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Surgical resections are the most prevalent curative treatment for primary liver cancer. Tumors located in critical positions are known to complexify liver resections (LR). While experienced surgeons in specialized medical centers may have the necessary expertise to accurately anticipate LR complexity, and prepare accordingly, an objective method able to reproduce this behavior would have the potential to improve the standard routine of care, and avoid intra-and postoperative complications. In this article, we propose CoRe, an automated medical image processing pipeline for the prediction of postoperative LR complexity from preoperative CT scans, using imaging biomarkers. The CoRe pipeline first segments the liver, lesions, and vessels with two deep learning networks. The liver vasculature is then pruned based on a topological criterion to define the hepatic central zone (HCZ), a convex volume circumscribing the major liver vessels, from which a new imaging biomarker, BHCZ is derived. Additional biomarkers are extracted and leveraged to train and evaluate a LR complexity prediction model. An ablation study shows the HCZ-based biomarker as the central feature in predicting LR complexity. The best predictive model reaches an accuracy, F1, and AUC of 77.3, 75.4, and 84.1% respectively. 

Introduction

Liver cancer is a prominent contributor to cancer mortality worldwide, ranking second in the most common causes of cancer-related deaths [START_REF] Galle | EASL Clinical Practice Guidelines: Management of hepatocellular carcinoma[END_REF]. In the management of the early stages of liver cancer, liver resection (LR) is the most prevalent type of treatment [START_REF] Galle | EASL Clinical Practice Guidelines: Management of hepatocellular carcinoma[END_REF]. However, with considerable variations in the technicalities of different types of LRs, a preoperative assessment of resection complexity is necessary to minimize the intra-and postoperative risks [START_REF] Pothet | Predicting Intraoperative Difficulty of Open Liver Resections: The DIFF-scOR Study, An Analysis of 1393 Consecutive Hepatectomies From a French Multicenter Cohort[END_REF].

In the medical literature, LR complexity can be evaluated at the pre-, intra-, and postoperative stages of the surgical operation [START_REF] Pothet | Predicting Intraoperative Difficulty of Open Liver Resections: The DIFF-scOR Study, An Analysis of 1393 Consecutive Hepatectomies From a French Multicenter Cohort[END_REF][START_REF] Ban | A novel difficulty scoring system for laparoscopic liver resection[END_REF][START_REF] Kawaguchi | Difficulty of Laparoscopic Liver Resection: Proposal for a New Classification[END_REF]. While the preoperative complexity is based on the evaluation of the different types of LRs [START_REF] Ban | A novel difficulty scoring system for laparoscopic liver resection[END_REF], the intra-and postoperative LR complexities rely on the surgical maneuvers performed during the operation [START_REF] Pothet | Predicting Intraoperative Difficulty of Open Liver Resections: The DIFF-scOR Study, An Analysis of 1393 Consecutive Hepatectomies From a French Multicenter Cohort[END_REF], [START_REF] Kawaguchi | Difficulty of Laparoscopic Liver Resection: Proposal for a New Classification[END_REF] and on the expertise of the liver surgeon [START_REF] Pothet | Predicting Intraoperative Difficulty of Open Liver Resections: The DIFF-scOR Study, An Analysis of 1393 Consecutive Hepatectomies From a French Multicenter Cohort[END_REF], [START_REF] Ban | A novel difficulty scoring system for laparoscopic liver resection[END_REF]. However, across all these definitions, medical expertise and user interactions are required.

Furthermore, centrally located liver tumors require more technically challenging surgical resections due to their proximity to the major hepatic vessels (portal and hepatic veins) [START_REF] Lee | Central hepatectomy for centrally located malignant liver tumors: A systematic review[END_REF], often necessitating vasculature reconstruction, which according to [START_REF] Lee | Completion of a Liver Surgery Complexity Score and Classification Based on an International Survey of Experts[END_REF] further increases the complexity of the resection. Therefore, a detailed knowledge of the morphology and structure of the hepatic vasculature is necessary to assess the position of the tumors with respect to the major hepatic vessels. The methods proposed in [START_REF] Selle | Analysis of the morphology and structure of vessel systems using skeletonization[END_REF][START_REF] Selle | Analysis of vasculature for liver surgical planning[END_REF] present a semi-automatic approach for the geometrical and structural analysis of the liver vessels in the context of preoperative liver surgery planning.

