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The segmentation of the liver, lesions, and vessels from pre-operative CT scans is of major importance in hepatic surgery planning. However, large databases with reference segmentations for these regions of interest remain unavailable, a challenge often encountered in medical image segmentation. In this work, we propose the FuSe loss, a novel loss function for multi-task learning on datasets with partial annotations. By employing the nnU-Net's 3D self-configuring pipeline to calibrate and train a deep network for the joint segmentation of the liver, lesions, and vessels, we show how the FuSe loss allows to learn from the differently annotated IRCAD and LiTS datasets, improving the overall baseline segmentation performance. With the FuSe loss, the dice scores reached up to 95.9%, 70.6% and 60.0% for the liver, lesions, and vessels respectively.

INTRODUCTION

Liver cancers are notable contributors to the global burden of cancer lethality, ranking fourth in the most common causes of cancer related deaths [START_REF] Villanueva | Hepatocellular Carcinoma[END_REF]. Of the available curative treatments, liver resection continues to be the most frequent, with a five-year survival rate exceeding 50% [START_REF] Lee | Long-term surgical outcomes in patients with hepatocellular carcinoma undergoing laparoscopic vs. open liver resection: A retrospective and propensity score-matched study[END_REF]. In planning safe and successful liver resections, pre-operative segmentations are often required, particularly for the liver, the lesions, and the hepatic vessels, to better localize the tumor in the liver region. Ultimately, similar pre-surgical practices can be expanded to support diagnostic and prognostic decisions, spurring the development of automatic tools for different medical imaging segmentation tasks.

While manual segmentations remain cumbersome and tedious, newly developed deep learning methods have achieved remarkable results for various automatic segmentation tasks [START_REF] Tajbakhsh | Embracing imperfect datasets: A review of deep learning solutions for medical image segmentation[END_REF]. Typically, these methods rely heavily on UNet based architectures, which were first introduced in 2015 by [START_REF] Ronneberger | U-Net: Convolutional Networks for Biomedical Image Segementation[END_REF]. Thereafter, several architectural improvements to the original model have been proposed such as the ResNets, and the DenseNets [START_REF] He | Deep Residual Learning for Image Recognition[END_REF], [START_REF] Huang | Densely Connected Convolutional Networks[END_REF]. Most recently, having won several segmentation challenges, the nnU-Net has been introduced as a new state of the art deep learning-based method for medical imaging segmentation tasks [START_REF] Isensee | nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation[END_REF].

In the literature, automatic liver segmentation with deep learning methods has been profoundly investigated with overall solid performances [START_REF] Li | H-DenseUNet: Hybrid Densely Connected UNet for Liver and Tumor Segmentation from CT Volumes[END_REF], [START_REF] Habib | Performance Analysis of Different 2D and 3D CNN Model for Liver Semantic Segmentation: A Review[END_REF]. However, liver lesion segmentation remains a challenge to tackle in medical imaging, despite the recent methodological advancements proposing cascaded approaches for parallel or sequential liver and lesion learning, and feature fusion encoder-decoder networks [START_REF] Christ | Automatic Liver and Tumor Segmentation of CT and MRI Volumes Using Cascaded Fully Convolutional Neural Networks[END_REF][START_REF] Vorontsov | Liver Lesion Segmentation Informed by Joint Liver Segmentation[END_REF][START_REF] Chen | Feature Fusion Encoder Decoder Network for Automatic Liver Lesion Segmentation[END_REF]. Moreover, hepatic vessel segmentation has recently gained some ground with methods proposing 2D filtered multi-view inputs, some utilizing variants of the 3D UNets with custom loss functions, and others training on noisy and low-quality vessel labels [START_REF] Kitrungrotsakul | VesselNet: A deep convolutional neural network with multi pathwaysfor robust hepatic vessel segmentation[END_REF][START_REF] Keshwani | TopNet: Topology Preserving Metric Learning for Vessel Tree Reconstruction and Labelling[END_REF][START_REF] Xu | Training Liver Vessel Segmentation Deep Neural Networks on Noisy Labels from Contrast CT Imaging[END_REF]. Similar to lesion segmentation, automatic liver vessel segmentation remains challenging to achieve.

