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It should come as no surprise that there are very few theorems applicable to all members of such a diverse family of shift spaces. Nevertheless, the main result of this note implies that there is a common feature of all hereditary shift spaces: for any hereditary shift X and for every t ≥ 0 the set of ergodic invariant measures with entropy less than or equal t, denoted M (t) σ (X), and endowed with the d-bar metric dM , is arcwise connected (Theorem 6). In fact, we only need to assume that there exists a safe symbol, and our proof actually shows that there is a dΩ - continuous arc in X consisting of generic points for ergodic measures from the arc in M (t) σ (X). This is a single orbit result very much in the spirit of [START_REF] Weiss | Single orbit dynamics[END_REF]. Here dΩ is a pseudometric on X given by the upper asymptotic density of the set of indices where two sequences in X dier.

The d-bar metric dM induces a stronger topology than the usual weak * topology on the space of ergodic invariant measures. It follows that in the latter topological space the set of ergodic invariant measures with entropy less than or equal t is also arcwise connected for every t ≥ 0 (Corollary 7). The same holds for sets of ergodic measures with entropy strictly less than t. Furthermore, since the entropy function h taking an ergodic measure µ to its metric entropy h(µ) is dM -continuous, it has the Darboux (intermediate-value) property over every arc in dM . Denoting the topological entropy of a shift space X by h top (X) we say that X has the intermediate entropy property over ergodic measures if for every α ∈ [0, h top (X)]

there is an ergodic measure µ with h(µ) = α. In particular, every shift with a safe symbol has the intermediate entropy property and its set of ergodic measures is either a singleton or is uncountable (Corollary 8). The former case occurs if and only if h top (X) = 0 (Corollary 9).

Our result about the intermediate entropy property is motivated by the following conjecture due to A. Katok: If r > 1 and F : M → M is a C r dieomorphism of a smooth compact manifold M , then for every α ∈ [0, h top (F )), there is an Finvariant ergodic measure µ such that the metric entropy of F with respect to µ equals α. Katok proved that this is the case if M is a compact surface where every ergodic measure of positive entropy is hyperbolic ( [START_REF] Katok | Nonuniform hyperbolicity and structure of smooth dynamical systems in Proceedings of the International Congress of Mathematicians[END_REF], for detailed proof see [19, Theorem S.5.9]). Katok's result was extended to certain skew product cases by Sun [START_REF] Sun | Zero-entropy invariant measures for skew product dieomorphisms[END_REF][START_REF] Sun | Measures of intermediate entropies for skew product dieomorphisms[END_REF]. The conjecture also holds for every ergodic linear automorphism of the torus as a result of work of Quas and Soo [START_REF] Quas | Ergodic universality of some topological dynamical systems[END_REF] and for some partially hyperbolic dieomorphism by Ures [START_REF] Ures | Intrinsic ergodicity of partially hyperbolic dieomorphisms with a hyperbolic linear part[END_REF].

The approach presented here is dierent from the methods used in [START_REF] Katok | Nonuniform hyperbolicity and structure of smooth dynamical systems in Proceedings of the International Congress of Mathematicians[END_REF][START_REF] Quas | Ergodic universality of some topological dynamical systems[END_REF][START_REF] Sun | Zero-entropy invariant measures for skew product dieomorphisms[END_REF][START_REF] Sun | Measures of intermediate entropies for skew product dieomorphisms[END_REF][START_REF] Ures | Intrinsic ergodicity of partially hyperbolic dieomorphisms with a hyperbolic linear part[END_REF]. After publishing this paper on arXiv we learned that similar techniques were applied in [START_REF] Quas | Entropy gaps and locally maximal entropy in Z d subshifts[END_REF].

We also describe the construction of some examples illustrating that our main theorem may not hold without the assumption that the shift space is hereditary. By

the same examples one can see that the conclusions of Corollary 7 and Corollary 8 are independent: neither of them implies the other. This is a manifestation of the well known fact that the metric entropy function h on the set of invariant measures M σ (X) of a shift space X endowed with the weak * topology is, in general, only upper semi-continuous. On the other hand every Polish topological space is homeomorphic to a set of ergodic measures of some shift space endowed with the weak * topology (see [START_REF] Downarowicz | The Choquet simplex of invariant measures for minimal ows[END_REF]Theorem 5] and [START_REF] Haydon | A new proof that every Polish space is the extreme boundary of a simplex[END_REF]). This suggests that there should be plenty of examples of shift spaces without the intermediate entropy property. It is obvious that this is the case if the shift space has at most countably many ergodic invariant measures. It is less obvious if the set of ergodic measures is arcwise connected in the weak * topology. Using a characterization of possible entropy functions due to Downarowicz and Seran [START_REF] Downarowicz | Possible entropy functions[END_REF] we show that for every non-trivial Polish topological space P there is a shift space X whose set of ergodic measures M e σ (X) endowed with the weak * topology is homeomorphic with P and the entropy function has an isolated positive value (see Theorem 11). By the same technique, we show that for every uncountable Polish topological space P (not necessarily connected!) there is a shift space X with M e σ (X) = P and a non-constant entropy function with the intermediate entropy property (see Theorem 12).