In this article, we introduce CoRe, the first automatic, quantitative, and interpretable pipeline, for the prediction of the postoperative LR complexity from preoperative portal phase CT scans, using imaging-based biomarkers. First, segmentations of the liver, lesions, and hepatic vessels are generated with a state-of-the-art UNet deep network, benefitting from the literature in [START_REF] Li | H-DenseUNet: Hybrid Densely Connected UNet for Liver and Tumor Segmentation from CT Volumes[END_REF][START_REF] Habib | Performance Analysis of Different 2D and 3D CNN Model for Liver Semantic Segmentation: A Review[END_REF][START_REF] Keshwani | TopNet: Topology Preserving Metric Learning for Vessel Tree Reconstruction and Labelling[END_REF][START_REF] Yan | Attention-Guided Deep Neural Network With Multi-Scale Feature Fusion for Liver Vessel Segmentation[END_REF][START_REF] Huang | Robust liver vessel extraction using 3D U-Net with variant dice loss function[END_REF][START_REF] Isensee | nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation[END_REF]. Second, we propose a liver vasculature pruning algorithm to define the "hepatic central zone" (HCZ), a convex volume circumscribing the major liver vessels, from which a new imaging biomarker, BHCZ is derived. Third, additional quantitative biomarkers are leveraged from the generated segmentations to train and evaluate a LR complexity prediction model.

Methods

Liver, Lesion, and Vessel Segmentation

The details of the CoRe pipeline are depicted in Figure 1. The first step is the segmentation of the liver, lesions, and vessels from the portal phase of preoperative CT scans. Two 3D convolutional neural networks (CNN) are trained to segment the liver and liver lesions on one hand, and the portal and hepatic vessels on the other hand. The segmentations are then combined by appropriately labeling their union (Fig. 1A). We leverage the state-of-the-art nnUNet's [START_REF] Isensee | nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation[END_REF] default 3D full resolution framework to train both segmentation models. These models follow a UNet-like architecture [START_REF] Ronneberger | U-Net: Convolutional Networks for Biomedical Image Segmentation[END_REF], and are trained with the dice and cross-entropy losses using stochastic gradient descent with Nesterov momentum, and a geometrically decaying learning rate. The segmentation models are denoted LivLes3D and HepVess3D respectively.

Topological Analysis of the Liver Vasculature

The predicted binary vessel segmentations are pruned to keep the major vessels only, and define the HCZ (Fig. 1B). The successive steps are listed below. of each branch 𝐵𝐵 are computed, either by summation or averaging the edge length and radius respectively. 4. Vascular entry identification. Anatomically, the liver vasculature is composed of two distinct vessel trees, the portal and hepatic trees. To identify the corresponding liver entry points, the vessel mask is successively eroded, and the centroids of the two most persistent connected components are projected onto the skeleton. The closest vertices 𝑣𝑣 𝑝𝑝 and 𝑣𝑣 ℎ with degree 1 are then identified. 5. Tree pruning. See Algorithm 1 below. Two tree hierarchies are extracted from 𝐺𝐺 using 𝑣𝑣 𝑝𝑝 and 𝑣𝑣 ℎ as respective seeding vertices, retaining only the major connected branches. The branch lengths and diameters are exploited to identify significant branch bifurcation levels 𝑏𝑏𝑏𝑏𝑏𝑏(𝐵𝐵) in a recursive tree building approach. The vessels extending beyond the third major vascular bifurcation are considered irrelevant for surgical planning and are pruned. 

Inputs:

• graph 𝐺𝐺 = (𝑉𝑉, 𝐸𝐸), branches (𝐵𝐵 𝑚𝑚 ) 𝑚𝑚 , root 𝑣𝑣 𝑟𝑟 ∈ 𝑉𝑉;

• current bifurcation level 𝑏𝑏𝑏𝑏𝑏𝑏(𝐵𝐵), length 𝑙𝑙𝑙𝑙𝑙𝑙(𝐵𝐵) and radius 𝑟𝑟𝑟𝑟𝑟𝑟(𝐵𝐵);

• archive of visited subgraph 𝐺𝐺 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 . Hyperparameters:

• maximum vessel tree bifurcation level 𝑏𝑏𝑏𝑏𝑏𝑏 𝑚𝑚𝑚𝑚𝑚𝑚 = 2;

• maximum vessel branch reduction factor 𝑅𝑅 𝑚𝑚𝑚𝑚𝑚𝑚 = 0.2.

