automatic systems. Indeed, as a simple
application of Theorem A and Fagnot's result we can already obtain the following generalisation:
if L (z) ⊂ L (x) ∩ L (y) for some k-automatic sequence x and l-automatic sequence y, then z is
ultimately periodic (see Corollary 3.3).

Cobham's original result can be understood in the framework of recognisability of subsets of
integers in base-k numeration systems. In this context, Cobham's theorem has been seen to hold in
many nonstandard numeration systems over the integers as well as in the higher dimensional setting
over Nd, the latter due to Semenov [35]. For a comprehensive treatment of these developments and
the interplay between substitutions, numeration systems and logic, see the surveys [10] and [18].

In the setting of recognisable subsets of Rd, an analogue of Cobham's theorem for integer-based
numeration systems was obtained by Boigelot, Brusten and Leroux [8, 9] with recognisability being
de�ned with respect to (weak) Büchi automata. The one-dimensional case was obtained indepen-
dently by Adamczewski and Bell [2], although it was framed in a di�erent language inspired by the
kernel-based de�nition of automaticity. The two approaches were thoroughly linked in [12], provid-
ing further connections with (graph directed) iterated function systems and Cobham-like theorems
for iterated function systems obtained in [23] and [20]. For more about these developments we refer
to [12] and references therein.

In another direction, Cobham's theorem proved amenable to various algebraic extensions, in
part thanks to the characterisation of automaticity in terms of algebraicity of power series over
Fp obtained by Christol [13]. Cobham's theorem has been successfully generalised to the class
of regular sequences [6], quasi-automatic functions [1] (introduced by Kedlaya in [25] in order to
give a description of the algebraic closure of the �eld Fq(t)) and Mahler functions (over �elds of
characteristic 0) [3]. All these proofs made use of Cobham's original theorem. A much simpler proof
of Cobham's theorem for Mahler functions that does not rely on the original result of Cobham has
been obtained by Schäfke and Singer [34].

It would be interesting to see if the �nitary version of Cobham's theorem can be generalised to
any of these wider settings. It is easy to see that we cannot hope for a straightforward extension to
the class of substitutive sequences since we can construct two non-ultimately periodic substitutive
sequences x and y over multiplicatively independent bases such that L (x) ⊂ L (y) (see Remark
3.5 for more details). It is, however, reasonable to hope that some extension of Theorem C holds in
a higher dimensional setting and can lead to a generalisation of the Cobham�Semenov theorem. A
possible approach could involve extending Theorem A to automatic systems over Nd.

We brie�y discuss the contents of the paper. In the �rst section, we recap some basic facts about
(topological) dynamical systems and substitutions, and introduce the class of substitutive systems
that we will work with. In De�nition 1.7 we introduce the notion of an idempotent substitution
and show that for every substitution ϕ some power ϕn is idempotent. Idempotency gathers all
the technical assumptions that we need from the substitution in order to carry out the proofs in
Section 2. In Lemma 1.2 we show that certain sequences that will turn out to be closely linked with
sequences generating transitive subsystems of substitutive (resp., k-automatic) systems are indeed
substitutive (resp., k-automatic).

The second section is devoted to the classi�cation of minimal and transitive subsystems of sub-
stitutive systems, and contains the proofs of Theorems A and B. The analogues of Theorems A and
B for invertible substitutive systems are presented at the end of the section.
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The proof of Theorem C is given in the third section. The main ingredients in the proof are
Theorem A and Proposition 3.6, which describes occurrences of cyclic factors in automatic sequences.
We also discuss the problem of e�ective computability of the set of common factors, that is, existence
of an algorithm that, given as input two automatic sequences x, y ∈ A ω de�ned over multiplicatively
independent bases, returns a �nite set of triples of words (v, u, w) ∈ (A ∗)3 that describe the set
of common factors L (x) ∩ L (y) in the sense of Theorem C. Our proof of Theorem C uses the
compactness of the space A ω and is not e�ective. We believe that the question of whether Theorem
C admits an e�ective proof is interesting and worthy of further study.
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1. Preliminaries

In this section we recall some classical de�nitions and state a few preliminary lemmas.

Symbolic dynamics. A (topological) dynamical system is a compact metric space X together with
a continuous map T : X → X. We denote by Tn the n-th iterate of T and by O(x) = {Tn(x) | n > 0}
the orbit of a point x ∈ X. A point x ∈ X is periodic if T k(x) = x for some k > 1. A point x ∈ X
is ultimately periodic if there exists m > 0 such that Tm(x) is periodic. A subsystem of X is a
closed subset of X that is invariant under the map T . A system X is called minimal if X 6= ∅ and
if X has no subsystems other than ∅ and X; equivalently, a system X 6= ∅ is minimal if the orbit of
every point is dense in X [19, Ex. 4.2.1.a]. A system X is called transitive if it has a point with a
dense orbit. An easy application of Zorn's lemma shows that every dynamical system has a minimal
subsystem [19, Ex. 4.2.1.c]. We say that a dynamical system (Y, S) is a (topological) factor of the
system (X,T ) if there exists a continuous surjective map π : X → Y such that π ◦ T = S ◦ π. Such
a map π is called a factor map. We will need the following simple fact.

Lemma 1.1. Let X and Y be dynamical systems and let π : X → Y be a factor map. Let Y ′ be a
minimal subsystem of Y . Then there exists a minimal subsystem X ′ of X such that π(X ′) = Y ′.

Proof. Let X ′′ ⊂ X be the preimage of Y ′ by the map π. Clearly, X ′′ is a subsystem of X. Let
X ′ be some minimal subsystem of X ′′. Then π(X ′) is a subsystem of Y ′, and since Y ′ is minimal,
π(X ′) = Y ′. �

In this paper we are interested in dynamical systems coming from substitutive sequences. Let
A be a �nite set (called an alphabet). We denote by A ∗ the set of �nite words over A . This is a
monoid under concatenation. The empty word is denoted by ε. We say that a word w is a factor
of a word v or that w appears in v if v = ywz for some words y and z. A word w is a pre�x of a
word v if v = wz for some word z. We similarly de�ne a su�x. For a word w we denote by |w| the
length of w.

We denote by A ω the set of sequences over A . For a sequence x and integers i 6 j we write x[i, j)

for the word xixi+1 · · ·xj−1 and x[i,∞) for the sequence xixi+1 · · · . (In particular, x[i, i) = ε.) The
notions of concatenation, factor, pre�x and su�x are used for words and sequences as long as they
make obvious sense. For a word w 6= ε we denote by wω the sequence wω = www · · · , and we put
εω = ε. While we will always use the notation xn for the n-th term of a sequence x = (xn)n>0 ∈ A ω,
we regard words themselves as not indexed.
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The set A ω with the product topology (where we use discrete topology on each copy of A ) is
a compact metrisable space. We de�ne the shift map T : A ω → A ω by T ((xn)n) = (xn+1)n. The
space A ω together with the shift map T is a dynamical system. We refer to subsystems X of A ω

as subshifts. By L (X) we denote the language of the subshift X, i.e. the set of all �nite words that
appear in some x ∈ X. A subshift X is uniquely determined by its language since

X = {x ∈ A ω | all factors of x are in L (X)}.

We also use L (y) to denote the set of factors of a word or a sequence y. By a slight abuse of
terminology we say that a sequence of words wn converges to the sequence x if |wn| → ∞ and for
every m > 0 the pre�xes of x and wn of length m agree for su�ciently large n.

We will occasionally also work with backwards in�nite sequences in ωA and biin�nite sequences
in ωA ω. The de�nitions of factor, pre�x, su�x and language generalise to these cases in a straight-
forward manner. We always regard sequences (an)n in A ω as indexed by n ∈ {0, 1, . . .}, backwards
in�nite sequences in ωA as indexed by n ∈ {. . . ,−2,−1}, and biin�nite sequences in ωA ω as indexed
by n ∈ {. . . ,−2,−1, 0, 1, . . .}.

Substitutive sequences. Let A be an alphabet. A substitution is a map ϕ : A → A ∗ that assigns
to each letter a some �nite word w in A ∗. We only consider substitutions that are growing, i.e.
|ϕn(a)| → ∞ as n → ∞ for each a ∈ A , and throughout the paper the term `substitution' is used
for a growing substitution. A substitution ϕ is called primitive if there exists an integer n > 1
such that for any a, b ∈ A the letter a appears in ϕn(b). A letter a ∈ A is prolongable if a is the
initial letter of ϕ(a). A letter a ∈ A is backwards prolongable if a is the �nal letter of ϕ(a). If a
is prolongable (resp., backwards prolongable), then the sequence ϕn(a) converges to a sequence in
A ω (resp., in ωA ) that we denote by ϕω(a) (resp., ωϕ(a)). A coding is an arbitrary map π : A → B
between alphabets A and B. A surjective coding π naturally extends to a factor map π : A ω → Bω

between dynamical systems.
A substitution ϕ : A → A ∗ induces a natural map ϕ : A ω → A ω, denoted by the same letter.

We say that a sequence x is purely substitutive if it is a �xed point of some substitution ϕ, i.e.
ϕ(x) = x. In this case we also say that the sequence x is produced by the substitution ϕ. Sequences
produced by a substitution ϕ are exactly of the form ϕω(a) for a prolongable letter a. A substitutive
sequence is the image of a purely substitutive sequence under a coding.