To the best of our knowledge, multi-class models performing joint liver, lesion, and vessel segmentations are not yet established, likely due to the lack of largely annotated datasets with the three labels jointly available. To overcome this challenge, we propose the FuSe loss, a novel multi-class loss function that allows the joint segmentation of potentially overlapping classes like the liver and its vessels, while concurrently handling the union of fully and partially labeled images, thereby granting an increase in the size of the training dataset. Note that although previous works such as [START_REF] Zhou | Prior-aware neural network for partiallysupervised multi-organ segmentation[END_REF] have proposed multi-organ segmentation models from the combination of fully and partially labeled datasets, the considered organs occupied distinct and non-overlapping volumes.

The suggested FuSe loss is leveraged to optimize a segmentation model that jointly segments the liver, its lesion(s), and its vessels from the IRCAD [START_REF]3D-IRCADb 01[END_REF] and LiTS [START_REF] Bilic | The Liver Tumor Segmentation Benchmark (LiTS)[END_REF] datasets, respectively considered as "fully" and "partially" annotated in this chosen task. A weighted version of the FuSe loss is also evaluated, with the objective to correct the imbalance between the different label frequencies. In the subsequent methods section, the FuSe loss function is detailed, followed by a description of the datasets and experiments. Then, a qualitative and quantitative assessment of the liver, lesion(s), and vessel segmentations is portrayed. Lastly, the paper concludes with a short synopsis, and some future perspectives.

METHODS

Loss Function

Let 𝐿𝐿(𝑥𝑥, 𝑦𝑦) be a generic loss function optimized to learn the discrepancies between 𝑥𝑥 and 𝑦𝑦, where 𝑥𝑥 ∈ [0,1] 𝑁𝑁 * 𝐾𝐾 is the predicted probability tensor, 𝑦𝑦 ∈ {0,1} 𝑁𝑁 * 𝐾𝐾 is the corresponding reference segmentation map, 𝐾𝐾 is the total number of available classes, and 𝑁𝑁 is the total number of voxels.

Typically, in medical imaging segmentation tasks, 𝐿𝐿(𝑥𝑥, 𝑦𝑦) is defined as the summation of the dice and cross entropy losses:

⎩ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎧ 𝐿𝐿(𝑥𝑥, 𝑦𝑦) = 𝐷𝐷𝐷𝐷𝐶𝐶 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 (𝑥𝑥, 𝑦𝑦) + 𝐶𝐶𝐸𝐸 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 (𝑥𝑥, 𝑦𝑦) 𝐷𝐷𝐷𝐷𝐶𝐶 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 (𝑥𝑥, 𝑦𝑦) = - 2 𝐾𝐾 � ∑ 𝑥𝑥 𝑛𝑛 𝑘𝑘 • 𝑦𝑦 𝑛𝑛 𝑘𝑘 𝑁𝑁 𝑛𝑛=1 ∑ 𝑥𝑥 𝑛𝑛 𝑘𝑘 𝑁𝑁 𝑛𝑛=1 + ∑ 𝑦𝑦 𝑛𝑛 𝑘𝑘 𝑁𝑁 𝑛𝑛=1 𝐾𝐾-1 𝑘𝑘=0 𝐶𝐶𝐸𝐸 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 (𝑥𝑥, 𝑦𝑦) = - 1 𝑁𝑁 � � 𝑦𝑦 𝑛𝑛 𝑘𝑘 log(𝑥𝑥 𝑛𝑛 𝑘𝑘 ) 𝑁𝑁 𝑛𝑛=1 𝐾𝐾-1 𝑘𝑘=0 (1) (1a) 
(1b)

FuSe Loss

Partial annotations are often encountered in deep learning applications. With the proposed FuSe loss, the models can learn from varying annotation protocols, regardless of the possible overlap between the classes.

