
HAL Id: hal-03919483
https://hal.science/hal-03919483

Preprint submitted on 2 Jan 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Deep Tempering with Nested Restricted Boltzmann
Machines

Clément Roussel, Jorge Fernandez-De-Cossio-Diaz, Simona Cocco, Rémi
Monasson

To cite this version:
Clément Roussel, Jorge Fernandez-De-Cossio-Diaz, Simona Cocco, Rémi Monasson. Deep Tempering
with Nested Restricted Boltzmann Machines. 2023. �hal-03919483�

https://hal.science/hal-03919483
https://hal.archives-ouvertes.fr

Deep Tempering with Nested Restricted Boltzmann Machines

Clément Roussel, Jorge Fernandez-de-Cossio-Diaz, Simona Cocco, Rémi Monasson
Laboratory of Physics of the Ecole Normale Supérieure, CNRS UMR 8023 & PSL Research,

Sorbonne Université, 24 rue Lhomond, 75005 Paris, France

Distributions of high-dimensional data can be learnt with unsupervised architectures, such as
restricted Boltzmann machines (RBM). However, the resulting models are often uneasy to sample
when the data distributions include multiple modes. We here consider deep tempering, a parallel-
tempering-like Monte Carlo sampling algorithm based on a chain of several restricted Boltzmann
machines (RBM), where hidden configuration of a machine can be exchanged with the visible config-
urations of the next one along the chain. Replica exchanges between the different RBM is facilitated
by the increasingly clustered representations learnt by deeper RBMs along the chain, allowing for
fast transitions between the different modes of the data distribution. We explain why deep tempering
works on hierarchical data, and introduce a theoretical framework to understand how hyperparam-
eters, such as the aspect ratios of the RBMs and the weight regularization should be chosen. Our
findings are illustrated on two datasets: MNIST and in silico Lattice Proteins.

I. INTRODUCTION

Sampling complex energy landscapes is an important
goal in statistical and computational physics. Follow-
ing the introduction of Monte Carlo (MC) methods by
Metropolis in the late 40’s, several approaches have been
considered to speed up sampling. Among them cluster-
based algorithms are non-local moves in the configuration
space that are able to update a large, possibly extensive
number of microscopic variables at once [1]. Cluster al-
gorithms, such as Wolff’s algorithm [2] were shown to
be extremely efficient to circumvent the so-called critical
slowing down phenomenon accompanying second-order
phase transitions, e.g. in the Ising model. However clus-
ter algorithms implicitly require a deep physical knowl-
edge of the systems, in particular of its ground states.
In the case of disordered systems, where the low-energy
states are very numerous, differ from each other by an
extensive number of spins, and cannot be easily guessed
from a direct inspection of the coupling matrix, this ap-
proach has not led to effective implementations.

Another improvement of standard MC methods, inten-
sively used in particular in the context of disordered sys-
tems, is parallel tempering, also called replica exchange
MC [3]. Parallel tempering consists in simulating more
than one copy of the system, at higher temperatures than
the target temperature of interest. These replicated sys-
tems are likely to be easier to sample, especially at very
high temperatures for which the effective barriers in the
energy landscape are low and easy to cross. The idea
is then to allow for exchange of configurations between
copies of the system thermalized at different tempera-
tures. Hence, low-temperature systems will benefit from
the capability of high-temperature systems to quickly ex-
plore the configuration space, instead of getting indef-
initely stuck in the landscape valleys. The procedure
requires that the exchange, which must satisfy detailed
balance, has a reasonable probability of occurring, which
implies that the two temperatures should not be too far
away from one another. From a conceptual point of view,

let us distinguish the idea of having a chain of different
systems with slowly changing Hamiltonians, which is key
to parallel tempering, with the standard implementation
in which all these Hamiltonians are identical up to global
rescalings encoding the temperatures of the systems. The
idea of parallel tempering is more general than this stan-
dard and simple implementation, as we shall see below.