We say that a substitution ϕ : A → A ∗ is of constant length k if |ϕ(a)| = k for each a ∈ A .
A �xed point of a substitution of constant length k is called a purely k-automatic sequence. A
k-automatic sequence is the image of a purely k-automatic sequence under a coding. The classes
of substitutive and k-automatic sequences are invariant under changing �nitely many terms of a
sequence and under the forward and backward shift operations [5, Cor. 6.8.5 and Thm. 7.6.1 &
7.6.3]. We also mention here the trivial case of Cobham's theorem, which says that for any integer
t > 1 the classes of k-automatic and kt-automatic sequences coincide [5, Theorem 6.6.3].

The term automatic has its origin in theoretical computer science. Informally speaking, automata
(or more precisely �nite deterministic k-automata with output) are simple �nite computational
devices that compute the n-th term of a sequence from the base-k digits of n. For more details, see
[5]. The famous theorem of Cobham asserts that the description of k-automatic sequences in terms
of substitutions of constant length k and in terms of k-automata are equivalent [5, Thm. 6.3.2],
[15]. In this paper, we will only work with the former de�nition. Note that the assumption that a
substitution is growing is trivially satis�ed when the substitution is of constant length k > 2.

Yet another de�nition of an automatic sequence can be given in terms of kernels. Let x = (xn)n>0

be a sequence over an alphabet A . Let N = {0, 1, . . . } denote the nonnegative integers. The k-
kernel of x is de�ned as the family of sequences

Kk(x) = {(xkmn+r)n>0 | m, r ∈ N, 0 6 r < km}.
5



A theorem of Cobham asserts that a sequence is k-automatic if and only if its k-kernel is �nite (see
[15] or [5, Thm. 6.6.2]).

Later we will need the following result.

Lemma 1.2. Let ϕ : A → A ∗ be a substitution and let w ∈ A ∗ be nonempty. Consider the sequence
x = wϕ(w)ϕ2(w) · · · .

(i) The sequence x is substitutive.
(ii) If ϕ is of constant length k, then x is k-automatic.

Proof. Part (i) follows from [16, Lemma 5]; since the argument is short, we include it for com-
pleteness. Let ♠ be a letter not belonging to the alphabet A and consider the substitution
τ : A ∪{♠} → (A ∪{♠})∗ given by τ(♠) = ♠w, τ(a) = ϕ(a) for a ∈ A . The sequence τω(♠) takes
the form ♠x and is clearly substitutive. Therefore, x is substitutive as well.

We now assume that ϕ is of constant length k. We will prove part (ii). We �rst reduce to the
case where k > 3 by replacing w by wϕ(w) and ϕ by ϕ2. Next, we reduce to the case when |w| = 1.

The substitution ϕ induces in a natural way a substitution ϕ′ on the alphabet A |w| consisting of all
the words over A of length |w|. Let a′ denote the word w considered as an element of A |w| and let

x′ = a′ϕ′(a′)ϕ′2(a′) · · · . The sequence x is then the image of x′ by the morphism A |w| → A ∗ that
sends each letter from A |w| to the corresponding word in A ∗. Since images of k-automatic sequences
by morphisms of constant length are k-automatic [5, Cor. 6.8.3], we get the desired reduction.

We now assume that |w|=1. Let v ∈ A ∗ be any word of length k − 2. Let ♠ be a letter
not belonging to the alphabet A and consider the substitution τ : A ∪ {♠} → (A ∪ {♠})∗ of
constant length k given by τ(♠) = v♠w, τ(a) = ϕ(a) for a ∈ A . The substitution τ is a so-called
(k − 2, 1)-morphism (see [5, 6.7]), and in the terminology of [5, 5.3] the two-sided sequence

y = · · ·ϕ2(v)ϕ(v)v♠wϕ(w)ϕ2(w) · · ·

is (k−2, 1)-automatic by [5, Thm. 6.7.2]. It follows from [5, Theorem 5.3.4] that y[1,∞] = wϕ(w)ϕ2(w) · · ·
is then k-automatic. �

Remark 1.3. The proof of Lemma 1.2.(ii) above uses the notion of (k, l)-automatic sequence.
It is possible, albeit somewhat lengthy and tedious, to prove this result using only the notion of
k-automatic sequence and showing directly that the k-kernel of x is �nite.

Substitutive systems. Let A be an alphabet. A system X ⊆ A ω is called purely substitutive
(resp., substitutive, k-automatic) if it arises as the orbit closure of a purely substitutive (resp.,
substitutive, k-automatic) sequence. Note that any such system is automatically transitive.

There is a more general notion of systems arising from substitutions. Let ϕ : A → A ∗ be a
substitution and let Xϕ denote the dynamical system generated by ϕ, i.e.

Xϕ = {z ∈ A ω | every factor of z appears in ϕn(a) for some n > 0 and a ∈ A }.

The system Xϕ does not have to be transitive; consider, e.g. the substitution ϕ : {0, 1} → {0, 1}∗
given by ϕ(0) = 00, ϕ(1) = 11 for which Xϕ = {0ω, 1ω}. It is clear that every substitutive system
has the form π(Xϕ) for some substitution ϕ : A → A ∗ and coding π : A → B. It is also well-known
that if Xϕ is minimal, then it is substitutive [33, section 5.2]. Proposition 2.8 below shows more
generally that a system Xϕ is substitutive if and only if it is transitive.

Let ϕ : A → A ∗ be a substitution. For b ∈ A we denote by Ab the set of all letters a ∈ A
appearing in ϕn(b) for some n > 0. For a, b ∈ A , we write b > a if a ∈ Ab. Note that the relation
> is only a preorder on the set A . If b > a > b we write a ∼ b. We also write b > a if b > a
and b 6∼ a. The relation ∼ is an equivalence relation and > is a strict partial order on A . These
relations clearly depend on the substitution ϕ, but we will nevertheless write b > a or b > a and
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call a letter minimal, maximal or equivalent to another letter when the substitution is clear from
the context. For b ∈ A let Xϕ,b denote the subsystem of Xϕ generated by b, i.e.

Xϕ,b = {z ∈ X | every factor of z appears in ϕn(b) for some n > 0}.
Thus, Xϕ,b is equal to the system Xϕ′ , where ϕ

′ is the substitution ϕ restricted to the alphabet Ab.
We will often write Xb instead of Xϕ,b when the substitution ϕ is clear from the context. Note that
if a > b, then Xa ⊇ Xb. Note also that Xϕ =

⋃
a∈A Xa and ϕ(Xb) ⊂ Xb for each b ∈ A .

The following lemma is a variant of [16, Lemma 6] (cf. [7, Prop. 5.10] for a version for two-sided
dynamical systems). We recall that xn denotes the n-th term of a sequence x = (xn)n>0 ∈ A ω.

Lemma 1.4. Let ϕ : A → A ∗ be a substitution and let x ∈ Xϕ. There exist y ∈ Xϕ and a proper
pre�x u of ϕ(y0) such that ux = ϕ(y).

Proof. Let vn be the pre�x of x of length n > 1. Since x ∈ Xϕ, there exist b ∈ A and k > 1 such

that vn is a factor of ϕk(b). Removing from ϕk−1(b) the longest pre�x whose image by ϕ does not
intersect vn, we obtain a su�x wn of ϕk−1(b) with initial letter an and a proper pre�x un of ϕ(an)
such that unx and ϕ(wn) agree on the �rst n positions.

Since there are only �nitely many possibilities for un and A ω is compact, there exist u ∈ A ∗,
y ∈ Xϕ and an increasing sequence (km)m>0 of positive integers such that ukm = u for all m > 0
and wkm converge to y as m→∞. By construction, u is then a proper pre�x of ϕ(y0) and we have
ux = ϕ(y). �

The following lemma is well-known for primitive substitutions (see, e.g. [33, Prop. 5.4]); we will
however need the claim under the weaker assumption of transitivity.

Lemma 1.5. Let ϕ : A → A ∗ be a substitution. If Xϕ is transitive, then Xϕ = Xϕn for any n > 1.

Proof. Let n > 1 and for 0 6 i 6 n− 1 write

Xi = {x ∈ Xϕ | every factor of x appears in ϕk(b) for some b ∈ A and k ≡ i mod n}.

Note that X0 = Xϕn and Xϕ =
⋃n−1
i=0 Xi. Since Xϕ is transitive, Xϕ = Xj for some 0 6 j 6 n− 1.

Let x ∈ Xϕ. By Lemma 1.4 there exist y ∈ Xϕ = Xj and a proper pre�x u of ϕ(y0) such that ux =

ϕ(y). Since every factor of y is a factor of ϕk(b) for some b ∈ A and k ≡ j (mod n), every factor of
x is a factor of ϕk+1(b) and hence x lies in Xj+1 (where Xn = X0). Thus Xϕ = Xj+1. Repeating
the argument, we get that Xϕ = Xi for all 0 6 i 6 n− 1. In particular, Xϕ = X0 = Xϕn . �

Remark 1.6. The result above is not necessarily true without the assumption of transitivity. For
an example, consider the substitution ϕ : {0, 1, 2} → {0, 1, 2}∗ given by ϕ(0) = 12, ϕ(1) = 22,
ϕ(2) = 11. Then

Xϕ = {1n2ω | n > 0} ∪ {2n1ω | n > 0} and Xϕ2 = {2n1ω | n > 0} ∪ {2ω}.

Let ϕ : A → A ∗ be a substitution. We say that a letter a ∈ A is ample if a appears in ϕn(a)
for some n > 1, and very ample if a appears at least twice in ϕn(a) for some n > 1. Note that for
all n > 1 the sets of ample and very ample letters with respect to substitutions ϕ and ϕn are the
same. We denote the set of all ample letters by A ′.