Let 𝑤𝑤 1 , … , 𝑤𝑤 𝑣𝑣 ∈ 𝑉𝑉 be the neighbor vertices of 𝑣𝑣 𝑟𝑟 , where 𝑟𝑟 ∈ ℕ is the degree of 𝑣𝑣 𝑟𝑟 .

If 𝑏𝑏𝑏𝑏𝑏𝑏(𝐵𝐵), 𝑙𝑙𝑙𝑙𝑙𝑙(𝐵𝐵) and 𝑟𝑟𝑟𝑟𝑟𝑟(𝐵𝐵) are undefined:

# initial call, d=1
Identify the branch 𝐵𝐵 𝑤𝑤 This vasculature analysis approach builds on [START_REF] Selle | Analysis of vasculature for liver surgical planning[END_REF] to propose an entirely automated imaging pipeline where the segmentation noise is handled during the tree construction step, via filtering heuristics based on vessel graph properties. The tree construction procedure is detailed in Algorithm 1.

Quantitative Imaging Biomarkers for LR Complexity Prediction

The liver volume V Liv , the number of lesions N Les , and the volume of lesion V Les are the imaging biomarkers directly extracted from the raw segmentations. We also define a new imaging biomarker B HCZ based on the proposed HCZ, as the lesions' relative occupancy volume 𝑉𝑉 inside the HCZ if it is nonzero, and the negative of the minimal distance 𝑟𝑟 from the lesion to the HCZ. B HCZ is defined in equation 1 below.

𝐵𝐵 𝐻𝐻𝐻𝐻𝐻𝐻 = ⎩ ⎪ ⎨ ⎪ ⎧ 𝑉𝑉 𝐿𝐿𝑣𝑣𝑣𝑣 ∩ 𝐻𝐻𝐻𝐻𝐻𝐻 𝑉𝑉 𝐻𝐻𝐻𝐻𝐻𝐻 𝑏𝑏𝑏𝑏 𝐿𝐿𝑙𝑙𝐿𝐿 ∩ 𝐻𝐻𝐻𝐻𝐻𝐻 ≠ ∅ - 𝑟𝑟(𝐿𝐿𝑙𝑙𝐿𝐿, 𝐻𝐻𝐻𝐻𝐻𝐻) 𝑟𝑟𝑏𝑏𝑟𝑟𝑑𝑑𝑙𝑙𝑑𝑑𝑙𝑙𝑟𝑟(𝐻𝐻𝐻𝐻𝐻𝐻) 𝑜𝑜𝑑𝑑ℎ𝑙𝑙𝑟𝑟𝑤𝑤𝑏𝑏𝐿𝐿𝑙𝑙 (1) 
The liver volume is used for its importance in withstanding the bodily functions post-LR. The volume and the number of lesions are considered, since larger or multiple lesions are generally associated with complex LRs. Lesions in the vicinity of the HCZ are assumed to be located in critical positions given their proximity to the liver's major vessels. Accordingly, the proposed biomarker B HCZ is utilized as a quantitative indicator of the position of the liver lesions with respect to the HCZ.

Lastly, with scikit-learn v0.23.2, the default configuration of the logistic regression is chosen as the binary classifier to train a cross-entropy loss with an L2 regularization using the biomarkers above, in order to predict LR complexity (Fig. 1C).

Experiments

Datasets and Preprocessing

IRCAD [START_REF]3D-IRCADb 01[END_REF] and LiTS [START_REF] Bilic | The Liver Tumor Segmentation Benchmark (LiTS)[END_REF], are public datasets of abdominal CT images with liver, lesion, and hepatic vessel (available with IRCAD only) reference segmentations.

LiTS also provides a benchmark validation set (LiTS VS ) with 70 unannotated scans for the evaluation of the liver and lesion segmentations. Moreover, an internal dataset (d seg = 65) with manually segmented vessel annotations is used as a complementary training set for HepVess3D. IRCAD, LiTS, and d seg are preprocessed using the nnUNet's default preprocessing pipeline which includes a contrast clipping, a z-score normalization, and a resampling of the images to their median spacing [START_REF] Isensee | nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation[END_REF].

An internal dataset (d internal ) of 128 patients who underwent LR for liver cancer was created between 2012-2020 as a separate internal dataset to assess the proposed pipeline. Labeling LR complexity is a regular clinical practice in our medical institution, and is assigned postoperatively on a 1-10 scale by the surgeon who performed the LR. Following [START_REF] Pothet | Predicting Intraoperative Difficulty of Open Liver Resections: The DIFF-scOR Study, An Analysis of 1393 Consecutive Hepatectomies From a French Multicenter Cohort[END_REF], and accounting for the surgical triage application, two groups identified to be the 'not complex' and 'complex' groups were considered. Accordingly, the scores are binarized at the 5 threshold where the values 0 and 1 refer to the 'not complex' and 'complex' cases respectively. Overall, the dataset is balanced with 63 complex and 65 not complex LRs.