Finally, our rst proof of Theorem 6 was based on a relative version of the Furstenberg unique ergodicity theorem (Theorem 16 below). We no longer need this to prove our main theorem, but as we hope it is a result of independent interest we attach it with a proof in the Appendix A.

Definitions

By a dynamical system we mean a pair (X, T ), where X is a compact metric space and T : X → X is a homeomorphism. If (Y, S) is an another dynamical system and π : X → Y is a continuous map onto with π • T = S • π then we call π a factor map, Y a factor of X, and X an extension of Y .

The set of all Borel probability measures on X is denoted by M(X). The usual weak * topology makes M(X) a compact metrizable space.

Let M T (X) denote the set of T -invariant measures in M(X). We write M e T (X) for the set of all ergodic measures in M T (X), and h(µ) denotes the Kolmogorov-Sinai entropy of µ. For each µ ∈ M T (X) we call the triple (X, T, µ) a measure preserving system. Note that this is more restrictive than the usual denition.

A point x ∈ X is generic for a measure µ ∈ M T (X) if for each continuous

function ϕ : X → R we have lim N →∞ 1 N N -1 j=0 ϕ(T j (x)) = X ϕ dµ.
The set of all generic points for µ is denoted by Gen T (µ). We write Gen(X, T ) for the set of points that are generic for some T -invariant measure. For x ∈ Gen(X, T ) we denote by μ(x) the measure for which x is generic. Fix n ≥ 2 and let Λ be a nite set with n elements; without loss of generality we assume that Λ = {0, 1, . . . , n -1}. Let Ω = Λ Z be the set of all two-sided Λ-valued sequences. We equip Ω with the product (Tikhonov) topology induced by the discrete topology on Λ. The shift map σ : Ω → Ω is given by σ(x) i = x i+1 . By a shift space (for short a shift) we mean any nonempty closed set X ⊂ Ω such that σ(X) = X.

Disjointness and spectral theory

In this section we will review some basic facts from the spectral theory of Koopman operators. Since these results are classical we have not attempted to document the source of every of them (see [START_REF] Glasner | Ergodic theory via joinings[END_REF][START_REF] Parry | Topics in ergodic theory[END_REF]). We need them for a proof of Theorem 4, which may be known among acionados, but we were unable to nd it in the literature.

Using the map ψ(t) = exp(2πit) we identify the quotient group T 1 = R/Z equipped with addition mod 1 and the circle, that is, the multiplicative group S 1 = {z ∈ C : |z| = 1}. By λ we denote the Lebesgue measure on T 1 and its image (push forward) through ψ on S 1 . Given α ∈ R \ Q the map R α : T 1 → T 1 given by R α (t) = t + α mod 1 is called an irrational rotation of the circle. It is well known that λ is the unique invariant measure for R α .

Given a measure-preserving system (X, T, µ) we dene the Koopman operator

U T : L 2 (X, µ) → L 2 (X, µ) by U T (f ) = f • T . The Koopman operator is unitary, hence for each f ∈ L 2 the bi-innite sequence r n = U n T (f )
, f is a positive denite sequence of complex numbers. By Herglotz theorem the positive denite sequence U n T (f ), f determines uniquely a nite non-negative Borel measure on circle T 1 , called the spectral measure of f and denoted by σ f . A cyclic subspace determined by f ∈ L 2 (X, µ), denoted by Z(f ), is the closure of the linear span of {U n (f ) : n ∈ Z}. A cyclic subspace is maximal if it is not contained in any larger cyclic subspace. The spectral theorem for unitary operators allows us to dene the spectral type σ T , which is (up to equivalence) the spectral measure determined by any vector determining a maximal cyclic subspace. The spectral type σ T can be written as σ T = σ d +σ c , where σ d is purely atomic measure and σ c is a continuous (non-atomic) measure.

The point spectrum of a measure-preserving transformation (X, T, µ) is the set of eigenvalues for the Koopman operator U T

(f ) = f • T , i.e. H(T, µ) = {λ ∈ C : λf = f • T for some f ∈ L 2 (X, µ) with f = 0}.
The point spectrum is a subset of the unit circle S 1 ⊂ C. Since L 2 (X, µ) is separable, the point spectrum is at most countable and, in the ergodic case, it forms a multiplicative subgroup of S 1 . Furthermore, the spectral measure of each eigenvector is discrete. The purely atomic part of the spectral type is closely connected with spectral measures associated to eigenvectors; in particular, σ d is supported on H(T, µ).

Let (X, T, µ) and (Y, S, ν) be measure preserving systems. A joining of (X, T, µ) and (Y, S, ν) is a T × S-invariant measure η on X × Y with marginals µ and ν.

We write J(µ, ν) for the set of all joinings of (X, T, µ) and (Y, S, ν). We say that (X, T, µ) and (Y, S, ν) are disjoint if µ × ν is the only joining of these two systems.