We note two easy properties of ampleness. First, a letter equivalent to an ample letter is itself
ample. Second, for any ample letter a the word ϕ(a) contains at least one letter equivalent to a.
For a ∈ A ′ let λϕ(a) denote the letter b which is equivalent to a and which occurs in ϕ(a) at the
last position among all letters equivalent to a. This gives rise to a map λϕ : A ′ → A ′. Note that
λnϕ = λϕn for all n > 1.

Let S be a set and let ψ : S → S be a map. We say that ψ is idempotent if ψ2 = ψ. Note
that if x is a substitutive sequence produced by a substitution ϕ, then x is also produced by the
substitution ϕn for any integer n > 1. Similarly, the notions of k-automatic and kn-automatic
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sequences coincide [5, Thm. 6.6.4]. For these reasons, we may freely replace ϕ by ϕn, which will
often have nicer properties. In De�nition 1.7 we gather all the technical properties of the substitution
that we intend to obtain in this manner. We will often need only some of these properties, but for
simplicity we will not attempt to always state the precise minimal hypotheses.

De�nition 1.7. A substitution ϕ : A → A ∗ is called idempotent if it satis�es the following condi-
tions:

(i) for all a ∈ A and n > 1 the set of letters appearing in ϕ(a) is the same as the set of letters
appearing in ϕn(a);

(ii) for all a ∈ A and n > 1 the set of letters appearing at least twice in ϕ(a) is the same as the
set of letters appearing at least twice in ϕn(a);

(iii) for all a ∈ A the initial letter of ϕ(a) is prolongable;
(iv) the map λϕ : A ′ → A ′ is idempotent.

Note that if ϕ : A → A ∗ is an idempotent substitution, then for each b ∈ A , Ab consists exactly
of b and the letters appearing in ϕ(b). Furthermore, a letter b is ample if and only if b appears in
ϕ(b) and it is very ample if and only if it appears at least twice in ϕ(b).

Lemma 1.8. Let S be a �nite set, and let ψ : S → S be a map. There exists an integer m > 1 such
that ψm is idempotent.

Proof. Take, for example, m = |S|!. �

Lemma 1.9. Let ϕ : A → A ∗ be a substitution. There exists an integer m > 1 such that the
substitution ϕm is idempotent.

Proof. Note �rst that properties (i), (ii), (iii) and (iv) in De�nition 1.7 are preserved after replacing
ϕ by its iterate. We will �rst choose m so that properties (i) and (ii) hold. For a ∈ A and a
substitution ϕ : A → A ∗, let Sϕ(a) denote the set of letters appearing in ϕ(a). Consider the map

ψ : 2A → 2A that sends a subset A of A to the set
⋃
a∈A Sϕ(a). Note that ψn({a}) = Sϕn(a) for all

n > 1 and a ∈ A . By Lemma 1.8 there exists an integer m > 1 such that ψm = ψ2m. This implies
that Sϕm(a) = Sϕnm(a) for all a ∈ A and n > 1, and hence the substitution ϕm satis�es property

(i). We then obtain property (ii) by repeating the reasoning above with the set 2A replaced by the
set 3A , which includes the information on whether a letter appears in a word at least twice, exactly
once or not at all. Thus, we may assume that properties (i) and (ii) hold.

To prove the remaining properties, let αϕ(a) denote the initial letter of ϕ(a) for a ∈ A . Note

that αnϕ = αϕn for all n > 1. By Lemma 1.8, there exists m′ > 1 such that αm
′

ϕ = α2m′
ϕ , and hence

ϕm
′
satis�es property (iii). A similar reasoning applied to the map λϕ : A ′ → A ′ proves that some

iterate of ϕm
′
satis�es the remaining property (iv). �

2. Subsystems of substitutive systems

This section studies subsystems of substitutive systems. Recall that every substitutive system is
a topological factor of a purely substitutive system X (the factor map being given by a coding),
and that we may assume that the substitutive sequence generating X is produced by an idempotent
substitution (see Lemma 1.9). Our main result is Theorem 2.1 below, which says that transitive
subsystems of substitutive systems are still substitutive. The proof of this result will occupy the
whole section. We will �rst prove the statement for purely substitutive sequences and obtain the
general result by an easy reduction. Along the way, we will obtain a more detailed description of
all transitive subsystems.

Theorem 2.1. Every transitive subsystem of a substitutive system is substitutive. Every transitive
subsystem of a k-automatic system is k-automatic.
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Minimal subsystems of substitutive systems. We start by investigating minimal subsystems
of (purely) substitutive systems. Actually, we work in a slightly more general context of systems
of the form Xϕ with ϕ idempotent. We will show that in this case all minimal subsystems arise as
Xb for some minimal letter b. In particular, every minimal subsystem of a substitutive system is
substitutive and every minimal subsystem of a k-automatic system is k-automatic.

Proposition 2.2. Let ϕ : A → A ∗ be an idempotent substitution. Let Y be a subsystem of Xϕ.
Then Y is minimal if and only if Y = Xb for some minimal letter b ∈ A .

Proof. First we show that every system Xb with b minimal is minimal. If b ∈ A is a minimal letter,
then the substitution ϕ|Ab

: Ab → A ∗b is primitive. Since every primitive substitution gives rise to
a minimal system [33, Prop. 5.5], Xb is minimal.

Now assume that Y is a minimal subsystem of Xϕ. Fix an integer m > 1. Choosing a su�ciently
long word w ∈ L (Y ), we can �nd a letter a ∈ A such that ϕm(a) appears in w, and hence
ϕm(a) ∈ L (Y ). Since A is �nite, there is some letter a ∈ A such that ϕm(a) ∈ L (Y ) for in�nitely
many m. Since ϕ is idempotent, the set of letters appearing in ϕl(a) is independent of l > 1, and
hence some minimal letter b appears in ϕl(a) for all l > 1. It follows that ϕn(b) ∈ L (Y ) for all
n > 0, and hence Xb ⊂ Y . By minimality of Y , we have Xb = Y . �

Corollary 2.3. Let X be a substitutive system. The number of minimal subsystems of X is �nite.

Proof. If X is purely substitutive, then it is of the form X = Xϕ for some idempotent substitution
ϕ, and the claim follows from Proposition 2.2. In the general case, write X as a topological factor
of a purely substitutive system and use Lemma 1.1. �

Remark 2.4. A very special case of Proposition 2.2 was proven in a di�erent language in [11,
Lemma 2.3] by the �rst-named and the second-named author for constant length substitutions and
one-point subsystems (and with a slightly weaker notion of idempotency).

Transitive subsystems of substitutive systems. Let ϕ : A → A ∗ be a substitution. If a is
a (not necessarily minimal) letter in A , then Xa is a subsystem of Xϕ. It would be tempting to
conjecture that all transitive subsystems of Xϕ are of this form. The following examples show that
this is not the case.

Example 2.5.

(i) Let A = {0, 1, 2, 3} and let ϕ : A → A ∗ be the substitution given by

ϕ(0) = 12, ϕ(1) = 11, ϕ(2) = 23, ϕ(3) = 32.

Let y denote the biin�nite sequence y = ωϕ(1)ϕω(2). For an integer n consider the su�x
y[n,∞) = ynyn+1 · · · of y. This is just the Thue�Morse sequence on the alphabet {2, 3} with n
�rst symbols removed if n > 0 or preceded by 1|n| if n < 0, and it lies in Xϕ since every factor

of y is a factor of some ϕn(12) = ϕn+1(0). Consider the subsystems Yn = O(y[n,∞)) ⊂ Xϕ.
For n > 0, the system Yn is just the Thue�Morse system (since it is minimal), while for
n < 0 it is equal to the Thue�Morse system with |n| extra points adjoined. Hence, for n < 0
the systems Yn are pairwise distinct, and are di�erent from each Xb for b ∈ A . In fact,
Xϕ =

⋃
n60 Yn ∪{1ω} and X0 = Xϕ, X1 = {1ω} and X2 = X3 = Y0 (cf. Corollary 2.7 below

and note that X2 is minimal).
(ii) Let A = {0, 1, 2, 3} and let τ : A → A ∗ be the substitution given by

τ(0) = 01023, τ(1) = 12, τ(2) = 22, τ(3) = 33.

Write v = 01 and w = 23. Let z denote the biin�nite sequence (indexed so that the 0 below
occurs at the 0-th position)

z = · · · τ2(v)τ(v)v0wτ(w)τ2(w) · · · .
9



For an integer n consider the su�x z[n,∞) = znzn+1 · · · of z. Every factor of z[n,∞) is a factor

of some τm(0), and hence z[n,∞) lies in Xτ . Consider the subsystems Zn = O(z[n,∞)) ⊂ Xτ .

It is easy to see that Zn = O(z[n,∞)) ∪ {3k2ω | k > 0} ∪ {2k3ω | k > 0}, and hence the
systems Zn are pairwise distinct and di�erent from each Xb for b ∈ A .

Now assume that ϕ : A → A ∗ is an idempotent substitution. The next proposition characterises
points y ∈ Xϕ such that O(y) is not equal to any Xb for b ∈ A . We show that all such points
are substitutive. Note that this is by no means obvious. In fact, substitutive systems have often
continuum many points (e.g. the Thue�Morse system), while the number of substitutive sequences
over a given alphabet is only countable.

Proposition 2.6. Let ϕ : A → A ∗ be an idempotent substitution. Let y ∈ Xϕ and let Y be the
orbit closure of y. Then at least one of the following conditions holds:

(a.i) there exists a letter a in L (Xϕ) such that y ∈ Xa;
(a.ii) there exist a backwards prolongable letter a and a prolongable letter c such that ac ∈ L (Xϕ)

and y is a su�x of ωϕ(a)ϕω(c).