Let 𝐹𝐹 be the finite set of available annotations 𝑦𝑦 ∈ {0,1} 𝑁𝑁 * 𝐾𝐾 with 𝐾𝐾 total classes, and 𝑆𝑆 be a secondary set of annotations 𝑦𝑦 ∈ {0,1} 𝑁𝑁 * (𝐾𝐾-𝑚𝑚) with 𝐾𝐾 -𝑚𝑚 total classes, where 0 < 𝑚𝑚 < 𝐾𝐾. The FuSe loss is defined as:

𝐹𝐹𝐹𝐹𝑆𝑆𝐹𝐹𝐹𝐹(𝑥𝑥, 𝑦𝑦) = � 𝐹𝐹(𝑥𝑥, 𝑦𝑦) 𝑖𝑖𝑖𝑖 𝑦𝑦 ∈ 𝐹𝐹 𝐹𝐹(𝑃𝑃(𝑥𝑥), 𝑦𝑦) 𝑖𝑖𝑖𝑖 𝑦𝑦 ∈ 𝑆𝑆 (2) 
We denote 𝐹𝐹 as the finite set of fully-labeled reference segmentations , 𝑆𝑆 as the finite set of semi-labeled reference segmentations, 𝑁𝑁 as the total number of voxels, and 𝑃𝑃 as a projection function that maps 𝑥𝑥 ∈ [0,1] 𝑁𝑁 * 𝐾𝐾 , to 𝑃𝑃(𝑥𝑥) ∈ [0,1] 𝑁𝑁 * (𝐾𝐾-𝑚𝑚) . Figure 1 illustrates the suggested deep learning framework. With a consistent supervision of the set of labels in the reference segmentation map, either the baseline loss function is computed for fully labeled targets, or the softmax output probabilities are mapped to match the number of classes in the semi-annotated targets prior to the computation of loss function using 𝑃𝑃(𝑥𝑥).

In this work, 𝐹𝐹 ⊂ {0, 1} 𝑁𝑁 * 4 is the set of background, liver, lesion, and vessel labels respectively, 𝑆𝑆 ⊂ {0, 1} 𝑁𝑁 * 3 is the set of background, liver and lesion labels, and 𝑃𝑃(𝑥𝑥) defined below is computed whenever the target 𝑦𝑦 segmentation is partially labeled.

𝑃𝑃(𝑥𝑥) = � 𝑥𝑥 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = 𝑥𝑥 𝑏𝑏=0 𝑥𝑥 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑏𝑏 + 𝑥𝑥 𝑙𝑙𝑙𝑙𝑣𝑣𝑣𝑣𝑙𝑙𝑙𝑙 = 𝑥𝑥 𝑏𝑏=1 + 𝑥𝑥 𝑏𝑏=3 𝑥𝑥 𝑙𝑙𝑙𝑙𝑣𝑣𝑙𝑙𝑏𝑏𝑏𝑏 = 𝑥𝑥 𝑏𝑏=2
(3)

Weighted FuSe Loss

Learning from different labels in different datasets can trigger imbalances during training particularly if the datasets are considerably different in size. Thus, a weighted coefficient 𝑤𝑤 is defined for every class based on the cardinality of sets 𝐹𝐹 and 𝑆𝑆 such that ∑ 𝑤𝑤 𝑏𝑏 = 𝐾𝐾 𝑏𝑏=1

1. In this work, the weights of the liver, lesions, and vessel classes are defined as:

𝑤𝑤 1 = 𝑤𝑤 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑏𝑏 = 1 2 • |𝑆𝑆| |𝐹𝐹| + |𝑆𝑆| (4) 𝑤𝑤 2 = 𝑤𝑤 𝑙𝑙𝑙𝑙𝑣𝑣𝑙𝑙𝑏𝑏𝑏𝑏 = 𝑤𝑤 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑏𝑏
(5)

𝑤𝑤 3 = 𝑤𝑤 𝑙𝑙𝑙𝑙𝑣𝑣𝑣𝑣𝑙𝑙𝑙𝑙𝑣𝑣 = |𝐹𝐹| |𝐹𝐹| + |𝑆𝑆| (6)
3. EXPERIMENTS

Datasets and Preprocessing

IRCAD and LiTS are public datasets with contrast enhanced portal phase computed tomography (CT) abdominal scans [START_REF]3D-IRCADb 01[END_REF][START_REF] Bilic | The Liver Tumor Segmentation Benchmark (LiTS)[END_REF]. While IRCAD's dataset is fully labeled and consists of 20 patients with liver, lesion, and vessel annotations, LiTS' dataset consists of a total of 201 partially labeled patients with 131 patients having liver and lesion annotations where the hepatic vessels are considered as liver, and the remaining 70 patients are unannotated and only used as a test set to evaluate the liver and lesion segmentations post-training.