In this work we report on an application of the ideas
of parallel tempering to the context of data-driven mod-
eling. We use restricted Boltzmann machines (RBM), a
paradigm of unsupervised architectures, to learn proba-
bility distributions from data. RBMs are graphical mod-
els, extracting representations from data, and in turn,
able to generate new data from representations. They
are known to be universal approximators, i.e. they can
approximate any distribution over the visible variables
when the size of the representation layer goes to infinity
[4]. The distributions learnt by RBM may be complex
and multimodal, and hence difficult to sample. Inspired
by deep tempering, an approach introduced in the con-
text of deep belief networks [5], we show how to learn
stacks of nested RBMs, using the representations of a
RBM as ’data’ for the next one along the stack. Infor-
mally speaking, these RBMs learn more and more simpli-
fied versions of the true distributions, which become in-
creasingly easier to sample with standard MC dynamics.
We then couple the RBMs by allowing them to exchange
configurations. These exchanges are made possible by
the nested structure of the stack, i.e. the compatibility
between the sizes of the layers of contiguous RBMs. We
show numerically on two data sets, MNIST [6] and in sil-
ico proteins [7, 8], that the resulting procedure in much
faster than standard MC for sampling the learnt distri-
butions. We also study analytically the performance of
our sampling algorithm on an analytically tractable dis-
tribution of hierarchically arranged data.

2

II. MODELS AND DATASETS

A. Restricted Boltzmann Machines

1. Definitions

Restricted Boltzmann Machines are undirected proba-
bilistic models with two layers. A visible layer v, which
represents the data, is connected to a hidden layer h
through a weight matrix W , see Fig. 1(a). There are
no couplings between units within the same layer. The
visible layer includes N visible units vi and the hid-
den layer includes M hidden units hµ. For simplic-
ity we assume throughout this work that visible units
take binary values, either 0,1 (Bernoulli) or ±1 (simi-
lar to spins in statistical physics). For a given visible
configuration v = {vi}i=1...N and hidden configuration
h = {hµ}µ=1...M , the joint probability distribution of
the RBM is

P (v,h) =
1

Z
exp (−E(v,h)) , (1)

where the energy E is defined as

E(v,h)=−
N∑
i=1

M∑
µ=1

Wiµvihµ −
N∑
i=1

gi vi −
M∑
µ=1

cµ hµ , (2)

and where the parameters cµ and gi represent biases act-
ing on, respectively, units hµ and vi.
The probability distribution P (v) of a visible config-

uration v can be computed by marginalizing over the
hidden-unit configurations h:

P (v) =
∑
h

P (v,h) =
1

Zv
exp (−Ev(v)) , (3)

where

Ev(v) = −
N∑
i=1

gi vi −
M∑
µ=1

Γµ(Iµ(v)) . (4)

Here, Iµ(v) =
N∑
i=1

Wiµvi denotes the input received by

hidden unit hµ and Γµ(I) = log
∑

h exp [h (cµ + Iµ(v))] is
simple to compute for binary unit h. A similar expression
is obtained for the effective energy Eh(h) corresponding
to the log-probability of hidden configurations, obtained
through marginalization over visible configurations.

2. Alternating Gibbs sampling

The bipartite nature of the RBM interaction graph
suggests a simple sampling algorithm, called Alternating
Gibbs Sampling (AGS) and depicted in Fig. 1(b). The
basic observation underlying AGS is that the conditional
distribution P (h|v) (respectively P (v|h)) can be factor-
ized over the hidden (respectively, visible) units. A step
of AGS consists in

• Starting from a visible configuration vt at step
t, a hidden configuration ht+1 is drawn from

P (h|vt) =
M∏
µ=1

P (hµ|vt). Here P (hµ|v) ∝

exp [hµ(cµ + Iµ(v))]. This step can be seen as a
stochastic extraction of features from the configu-
ration vt.

• A new visible configuration vt+1 is drawn from

P
(
v|ht+1

)
=

N∏
i=1

P (vi|ht+1). Here P (vi|h) ∝

exp [vi(gi + Ii(h))], where Ii(h) is the input of the

visible unit vi, i.e Ii(h) =
M∑
µ=1

Wiµhµ. This step can

be seen as a stochastic reconstruction of v from the
representation ht+1.

It is important to stress that the simplicity of AGS
does not imply it is efficiently sampling the visible and
hidden configuration spaces. In a recent work some of
us have shown that AGS is generally not more efficient
than standard Metropolis sampling of P (v) in the visible
space, and is unable to sample distributions with multiple
modes separated by large energy barriers [9].

