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ABSTRACT 

 
The segmentation of the liver, lesions, and vessels from pre-opera-
tive CT scans is of major importance in hepatic surgery planning. 
However, large databases with reference segmentations for these re-
gions of interest remain unavailable, a challenge often encountered 
in medical image segmentation. In this work, we propose the FuSe 
loss, a novel loss function for multi-task learning on datasets with 
partial annotations. By employing the nnU-Net’s 3D self-configur-
ing pipeline to calibrate and train a deep network for the joint seg-
mentation of the liver, lesions, and vessels, we show how the FuSe 
loss allows to learn from the differently annotated IRCAD and LiTS 
datasets, improving the overall baseline segmentation performance. 
With the FuSe loss, the dice scores reached up to 95.9%, 70.6% and 
60.0% for the liver, lesions, and vessels respectively.  
 

Index Terms— Semantic segmentation, multi-task learning, 
partially labeled data, weighted loss function  
 

1.  INTRODUCTION 
 
Liver cancers are notable contributors to the global burden of cancer 
lethality, ranking fourth in the most common causes of cancer re-
lated deaths [1]. Of the available curative treatments, liver resection 
continues to be the most frequent, with a five-year survival rate ex-
ceeding 50% [2]. In planning safe and successful liver resections, 
pre-operative segmentations are often required, particularly for the 
liver, the lesions, and the hepatic vessels, to better localize the tumor 
in the liver region. Ultimately, similar pre-surgical practices can be 
expanded to support diagnostic and prognostic decisions, spurring 
the development of automatic tools for different medical imaging 
segmentation tasks.  

While manual segmentations remain cumbersome and tedious, 
newly developed deep learning methods have achieved remarkable 
results for various automatic segmentation tasks [3]. Typically, 
these methods rely heavily on  UNet based architectures, which were 
first introduced in 2015 by [4]. Thereafter, several architectural im-
provements to the original model have been proposed such as the 
ResNets, and the DenseNets [5], [6]. Most recently, having won sev-
eral segmentation challenges, the nnU-Net has been introduced as a 
new state of the art deep learning-based method for medical imaging 
segmentation tasks [7]. 

In the literature, automatic liver segmentation with deep learn-
ing methods has been profoundly investigated with overall solid per-
formances [8], [9].  However, liver lesion segmentation remains a 
challenge to tackle in medical imaging, despite the recent methodo-
logical advancements proposing cascaded approaches for parallel or 
sequential liver and lesion learning, and feature fusion encoder-de-
coder networks [10-12]. Moreover, hepatic vessel segmentation has 
recently gained some ground with methods proposing 2D filtered 

multi-view inputs, some utilizing variants of the 3D UNets with cus-
tom loss functions, and others training on noisy and low-quality ves-
sel labels [13-15]. Similar to lesion segmentation, automatic liver 
vessel segmentation remains challenging to achieve.  

To the best of our knowledge, multi-class models performing 
joint liver, lesion, and vessel segmentations are not yet established, 
likely due to the lack of largely annotated datasets with the three 
labels jointly available. To overcome this challenge, we propose the 
FuSe loss, a novel multi-class loss function that allows the joint seg-
mentation of potentially overlapping classes like the liver and its 
vessels, while concurrently handling the union of fully and partially 
labeled images, thereby granting an increase in the size of the train-
ing dataset. Note that although previous works such as [16] have 
proposed multi-organ segmentation models from the combination of 
fully and partially labeled datasets, the considered organs occupied 
distinct and non-overlapping volumes.  

The suggested FuSe loss is leveraged to optimize a segmenta-
tion model that jointly segments the liver, its lesion(s), and its ves-
sels from the IRCAD [17] and LiTS [18] datasets, respectively con-
sidered as “fully” and “partially” annotated in this chosen task. A 
weighted version of the FuSe loss is also evaluated, with the objec-
tive to correct the imbalance between the different label frequencies. 
In the subsequent methods section, the FuSe loss function is de-
tailed, followed by a description of the datasets and experiments. 
Then, a qualitative and quantitative assessment of the liver, le-
sion(s), and vessel segmentations is portrayed. Lastly, the paper con-
cludes with a short synopsis, and some future perspectives. 