Assume moreover that Y is di�erent from each Xb for b ∈ A . Then at least one of the following
conditions holds:

(b.i) there exists a letter a such that ϕ(a) = vaawa for some words va and wa such that wa 6= ε,
wa contains only letters b such that b < a, and y is a su�x of

· · ·ϕ2(va)ϕ(va)vaawaϕ(wa)ϕ
2(wa) · · · ;

(b.ii) the sequence y satis�es condition (a.ii).

Proof. Since Xϕ =
⋃
b∈A Xb and Y is transitive, we see that Y is contained in Xb for some b ∈ A .

We choose b to be minimal among such letters.
Let y0 = y. Using Lemma 1.4, we inductively construct for i > 0 letters ai, sequences y

i ∈ Xb

with initial letters ai, and proper pre�xes ui of ϕ(ai+1) such that

ϕ(yi+1) = uiy
i.

Note that since ai appears in ϕ(ai+1), we have ai+1 > ai, and hence letters ai become equivalent
for su�ciently large i. We will now show that y satis�es one of the properties (a.i) and (a.ii). We
consider two cases.
Case I (for in�nitely many i the length of ui is strictly smaller than |ϕ(ai+1)| − 1). In this case

for in�nitely many i the pre�x of yi of length 2 is a factor of ϕ(ai+1). Let a be a letter that occurs
in�nitely many times among ai. Since a is the initial letter of some yi, it lies in L (Xϕ). Since ϕ is
growing and ϕ(yi+1) = uiy

i, it follows that every pre�x of y is a factor of ϕi(a) for some i > 0. In
particular, y ∈ Xa and hence property (a.i) holds.
Case II (for all su�ciently large i the length of ui is equal to |ϕ(ai+1)| − 1). Let i0 be such that

we have |ui| = |ϕ(ai+1)| − 1 and ai+1 ∼ ai for all i > i0. Take i > i0.Then ai is the �nal letter
of ϕ(ai+1), which implies that ai+1 is ample and λ(ai+1) = ai. Since the map λ is idempotent, we
have ai+1 = ai for all i > i0. Denote this letter by a, and note that it is backwards prolongable.

For i > i0 the sequence T (yi) is the image of T (yi+1) by ϕ. Iterating this for i > i0, we see
that for each n > 0 and d = T (yi0+n)0 the word ϕn(d) is a pre�x of T (yi0). Choose some letter
d that arises in this manner for in�nitely many n, and put c = ϕ(d)0. Since ϕ is idempotent, c is
prolongable, and the assumption on d shows that T (yi0) = ϕω(c). This shows that yi0 = aϕω(c)
and in particular ac ∈ L (Xϕ). Since y is a su�x of ϕi0(yi0), it is also a su�x of ωϕ(a)ϕω(c) and
property (a.ii) holds. This ends the proof of the �rst assertion.

Now assume that Y is di�erent from each Xc for c ∈ A . To show the second claim, we only
need to treat Case I. We will show that in this case y satis�es property (b.i). As in the reasoning
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above, let a be a letter that occurs in�nitely many times among ai, and recall that a ∈ L (Xϕ) and
y ∈ Xa. By the choice of b it follows that a ∼ b and b is ample.

We claim that for su�ciently large i the sequence yi contains no letters equivalent to a at non-
initial positions. Indeed, if yi contains a letter c ∼ a at a non-initial position, then y contains
ϕi(c). If this happened for in�nitely many i, the word ϕn(a) would appear in y for each n > 0,
contradicting the assumption that Y is a proper subset of Xb.

Since for su�ciently large i the letters ai are all equivalent (and hence ample) and since the
sequence yi contains no letters equivalent to b at non-initial positions, we have λ(ai+1) = ai. Since
the map λ is idempotent, the sequence ai is eventually constant with value a. It follows that
λ(a) = a and ϕ(a) = vaawa with wa nonempty (since we are in Case I) and containing only letters
c < a.

Choose i0 > 0 so that for i > i0 we have ai = a and the sequence yi contains no letters equivalent
to a at non-initial positions. Since ϕ(yi+1) = uiy

i, we must have

yi0 = awaϕ(wa)ϕ
2(wa) · · · .

Hence y is a su�x of

ϕi0(yi0) = ϕi0−1(va) · · ·ϕ2(va)ϕ(va)vaawaϕ(wa)ϕ
2(wa) · · · . �

Corollary 2.7. Let ϕ : A → A ∗ be an idempotent substitution. Let y ∈ Xϕ and let Y be the orbit
closure of y. Assume that Y is di�erent from each Xb for b ∈ A . Then y is a substitutive sequence.
If furthermore ϕ is a substitution of constant length k, then y is k-automatic.

Proof. This follows immediately from Proposition 2.6, Lemma 1.2 and the fact that substitutive
(resp., k-automatic) sequences are closed under backward and forward shifting. �

The next proposition characterises systems Xϕ that are transitive.

Proposition 2.8. Let ϕ : A → A ∗ be a substitution. Let n > 1 be such that ϕn is idempotent. The
following conditions are equivalent:

(i) Xϕ is transitive,
(ii) Xϕ = Xϕn,b for some letter b ∈ A that is either prolongable under ϕn or very ample.

Moreover, if Xϕ is transitive, then it is substitutive. Furthermore, if ϕ is a substitution of constant
length k, then Xϕ is k-automatic.

Proof. Note �rst that under either of the assumptions (i) and (ii) we have Xϕ = Xϕn (in the
former case by Lemma 1.5, in the latter case it is obvious). Hence, we may assume that ϕ itself is
idempotent and n = 1.

We �rst show that (ii) implies both (i) and the �nal claim. If b is prolongable, then Xϕ = Xb is
the orbit closure of ϕω(b), from which all the remaining claims follow easily. Suppose that this is
not the case. Then b appears at least twice in ϕ(b) and we can write ϕ(b) = vbw, where v, w are
words such that b appears in w. The word xn = wϕ(w) · · ·ϕn(w) is a su�x of ϕn+1(b) and hence
the sequence x = wϕ(w)ϕ2(w) · · · lies in Xb. Since ϕ

n(b) is a factor of x for all n > 0, the orbit of
x is dense in Xb. The sequence x is substitutive by Lemma 1.2. Furthermore, if ϕ is a substitution
of constant length k, then x is k-automatic.

It remains to prove that (i) implies (ii). Assume that Xϕ is transitive and let y be a point in Xϕ

with a dense orbit. Since Xϕ =
⋃
b∈A Xb, there exists b ∈ A such that Xϕ = Xb; pick minimal b

with this property. Suppose that b is not prolongable and not very ample. It means that b appears
in ϕ(b) at most once, and at a non-initial position.
Case I (b appears in ϕ(b) exactly once, and at a non-initial and non-�nal position). Write

ϕ(b) = vbw for nontrivial words v, w ∈ A ∗. Every word

ϕn(b) = ϕn−1(v) · · ·ϕ(v)vbwϕ(w) · · ·ϕn−1(w)
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contains exactly one occurrence of b, and hence every point in Xb contains at most one occurrence
of b. On the other hand, every su�x of the biin�nite sequence · · ·ϕ2(v)ϕ(v)vbwϕ(w)ϕ2(w) · · · lies
in Xb, and hence Xb contains in�nitely many points in which b appears. It follows that Xb is not
transitive.
Case II (either b does not appear in ϕ(b) or appears only at the �nal position). In this case

b /∈ L (Xb) and for all a ∈ Ab di�erent from b we have a < b. Applying Proposition 2.6 to the system
Xb, we see that either y ∈ Xa for some a < b or y is a su�x of ωϕ(a)ϕω(c) for some backwards
prolongable letter a and prolongable letter c such that ac ∈ L (Xb). The �rst case implies that
Xϕ = Xa and contradicts the choice of b. In the second case ac ∈ L (Xb) implies that all su�xes of
ωϕ(a)ϕω(c) lie in Xb. Since the orbit of y is dense in Xb, for each n > 1 the sequence ϕn(a)ϕω(c) has
arbitrarily long pre�xes in common with some forward shift of y. Since ϕn(a) is a su�x of ϕn+1(a)
for each n > 0 and y has the form y = uϕω(c) for some �nite word u, all ϕn(a)ϕn(c) are in fact
factors of ϕω(c). Letting n tend to in�nity, we conclude that all su�xes of ωϕ(a)ϕω(c) lie in Xc. In
particular, y ∈ Xc, which again contradicts the choice of b. This ends the proof. �

Proof of Theorem 2.1. The claim for transitive subsystems of systems of the form X = Xϕ for an
idempotent substitution ϕ : A → A ∗ follows immediately from Corollary 2.7 and Proposition 2.8.

In general, if Y is a transitive subsystem of a substitutive systemX, we considerX as a topological
factor X = π(Xϕ) of some Xϕ for an idempotent substitution ϕ and a coding π. Choose y ∈ Y such

that Y = O(y) and let z ∈ Xϕ be such that π(z) = y. Put Z = O(z). By compactness we have
π(Z) = Y . Since Z is a transitive subsystem of Xϕ, it is substitutive, and hence so is the system
Y = π(Z). A similar argument proves the claim concerning k-automatic systems. �

Two-sided substitutive shifts and their subsystems. We close this section with the remark
that the results formulated above have their analogues for two-sided shifts. For a substitution
ϕ : A → A ∗ we let XZ

ϕ denote the two-sided dynamical system generated by ϕ, i.e.

XZ
ϕ = {z ∈ ωA ω | every factor of z appears in ϕn(a) for some n > 0 and a ∈ A }.

