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Abstract. Surgical resections are the most prevalent curative treatment for pri-
mary liver cancer. Tumors located in critical positions are known to complexify 
liver resections (LR). While experienced surgeons in specialized medical cen-
ters may have the necessary expertise to accurately anticipate LR complexity, 
and prepare accordingly, an objective method able to reproduce this behavior 
would have the potential to improve the standard routine of care, and avoid in-
tra- and postoperative complications. In this article, we propose CoRe, an au-
tomated medical image processing pipeline for the prediction of postoperative 
LR complexity from preoperative CT scans, using imaging biomarkers. The 
CoRe pipeline first segments the liver, lesions, and vessels with two deep learn-
ing networks. The liver vasculature is then pruned based on a topological crite-
rion to define the hepatic central zone (HCZ), a convex volume circumscribing 
the major liver vessels, from which a new imaging biomarker, BHCZ is derived. 
Additional biomarkers are extracted and leveraged to train and evaluate a LR 
complexity prediction model. An ablation study shows the HCZ-based bi-
omarker as the central feature in predicting LR complexity. The best predictive 
model reaches an accuracy, F1, and AUC of 77.3, 75.4, and 84.1% respectively.  

Keywords: Vasculature Analysis, Imaging Biomarkers, Surgical Resection 
Complexity Prediction 

1 Introduction 

Liver cancer is a prominent contributor to cancer mortality worldwide, ranking sec-
ond in the most common causes of cancer-related deaths [1]. In the management of 
the early stages of liver cancer, liver resection (LR) is the most prevalent type of 
treatment [1]. However, with considerable variations in the technicalities of different 
types of LRs, a preoperative assessment of resection complexity is necessary to min-
imize the intra- and postoperative risks [2]. 
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In the medical literature, LR complexity can be evaluated at the pre-, intra-, and 
postoperative stages of the surgical operation [2-4]. While the preoperative complexi-
ty is based on the evaluation of the different types of LRs [3], the intra- and postoper-
ative LR complexities rely on the surgical maneuvers performed during the operation 
[2], [4] and on the expertise of the liver surgeon [2], [3]. However, across all these 
definitions, medical expertise and user interactions are required.  

Furthermore, centrally located liver tumors require more technically challenging 
surgical resections due to their proximity to the major hepatic vessels (portal and he-
patic veins) [5], often necessitating vasculature reconstruction, which according to [6] 
further increases the complexity of the resection. Therefore, a detailed knowledge of 
the morphology and structure of the hepatic vasculature is necessary to assess the 
position of the tumors with respect to the major hepatic vessels. The methods pro-
posed in [7-8] present a semi-automatic approach for the geometrical and structural 
analysis of the liver vessels in the context of preoperative liver surgery planning. 

In this article, we introduce CoRe, the first automatic, quantitative, and interpreta-
ble pipeline, for the prediction of the postoperative LR complexity from preoperative 
portal phase CT scans, using imaging-based biomarkers. First, segmentations of the 
liver, lesions, and hepatic vessels are generated with a state-of-the-art UNet deep 
network, benefitting from the literature in [9-14]. Second, we propose a liver vascula-
ture pruning algorithm to define the “hepatic central zone” (HCZ), a convex volume 
circumscribing the major liver vessels, from which a new imaging biomarker, BHCZ is 
derived. Third, additional quantitative biomarkers are leveraged from the generated 
segmentations to train and evaluate a LR complexity prediction model. 

2 Methods 

2.1 Liver, Lesion, and Vessel Segmentation 

The details of the CoRe pipeline are depicted in Figure 1. The first step is the segmen-
tation of the liver, lesions, and vessels from the portal phase of preoperative CT scans. 
Two 3D convolutional neural networks (CNN) are trained to segment the liver and 
liver lesions on one hand, and the portal and hepatic vessels on the other hand. The 
segmentations are then combined by appropriately labeling their union (Fig. 1A).  
 We leverage the state-of-the-art nnUNet’s [14] default 3D full resolution frame-
work to train both segmentation models. These models follow a UNet-like architec-
ture [15], and are trained with the dice and cross-entropy losses using stochastic gra-
dient descent with Nesterov momentum, and a geometrically decaying learning rate. 
The segmentation models are denoted LivLes3D and HepVess3D respectively.  