 
2.  METHODS 

 
2.1  Loss Function 
 
Let 𝐿𝐿(𝑥𝑥,𝑦𝑦) be a generic loss function optimized to learn the discrep-
ancies between 𝑥𝑥 and 𝑦𝑦, where 𝑥𝑥 ∈ [0,1]𝑁𝑁∗𝐾𝐾 is the predicted proba-
bility tensor, 𝑦𝑦 ∈ {0,1}𝑁𝑁∗𝐾𝐾 is the corresponding reference segmen-
tation map, 𝐾𝐾 is the total number of available classes, and 𝑁𝑁 is the 
total number of voxels.  

Typically, in medical imaging segmentation tasks, 𝐿𝐿(𝑥𝑥,𝑦𝑦) is 
defined as the summation of the dice and cross entropy losses: 
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2.2  FuSe Loss  
 
Partial annotations are often encountered in deep learning applica-
tions. With the proposed FuSe loss, the models can learn from var-
ying annotation protocols, regardless of the possible overlap be-
tween the classes. 

Let 𝐹𝐹 be the finite set of available annotations 𝑦𝑦 ∈ {0,1}𝑁𝑁∗𝐾𝐾 
with 𝐾𝐾 total classes, and 𝑆𝑆 be a secondary set of annotations 𝑦𝑦 ∈
{0,1}𝑁𝑁∗(𝐾𝐾−𝑚𝑚) with 𝐾𝐾 −𝑚𝑚 total classes, where 0 < 𝑚𝑚 < 𝐾𝐾. The 
FuSe loss is defined as: 
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We denote 𝐹𝐹 as the finite set of fully-labeled reference segmenta-
tions , 𝑆𝑆 as the finite set of  semi-labeled reference segmentations, 𝑁𝑁 
as the total number of voxels, and 𝑃𝑃 as a projection function that 
maps 𝑥𝑥 ∈ [0,1]𝑁𝑁∗𝐾𝐾, to 𝑃𝑃(𝑥𝑥) ∈ [0,1]𝑁𝑁∗(𝐾𝐾−𝑚𝑚). Figure 1 illustrates the 
suggested deep learning framework.  

With a consistent supervision of the set of labels in the refer-
ence segmentation map, either the baseline loss function is com-
puted for fully labeled targets, or the softmax output probabilities 
are mapped to match the number of classes in the semi-annotated 
targets prior to the computation of loss function using 𝑃𝑃(𝑥𝑥).  

In this work, 𝐹𝐹 ⊂ {0, 1}𝑁𝑁∗4 is the set of background, liver, le-
sion, and vessel labels respectively, 𝑆𝑆 ⊂ {0, 1}𝑁𝑁∗3 is the set of back-
ground, liver and lesion labels, and 𝑃𝑃(𝑥𝑥) defined below is computed 
whenever the target 𝑦𝑦 segmentation is partially labeled. 
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2.3  Weighted FuSe Loss 
 
Learning from different labels in different datasets can trigger im-
balances during training particularly if the datasets are considerably 
different in size.  Thus, a weighted coefficient 𝑤𝑤 is defined for every 
class based on the cardinality of sets 𝐹𝐹 and 𝑆𝑆 such that ∑ 𝑤𝑤𝑘𝑘 =𝐾𝐾

𝑘𝑘=1 1.  
In this work, the weights of the liver, lesions, and vessel classes are 
defined as: 
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3.  EXPERIMENTS 

 
3.1  Datasets and Preprocessing 
 
IRCAD and LiTS are public datasets with contrast enhanced portal 
phase computed tomography (CT) abdominal scans [17, 18]. While 
IRCAD’s dataset is fully labeled and consists of 20 patients with 
liver, lesion, and vessel annotations, LiTS’ dataset consists of a total 
of 201 partially labeled patients with 131 patients having liver and 
lesion annotations where the hepatic vessels are considered as liver, 
and the remaining 70 patients are unannotated and only used as a 
test set to evaluate the liver and lesion segmentations post-training.  

In preprocessing, IRCAD’s vessel target annotations, which in-
clude the segmentations of the entire venous system, are intersected 
with their corresponding liver masks to disregard any vessel label 
outside the liver. In addition, the nnU-Net’s default preprocessing 
configuration is employed [7]. It includes a resampling of both the 
CT scans and the annotations to their median voxel spacing, which 
corresponds to a spacing of 0.78 × 0.78 × 1.5mm. The input im-
ages are configured to a 192 × 192 × 60 patch size. 