For a letter a, the system XZ
a is de�ned accordingly. A sequence y = (yn)n ∈ ωA ω is substitutive

if both (yn)n>0 and (yn)n<0 are substitutive as one-sided sequences. This is obviously the same as
saying that all (one-sided) pre�xes and su�xes of y are substitutive. Let T denote the shift map
on ωA ω. For two-sided systems we consider the two-sided orbit OZ(y) = {Tn(y) | n ∈ Z} of a
point y. A two-sided substitutive system is the (two-sided) orbit closure of a two-sided substitutive
sequence. We de�ne a two-sided k-automatic sequence and a two-sided k-automatic system in
the same way. The main results for two-sided shifts are the same or simpler as for the one-sided
ones. The proofs are mutatis mutandis the same, and we present them in a briefer manner. The
most notable di�erence between two-sided and one-sided shifts is that in the two-sided case every
substitutive system has only �nitely many subsystems.

Theorem 2.9. Every transitive subsystem of a two-sided substitutive system is substitutive. Every
transitive subsystem of a two-sided k-automatic system is k-automatic.

To prove this result, we �rst state three lemmas, which are analogous to the previously described
results for one-sided systems.

Lemma 2.10. Every two-sided substitutive system X arises as the image X = π(XZ
ϕ ) of a transitive

system XZ
ϕ generated by a substitution ϕ : A → A ∗ via a coding π : A → B. If X is k-automatic,

we may choose ϕ to be of constant length k.

Proof. Let X be a two-sided substitutive system arising as the orbit closure of a sequence y = (yn)n.
Since (yn)n>0 and (yn)n<0 are one-sided substitutive, we may �nd substitutions ϕ1 : A1 → A ∗1 and
ϕ2 : A2 → A ∗2 , codings π1 : A1 → B and π2 : A2 → B, a prolongable letter a1 ∈ A1 and a backwards
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prolongable letter a2 ∈ A2 such that y = π2(ωϕ2(a2))π1(ϕω1 (a1)). We may assume that A1 and A2

are disjoint. De�ne a new alphabet A = A1 ∪A2 ∪ {♠} with a new symbol ♠ /∈ A1 ∪A2. Glue ϕi
and πi to maps ϕ : A → A ∗ and π : A → B by putting ϕ|Ai

= ϕi, π|Ai
= πi, and ϕ(♠) = a2w,

where w is a pre�x of ϕω(a1) chosen to be of arbitrary length in the substitutive case and of length
k − 1 in the k-automatic case. It is easy to see that XZ

ϕ is a transitive system generated by the

sequence ωϕ2(a2)ϕω1 (a1) and that X = π(XZ
ϕ ). �

The remaining two lemmas are two-sided analogues of Lemmas 1.4 and 1.5. The former of these
lemmas is proven in [7, Prop. 5.10].

Lemma 2.11. Let ϕ : A → A ∗ be a substitution and let x ∈ XZ
ϕ . There exists y ∈ Xϕ such that

x = T l(ϕ(y)) for some l with 0 6 l < |ϕ(y0)|.

Lemma 2.12. Let ϕ : A → A ∗ be a substitution. If XZ
ϕ is transitive, then XZ

ϕ = XZ
ϕn for any

n > 1.

The proofs of these lemmas are analogous to those of Lemmas 1.4 and 1.5. The main result is
derived via essentially the same reasoning as before from Proposition 2.13 and 2.15 below.

Proposition 2.13. Let ϕ : A → A ∗ be an idempotent substitution. Let y ∈ XZ
ϕ and let

Y = {z ∈ XZ
ϕ | every factor of z appears in y}

be the orbit closure of y. Then at least one of the following conditions holds:

(i) there exists a ∈ L (Y ) such that Y = XZ
a ;

(ii) there exist a backwards prolongable letter a and a prolongable letter c such that ac ∈ L (y)
and y is a shift of ωϕ(a)ϕω(c).

In particular, the number of subsystems of XZ
ϕ is �nite.

Proof. Let y0 = y. Repeating the reasoning from the proof of Proposition 2.6, we construct letters
ci, sequences y

i ∈ XZ
ϕ with initial letters ci and integers 0 6 li < |ϕ(ci+1)| such that

yi = T liϕ(yi+1)

for each i > 0. We consider two cases depending on the asymptotic behaviour of li.
Assume �rst that li = 0 for all su�ciently large i and put ai = yi−1. For su�ciently large i, ci

is the initial letter of ϕ(ci+1) and ai is the �nal letter of ϕ(ai+1). Since ϕ is idempotent, it follows
from properties (iii) and (iv) in De�nition 1.7 that ai and ci are eventually constant, say ai = a and
ci = c for i su�ciently large. It follows that c is prolongable, a is backwards prolongable, and y is
a shift of ωϕ(a)ϕω(c). Similarly, if we assume that li = |ϕ(ci+1)| − 1 for all su�ciently large i, then
we may apply the same reasoning with T (yi) in place of yi.

Now assume that li 6= 0 and li 6= |ϕ(ci+1)| − 1 for in�nitely many i's. Let a be a letter that
occurs in�nitely many times among ci. Then a ∈ L (Y ) and we can �nd arbitrarily large j such
that ϕj(a) = y[nj ,mj) where nj → −∞ and mj → +∞ as j →∞. It follows that Y = XZ

a .

It follows immediately from our claim that XZ
ϕ has only �nitely many transitive subsystems, and

hence �nitely many subsystems. �

Remark 2.14. Two-sided substitutive systems have been considered by Maloney and Rust, mostly
under di�erent assumptions on the substitution, namely that it is recognisable and tame (for the
de�nition, see [31, De�nition 2.4]). Note that all growing substitutions are tame, but not all growing
substitutions are recognisable. Under these assumptions, the �niteness of the number of subsystems
of XZ

ϕ follows from [31, Lemma 5.13]. The authors work with the tiling space Ωϕ (see [31, Section
1.3]) associated with a substitution ϕ and prove that the number of closed unions of path components
of Ωϕ is �nite. Since there is a bijective correspondence between subsystems ofXZ

ϕ and closed unions
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of path components of Ωϕ, the claim follows. Finiteness of the number of minimal subsystems of two-
sided substitutive systems if the substitution is either aperiodic or growing has also been observed
by Bezuglyi�Kwiatkowski�Medynets [7, Prop. 5.6 and Remark 5.7].

For simplicity we only state the following result for idempotent substitutions, but the more general
analogue can readily be derived in the same way as in Proposition 2.8.

Proposition 2.15. Let ϕ : A → A ∗ be an idempotent substitution. The following conditions are
equivalent:

(i) XZ
ϕ is transitive;

(ii) one of the following conditions holds:
(a) XZ

ϕ = XZ
b for some letter b ∈ A that is either very ample or ample but neither pro-

longable nor backwards prolongable;
(b) XZ

ϕ = XZ
a ∪ XZ

c ∪ OZ(ωϕ(a)ϕω(c)) for some backwards prolongable letter a and pro-
longable letter c.

Moreover, if XZ
ϕ is transitive, then it is substitutive. Furthermore, if ϕ is a substitution of constant

length k, then XZ
ϕ is k-automatic.

Proof. Suppose (ii) holds. Consider �rst the case (ii).(a). If ϕ(b) = vbw with v, w ∈ A ∗ nonempty,
then XZ

b is the orbit closure of the point

y = · · ·ϕ2(v)ϕ(v)vbwϕ(w)ϕ2(w) · · · ,

which is substitutive by Lemma 1.2. Otherwise, by (ii).(a) we have ϕ(b) = bvb for some v ∈ A ∗,
and ϕ2(b) = bvbϕ(v)bvb. Thus, the previous property is satis�ed for ϕ2 and the claim follows from
the equality XZ

ϕ = XZ
ϕ2 , which holds since ϕn(b) is a pre�x of ϕn+1(b) for all n > 0. Finally, in case

(ii).(b) the system XZ
ϕ is the orbit closure of y = ωϕ(a)ϕω(c).

It remains to show that (i) implies (ii). Assume that XZ
ϕ is transitive and let y be a point in XZ

ϕ

with a dense orbit. Since XZ
ϕ =

⋃
b∈A XZ

b , there exists b ∈ A such that XZ
ϕ = XZ

b ; pick minimal
b with this property. Suppose that b does not satisfy the conditions in (ii).(a), and so b appears
at most once in ϕ(b), either at the initial or �nal position. Then b /∈ L (XZ

b ) and a < b for all

a ∈ Ab \ {b}. In particular, XZ
b 6= XZ

a for all a ∈ L (XZ
b ), so Proposition 2.13 implies that there

exists ac ∈ L (XZ
b ) such that y is up to a shift equal to ωϕ(a)ϕω(c). Hence, case (ii).(b) holds. �

Proof of Theorem 2.9. The proof is analogous to the proof of Theorem 2.1, replacing the use of
Propositions 2.6 and 2.8 by Propositions 2.13 and 2.15. �

3. Finitary version of Cobham's theorem

In this section, we prove a �nitary generalisation of Cobham's classical theorem. Recall that
integers k, l > 2 are multiplicatively independent if they are not both powers of the same integer;
equivalently, log k/ log l ∈ R \Q. Let k, l > 2 be multiplicatively independent integers. The cele-
brated theorem of Cobham classi�es sequences that are simultaneously k-automatic and l-automatic:
these are precisely the sequences that are ultimately periodic. The following theorem provides a
complete characterisation of sets of words that can occur as common factors of automatic sequences
de�ned over multiplicatively independent bases.

Theorem 3.1. Let k, l > 2 be multiplicatively independent integers, let A be an alphabet, and let
U ⊂ A ∗. The following conditions are equivalent:

(i) there exist a k-automatic sequence x and an l-automatic sequence y such that U is the set
of common factors of x and y;
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(ii) the set U is a �nite union of sets of the form L (ωvuwω), where u, v, w are (possibly empty)
words over A .