2.2 Topological Analysis of the Liver Vasculature  

The predicted binary vessel segmentations are pruned to keep the major vessels only, 
and define the HCZ (Fig. 1B). The successive steps are listed below.  
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Fig. 1. Details of the CoRe pipeline. (A): Liver anatomy segmentation results with liver (blue), 
lesion (orange) and vessels (red). (B): Liver vasculature pruning algorithm (green: portal veins, 
red: hepatic veins), and HCZ generation (white volume around the vessels inside the liver). (C): 
Predictive model of LR complexity from imaging biomarkers extracted from (A) and (B), 
where 0 and 1 refer to not complex and complex cases respectively. 

1. Skeletonization. The segmentation mask is skeletonized with Scikit-Image 
0.20.0 using [16]. Local vessel radii are associated to each skeleton element after 
computing the distance transform of the vessel masks with Scipy 1.8.0.  

2. Graph construction. The skeleton is converted into a graph representation 𝐺𝐺 =
(𝑉𝑉,𝐸𝐸) with vertices 𝑉𝑉 = {𝑣𝑣1, … , 𝑣𝑣𝑁𝑁} and undirected edges 𝐸𝐸 = {(𝑣𝑣,𝑤𝑤) | 𝑣𝑣,𝑤𝑤 ∈ 
𝑉𝑉, 𝑣𝑣 ≠ 𝑤𝑤}, considering two voxels as neighbors if their corresponding indexes 
differ by a maximum value of 1 in each direction. 

3. Branch decomposition. 𝐺𝐺 is decomposed into edge-disjoint subgraphs 
𝐵𝐵1, … ,𝐵𝐵𝑀𝑀 called branches, such that each edge (𝑣𝑣,𝑤𝑤) ∈ 𝐸𝐸 belongs to exactly 
one branch, using Skan 0.11.0 [17]. The length 𝑙𝑙𝑙𝑙𝑙𝑙(𝐵𝐵) and mean radius 𝑟𝑟𝑟𝑟𝑟𝑟(𝐵𝐵) 
of each branch 𝐵𝐵 are computed, either by summation or averaging the edge 
length and radius respectively. 

4. Vascular entry identification. Anatomically, the liver vasculature is composed 
of two distinct vessel trees, the portal and hepatic trees. To identify the corre-
sponding liver entry points, the vessel mask is successively eroded, and the cen-
troids of the two most persistent connected components are projected onto the 
skeleton. The closest vertices 𝑣𝑣𝑝𝑝 and 𝑣𝑣ℎ with degree 1 are then identified.  

5. Tree pruning. See Algorithm 1 below. Two tree hierarchies are extracted from 
𝐺𝐺 using 𝑣𝑣𝑝𝑝 and 𝑣𝑣ℎ as respective seeding vertices, retaining only the major con-
nected branches. The branch lengths and diameters are exploited to identify sig-
nificant branch bifurcation levels 𝑏𝑏𝑏𝑏𝑏𝑏(𝐵𝐵) in a recursive tree building approach. 
The vessels extending beyond the third major vascular bifurcation are consid-
ered irrelevant for surgical planning and are pruned.  

6. Morphological reconstruction. The retained skeletons are inflated by a dilation 
factor equal to the local diameters. Numerical round-up and mask intersection 
with the original segmentation allow to reconstruct the local vessel geometry. 

7. Hepatic central zone definition. The convex hull of the retained vessels defines 
the hepatic central zone (HCZ). 

LivLes3D

HepVess3D

(A) Liver Anatomy Segmentation (B) Liver 
Vasculature Pruning

(C) Predictive 
Model

CoRe Automatic Pipeline

Combined 3D segmentations 
of the liver, lesions and vessels

Hepatic Central Zone (HCZ)

Imaging 
Biomarkers

0 1
Liver 

Resection
Complexity

Input:
Preoperative CT scan
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Algorithm 1. Vessel tree pruning algorithm. 

Inputs: 
• graph 𝐺𝐺 = (𝑉𝑉,𝐸𝐸), branches (𝐵𝐵𝑚𝑚)𝑚𝑚, root 𝑣𝑣𝑟𝑟 ∈  𝑉𝑉; 
• current bifurcation level 𝑏𝑏𝑏𝑏𝑏𝑏(𝐵𝐵), length 𝑙𝑙𝑙𝑙𝑙𝑙(𝐵𝐵) and radius 𝑟𝑟𝑟𝑟𝑟𝑟(𝐵𝐵); 
• archive of visited subgraph 𝐺𝐺𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣. 

Hyperparameters:  
• maximum vessel tree bifurcation level 𝑏𝑏𝑏𝑏𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚 = 2;  
• maximum vessel branch reduction factor 𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚 = 0.2. 

 

Let 𝑤𝑤1, … ,𝑤𝑤𝑑𝑑 ∈ 𝑉𝑉 be the neighbor vertices of 𝑣𝑣𝑟𝑟, where 𝑑𝑑 ∈ ℕ is the degree of 𝑣𝑣𝑟𝑟.  
If 𝑏𝑏𝑏𝑏𝑏𝑏(𝐵𝐵), 𝑙𝑙𝑙𝑙𝑙𝑙(𝐵𝐵) and 𝑟𝑟𝑟𝑟𝑟𝑟(𝐵𝐵) are undefined:                               # initial call, d=1 

Identify the branch 𝐵𝐵𝑤𝑤1 such as (𝑣𝑣𝑟𝑟 ,𝑤𝑤1) ∈ 𝐵𝐵.  
Initialize 𝑙𝑙𝑙𝑙𝑙𝑙(𝐵𝐵) ←  𝑙𝑙𝑙𝑙𝑙𝑙(𝐵𝐵𝑤𝑤1) and 𝑟𝑟𝑟𝑟𝑟𝑟(𝐵𝐵) ←  𝑟𝑟𝑟𝑟𝑟𝑟(𝐵𝐵𝑤𝑤1). 
Initialize 𝑏𝑏𝑏𝑏𝑏𝑏(𝐵𝐵) ←  0 and 𝐺𝐺𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 with 𝑣𝑣𝑟𝑟.  

If 𝑏𝑏𝑏𝑏𝑏𝑏(𝐵𝐵) = 𝑏𝑏𝑏𝑏𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚 or all 𝑤𝑤1, … ,𝑤𝑤𝑑𝑑 belong to 𝐺𝐺𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣:  
Return 𝐺𝐺𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣. 

Else if there is a single neighbor vertex 𝑤𝑤 that does not belong to 𝐺𝐺𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣:  
Return 𝐺𝐺𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 ← recursive call using 𝑤𝑤 as root.  

Else, for each neighbor vertex 𝑤𝑤 that does not belong to 𝐺𝐺𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣: 
Identify the branch 𝐵𝐵𝑤𝑤 such as (𝑣𝑣𝑟𝑟 ,𝑤𝑤) ∈ 𝐵𝐵. 
If 𝑙𝑙𝑙𝑙𝑙𝑙(𝐵𝐵𝑤𝑤) < 𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚 ∙ 𝑙𝑙𝑙𝑙𝑙𝑙(𝐵𝐵) or rad(𝐵𝐵𝑤𝑤) < 𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚 ∙ 𝑟𝑟𝑟𝑟𝑟𝑟(𝐵𝐵):  # noise 

Update 𝐺𝐺𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 ← recursive call using 𝑤𝑤 as root.  
Else:                                                                                          # relevant branch 

Update 𝐺𝐺𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 ← recursive call using 𝑤𝑤, 𝑏𝑏𝑏𝑏𝑏𝑏(𝐵𝐵) + 1, 𝑙𝑙𝑙𝑙𝑙𝑙(𝐵𝐵𝑤𝑤), 𝑟𝑟𝑟𝑟𝑟𝑟(𝐵𝐵𝑤𝑤).  
Return 𝐺𝐺𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣. 
 

Output: pruned vessel subgraph 𝐺𝐺𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣. 
 

 
This vasculature analysis approach builds on [8] to propose an entirely automated 

imaging pipeline where the segmentation noise is handled during the tree construction 
step, via filtering heuristics based on vessel graph properties. The tree construction 
procedure is detailed in Algorithm 1. 

2.3 Quantitative Imaging Biomarkers for LR Complexity Prediction 

The liver volume VLiv, the number of lesions NLes, and the volume of lesion VLes are 
the imaging biomarkers directly extracted from the raw segmentations. We also de-
fine a new imaging biomarker BHCZ based on the proposed HCZ, as the lesions’ rela-
tive occupancy volume 𝑉𝑉 inside the HCZ if it is nonzero, and the negative of the min-
imal distance 𝑑𝑑 from the lesion to the HCZ. BHCZ is defined in equation 1 below. 
 