We will also use in the proofs of our theorems the description of the spectrum for rotations and the characterization of the ergodicity of the product of two transformations via their spectra. If R α is an irrational rotation, then the spectrum H(R α , λ) with respect to the invariant Lebesgue measure λ is generated by e 2πiα , i.e.

H(R α , λ) = {exp(2πikα) : k ∈ Z}.
Furthermore, the spectral type of the Koopman operator associated with (T 1 , R α , λ) is purely atomic. Lemma 1. The product of two ergodic measure-preserving systems (X, T, µ) and (Y, S, ν) is ergodic if and only if their point spectra have trivial intersection, i.e.

H(T, µ) ∩ H(S, ν) = {1}.
This fact might be not a part of classical textbooks on ergodic theory, but can be found e.g. in [START_REF] Parry | Topics in ergodic theory[END_REF], page 46, Exercise 2. In similar spirit, we have the following criterion for disjointness. Theorem 2 (Thm. 6.28 in [START_REF] Glasner | Ergodic theory via joinings[END_REF]). If (X, T, µ) and (Y, S, ν) are measure preserving systems whose spectral types are mutually singular except for the common atom at 1, then (X, T, µ) and (Y, S, ν) are disjoint.

The following lemma was suggested to us by Lema«czyk and Przytycki. Lemma 3. Let α ∈ R \ Q. The measure-preserving systems (T 1 , R α , λ) and (X, T, µ) are disjoint if (and only if) exp(2πikα) / ∈ H(T, µ) for k ∈ Z \ {0}. Proof. For the if direction, the assumptions imply that H(T, µ)∩H(R α , λ) = {1}.

Since the spectral type of R α is purely atomic, and the purely atomic part of the spectral type of T is supported on H(T, µ), the spectral types of (X, T, µ) and (T 1 , R α , λ) are mutually singular (except the common atom at 1). By Theorem 2, this implies that (T 1 , R α , λ) and (X, T, µ) are disjoint. For the only if direction, we rst use Lemma 1 to note that if exp(2πikα) ∈ H(T, µ) for some k ∈ Z \ {0}, then λ × µ is not ergodic. This implies that the systems (T 1 , R α , λ) and (X, T, µ) cannot be disjoint because the product of ergodic and disjoint systems is always ergodic by Theorem 6.2 in [START_REF] Glasner | Ergodic theory via joinings[END_REF]. Theorem 4. For every ergodic measure-preserving system (X, T, µ) there exists an irrational α such that (T 1 , R α , λ) and (X, T, µ) are disjoint.

Proof. The point spectrum of (X, T, µ) is a countable subgroup of the circle, hence there is an α ∈ R \ Q such that exp(2πikα) / ∈ H(T, µ) for all k ∈ Z \ {0}. It remains to apply Lemma 3.

Arcwise connectedness

In this section we prove our main result. But rst we prepare some notation and state an auxiliary lemma.

Let Z be a topological space and x, y ∈ Z. A path (resp. arc) from x to y in Z is a continuous function (resp. homeomorphism onto the image) γ : [0, 1] → Z such that γ(0) = x and γ(1) = y. The space Z is pathwise connected (resp. arcwise connected) if for every x, y ∈ Z there is a path (resp. an arc) from x to y. By d(A) we denote the upper asymptotic density of a set A ⊂ Z. Recall that

d(A) = lim sup n→∞ |A ∩ {1, . . . , n}| n .
Given x, y ∈ Ω = Λ Z with x = (x j ) j∈Z and y = (y j ) j∈Z the formula dΩ (x, y) = d ({n

∈ N | x n = y n })
denes a pseudometric on Ω. Note that dΩ (x, y) = 0 implies that x and y dier on a set of coordinates of zero upper asymptotic density. The d-bar pseudometric dΩ is closely connected with a metric on the set of shift-invariant measures Ω stronger than the usual metric determining the weak * topology. This metric, denoted by

dM , is dened for µ, ν ∈ M σ (Ω) by dM (µ, ν) = inf η∈J(µ,ν) η({(x, y) ∈ Ω × Ω : x 0 = y 0 }),
where as in the previous section J(µ, ν) denotes the set of all joinings of µ and ν (see [START_REF] Shields | The Ergodic Theory of Discrete Sample Path[END_REF]Theorem I.9.7]). The link between the d-bar metric dM on measures and the pseudometric dΩ on generic points needed here is the following corollary of Lemma I.9.8 in [START_REF] Shields | The Ergodic Theory of Discrete Sample Path[END_REF]:

(

dM (μ(x), μ(y)) ≤ dΩ (x, y), x, y ∈ Gen(Ω, σ).