In the proof, we will use the following strengthening of Cobham's theorem due to Isabelle Fagnot
[22]. Note that, conversely, Cobham's theorem (or indeed its generalisation by Fagnot) follows
immediately from Theorem 3.1.

Theorem 3.2 (Fagnot). Let k, l > 2 be multiplicatively independent integers. Let x be a k-automatic
sequence and let y be an l-automatic sequence. If L (x) = L (y), then both sequences x and y are
ultimately periodic.

From the result above and Theorem 2.1 we get the following corollary.

Corollary 3.3. Let k, l > 2 be multiplicatively independent integers and let A be an alphabet. Let
X,Y ⊂ A ω be subsystems such that X is k-automatic and Y is l-automatic. If a sequence z belongs
to both X and Y , then it is ultimately periodic.

Proof. Let Z be the orbit closure of z. Then Z is a transitive subsystem of both systems X and Y .
By Theorem 2.1, there exist a k-automatic sequence x ∈ X and an l-automatic sequence y ∈ Y such
that Z is the orbit closure of x and y, and hence the sequences x and y have the same language.
By Theorem 3.2, the system Z is �nite, and hence the sequence z is ultimately periodic. �

The problem of describing common factors of automatic sequences was considered in [32]. The
authors obtained, among other things, an upper bound on the length of a common pre�x of aperiodic
automatic sequences de�ned over multiplicatively independent bases in terms of the number of
states of the automata generating the sequences. They further asked about the structure of the set
of common factors of automatic sequences de�ned over multiplicatively independent bases. Since
every ultimately periodic sequence is k-automatic for all integers k > 2, it is clear that we can get
common factors of the form vun for some words v, u and arbitrarily large n. The following example
shows that common factors can be somewhat more complicated.

Example 3.4. Let A = {0, 1, 2}. Consider the 3-automatic sequence x = ϕω(0) produced by the
substitution ϕ : A → A ∗ given by

ϕ(0) = 012, ϕ(1) = 111, ϕ(2) = 222

and the 4-automatic sequence y = τω(0) produced by the substitution τ : A → A ∗ given by

τ(0) = 0121, τ(1) = 1111, τ(2) = 2222.

Then
x = 01213231929127227 · · ·

and hence
Xϕ = O(x) ∪ {2n1ω | n > 0} ∪ {1n2ω | n > 0}.

Similarly,
y = 0121524120216180264 · · ·

and hence
Xτ = O(y) ∪ {2n1ω | n > 0} ∪ {1n2ω | n > 0}.

The common factors of x and y are exactly the words in L (ω12ω) ∪L (ω21ω) ∪L (01213).

We will use Corollary 3.3 to show that common factors of automatic sequences de�ned over
multiplicatively independent bases are all of the form suggested by the example above. We need
to introduce some additional terminology. Let A be an alphabet and let x be a sequence over A .
Let X denote the orbit closure of x. We say that a factor u of x is cyclic if u is nonempty and
the periodic sequence uω lies in X. We say that u is primitive if it is not of the form u = vn for
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some v ∈ A ∗ and n > 2. Since the orbit closure of a periodic sequence is minimal, it follows from
Corollary 2.3 that the set of primitive cyclic factors of a substitutive sequence is �nite. We say that
a common factor of sequences x, y ∈ A ω is cyclic if it is cyclic as a factor of x and as a factor of y.

Remark 3.5. We cannot hope for a straightforward generalisation of Theorem 3.1 to the class of
substitutive sequences. Recall that with every substitution ϕ : A → A ∗ we can associate a matrix
M = (mij)i,j∈A , where mij is the number of occurrences of the letter i in the word ϕ(j). By the
Frobenius�Perron theorem M always has a dominant eigenvalue λ > 0. The eigenvalue λ plays the
role of a base for a substitutive sequence x produced by ϕ (for details see, e.g. [18]), which allows us
to de�ne the class of λ-substitutive systems. The reason why Theorem C fails in this setting is that
transitive subsystems of λ-substitutive systems need not be λ-substitutive. Consider the following
example. Let A = {0, 1} and B = {0, 1, 2, 3}, let x = ϕω(0) be the sequence produced by the
substitution ϕ : A → A ∗ given by

ϕ(0) = 01, ϕ(1) = 10,

and let y = τω(2) be the sequence produced by the substitution τ : B → B∗ given by

τ(0) = 01, τ(1) = 10, τ(2) = 203, τ(3) = 3233.

The systems X = O(x) and Y = O(y) are 2-substitutive and (2 +
√

2)-substitutive, respectively,
and the set of common factors of x and y consists precisely of the factors of x.

Occurrences of cyclic factors in automatic sequences. Let x be a k-automatic sequence. To
proceed with the proof of Theorem 3.1, we �rst need to understand the structure of sets of the form

Sx = {n > 0 | vunw is a factor of x}

for �xed words v, w and u. This is only interesting if u is a cyclic factor of x, since otherwise
Sx is �nite. If v is a su�x of some power of u or w is a pre�x of some power of u, then the set
Sx is easy to determine, and either consists of all integers, or is �nite and consists of all integers
smaller than some constant. Assume conversely that v is not a su�x of any power of u and w is
not a pre�x of any power of u. We will show that the set Sx is up to a �nite set a �nite union of
translates of geometric progressions, and deduce that for automatic sequences x and y de�ned over
multiplicatively independent bases the set Sx ∩ Sy is �nite.

The problem above was also considered by Fagnot in [22, Proposition 8] in the special case when
the sequence x takes values in {0, 1} and v = w = 1, u = 0. This result was used to show that if x is
a k-automatic sequence, y is an l-automatic sequence, k, l > 2 are multiplicatively independent, and
L (x) ⊂ L (y), then either x contains only �nitely many 1's or 1's occur in x with bounded gaps
(see [22, Corollaire 10]). This is the crucial step in her proof of Theorem 3.2. It would be interesting
to see if the general statement below could be reduced to the special case considered by Fagnot,
but we found no such reduction. We give a proof of the general result that uses similar ideas as the
one of Fagnot but seems quite di�erent in details, and we deduce a much stronger �niteness result
in Corollary 3.8. We also discuss the question of e�ectiveness.

Proposition 3.6. Let k > 2 be an integer. Let x be a k-automatic sequence over an alphabet A .
Let u, v, w be nonempty words over A . Assume that v is not a su�x of un and w is not a pre�x
of un for any integer n. Let S = {n > 0 | vunw is a factor of x}. The set S is a �nite union of
sets of the form {akmn + b | n > 0} for some a, b ∈ Q and m ∈ Z with a, b,m > 0, a + b ∈ Z and
(km − 1)a ∈ Z.

Proof. We begin the proof with a few reductions.
Step I (reduction to the case when |u| = |v| = |w|). First, we show that it is enough to prove

the claim under the additional assumption that |v| 6 |u| and |w| 6 |u|. Let j > 0 be an integer
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such that max(|v|, |w|) 6 |u|j/2. Write

Si = {n ∈ S | n ≡ i (mod j)}.

Then S =
⋃j−1
i=0 Si, and hence it is enough to show the claim separately for each of the sets Si. For

0 6 i < j, we put u′ = uj , v′ = vub(i+1)/2c and w′ = ubi/2cw. We then have max(|v′|, |w′|) 6 |u′|
and

Si = {n = jm+ i | v′(u′)mw′ is a factor of x}.
In order to further obtain |v′| = |w′| = |u′|, we consider all possible prolongations of the words v′
and w′ to words v′′ and w′′ of length |u′| and such that v′ is a su�x of v′′ and w′ is a pre�x of w′′.
Every element of Si lies in one of the sets

{n = jm+ i | v′′(u′)mw′′ is a factor of x}

for some choice of v′′ and w′′, except for the values n ∈ Si corresponding to factors v′(u′)mw′ which
occur only at starting positions < |u′|− |v′|. Since there are only �nitely many such values of m (at
most one for each starting position), we may assume that |u| = |v| = |w|.
Step II (reduction to the case when |u| = |v| = |w| = 1). Write ` for the common length of u, v

and w. We will now show that we may assume that ` = 1 by changing the alphabet. For 0 6 i < `
let

S̃i = {n ∈ S | vunw = x[m,m+(n+2)`) for some m ≡ i (mod `)}
denote the set of all integers n ∈ S such that the factor vunw occurs in x at a position m ≡ i
(mod `). Clearly, S is the union of the sets S̃i.

Let A ` denote the set of words of length ` over A . Identifying words u, v, w with letters u′, v′, w′ ∈
A ` and the sequence x with the corresponding sequence x′ ∈ (A `)ω, we see that the set S̃0 is equal
to the set of all integers n such that v′(u′)nw′ is a factor of x′. The same reasoning applied to the

sequence T i(x) instead of x shows that the set S̃i is equal to the set of all integers n such that
v′(u′)nw′ is a factor of the k-automatic sequence (T i(x))′. This allows us to assume that u, v, w are
single letters.
Step III (restating the problem in terms of purely automatic sequences). Write the sequence x

as the image of a purely k-automatic sequence y produced by a substitution ϕ : B → B∗ of constant
length k under a coding π : B → A . Let T , C and D denote the preimages of the letters u, v and
w under the coding π, respectively. Note that C ∩ T = D ∩ T = ∅. The set S can be expressed in
terms of the sequence y as

S = S(C,D, T ) = {n > 0 | cwd is a factor of y for some c ∈ C, d ∈ D and w ∈ T ∗ with |w| = n}.