𝐵𝐵𝐻𝐻𝐻𝐻𝐻𝐻 =  

⎩
⎪
⎨

⎪
⎧𝑉𝑉𝐿𝐿𝐿𝐿𝐿𝐿 ∩ 𝐻𝐻𝐻𝐻𝐻𝐻

𝑉𝑉𝐻𝐻𝐻𝐻𝐻𝐻
       𝑖𝑖𝑖𝑖    𝐿𝐿𝐿𝐿𝐿𝐿 ∩ 𝐻𝐻𝐻𝐻𝐻𝐻 ≠ ∅ 

−
𝑑𝑑(𝐿𝐿𝐿𝐿𝐿𝐿,𝐻𝐻𝐻𝐻𝐻𝐻)

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝐻𝐻𝐻𝐻𝐻𝐻)
      𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

 (1) 
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The liver volume is used for its importance in withstanding the bodily functions 
post-LR. The volume and the number of lesions are considered, since larger or multi-
ple lesions are generally associated with complex LRs. Lesions in the vicinity of the 
HCZ are assumed to be located in critical positions given their proximity to the liver’s 
major vessels. Accordingly, the proposed biomarker BHCZ is utilized as a quantitative 
indicator of the position of the liver lesions with respect to the HCZ.  

Lastly, with scikit-learn v0.23.2, the default configuration of the logistic regression 
is chosen as the binary classifier to train a cross-entropy loss with an L2 regulariza-
tion using the biomarkers above, in order to predict LR complexity (Fig. 1C). 

3 Experiments 

3.1 Datasets and Preprocessing 

IRCAD [18] and LiTS [19], are public datasets of abdominal CT images with liver, 
lesion, and hepatic vessel (available with IRCAD only) reference segmentations. 
LiTS also provides a benchmark validation set (LiTSVS) with 70 unannotated scans for 
the evaluation of the liver and lesion segmentations. Moreover, an internal dataset 
(dseg = 65) with manually segmented vessel annotations is used as a complementary 
training set for HepVess3D. 

IRCAD, LiTS, and dseg are preprocessed using the nnUNet’s default preprocessing 
pipeline which includes a contrast clipping, a z-score normalization, and a resampling 
of the images to their median spacing [14]. 

An internal dataset (dinternal) of 128 patients who underwent LR for liver cancer  
was created between 2012-2020 as a separate internal dataset to assess the proposed 
pipeline. Labeling LR complexity is a regular clinical practice in our medical institu-
tion, and is assigned postoperatively on a 1-10 scale by the surgeon who performed 
the LR. Following [2], and accounting for the surgical triage application, two groups 
identified to be the ‘not complex’ and ‘complex’ groups were considered. According-
ly, the scores are binarized at the 5 threshold where the values 0 and 1 refer to the ‘not 
complex’ and ‘complex’ cases respectively. Overall, the dataset is balanced with 63 
complex and 65 not complex LRs. 

3.2 Training, Evaluation, and Inference 

LivLes3D is trained for 1000 epochs on the combination of IRCAD and LiTS with an 
initial learning rate lrinit =  0.01, and evaluated on LiTSVS through their online plat-
form. HepVess3D is also trained for 1000 epochs with lrinit on the combination of 
dseg and IRCAD, using 5-fold cross validation only on IRCAD’s hepatic vessels. The 
performance of both models is evaluated using the dice metric.  

In inference, LivLes3D and HepVess3D are employed on dinternal to generate liv-
er, lesions, and hepatic vessel segmentations from which the imaging biomarkers
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Table 1. Results of the ablation study in %. In bold are the best results. 

BHCZ NLes VLes VLiv Accuracy F1 AUC 
    73.4 (3.9) 71.2 (4.8) 83.5 (3.5) 
    70.3 (4.0) 67.8 (5.0) 78.2 (4.0) 
    75.8 (3.8) 73.2 (4.8) 79.0 (4.1) 
    72.6 (4.0) 71.4 (4.7) 82.0 (3.7) 
    77.3 (3.5) 75.4 (4.0) 84.1 (3.6) 
    71.8 (4.0) 70.2 (4.7) 77.8 (4.1) 
    73.4 (3.9) 70.4 (5.0) 78.8 (4.1) 
    77.8 (3.7) 78.1 (4.2) 81.6 (3.9) 
    66.4 (4.1) 60.0 (5.6) 65.2 (5.0) 
    66.4 (4.2) 65.3 (5.0) 72.8 (4.4) 

 
defined in 2.3 are automatically extracted. Lastly, the LR complexity predictive mod-
el is trained and evaluated on dinternal using the leave-one-out method.  

An ablation study is carried out to determine the best set of biomarkers for predict-
ing LR complexity. An iterative backward elimination is performed on the least im-
pactful feature, starting from the baseline configuration with the four predefined bi-
omarkers as inputs. The performance of the models is evaluated using the accuracy, 
F1, and AUC metrics. 