Training, Evaluation, and Inference

LivLes3D is trained for 1000 epochs on the combination of IRCAD and LiTS with an initial learning rate lr init = 0.01, and evaluated on LiTS VS through their online platform. HepVess3D is also trained for 1000 epochs with lr init on the combination of d seg and IRCAD, using 5-fold cross validation only on IRCAD's hepatic vessels. The performance of both models is evaluated using the dice metric.

In inference, LivLes3D and HepVess3D are employed on d internal to generate liver, lesions, and hepatic vessel segmentations from which the imaging biomarkers defined in 2.3 are automatically extracted. Lastly, the LR complexity predictive model is trained and evaluated on d internal using the leave-one-out method. An ablation study is carried out to determine the best set of biomarkers for predicting LR complexity. An iterative backward elimination is performed on the least impactful feature, starting from the baseline configuration with the four predefined biomarkers as inputs. The performance of the models is evaluated using the accuracy, F1, and AUC metrics.

Results

Quantitative Results

Segmentation Performance. The mean dice scores obtained on the different benchmark test sets (see 3.1) are in-line with the models in the literature [START_REF] Li | H-DenseUNet: Hybrid Densely Connected UNet for Liver and Tumor Segmentation from CT Volumes[END_REF][START_REF] Habib | Performance Analysis of Different 2D and 3D CNN Model for Liver Semantic Segmentation: A Review[END_REF][START_REF] Keshwani | TopNet: Topology Preserving Metric Learning for Vessel Tree Reconstruction and Labelling[END_REF][START_REF] Yan | Attention-Guided Deep Neural Network With Multi-Scale Feature Fusion for Liver Vessel Segmentation[END_REF][START_REF] Huang | Robust liver vessel extraction using 3D U-Net with variant dice loss function[END_REF][START_REF] Isensee | nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation[END_REF] 

Qualitative Results

Liver Anatomy Segmentation, Vessel Pruning, and HCZ Generation. Fig. 3 shows the segmentation results of the liver, lesions, and vessels for four distinct cases in d internal , along with the results of the vessel pruning and HCZ generation. The most important biomarker for the prediction of LR complexity in cases (A), (B), and (C) is the imaging biomarker B HCZ . Cases (B) and (C) are labeled as complex LRs, and are correctly predicted with B HCZ values at 98 and 40 respectively, reflecting the lesions' occupancy volumes in the HCZ. In case (A), correctly predicted as not complex, B HCZ = -40.8 reflects the negative minimal distance of the lesion with respect to the HCZ. Lastly, case (D) shows a mispredicted borderline case, where B HCZ = -55.3, yet the surgery was labeled complex after binarization (initial label 6/10).