We will prove that sets S = S(C,D, T ) satisfy the claim for all purely k-automatic sequences y over
an alphabet B and subsets T,C,D ⊂ B∗ with C ∩ T = D ∩ T = ∅. Dividing S into a �nite union,
we may further assume that the sets C and D consist of single letters c, d ∈ B \ T , and we write
S(c, d, T ) for S({c}, {d}, T ).
Step IV (constructing a recurrence for the set S). For m > 1 we let ϕ−m(T ) denote the set of

letters a ∈ A such that ϕm(a) ∈ T ∗. We write AT = A \ ϕ−1(T ) for the set of letters a ∈ A such
that ϕ(a) /∈ T ∗. For a letter a ∈ AT we denote by α(a) the �rst letter in ϕ(a) that is not in T and
by ω(a) the last letter in ϕ(a) that is not in T . We replace the substitution ϕ by its power in order
to get the property ϕ−1(T ) = ϕ−2(T ) (this is possible by Lemma 1.8).

With every pair (a, a′) ∈ A 2
T we associate an integer q(a, a′) in the following way. Write ϕ(a) =

vω(a)w and ϕ(a′) = w′α(a′)v′ for some w,w′ ∈ T ∗ and v, v′ ∈ A ∗. Let q denote the length of w
and let q′ denote the length of w′. Put q(a, a′) = |w|+ |w′|. Consider the sets

Ωc = {a ∈ AT | ω(a) = c} and Ad = {a ∈ AT | α(a) = d}.
17



We let E ⊂ S denote the set of integers n ∈ S such that n < k − 1. We claim that

S(c, d, T ) =
⋃

(c′,d′)∈Ωc×Ad

(
kS(c′, d′, ϕ−1(T )) + q(c′, d′)

)
∪ E. (2)

Let n > k− 1. By de�nition, n lies in S if and only if there exists a word w ∈ T ∗ with |w| = n such
that cwd is a factor of y. Since ϕ(y) = y and |cwd| > k+ 1, this happens if and only if there exist a
pair (c′, d′) ∈ Ωc × Ad and a word w′ ∈ (ϕ−1(T ))∗ such that cwd is a factor of ϕ(c′w′d′). It follows
that n ∈ S if and only if n ∈ kS(c′, d′, ϕ−1(T )) + q(c′, d′) for some (c′, d′) ∈ Ωc × Ad, with the `if'
claim not requiring the assumption that n > k − 1. This proves (2).

Observe that (2) implies that it is enough to prove the claim for each of the sets S(c′, d′, ϕ−1(T )).
By the assumption on ϕ, we have that ϕ−1(ϕ−1(T )) = ϕ−1(T ), and hence it is enough to show
the claim for sets of the form S = S(c, d, T ) under the additional assumption that ϕ−1(T ) = T .
It follows that α(AT ) ⊂ AT and ω(AT ) ⊂ AT . Writing temporarily αϕ and ωϕ for the maps
α, ω : AT → AT de�ned with respect to the substitution ϕ, we note that αnϕ = αϕn and ωnϕ = ωϕn

for all n > 1. Another application of Lemma 1.8 shows that after replacing ϕ by an appropriate
power we get that the maps α and ω are idempotent, which we henceforth assume.

If the set S is �nite, the claim is obvious, so assume that S is in�nite. By (2), the sets Ωc and
Ad are nonempty, and hence (since ω and α are idempotent) we have ω(c) = c, α(d) = d.

We now consider a family of recurrence sequences. For an element r ∈ S, consider the sequence
(nrt )t>0 given by the formula

nr0 = r,

nrt = knrt−1 + q(c, d), t > 1.

By (2) it is clear that nrt ∈ S for all r ∈ S and t > 0. We claim that

S = {nrt | t > 0, r ∈ S, 0 6 r < k2 − 1}. (3)

This will end the proof of the claim, since the recurrence sequence (nrt )t>0 has the closed form
nrt = akt + b with a = r + q(c, d)/(k − 1) and b = −q(c, d)/(k − 1) satisfying a + b ∈ Z and
(k − 1)a ∈ Z. (Note that in the process of the proof we have replaced the substitution ϕ by its
iterate, which has the e�ect of replacing the original k by its power.)
Step V (proving the formula (3)). We have already remarked that all nrt are elements of S. For

the converse claim (with the extra statement that one can take r < k2 − 1), we will inductively
apply (2), which takes a simpler form since ϕ−1(T ) = T .

Choose m ∈ S and write c0 = c, d0 = d, m0 = m. If m > k − 1, then by (2) we may write
m0 = km1 + q(c1, d1) for some c1, d1 ∈ AT with ω(c1) = c, α(d1) = d and m1 ∈ S(c1, d1, T ).
If m1 > k − 1, we may repeat this procedure. In this way, we inductively construct sequences
(ci)06i6s, (di)06i6s and (mi)06i6s with ci, di ∈ AT , ω(ci+1) = ci, α(di+1) = di and mi ∈ S(ci, di, T )
with mi = kmi+1 + q(ci+1, di+1). Furthermore, we have mi > k − 1 for i < s and mi < k − 1 for
i = s.

Since the maps ω and α are idempotent, the conditions on (ci) and (di) imply that ci = c and
di = d for 0 6 i < s (but not necessarily for i = s). This shows that mi = kmi+1 + q(c, d) for
0 6 i < s, and hence m = nrt for t = s− 1 and r = ms−1. Since ms−1 = kms + q(cs, ds), ms 6 k− 2
and q(cs, ds) 6 2k − 2, we get that r = ms−1 < k2 − 1, which ends the proof of the claim. �

Remark 3.7. Note that the proof of Proposition 3.6 is e�ective, in the sense that given a k-
automatic sequence and words u, v, w satisfying the conditions of the proposition, one may explicitly
determine the set S = {n > 0 | vunw is a factor of x} as a �nite union of translates of geometric
progressions and a �nite set. In fact, even if u, v, w fail to satisfy the assumptions, i.e. either v is a
su�x of some power of u or w is a pre�x of some power of u, we may still determine S as either an
explicit �nite set or as all of N. Indeed, the reasoning in Steps I and II in the proof of Proposition
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3.6 allows us to assume that u, v and w are single letters. Fix u and vary v and w. If v, w 6= u,
we already know how to �nd the corresponding set S. The remaining cases reduce to this one since
every factor vunw of x is either a subfactor of some factor ṽumw̃ of x for some letters ṽ, w̃ with
ṽ, w̃ 6= u or else arises as a factor of some pre�x of x of the form umw or �nally we have that x is
ultimately periodic with su�x uω, in which case it is easy to �nd S.

Corollary 3.8. Let k, l > 2 be multiplicatively independent integers and let A be an alphabet. Let
x be a k-automatic sequence over A and let y be an l-automatic sequence over A . Let u, v, w be
words over A . Assume that v is not a su�x of un and w is not a pre�x of un for any integer n.
Then the word vunw is a common factor of x and y only for �nitely many n.

Proof. Let Sx = {n ∈ N | vunw is a factor of x} and Sy = {n ∈ N | vunw is a factor of y}. By
Proposition 3.6, Sx is a �nite union of sets of the form {akmn + b | n > 0} for some a, b ∈ Q
and m > 0. Similarly, Sy is a �nite union of sets of the form {almn + b | n > 0} for some
a, b ∈ Q and m > 0. In order to prove that the set Sx ∩ Sy is �nite, it su�ces to note that for any
multiplicatively independent integers k, l and rational numbers a, b, c ∈ Q with a, b, c not all equal
to zero the exponential diophantine equation

akn + blm = c

has only �nitely many integer solutions m,n ∈ N. This follows, e.g. from the �niteness of the
number of solutions of S-unit equations due to Mahler [30] (see also [21, Ch. 4] or [27, p. 28] for a
more general, but very convenient, statement). �

Proof of the main result. We are now ready to prove Theorem 3.1. We begin with a lemma.

Lemma 3.9. Let u, ũ, v be words over an alphabet A , and let n,m > 0 be integers. Assume that u
and ũ are primitive and that ũm is a su�x of unv with m|ũ| > |v|+ |u|+ |ũ| − gcd(|u|, |ũ|). Then
u and ũ are cyclic shifts of each other and for any q > 0 we have unvũq = un+qv.

Proof. Let ṽ denote the word ũm with the su�x v removed. It follows from the Fine�Wilf theorem
[5, Thm. 1.5.6] applied to the (backwards in�nite) periodic sequences ωu and ωũṽ that ωu = ωũṽ,
and hence ωuv = ωũ. Since u and ũ are primitive, they are cyclic shifts of each other. Both the
words unvũq and un+qv are su�xes of ωuv = ωũ of the same length, and hence are equal. �

Proof of Theorem 3.1. We �rst prove that (ii) implies (i). Write U in the form

U =

p⋃
i=1

L (ωviuiw
ω
i ), ui, vi, wi ∈ A ∗.

Replacing k and l with their powers, we may assume that k, l > max(p + 2, 3). Choose two
symbols ♣, ♠ outside of A . We will construct a k-automatic sequence x ∈ (A ∪ {♣})ω whose set
of factors not containing ♣ coincides with U . Consider the sequences

ci =

{
uiw

ω
i if wi 6= ε,

ui♣ω if wi = ε.
di =

{
ωvi if vi 6= ε,
ω♣ if vi = ε.

Since these sequences are ultimately periodic, they are both k- and l-automatic. De�ne the sequence
x ∈ (A ∪ {♣})ω by the formula

xn =


cin if i · kt 6 n < i · kt + kt−1, t > 1, 1 6 i 6 p,

din−i·kt if i · kt − kt−1 6 n < i · kt, t > 1, 1 6 i 6 p,

♣ otherwise.