For x ∈ Ω and y ∈ {0, 1} Z we denote by x * y the coordinate-wise product: (x * y) j = x j • y j . If X ⊂ Ω and Y ⊂ {0, 1} Z are shift spaces, then we denote the image of X × Y ⊂ Ω through * as X * Y . Observe that 0 is a safe symbol for a shift space X over {0, 1, . . . , n -1} if and only if X * {0, 1} Z = X. It is clear that * : X × Y → X * Y is a factor map of (X × Y, σ × σ) onto (X * Y, σ). It follows that if (x, y) ∈ Gen(X × Y, σ × σ), then x * y ∈ Gen(X * Y, σ). Unfortunately, it is not always the case that if x and y are generic points, then (x, y) is generic, see [13, p. 22]. But it holds if we assume that the corresponding measures are disjoint. The proof follows the same lines as the proof of Theorem I.6 in [START_REF] Furstenberg | Disjointness in ergodic theory, minimal sets, and a problem in Diophantine approximation[END_REF]. Lemma 5. If (X, T, µ) and (Y, S, ν) are disjoint measure preserving systems, x ∈ Gen T (µ) and y ∈ Gen S (ν) then (x, y) ∈ Gen T ×S (µ × ν).

Finally, given a shift space and t ≥ 0 we write M (t) σ (X) for the set of ergodic measures on X with entropy less or equal than t, that is, M (t) σ (X) = {µ ∈ M e σ (X) : h(µ) ≤ t}. This was the last piece we needed for the proof of our main result. Theorem 6. If X is a shift space with a safe symbol (in particular, if X is a hereditary shift) and t ≥ 0, then M (t) σ (X) endowed with dM is arcwise connected. Proof. Without loss of generality we assume that 0 is a safe symbol for X. By [START_REF] Willard | General topology[END_REF]Cor. 31.6] every pathwise connected Hausdor space is also arcwise connected.

Therefore it suces to show that for any µ ∈ M e σ (X) there exists a path from µ to the Dirac measure δ 0 , where 0 denotes the bi-innite sequence of 0's That is, we need to dene a continuous function Φ : [0, 1] → M e σ (X) with Φ(0) = δ 0 and Φ(1) = µ which is continuous when we endow M e σ (X) with the dM metric. To do that we construct a dΩ -continuous path of generic points. Since the topology introduced by dΩ on X is not Hausdor we consider an equivalence relation on X dened by x ≡ y if dΩ (x, y) = 0. The resulting set of equivalence classes endowed with the metric induced by dΩ is called the Besicovitch space of X and denoted X B . It is easy to see that a dΩ continuous path in X leads to a path in X B and the arc in X B leads to a dΩ -continuous arc in X. Hence it remains to dene a dΩ -continuous path of generic points of ergodic measures in X.

For α, β ∈ [0, 1], dene the point y α,β ∈ Ω by

y α,β = χ [0,β) (jα mod 1) j∈Z ∈ Ω,
where χ [0,β) denotes the characteristic function of [0, β). Note that y α,0 = 0 and y α,1 = 1, where 1 denotes the bi-innite sequence of 1's. Write Y α,β for the closure of the orbit of y α,β with respect to σ.

It is a well known fact that if α is irrational and 0 < β < 1, then the dynamical system (Y α,β , σ) is minimal and has a unique invariant measure, which we denote by ν α,β . Furthermore, the measure preserving system (Y α,β , σ, ν α,β ) is isomorphic (in the category of measure preserving systems) to the circle rotation (T 1 , R α , λ). In addition, let ν α,0 = δ 0 be the Dirac measure concentrated on 0 and similarly ν α,1 = δ 1 . With this notation y α,β is generic for ν α,β for any β ∈ [0, 1]. Therefore, for β ∈ (0, 1), measure preserving systems (Y, S, ν) and (Y α,β , σ, ν α,β ) are disjoint if and only if (Y, S, ν) and (T 1 , R α , λ) are disjoint.

Fix the choice of an irrational α ∈ [0, 1] such that (X, σ, µ) and (T 1 , R α , λ) are disjoint, whose existence is assured by Theorem 4. By Lemma 5, for any µgeneric point x ∈ X and any β ∈ [0, 1], the point (x, y α,β ) is generic for the ergodic measure µ×ν α,β . It follows that x * y α,β is a generic point for some ergodic measure Furthermore since 0 is a safe symbol for X we have Φ(X) ⊂ X. Hence, by (1), the map Φ :

µ β = μ(x * y α,β ) for β ∈ [0, 1]. Furthermore, x * y α,0 = 0 and x * y α,1 = x, hence µ 0 = δ 0 and µ 1 = µ. Note that h(µ × ν α,β ) = h(µ), thus h(µ β ) ≤ h(µ) ≤ t for all 0 ≤ β ≤ 1. For 0 ≤ β < β ≤ 1 we have (y α,β ) j = (y α,β ) j if and only if R j α (0) ∈ [β, β ).
[0, 1] β → µ β = μ • Φ(β) ∈ M (t)
σ (X) ⊂ M e σ (X) is also dM -continuous, and establishes a path from Φ(0

) = μ(0) = δ 0 to Φ(1) = μ(x) = µ in M (t) σ (X).
By [START_REF] Rudolph | Fundamentals of measurable dynamics: Ergodic theory on Lebesgue spaces[END_REF]Theorem 7.7] the topology of dM metric is stronger than the weak * topology on M e σ (Ω). Together with Theorem 6 it yields the following result:

Corollary 7. If X is a shift space with a safe symbol (in particular, if X is a hereditary shift), then for any t ≥ 0 the set M (t) σ (X) (in particular, M e σ (X)) is arcwise connected in the weak * topology.