In preprocessing, IRCAD's vessel target annotations, which include the segmentations of the entire venous system, are intersected with their corresponding liver masks to disregard any vessel label outside the liver. In addition, the nnU-Net's default preprocessing configuration is employed [START_REF] Isensee | nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation[END_REF]. It includes a resampling of both the CT scans and the annotations to their median voxel spacing, which corresponds to a spacing of 0.78 × 0.78 × 1.5mm. The input images are configured to a 192 × 192 × 60 patch size.

Model Architecture

The nnU-Net's 3D full resolution framework is used for the totality of the experiments [START_REF] Isensee | nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation[END_REF]. The employed model follows the template of the original U-Net architecture, having an encoding path generating incrementally deeper feature maps and a symmetrical decoding path, outputting the predicted segmentations. The feature maps increase from 32 to 320 after each of the 5 pooling layers. The convolutions are either stridden with kernels of size 2 3 or not stridden with kernels of size 3 3 . Aside from the sotfmax with 4 channels used in the model's final layer (one channel per class), the entirety of the used activation functions are Leaky-ReLus. Lastly, skip connections and deep supervision layers are used to ease the gradient flow across the network. The setup of the model architecture is detailed in [START_REF] Isensee | nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation[END_REF].

Training and Evaluation

Three experiments were conducted to learn the joint segmentation of the liver, the lesions, and the hepatic vessels. The entirety of the The first experiment, referred to as the baseline experiment trains and optimizes an nnU-Net on IRCAD's dataset using the baseline loss function 𝐿𝐿(𝑥𝑥, 𝑦𝑦), then evaluates the results using two approaches described below. The second and third experiments referred to as the FuSe Loss and weighted FuSe Loss experiments respectively, train and optimize a similar nnU-Net using the nonweighted and weighted 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐿𝐿(𝑥𝑥, 𝑦𝑦) functions, on the fusion of IRCAD and LiTS' datasets (where the 131 patients in LiTS' annotated dataset are only used during training, to learn the detection of the liver and the lesions). The training for both experiments is carried out on identical fold partitions as the first experiment.

As for the evaluation, given the availability of the vessel labels solely in the IRCAD dataset, the first evaluation approach assesses the segmentation results of the three classes and consists of performing a five-fold cross validation on the IRCAD dataset to test the trained models on the entire set of patients. Consequently, different splits of 16 training patients and 4 testing patients are created for every fold. Furthermore, with the absence of the vessel labels in LiTS' unannotated test set of 70 patients, the second evaluation approach combines the predicted segmentations of the liver and the vessels using a mapping function similar to 𝑃𝑃(𝑥𝑥), prior to the assessment of the results on LiTS' online evaluation platform.

RESULTS

Qualitative Results

Figure 3 shows the liver, lesion, and vessel segmentation results for the FuSe loss experiment on IRCAD's dataset. It can be seen that the proposed method is able to accurately reproduce the segmentations of the target for the three classes while mainly over-segmenting regions around the liver vessels. In addition, Figure 2 shows a set of lesion segmentations for different patients in IRCAD and LiTS' test sets. The lesion segmentation results with the nonweighted and weighted FuSe loss configurations outperform those obtained with the baseline loss. However, the three experiments display poor performances with patients having a small sized single nodule or nodules located at the extremities of the liver. Those results can be seen in Figure 4 below. 

Quantitative Results

The liver, lesion, and vessel dice and Hausdorff scores of the baseline experiment are compared the FuSe loss and the weighted FuSe loss experiments on the IRCAD dataset. Table 1 highlights the 5fold cross validation results on IRCAD's dataset, and the liver and lesion segmentation results on LiTS' unannotated test set, regarded- 