Discussion and Conclusion

In this article, we presented CoRe, a fully automatic segmentation and postprocessing pipeline to predict postoperative LR complexity from preoperative CT scans. The predictive biomarkers used in this study solely rely on morphological and topological aspects extracted from the segmentations. A new imaging biomarker was introduced to capture the position of the lesions with respect to the highly vascularized HCZ, where surgical LRs are assumed to be complex. It is compared to the classical imaging biomarkers used in surgical planning identified to be the liver and lesions volumes and the number of lesions. Overall, in line with the medical practice, the results confirm the importance of analyzing the position of the liver lesions with respect to the major liver vessels, and the proposed HCZ-based biomarker proved to be central in predicting LR complexity. Moreover, the results clearly show that the proposed bio- In future work, further investigation of the biomarker types (i.e., radiomics, patient demographics), the categorization of LR complexity scores, and the extraction of additional imaging biomarkers such as the distance between the main lesion and its proximal lesions will be considered. 
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 11 Fig. 1. Details of the CoRe pipeline. (A): Liver anatomy segmentation results with liver (blue), lesion (orange) and vessels (red). (B): Liver vasculature pruning algorithm (green: portal veins, red: hepatic veins), and HCZ generation (white volume around the vessels inside the liver). (C): Predictive model of LR complexity from imaging biomarkers extracted from (A) and (B), where 0 and 1 refer to not complex and complex cases respectively. 1. Skeletonization. The segmentation mask is skeletonized with Scikit-Image 0.20.0 using [16]. Local vessel radii are associated to each skeleton element after computing the distance transform of the vessel masks with Scipy 1.8.0. 2. Graph construction. The skeleton is converted into a graph representation 𝐺𝐺 = (𝑉𝑉, 𝐸𝐸) with vertices 𝑉𝑉 = {𝑣𝑣 1 , … , 𝑣𝑣 𝑁𝑁 } and undirected edges 𝐸𝐸 = {(𝑣𝑣, 𝑤𝑤) | 𝑣𝑣, 𝑤𝑤 ∈ 𝑉𝑉, 𝑣𝑣 ≠ 𝑤𝑤}, considering two voxels as neighbors if their corresponding indexes differ by a maximum value of 1 in each direction. 3. Branch decomposition. 𝐺𝐺 is decomposed into edge-disjoint subgraphs 𝐵𝐵 1 , … , 𝐵𝐵 𝑀𝑀 called branches, such that each edge (𝑣𝑣, 𝑤𝑤) ∈ 𝐸𝐸 belongs to exactly one branch, using Skan 0.11.0 [17]. The length 𝑙𝑙𝑙𝑙𝑙𝑙(𝐵𝐵) and mean radius 𝑟𝑟𝑟𝑟𝑟𝑟(𝐵𝐵)of each branch 𝐵𝐵 are computed, either by summation or averaging the edge length and radius respectively. 4. Vascular entry identification. Anatomically, the liver vasculature is composed of two distinct vessel trees, the portal and hepatic trees. To identify the corresponding liver entry points, the vessel mask is successively eroded, and the centroids of the two most persistent connected components are projected onto the skeleton. The closest vertices 𝑣𝑣 𝑝𝑝 and 𝑣𝑣 ℎ with degree 1 are then identified. 5. Tree pruning. See Algorithm 1 below. Two tree hierarchies are extracted from 𝐺𝐺 using 𝑣𝑣 𝑝𝑝 and 𝑣𝑣 ℎ as respective seeding vertices, retaining only the major connected branches. The branch lengths and diameters are exploited to identify significant branch bifurcation levels 𝑏𝑏𝑏𝑏𝑏𝑏(𝐵𝐵) in a recursive tree building approach. The vessels extending beyond the third major vascular bifurcation are considered irrelevant for surgical planning and are pruned. 6. Morphological reconstruction. The retained skeletons are inflated by a dilation factor equal to the local diameters. Numerical round-up and mask intersection with the original segmentation allow to reconstruct the local vessel geometry. 7. Hepatic central zone definition. The convex hull of the retained vessels defines the hepatic central zone (HCZ).
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 61 Morphological reconstruction. The retained skeletons are inflated by a dilation factor equal to the local diameters. Numerical round-up and mask intersection with the original segmentation allow to reconstruct the local vessel geometry. 7. Hepatic central zone definition. The convex hull of the retained vessels defines the hepatic central zone (HCZ). Vessel tree pruning algorithm.

Fig. 2 .

 2 Fig. 2. ROC curves from the ablation study showing the best three LR complexity predictive models with multiple input biomarkers. In blue, the biomarkers are: FHCZ, and NLes. In orange, the biomarkers are: FHCZ, NLes, VLes. In green, the features are: FHCZ, NLes, VLes and VLiv.

Fig. 3 .

 3 Fig. 3. Four cases at different steps in the CoRe pipeline with varying lesion positions with respect to the HCZ. Same color coding as Fig. 1. marker outperforms the traditional imaging biomarkers in the evaluation of LR complexity.A limitation of CoRe is its feed-forward architecture, which can favor the accumulation of errors across the different algorithmic blocks. Yet, it is mitigated by the pipeline's interpretability and explainability: with CoRe, visual verifications are possible at every intermediate step.In future work, further investigation of the biomarker types (i.e., radiomics, patient demographics), the categorization of LR complexity scores, and the extraction of additional imaging biomarkers such as the distance between the main lesion and its proximal lesions will be considered.