(Recall that we always regard sequences in A ω as indexed with 0, 1, . . ., and sequences in ωA as
indexed with . . . ,−2, 1.) Using either the characterisation of automaticity in terms of kernels or
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in terms of �nite automata, it is elementary (albeit tedious) to verify that x is k-automatic. It is
immediate that the set of factors of x not containing the symbol ♣ coincides with U . Replacing
k by l and ♣ by ♠, we de�ne an l-automatic sequence y ∈ (A ∪ {♠})ω whose set of factors not
containing ♠ coincides with U . It follows that the set of common factors of x and y is exactly U .
This ends the proof that (ii) implies (i).

For the proof that (i) implies (ii), let x be a k-automatic sequence and let y be an l-automatic
sequence. For simplicity, in the rest of the proof we will refer to common factors of x and y simply
as common factors. It follows from Corollary 2.3 that there are only �nitely many primitive cyclic
common factors (in fact, both x and y have only �nitely many primitive cyclic factors). Let ` denote
the maximal length of such a factor. We write common factors t in the form

t = v0u
n1
1 v1u

n2
2 · · · vs−1u

ns
s vs (4)

for some integer s > 0, integers ni > 0 and words ui, vi satisfying the following properties:

(i) the words ui are primitive cyclic common factors,
(ii) the words vi have length |vi| 6 `,
(iii) the integer s, called the rank of the representation, is the smallest possible,
(iv) given the choice of s, the sequence of integers (n1, . . . , ns), called the sequence of exponents,

is lexicographically maximal.

We will refer to (4) as a representation of a common factor t.
Note that if t′ is a pre�x of t, then the rank of t′ is at most equal to the rank of t. We will prove

that common factors have bounded rank. To this end, we �rst prove the following claim.
Claim 1: For each i ∈ {2, . . . , s− 1} if ni > 0, then there exist

(i) a su�x y of v0u
n1
1 · · ·u

ni−1

i−1 vi−1 of length |y| 6 4` such that y is not a su�x of uni for any
integer n > 0; and

(ii) a pre�x z of viu
ni+1

i+1 · · ·uns
s vs of length |z| 6 4` such that z is not a pre�x of uni for any

integer n > 0.

Proof of Claim 1 : We only prove (i), the proof of (ii) being analogous. Write

v0u
n1
1 · · ·u

ni−1

i−1 vi−1 = w′w,

where w,w′ ∈ A ∗, w is a su�x of uni for some n > 0, and w is chosen as long as possible. Let m > 0
be the largest integer such that umi is a su�x of w, and write w = w′′umi . Note that |w′′| < `.

Consider the following cases (which cover all possibilities):

(i) If w′ = ε, then t admits the representation t = w′′um+ni
i vi · · · vs−1u

ns
s vs, which is of rank

s− i+ 1 < s. This is a contradiction.
(ii) If |umi | > |u

ni−1

i−1 vi−1|, we claim that t also admits a representation of smaller rank. In fact,

the word w′w′′ is a pre�x of v0u
n1
1 · · ·u

ni−2

i−2 vi−2, and hence has a representation of rank at

most i− 2. Concatenating it with um+ni
i vi · · · vs−1u

ns
s vs, we obtain a representation of t of

rank 6 s− 1. This is a contradiction.
(iii) If |umi | 6 |u

ni−1

i−1 vi−1| and |w| > 4`, then |umi | > 3`, and hence by Lemma 3.9 we may write

u
ni−1

i−1 vi−1u
ni
i = uri−1vi−1 with r = ni−1 + ni. Replacing in the representation of t the word

u
ni−1

i−1 vi−1u
ni
i vi by u

r
i−1vi−1u

0
i vi, we obtain a representation whose sequence of exponents is

(n1, . . . , ni−2, r, 0, ni+1, . . . , ns), and hence (since ni > 0) is lexicographically larger than
(n1, . . . , ni−2, ni−1, ni, ni+1, . . . , ns). This is a contradiction.

(iv) If |w| < 4` and w′ 6= ε, then the su�x y of w′w of length |w|+ 1 satis�es the claim. �

Claim 2: There is a constant C such that for any common factor t the values of n2, . . . , ns−1 in
any representation (4) of t are bounded by C.
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Proof of Claim 2 : Since there are only �nitely many primitive cyclic common factors and �nitely
many words of length 6 4`, Corollary 3.8 and Claim 1 show that the values of n2, . . . , ns−1 are
bounded by a constant independent of t. �
Claim 3: The rank of common factors is bounded.
Proof of Claim 3 : Let t be a common factor with representation t = v0u

n1
1 v1u

n2
2 · · · vs−1u

ns
s vs.

We claim that any cyclic factor of t (not necessarily primitive) can occur at positions intersecting
at most four of the ui's. Suppose this is not the case and write such a factor in the form ũn for
some integer n > 0 and primitive cyclic common factor ũ. Consider in the representation of t the
shortest factor w̃ consisting of a concatenation of ui's and vi's and containing ũn. Replacing w̃ by a
word of the form v′ũnv′′ with |v′|, |v′′| 6 `, we obtain a representation of smaller rank, which gives
a contradiction.

Now suppose that the rank of common factors is unbounded. Then the words

w(t) := un2
2 v2 · · · vs−2u

ns−1

s−1

can be arbitrarily long, and hence by compactness of A ω there exists a sequence z with arbitrarily
long pre�xes of the form w(t) for some common factors t. Let X and Y denote the orbit closures of x
and y, respectively. Then z ∈ X ∩Y , and hence by Corollary 3.3 it is ultimately periodic. However,
by Claim 2 any cyclic factor of w(t) has length at most (3C + 4)`, which is a contradiction. �
Claim 4: There exists a constant C ′ such that any common factor t can be written in the form

t = v′unvwmv′′ for integers n,m > 0, primitive cyclic common factors u,w and words v, v′, v′′ of
length at most C ′.

Proof of Claim 4 : Follows immediately from Claims 3 and 4. �
Due to Claim 4, in order to prove our result, it is su�cient to study common factors t of the form

t = v′unvwmv′′ for �xed words u,w, v, v′, v′′. Call a set S of common factors special if it takes the
form

S = {t = v′unvwmv′′ | t is a common factor, n,m ∈ N}

for some words u,w, v, v′, v′′ ∈ A ∗. If we may further take w = v′′ = ε, we call the set S degenerate.
By Claim 4, the set of all common factors is a �nite union of special sets. We write L (S) for the set
of all factors of words in S. We will prove that for any special set S the set L (S) is a �nite union
of sets of the form L (ωũṽw̃ω) with ũ, ṽ, w̃ ∈ A ∗. This will conclude the proof of the theorem.

We �rst prove the claim for a degenerate special set

S = {t = v′unv | t is a common factor, n ∈ N}.
If the set S is �nite, then it is certainly of the desired form. By Corollary 3.8 this is the case if v′

is not a su�x of any power of u and v is not a pre�x of any power of u. If on the other hand v′ is
a su�x of some power of u, and S is in�nite, then L (S) is equal to L (ωuv). A similar reasoning
proves the claim if v is a pre�x of some power of u.

Consider now the case of a general special set

S = {t = v′unvwmv′′ | t is a common factor, n,m ∈ N}.
If S does not contain factors of the form t = v′unvwmv′′ for arbitrarily large values of both n and m,
then S can be rewritten as a �nite union of degenerate special sets, and the claim follows. Suppose
that S contains factors t corresponding to arbitrarily large values of both n and m. If either vwm is
a pre�x of some power of u for arbitrarily largem or unv is a su�x of some power of w for arbitrarily
large n, then we may again rewrite S as a �nite union of degenerate special sets. Finally, if neither
is vwm a pre�x of some power of u for su�ciently large m nor is unv a su�x of some power of w for
su�ciently large n, then we conclude from Corollary 3.8 that v′ is a su�x of some power of u and
v′′ is a pre�x of some power of w. In this case the set L (S) is equal to L (ωuvwω), which �nishes
the proof. �
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Remark 3.10. It is an interesting question whether Theorem 3.1 can be made e�ective, i.e. whether
there is an algorithm which, given a k-automatic sequence x and an l-automatic sequence y, produces
words ui, vi, wi, 1 6 i 6 p, such that the set U of common factors of x and y is equal to

U =

p⋃
i=1

L (ωviuiw
ω
i ).

The only place in the proof of Theorem 3.1 where it is not clear if the proof is e�ective is the
bound on the rank of common factors (Claim 3), which uses a compactness argument. Let us brie�y
comment on how to make other parts of the proof e�ective.

First of all, we can determine all primitive cyclic factors of an automatic sequence x. In fact,
write x as the image of a �xed point of a substitution under a coding. Replace the substitution
by an idempotent one using Lemma 1.9, which is e�ective. Proposition 2.2 together with Lemma
1.1 describe all minimal subsystems of O(x) as closures of orbits of explicitly given automatic
sequences. To �nd the cyclic factors of x, we need to determine which of these automatic sequences
are periodic, for which a decision procedure was given by Honkala [24] (see also [4] for a simpler
approach). Another crucial ingredient of the proof is Corollary 3.8, which uses the S-unit equation.
Here, solutions can be e�ectively bounded using Baker's method (for a comprehensive discussion, see
[21]). In particular, the constant C in the proof can be e�ectively computed. Finally, given words
v, v′, v′′, u, w we may e�ectively determine all common factors of x and y of the form t = v′unvwmv′′

using Remark 3.7 and an e�ective version of Corollary 3.8. Thus, in order to make the proof fully
e�ective, we need to �nd a computable bound on the rank of common factors or�equivalently�the
constant C ′.
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