As the entropy function on M e σ (Ω) endowed with the dM metric is continuous (see [START_REF] Rudolph | Fundamentals of measurable dynamics: Ergodic theory on Lebesgue spaces[END_REF]Theorem 7.9] or [34, Theorem I.9.16]) we conclude also the following:

Corollary 8. If X is a shift space with a safe symbol (in particular, if X is a hereditary shift), then {h(µ) : µ ∈ M e σ (X)} = [0, h top (X)] (possibly degenerate to a point).

If X is a hereditary shift, then the bi-innite sequence of 0's denoted by 0 is a xed point for the shift map and belongs to X. Hence the atomic measure δ 0 carried by 0 is invariant for X. There are hereditary shifts for which δ 0 is the only invariant measure and the existence of another invariant measure has many consequences (see [START_REF] Kwietniak | Topological entropy and distributional chaos in hereditary shifts with applications to spacing shifts and beta shifts[END_REF] for more details). Thus we divide all hereditary shifts into two disjoint classes: I. uniquely ergodic hereditary shifts (δ 0 is the unique invariant measure), II. non-uniquely ergodic hereditary shifts.

Hereditary shift spaces in class (I) are characterized as those in which for every point x ∈ X the symbols other than 0 appear in x on a set of coordinates of zero asymptotic density. Class (I) coincides also with the hereditary shifts having zero topological entropy. Although this is not stated explicitly in [START_REF] Kwietniak | Topological entropy and distributional chaos in hereditary shifts with applications to spacing shifts and beta shifts[END_REF] the proof applies verbatim to shift spaces with a safe symbol. Hence we may note the following corollary.

Corollary 9. A shift space with a safe symbol (in particular, a hereditary shift) has positive topological entropy if and only if it has uncountably many ergodic measures.

Examples of hereditary shifts

Here we list some notable examples of hereditary shifts to which our main result can be applied.

The primary example of a B-free shift is the square-free shift considered by Sarnak [START_REF] Sarnak | Three lectures on the Möbius function randomness and dynamics[END_REF]; that is a shift space, whose structure reects the statistical properties of square-free numbers. Recall that n ∈ N is square-free if there is no prime number p such that p 2 divides n. Let η be the characteristic function of the square-free numbers treated as a point in {0, 1} Z . The square-free shift is the closure of the orbit of η with respect to the shift map and it turns out that it is hereditary [START_REF] Peckner | Uniqueness of the measure of maximal entropy for the squarefree ow[END_REF][START_REF] Sarnak | Three lectures on the Möbius function randomness and dynamics[END_REF].

The study of the square-free shift has been recently extended [START_REF] Abdalaoui | A dynamical point of view on the set of B-free integers[END_REF][START_REF] Bartnicka | czyk, B-free sets and dynamics[END_REF] to the general B-free shifts X b induced in the same manner by the characteristic function b of B-free numbers, that is, integers with no factor in a given set B ⊂ N. If B is an Erd®s set, that is, it consists of pairwise co-prime integers and b∈B 1/b < ∞, then the B-free shift is also hereditary, see [START_REF] Abdalaoui | A dynamical point of view on the set of B-free integers[END_REF]. In general this is not the case, but the smallest hereditary shift containing X b still has some interesting properties (see [START_REF] Bartnicka | czyk, B-free sets and dynamics[END_REF]). These systems were also investigated by Avdeeva [START_REF] Avdeeva | Variance of B-free integers in short intervals[END_REF], Cellarosi and Sinai [START_REF] Cellarosi | Ergodic Properties of Square-Free Numbers[END_REF], Kuªaga-Przymus, Lema«czyk, and Weiss [START_REF] Kuªaga-Przymus | On invariant measures for B-free systems[END_REF][START_REF] Kuªaga-Przymus | Hereditary subshifts whose simplex of invariant measures is Poulsen in Ergodic theory, dynamical systems, and the continuing inuence of John C. Oxtoby[END_REF], Peckner [START_REF] Peckner | Uniqueness of the measure of maximal entropy for the squarefree ow[END_REF].

Another shift space related to B-free integers is the B-admissible shift [START_REF] Bartnicka | czyk, B-free sets and dynamics[END_REF]. We say that a sequence x = (x j ) j∈Z ∈ {0, 1} Z is B-admissible if for every b ∈ B the set {j ∈ Z : x j = 1} is disjoint with a set bZ + r for some 0 ≤ r < b. It is not hard to see that the set of B-admissible sequences in Ω is a hereditary shift space X B called the B-admissible shift. Because b is clearly a B-admissible sequence we see immediately that X b ⊂ X B and the equality holds if B is an Erd®s set.

Beta shifts introduced by Rényi [START_REF] Rényi | Representations of real numbers and their ergodic properties[END_REF] are related to number theory, tilings, and dynamics of discontinuous transformations. For β > 1 the beta shift Ω β is the closure of the set of sequences in {0, 1, . . . , β } N arising as greedy β-expansions of numbers from [0, 1]. All beta shifts are hereditary (see [START_REF] Kwietniak | Topological entropy and distributional chaos in hereditary shifts with applications to spacing shifts and beta shifts[END_REF]).