IRCAD Test

LiTS Test 3. Not assigned as values are not reported in LiTS as the benchmark for liver and lesion segmentation evaluation. The segmentations obtained with the proposed FuSe loss configuration for the liver and lesions on LiTS' test set clearly outperform those obtained with the baseline loss, with an increase in the dice score from 58.8% to 70.6% and a decrease in the Hausdorff distance from 6.69mm to 6.12mm for lesion segmentations. Similarly, for liver segmentation, the dice increases from 92.9% to 95.9% and the Hausdorff distance decreases from 31.94mm to 26.99mm on LiTS for the FuSe loss configuration. Furthermore, the results of the proposed method for liver, lesion, and vessel segmentation on IRCAD's dataset remain within a close margin of the baseline experiment, improving the average lesion segmentation dice and Hausdorff scores from 51.1% to 51.9% and from 70.48mm to 60.39mm respectively. However, the liver dice scores slightly regress by 0.2% and the vessels dice scores by 2.4%, with an increase in the Hausdorff distance from 48.67mm to 50.89mm for the vessels. Moreover, the results show that the added weights in the weighted FuSe loss experiment do not improve the overall dice scores of the three classes. Despite the 0.6% increase in the vessel's dice score compared to the FuSe loss configuration, the liver and lesion's dice scores decreased by 0.5%, 0.4%, 3.1%, and 4% on IRCAD and LiTS's datasets respectively. However, the Hausdorff distances computed with the weighted FuSe loss configuration, outperform those computed with the baseline configuration for the liver, lesion, and vessel classes.

DISCUSSION AND CONCLUSION

Automatic liver, lesion, and vessel segmentation is essential in presurgical planning. With the unavailability of large extensively annotated datasets, the proposed FuSe loss allowed to learn an accurate joint segmentation model from partially labeled training data via a projection function that maps the different predictions to their reference labels. The results on LiTS' test set show that in the FuSe configuration the lesion dice and Hausdorff sores improved by 11.8%, 0.57mm and the liver dice and Hausdorff scores improved by 3% and 2.45mm respectively. The proposed method also achieved solid segmentation results on IRCAD's dataset for liver, lesion, and vessel segmentations with dice scores attaining 94.6%, 51.9%, and 60.0% for each class respectively.

Further investigation on the implications of the size of the training dataset on the vessel segmentation performance is required. In particular, additional consideration is required on the choice of weights since imbalances arise not only due to the dataset size variations but also due to the varying number of voxels representing every class in the reference segmentation map. Finally, the proposed method will be further extended and tested on different segmentations tasks presenting similar challenges.

Figure 1 :

 1 Figure 1: Proposed deep learning framework where the input is a raw CT cropped around the liver, 𝑥𝑥 is the predicted probability tensor, and 𝑦𝑦 is the target segmentation. The light blue, grey, and orange colors represent the liver, lesion(s), and vessels respectively

Figure 3 :

 3 Figure 3: Liver, lesion, and vessel segmentations with the FuSe loss, where blue shows under-segmentations, red shows over segmentations, and green shows the true match with the target.

Figure 4 :

 4 Figure 4: Poor lesion segmentations from IRCAD's test set (same color coding as Figure 3).

Figure 2 :

 2 Figure 2: Lesion segmentation on IRCAD and LiTS' test sets. White contours are the ground truth segmentations, which are only available for IRCAD's dataset, red contours are the segmentations with the non-weighted FuSe loss, dashed blue contours are the segmentations with the weighted FuSe loss, and the dotted green contours are the segmentations with the baseline loss.

Table 1 :

 1 Mean and standard deviation of the dice (%) and Hausdorff distance (mm) scores evaluated on the different test sets. Bold and underlined values are the best and second-best results respectively.

	Exp. 1		Lesion				Liver		Vessel
	Conf. 2		LiTS	IRCAD		LiTS	IRCAD	IRCAD
	Metrics	Dice Hausdorff	Dice	Hausdorff Dice Hausdorff Dice Hausdorff	Dice	Hausdorff
	Baseline	58.8 (NA 3 )	6.69 (NA)	51.1 (±15.6)	70.48 (±76.18)	92.9 (NA)	31.94 (NA)	94.8 (±1.7)	24.71 (±8.6)	62.4 (±6.8)	48.67 (±48.4)
	FuSe Loss	70.6 (NA)	6.12 (NA)	51.9 (±4.7)	60.39 (±72.62)	95.9 (NA)	26.99 (NA)	94.6 (±2.0)	22.26 (±7.03)	60.0 (±5.1)	50.89 (±50.4)
	Weighted	66.6	6.54	48.8	66.58	95.5	26.95	94.1	22.88	60.6	46.54
	FuSe Loss	(NA)	(NA)	(±7.1)	(±70.86)	(NA)	(NA)	(±1.8)	(±10.15)	(±10.7)	(±46.1)
			1. Experiment, 2. Configuration,						
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