 
3.2  Model Architecture 
 
The nnU-Net’s 3D full resolution framework is used for the totality 
of the experiments [7]. The employed model follows the template of 
the original U-Net architecture, having an encoding path generating 
incrementally deeper feature maps and a symmetrical decoding path, 
outputting the predicted segmentations. The feature maps increase 
from 32 to 320 after each of the 5 pooling layers. The convolutions 
are either stridden with kernels of size 23 or not stridden with ker-
nels of size 33. Aside from the sotfmax with 4 channels used in the 
model’s final layer (one channel per class), the entirety of the used 
activation functions are Leaky-ReLus. Lastly, skip connections and 
deep supervision layers are used to ease the gradient flow across the 
network. The setup of the model architecture is detailed in [7]. 
 
3.3 Training and Evaluation 
 
Three experiments were conducted to learn the joint segmentation 
of the liver, the lesions, and the hepatic vessels. The entirety of the 
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Figure 1: Proposed deep learning framework where the input is a raw CT cropped around the liver, 𝑥𝑥 is the predicted probability tensor, 
and 𝑦𝑦 is the target segmentation. The light blue, grey, and orange colors represent the liver, lesion(s), and vessels respectively 



models in all the experiments are trained for 150 epochs using the 
stochastic gradient descent algorithm with Nesterov momentum, 
and a geometrically decaying learning rate. 
Data augmentation, including random rotations, flips and elastic de-
formations is also applied to help avoid overfitting.  

The first experiment, referred to as the baseline experiment 
trains and optimizes an nnU-Net on IRCAD’s dataset using the base-
line loss function 𝐿𝐿(𝑥𝑥,𝑦𝑦), then evaluates the results using two ap-
proaches described below. The second and third experiments re-
ferred to as the FuSe Loss and weighted FuSe Loss experiments re-
spectively, train and optimize a similar nnU-Net using the non-
weighted and weighted 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝑥𝑥,𝑦𝑦) functions, on the fusion of 
IRCAD and LiTS’ datasets (where the 131 patients in LiTS’ anno-
tated dataset are only used during training, to learn the detection of 
the liver and the lesions). The training for both experiments is car-
ried out on identical fold partitions as the first experiment. 

As for the evaluation, given the availability of the vessel labels 
solely in the IRCAD dataset, the first evaluation approach assesses 
the segmentation results of the three classes and consists of perform-
ing a five-fold cross validation on the IRCAD dataset to test the 
trained models on the entire set of patients. Consequently, different 
splits of 16 training patients and 4 testing patients are created for 
every fold. Furthermore, with the absence of the vessel labels in 
LiTS’ unannotated test set of 70 patients, the second evaluation ap-
proach combines the predicted segmentations of the liver and the 
vessels using a mapping function similar to 𝑃𝑃(𝑥𝑥), prior to the as-
sessment of the results on LiTS’ online evaluation platform. 
 

4.  RESULTS 
 
4.1  Qualitative Results 
 
Figure 3 shows the liver, lesion, and vessel segmentation results for 
the FuSe loss experiment on IRCAD’s dataset. It can be seen that 
the proposed method is able to accurately reproduce the segmenta-
tions of the target for the three classes while mainly over-segment-
ing regions around the liver vessels. In addition, Figure 2 shows a 
set of lesion segmentations for different patients in IRCAD and 

LiTS’ test sets. The lesion segmentation results with the non-
weighted and weighted FuSe loss configurations outperform those 
obtained with the baseline loss. However, the three experiments dis-
play poor performances with patients having a small sized single 
nodule or nodules located at the extremities of the liver. Those re-
sults can be seen in Figure 4 below. 
 

 
Figure 3: Liver, lesion, and vessel segmentations with the FuSe 
loss, where blue shows under-segmentations, red shows over seg-
mentations, and green shows the true match with the target. 
 

 
Figure 4: Poor lesion segmentations from IRCAD’s test set (same 
color coding as Figure 3).  
 
4.2  Quantitative Results 
 
The liver, lesion, and vessel dice and Hausdorff scores of the base-
line experiment are compared the FuSe loss and the weighted FuSe 
loss experiments on the IRCAD dataset. Table 1 highlights the 5-
fold cross validation results on IRCAD’s dataset, and the liver and 
lesion segmentation results on LiTS’ unannotated test set, regarded-  
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Figure 2: Lesion segmentation on IRCAD and LiTS' test sets. White contours are the ground truth segmentations, which are only 
available for IRCAD’s dataset, red contours are the segmentations with the non-weighted FuSe loss, dashed blue contours are the seg-
mentations with the weighted FuSe loss, and the dotted green contours are the segmentations with the baseline loss. 
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Table 1: Mean and standard deviation of the dice (%) and Hausdorff distance (mm) scores evaluated on the different test sets.  
Bold and underlined values are the best and second-best results respectively. 