Spacing shifts were introduced by Lau and Zame in [START_REF] Lau | On weak mixing of cascades[END_REF]. A spacing shift Ω P , where P ⊂ N, is the set of all x = (x i ) ∈ {0, 1} Z such that x i = x j = 1 and i = j imply |i -j| ∈ P . Spacing shifts were studied in [START_REF] Banks | Transitive soc spacing shifts[END_REF][START_REF] Banks | Dynamics of Spacing Shifts[END_REF]. It is easy to see that they are hereditary.

Bounded density shifts were recently introduced by Stanley [START_REF] Stanley | Bounded density shifts, Ergodic Theory Dynam[END_REF]. They are dened by xing a function f : N → [0, ∞) and considering the set of all bi-innite sequences such that for each p ∈ N the sum of the entries of any nite subword of length p do not exceed f (p). Since for any word coordinatewise smaller than a given word the sum of the entries can only decrease, these shifts are hereditary.

Proof. Assume that P is uncountable. Then there is C ⊂ P homeomorphic to the usual Cantor set in [0, 1] [36, Theorem 3.2.7]. Let g : P → [0, 1] be any continuous function such that g| C maps C onto [0, 1] (say, use the Tietze extension theorem to extend Devil's staircase function on C to the whole P ). Then take η = g • χ C where χ C is the characteristic function of C in P . The function η : P → [0, 1] is upper semi-continuous and has the Darboux (intermediate-value) property. Reasoning as above, we can nd a Toeplitz minimal shift (X, T ) such that (up to ane homeomorphism) M T (X) = K P and η = h| M e T (X) .

Final remarks

We nd the following question intriguing: Let µ denote the Möbius function extended to Z in an obvious way (say µ(0) = 0 and µ(-n) = µ(n) for n ∈ N). Let X M be the orbit closure of µ in {-1, 0, 1} Z . Is 0 the safe symbol for X M ? Recall that the study of the square-free system in [START_REF] Sarnak | Three lectures on the Möbius function randomness and dynamics[END_REF] was motivated by questions about Möbius function µ. Some special cases of our results were known to hold for some time. It follows from the general theory of Choquet simplices that if the set of ergodic measures is dense in the simplex of all invariant measures in the weak * topology, then it is an arcwise connected set [START_REF] Lindenstrauss | The Poulsen simplex[END_REF]. Therefore the set of ergodic measures is arcwise connected in the weak * topology for all hereditary B-free shifts X b , as M e σ (X b ) = M σ (X b ) by [START_REF] Bartnicka | czyk, B-free sets and dynamics[END_REF][START_REF] Kuªaga-Przymus | Hereditary subshifts whose simplex of invariant measures is Poulsen in Ergodic theory, dynamical systems, and the continuing inuence of John C. Oxtoby[END_REF]. For a concrete example of a shift space with dense set of ergodic measures but without the intermediate entropy property see [START_REF] Gelfert | On density of ergodic measures and generic points, Ergodic Theory Dynam[END_REF]. Kuªaga-Przymus, Lema«czyk and Weiss showed also in [START_REF] Kuªaga-Przymus | Hereditary subshifts whose simplex of invariant measures is Poulsen in Ergodic theory, dynamical systems, and the continuing inuence of John C. Oxtoby[END_REF] that ergodic measures need not be dense among all invariant measures for a general hereditary system, but must be arcwise connected by our result. This phenomenon was previously observed in the Dyck shift by Climenhaga [START_REF] Climenhaga | 's Math Blog[END_REF].

All the results stated in this work remain valid for unilateral shift spaces, that is, closed σ-invariant subsets of Λ N . This follows directly from [8, Proposition 2.1].

After we have nished writing this paper Ay³e ahin kindly shared with us the article [START_REF] Quas | Entropy gaps and locally maximal entropy in Z d subshifts[END_REF], where dΩ continuous arcs of ergodic measures are constructed for some examples of Z and Z 2 shift spaces. Anthony Quas observed that one can use the construction from [START_REF] Quas | Ergodic universality of some topological dynamical systems[END_REF] (loosely related to the grand coupling that shows up in probability theory) to get another proof of Theorem 6 for the case t = h top (X), that is, for M e σ (X). This approach does not work for smaller t. The reader interested in the result about the measures only, can also use the idea from [START_REF] Quas | Entropy gaps and locally maximal entropy in Z d subshifts[END_REF] and coupling with irrational rotations to simplify the proof of Theorem 6 at the cost of loosing the explicit construction of generic points. The latter result is in the spirit of single orbit dynamics (see remarks about dierences between almost everywhere results and single orbit theorems in [41, pages 8 and 89]) and we hope the reader will also nd it interesting. Besides it gives some information about topological properties of the Besicovitch space of the shift (see the proof of Theorem 6). We are grateful to Anthony Quas for sharing his idea with us.