  1 such as (𝑣𝑣 𝑟𝑟 , 𝑤𝑤 1 ) ∈ 𝐵𝐵. Initialize 𝑙𝑙𝑙𝑙𝑙𝑙(𝐵𝐵) ← 𝑙𝑙𝑙𝑙𝑙𝑙(𝐵𝐵 𝑤𝑤 1 ) and 𝑟𝑟𝑟𝑟𝑟𝑟(𝐵𝐵) ← 𝑟𝑟𝑟𝑟𝑟𝑟(𝐵𝐵 𝑤𝑤 1 ). Initialize 𝑏𝑏𝑏𝑏𝑏𝑏(𝐵𝐵) ← 0 and 𝐺𝐺 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 with 𝑣𝑣 𝑟𝑟 . If 𝑏𝑏𝑏𝑏𝑏𝑏(𝐵𝐵) = 𝑏𝑏𝑏𝑏𝑏𝑏 𝑚𝑚𝑚𝑚𝑚𝑚 or all 𝑤𝑤 1 , … , 𝑤𝑤 𝑣𝑣 belong to 𝐺𝐺 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 :Return 𝐺𝐺 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 . Else if there is a single neighbor vertex 𝑤𝑤 that does not belong to 𝐺𝐺 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 :Return 𝐺𝐺 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 ← recursive call using 𝑤𝑤 as root. Else, for each neighbor vertex 𝑤𝑤 that does not belong to 𝐺𝐺 Update 𝐺𝐺 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 ← recursive call using 𝑤𝑤, 𝑏𝑏𝑏𝑏𝑏𝑏(𝐵𝐵) + 1, 𝑙𝑙𝑙𝑙𝑙𝑙(𝐵𝐵 𝑤𝑤 ), 𝑟𝑟𝑟𝑟𝑟𝑟(𝐵𝐵 𝑤𝑤 ). Return 𝐺𝐺 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 .

	Else:	# relevant branch

𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 : Identify the branch 𝐵𝐵 𝑤𝑤 such as (𝑣𝑣 𝑟𝑟 , 𝑤𝑤) ∈ 𝐵𝐵.

If 𝑙𝑙𝑙𝑙𝑙𝑙(𝐵𝐵 𝑤𝑤 ) < 𝑅𝑅 𝑚𝑚𝑚𝑚𝑚𝑚 • 𝑙𝑙𝑙𝑙𝑙𝑙(𝐵𝐵) or rad(𝐵𝐵 𝑤𝑤 ) < 𝑅𝑅 𝑚𝑚𝑚𝑚𝑚𝑚 • 𝑟𝑟𝑟𝑟𝑟𝑟(𝐵𝐵): # noise

Update 𝐺𝐺 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 ← recursive call using 𝑤𝑤 as root.

Output: pruned vessel subgraph 𝐺𝐺 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 .

Table 1 .

 1 Results of the ablation study in %. In bold are the best results.

	BHCZ NLes VLes VLiv	Accuracy	F1	AUC
					73.4 (3.9)	71.2 (4.8)	83.5 (3.5)
					70.3 (4.0)	67.8 (5.0)	78.2 (4.0)
					75.8 (3.8)	73.2 (4.8)	79.0 (4.1)
					72.6 (4.0)	71.4 (4.7)	82.0 (3.7)
					77.3 (3.5)	75.4 (4.0)	84.1 (3.6)
					71.8 (4.0)	70.2 (4.7)	77.8 (4.1)
					73.4 (3.9)	70.4 (5.0)	78.8 (4.1)
					77.8 (3.7)	78.1 (4.2)	81.6 (3.9)
					66.4 (4.1)	60.0 (5.6)	65.2 (5.0)
					66.4 (4.2)	65.3 (5.0)	72.8 (4.4)

  , achieving 96.0%, and 71.6% for the liver, and lesion segmentations on LiTS VS (standard deviation not reported on LiTS online platform), and 79.1 ± 4.0% for vessel segmentations on IRCAD respectively. With the unavailability of reference annotations for d internal , the segmentations generated by LivLes3D and HepVess3D were exhaustively verified by expert liver surgeons, confirming satisfactory segmentation results on this dataset. The results of the ablation study (see 3.2) are reported in Table1, and Fig.2. The baseline configuration with B HCZ , N Les , V Les , and V Liv reaches an accuracy, F1, and AUC of 73.4, 71.2, and 83.5% respectively. With continuous feature ablation, the best configuration for predicting LR complexity combines the HCZ based biomarker B HCZ with N Les , and V Les , achieving an accuracy, F1, and AUC of 77.3, 75.4, and 84.1% respectively. Additionally, the first feature that can be disregarded for having the least impact on the prediction of LR complexity is V Liv followed V Les and N Les . The proposed biomarker B HCZ manifests as the central feature for predicting LR complexity, achieving the best scores in single feature evaluation with an accuracy, F1, and AUC of 66.4, 65.3 and 72.8% respectively.
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