Exp.1 

Conf.2 
Lesion Liver Vessel 

LiTS IRCAD LiTS IRCAD IRCAD 
Metrics Dice Hausdorff Dice Hausdorff Dice Hausdorff Dice Hausdorff Dice Hausdorff 

Baseline  58.8 
(NA3) 

6.69 
(NA) 

51.1 
(±15.6) 

70.48 
(±76.18) 

92.9 
(NA) 

31.94 
(NA) 

94.8 
(±1.7) 

24.71 
(±8.6) 

62.4 
(±6.8) 

48.67 
(±48.4) 

FuSe Loss 70.6 
(NA) 

6.12 
(NA) 

51.9 
(±4.7) 

60.39 
(±72.62) 

95.9 
(NA) 

26.99 
(NA) 

94.6 
(±2.0) 

22.26 
(±7.03) 

60.0 
(±5.1) 

50.89 
(±50.4) 

Weighted 
FuSe Loss 

66.6 
(NA) 

6.54 
(NA) 

48.8 
(±7.1) 

66.58 
(±70.86) 

95.5 
(NA) 

26.95 
(NA) 

94.1 
(±1.8) 

22.88 
(±10.15) 

60.6 
(±10.7) 

46.54 
(±46.1) 

  1. Experiment, 2. Configuration, 3. Not assigned as values are not reported in LiTS  

as the benchmark for liver and lesion segmentation evaluation. 
The segmentations obtained with the proposed FuSe loss configura-
tion for the liver and lesions on LiTS’ test set clearly outperform 
those obtained with the baseline loss, with an increase in the dice 
score from 58.8% to 70.6% and a decrease in the Hausdorff distance 
from 6.69mm to 6.12mm for lesion segmentations. Similarly, for 
liver segmentation, the dice increases from 92.9% to 95.9% and the 
Hausdorff distance decreases from 31.94mm to 26.99mm on LiTS 
for the FuSe loss configuration. Furthermore, the results of the pro-
posed method for liver, lesion, and vessel segmentation on IRCAD’s 
dataset remain within a close margin of the baseline experiment, im-
proving the average lesion segmentation dice and Hausdorff scores 
from 51.1% to 51.9% and from 70.48mm to 60.39mm respectively. 
However, the liver dice scores slightly regress by 0.2% and the ves-
sels dice scores by 2.4%, with an increase in the Hausdorff distance 
from 48.67mm to 50.89mm for the vessels. Moreover, the results 
show that the added weights in the weighted FuSe loss experiment 
do not improve the overall dice scores of the three classes. Despite 
the 0.6% increase in the vessel’s dice score compared to the FuSe 
loss configuration, the liver and lesion’s dice scores decreased by 
0.5%, 0.4%, 3.1%, and 4% on IRCAD and LiTS’s datasets respec-
tively. However, the Hausdorff distances computed with the 
weighted FuSe loss configuration, outperform those computed with 
the baseline configuration for the liver, lesion, and vessel classes. 
 

5.  DISCUSSION AND CONCLUSION 
 
Automatic liver, lesion, and vessel segmentation is essential in pre-
surgical planning. With the unavailability of large extensively anno-
tated datasets, the proposed FuSe loss allowed to learn an accurate 
joint segmentation model from partially labeled training data via a 
projection function that maps the different predictions to their refer-
ence labels. The results on LiTS’ test set show that in the FuSe con-
figuration the lesion dice and Hausdorff sores improved by 11.8%, 
0.57mm and the liver dice and Hausdorff scores improved by 3% 
and 2.45mm respectively. The proposed method also achieved solid 
segmentation results on IRCAD’s dataset for liver, lesion, and vessel 
segmentations with dice scores attaining 94.6%, 51.9%, and 60.0% 
for each class respectively. 

Further investigation on the implications of the size of the train-
ing dataset on the vessel segmentation performance is required. In 
particular, additional consideration is required on the choice of 
weights since imbalances arise not only due to the dataset size vari-
ations but also due to the varying number of voxels representing 
every class in the reference segmentation map. Finally, the proposed 
method will be further extended and tested on different segmenta-
tions tasks presenting similar challenges. 
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