Added in proof. We note that by Corollary 7, Theorem A from Shinoda's paper [START_REF] Shinoda | Ergodic Maximizing Measures of Non-Generic, Yet Dense Continuous Functions[END_REF] applies to any shift space with a safe symbol. This yields the following corollary:

Corollary 13. If X is a nontrivial shift space with a safe symbol, then there exists a dense set of continuous functions D ⊂ C(X) such that for every f ∈ D there exist uncountably many ergodic maximizing measures, that is, the set

M max (f ) = {µ ∈ M σ (X) : f dµ = max ν∈Mσ(X)
f dν} is uncountable.

Appendix A. Uniquely ergodic extensions Originally, we proved Theorem 6 using tools developed in this section. After a talk of one of us presented these results during a seminar at the Institute of Mathematics of the Polish Academy of Sciences, professors Lema«czyk and Przytycki kindly suggested another approach for this proof. As we feel that the following observations might be of the independent interest and allow us to show Theorem 6 avoiding spectral theory of unitary operators we decided to attach them here.

Suppose that (X, T ) is a topological factor of (Y, S) and π : Y → X is a factor map. Let µ ∈ M e T (X). We say that (Y, T ) is a uniquely ergodic extension of (X, T ) over µ if there is a unique measure ν ∈ M e S (Y ) such that π * (ν) = µ. We also say that (Y, S, ν) uniquely extends (X, T, µ) through π : Y → X. The following lemma and its corollary explain our interest in uniquely ergodic extensions.

Lemma 14 (Weiss,[START_REF] Weiss | Single orbit dynamics[END_REF] Proposition 3.4). If the ergodic system (Y, S, ν) uniquely extends (X, T, µ) over π : Y → X, x 0 ∈ Gen T (µ) and y 0 ∈ π -1 ({x 0 }), then y 0 ∈ Gen S (ν).

The lemma above implies a useful criterion for genericity of a pair of generic points with respect to a product measure.

Corollary 15. Let (X, T, µ) and (Y, S, ν) be two ergodic systems with ergodic product. If (X × Y, T × S, µ × ν) uniquely extends (X, T, µ) over the projection onto the rst coordinate π : X × Y → X, then for every x 0 ∈ Gen T (µ) and y 0 ∈ Y the pair (x 0 , y 0 ) is generic for µ × ν.

Note that in the situation of the above corollary, (Y, S, ν) is necessarily uniquely ergodic, so Gen S (ν) = Y . Lemma 14 was used in place of Lemma 5 in the rst version of our proof of Theorem 6.

The following relative version of the unique ergodicity theorem of Furstenberg can be used to show that certain extensions are uniquely ergodic over group rotations. The proof can be obtained through an easy modication of the standard argument which can be found in e.g. [START_REF] Einsiedler | Ergodic theory with a view towards number theory[END_REF]Theorem 4.21]; we include it here for the convenience of the reader. Theorem 16. Assume that T : X → X is a homeomorphism of a compact metric space and µ ∈ M e T (X). Let G be a compact group, λ G be the Haar measure for G and ϕ : X → G be a continuous map. Dene Y = X × G and S : Y → Y by S(x, g) = (T (x), ϕ(x)g). If S is ergodic with respect to µ × λ G , then (Y, S, µ × λ G ) uniquely extends (X, T, µ) over the projection π : Y (x, g) → x ∈ X.

Proof. The S-invariance of µ×λ G is an immediate consequence of Fubini's theorem, since for any f ∈ C(Y ) we have

Y f • S d(µ × λ G ) = X G f (T x, ϕ(x)g) dλ G (g)dµ(x) = G X f (T x, g)dµ(x) dλ G (g) = Y f d(µ × λ G ).
Assume that (Y, S, µ × λ G ) is an ergodic measure preserving system. We claim that for every h ∈ G the set Gen S (µ × λ G ) is invariant under the map R h : Y (x, g) → (x, gh) ∈ Y . Note that (x, g) ∈ Gen S (µ × λ G ) if and only if for every continuous function f : Y → R we have We x f ∈ C(Y ) and h ∈ G. We want to show that (2) holds with (x, gh) in place of (x, g). First note that Now use the fact that (x, g) is generic to conclude that the right hand side of ( 3)

converges to Y f • R h d(µ × λ G ) = Y f d((R h ) * (µ × λ G )) = Y f d(µ × λ G ),
where the last equality holds because µ×λ G is R h invariant. This shows that for all h ∈ G we have R h (Gen S (µ × λ G )) ⊂ Gen S (µ × λ G ). Repeating the same argument with h -1 in place of h yields the reverse inclusion, and hence for any h ∈ G we have R h (Gen S (µ × λ G )) = Gen S (µ × λ G ).

This completes the proof of our claim.

Let E 1 ⊂ X be the projection of Gen S (µ×λ G ) onto the rst coordinate. Clearly, µ(E 1 ) = 1. If (x, g) ∈ Gen S (µ × λ G ) and g ∈ G, then taking h = g -1 g and using our claim we get that (x, gh) = (x, g ) ∈ Gen S (µ × λ G ). This shows that Gen S (µ × λ G ) = E 1 × G.