4 Results 

4.1 Quantitative Results 

Segmentation Performance. The mean dice scores obtained on the different bench-
mark test sets (see 3.1) are in-line with the models in the literature [9-14], achieving 
96.0%, and 71.6% for the liver, and lesion segmentations on LiTSVS (standard devia-
tion not reported on LiTS online platform), and 79.1 ± 4.0% for vessel segmentations 
on IRCAD respectively. With the unavailability of reference annotations for dinternal, 
the segmentations generated by LivLes3D and HepVess3D were exhaustively verified 
by expert liver surgeons, confirming satisfactory segmentation results on this dataset. 
 
Liver Resection Complexity Prediction. The results of the ablation study (see 3.2) 
are reported in Table 1, and Fig. 2. The baseline configuration with BHCZ, NLes, VLes, 
and VLiv reaches an accuracy, F1, and AUC of 73.4, 71.2, and 83.5% respectively. 
With continuous feature ablation, the best configuration for predicting LR complexity 
combines the HCZ based biomarker BHCZ with NLes, and VLes, achieving an accuracy, 
F1, and AUC of 77.3, 75.4, and 84.1% respectively. Additionally, the first feature that 
can be disregarded for having the least impact on the prediction of LR complexity is 
VLiv followed VLes and NLes. The proposed biomarker BHCZ manifests as the central 
feature for predicting LR complexity, achieving the best scores in single feature eval-
uation with an accuracy, F1, and AUC of 66.4, 65.3 and 72.8% respectively. 
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Fig. 2. ROC curves from the ablation study showing the best three LR complexity predictive 
models with multiple input biomarkers. In blue, the biomarkers are: FHCZ, and NLes. In orange, 
the biomarkers are: FHCZ, NLes, VLes. In green, the features are: FHCZ, NLes, VLes and VLiv.  

4.2 Qualitative Results 

Liver Anatomy Segmentation, Vessel Pruning, and HCZ Generation. Fig. 3 
shows the segmentation results of the liver, lesions, and vessels for four distinct cases 
in dinternal, along with the results of the vessel pruning and HCZ generation. The 
most important biomarker for the prediction of LR complexity in cases (A), (B), and 
(C) is the imaging biomarker BHCZ. Cases (B) and (C) are labeled as complex LRs, 
and are correctly predicted with BHCZ values at 98 and 40 respectively, reflecting the 
lesions’ occupancy volumes in the HCZ. In case (A), correctly predicted as not com-
plex, BHCZ = −40.8 reflects the negative minimal distance of the lesion with respect to 
the HCZ. Lastly, case (D) shows a mispredicted borderline case, where BHCZ = −55.3, 
yet the surgery was labeled complex after binarization (initial label 6/10).  

5 Discussion and Conclusion 

In this article, we presented CoRe, a fully automatic segmentation and postprocessing 
pipeline to predict postoperative LR complexity from preoperative CT scans. The 
predictive biomarkers used in this study solely rely on morphological and topological 
aspects extracted from the segmentations. A new imaging biomarker was introduced 
to capture the position of the lesions with respect to the highly vascularized HCZ, 
where surgical LRs are assumed to be complex. It is compared to the classical imag-
ing biomarkers used in surgical planning identified to be the liver and lesions volumes 
and the number of lesions. Overall, in line with the medical practice, the results con-
firm the importance of analyzing the position of the liver lesions with respect to the 
major liver vessels, and the proposed HCZ-based biomarker proved to be central in 
predicting LR complexity. Moreover, the results clearly show that the proposed bio- 
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Fig. 3. Four cases at different steps in the CoRe pipeline with varying lesion positions 
with respect to the HCZ. Same color coding as Fig. 1.  

marker outperforms the traditional imaging biomarkers in the evaluation of LR com-
plexity. 

A limitation of CoRe is its feed-forward architecture, which can favor the accumu-
lation of errors across the different algorithmic blocks. Yet, it is mitigated by the pipe-
line’s interpretability and explainability: with CoRe, visual verifications are possible 
at every intermediate step.  

In future work, further investigation of the biomarker types (i.e., radiomics, patient 
demographics), the categorization of LR complexity scores, and the extraction of 
additional imaging biomarkers such as the distance between the main lesion and its 
proximal lesions will be considered. 
 
 
   

3D Raw Segmentation Pruned Liver Vessels Hepatic Central ZonePre-Operative 2D slice 

(A)

(B)

(C)

(D)
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