Let ν be an ergodic S-invariant measure such that π * (ν) = µ. Let E 2 = π(Gen S (ν)). Then µ(E 2 ) = 1, hence µ(E 1 ∩ E 2 ) = 1 and in particular there exists x 0 ∈ E 1 ∩ E 2 . Let y 0 ∈ Gen S (ν) be such that π(y 0 ) = x 0 . But then y 0 ∈ {x 0 } × G ⊂ Gen S (µ × λ G ), and y 0 is generic for both ν and µ × λ G , implying that ν = µ × λ G . Theorem 16 yields the following corollary which may replace Theorem 4 in the proof of our main result. Corollary 17. If T : X → X is a homeomorphism of a compact metric space and µ ∈ M e T (X), then there exists α ∈ R \ Q such that the product system (T × R α , X × T 1 , µ × λ) is a uniquely ergodic extension of (X, T, µ) over the projection π : X × T 1 → X, where R α is the rotation by α and λ denotes the Lebesgue measure on T 1 . Proof. By Theorem 16, it is enough to nd α ∈ R \ Q such that T × R α is ergodic with respect to µ × λ. To this end, using spectral theory discussed in Section 2, it will suce to ensure that only common element of H(T, µ) and H(R α , λ) = {exp(2πikα) : k ∈ Z} is 1. Because H(T, µ) is at most countable, this will be the case for all but countably many choices of α.

  Therefore dΩ (y α,β , y α,β ) = d({j ∈ Z : (y α,β ) j = (y α,β ) j }) = d({j ∈ Z : R j α (0) ∈ [β, β )}). Since R α is a uniquely ergodic transformation, we have d({j ∈ Z : R j α (0) ∈ [β, β )}) = λ([β, β )) = β -β. It follows that the map Φ : [0, 1] β → x * y α,β ∈ Ω is dΩ -continuous, because dΩ (x * y α,β , x * y α,β ) ≤ dΩ (y α,β , y α,β ) = |β -β |.

f

  (S n (x, g)) = Y f d(µ × λ G ).

f

  • R h (S n (x, g)).
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Intermediate entropy property vs arcwise connectedness

The following results show that the conclusions of Corollary 7 and Corollary 8 are independent of each other 1 . Recall that for every dynamical system (X, T ) the set M T (X) endowed with the weak * topology has the structure of a Choquet simplex (see [START_REF] Downarowicz | Entropy in dynamical systems[END_REF]). We say that a nonempty metrizable convex compact subset K of a locally convex topological vector space is a Choquet simplex if every point of K is the barycenter of a unique probability measure supported on the set ext K of extreme points of K.

Lemma 10. Let K be a convex subset of a vector space (over R or C). If P is a closed subset of the set ext K of extreme points of K, then its characteristic function χ P is upper semi-continuous and convex, that is, for x, y ∈ K and 0 < α < 1 we have

Proof. The upper semi-continuity is obvious. For proof of convexity, note that if x, y ∈ K, x = y, and 0 < α < 1, then αx + (1 -α)y is not an extreme point, so χ P (αx + (1 -α)y) = 0.

Theorem 11. For every Polish topological space P there exists a minimal shift space X (a Toeplitz shift) such that M e σ (X) with the weak * topology and P are homeomorphic and there is a unique measure µ ∈ M e σ (X) with positive metric entropy. (In particular, if P has more than one point, then X does not have the intermediate entropy property.)

Proof. Let K P be the Choquet simplex whose set of extreme points ext K P is homeomorphic to P (such a Choquet simplex exists by [START_REF] Haydon | A new proof that every Polish space is the extreme boundary of a simplex[END_REF]). Fix an extreme point z ∈ ext K P . Let δ z denote the Dirac measure concentrated on {z} and let χ {z} denote the characteristic function of {z} ⊂ ext K P . Given a point x ∈ K P , we denote by ξ x the unique probability measure concentrated on ext K P such that x is the barycenter of ξ x , that is, x is equal to the Pettis integral of the identity with respect to ξ x :

x = ext K P y dξ x (y).

(See Appendix in [START_REF] Downarowicz | Entropy in dynamical systems[END_REF] for more details.) We dene a function ϕ : Choquet simplex is ane. Therefore, ϕ is bounded, ane, non-negative, upper semi-continuous on K P , and ϕ| ext K P = χ {z} .

By [10, Theorem 1], there exists a minimal Toeplitz shift (X, σ) and an ane (onto) homeomorphism ψ : K P → M σ (X), such that for every x ∈ K P , ϕ(x) = h(ψ(x)), where h denotes the entropy function. This proves the proposition with µ = ϕ(z).

Theorem 12. For every uncountable Polish topological space P there exists a minimal shift space X (a Toeplitz shift) such that M e σ (X) with the weak * topology and P are homeomorphic and the metric entropy function h restricted to M e σ (X) is not constant and has the Darboux (intermediate value) property. 1 We are grateful to Tomasz Downarowicz for drawing our attention to the theory presented in [START_REF] Downarowicz | Entropy in dynamical systems[END_REF] and generously sharing his insight on these matters.