3. Training

The RBM is defined by its weights W = {wiµ}, as
well as some variables parametrizing the classes of poten-
tials Uµ and Vi considered. All these parameters, gener-
ically denoted by Θ must be learned from the training
data, consisting of a set of P samples {vp}p=1...P . To do
so, one looks for the maximum of the log-likelihood of

the data, LL(Θ) = 1
P

∑P
p=1 logP (vp) ≡ ⟨logP (v)⟩data.

Maximization of LL over Θ is done through gradient as-
cent. The generic expression for the gradients is

∂LL

∂Θ
= −

〈
∂E(v)

∂Θ

〉
data

+

〈
∂E(v)

∂Θ

〉
model

, (5)

where ⟨.⟩data denotes the expected value over the data
{vp} and ⟨.⟩model over the model distribution P (v). No-
tice it is easy to include regularization in the procedure
above, e.g. through shifting LL(Θ) → LL(Θ)−γ||Θ||2 in
the case of L2-based penalty over the model parameters.

In general, the exact evaluation of the gradient is in-
tractable numerically because the expected value over the
model is an average over an exponential number of terms.
Markov chain Monte Carlo methods approximate the ex-
pected value over the model. Different algorithms, based
on alternating Gibbs sampling between the visible and
hidden layers, are used to generate samples from P (v),
such as Contrastive Divergence [10], or Persistent Con-
trastive Divergence [11].

3

FIG. 1. Architecture (a) and sampling (b) of Restricted Boltzmann Machines.

B. Datasets

In this paper, we use different datasets to illustrate the
performance of our sampling procedure.

1. MNIST0/1

MNIST dataset [6] is a large dataset of 28 × 28 pixel
images of handwritten digits. We use the binarised ver-
sion of MNIST (pixels are white or black), and limit our-
selves to zero and one digits only, see Fig. 2(a). RBMs
learnt on this restricted dataset, hereafter referred to as
MNIST0/1, are empirically known to be harder to sample
than the ones trained on full MNIST. The lack of simi-
larities between 0 and 1 digits make transitions between
the two classes very rare: a RBM initialized with either
digit is likely to generate many variants of the same digit.

2. Lattice Proteins

The Lattice Protein models [7, 8] are artificial pro-
teins used to investigate protein folding. Proteins are
sequences of amino acids, and their 3d structures encode
their functionalities. Predicting the 3d structure from the
sequence of amino acids is a crucial challenge in biology.
In this model, a structure is defined as a self-avoiding
path of 27 amino-acid-long chains (v represents a pro-
tein) on the 3 × 3 × 3 lattice cube. The lattice cube
defines a set of N = 103, 406 distinct structures. For a
given structure, there are 28 contacts between the amino
acids. The probability of a sequence v to fold in a given
structure S is expressed as

Pnat(v|S) =
exp (−ELP (v, S))∑

S′
exp (−ELP (v, S′))

, (6)

where the sum runs over all N possible structures S′, and
the energy of the sequence v in a structure S is given by:

ELP (v, S) =
∑
i<j

cSij ∆EMJ(vi, vj) (7)

In the previous formula, cSij = 1 if the sites i and j are in

contact in the fold S; Otherwise, cSij = 0. The pairwise

energy ∆EMJ(vi, vj) is defined as the Miyazawa-Jernigan
(MJ) potential, which is a proxy for the physico-chemical
interactions between nearby amino acids in known struc-
tures [12].

Given a fold S we define the protein family associated
to S as the set of sequences v such that Pnat(v|S) > 0.99.
Here, we choose two structures, SA and SB shown in
Fig. 2(b), and the two corresponding protein families,
characterized in [13]. Due to the absence of similarity
between the two folds, a RBM trained on a mixture of
sequence data extracted from the two families samples
diverse sequences with high Pnat in one class only, cor-
responding to the initial condition of the sampling dy-
namics. Transition from one to the other are extremely
rare.

FIG. 2. (a) MNIST0/1: examples of 0 and 1 digits. Our
dataset contains P = 6000 0’s and the same number of 1’s.
(b) Lattice Protein models: structures SA and SB defining
the two families. Each family is represented by P = 45, 000
sequences with folding probability > 0.99.

4

III. DEEP TEMPERING: PROCEDURE AND
ILLUSTRATIONS

We now present the deep tempering procedure, based
on the introduction of a nested set of RBMs recursively
extracting relevant collective modes of their predecessors,
and, in turn, easing their sampling. While this algorithm
was first introduced in [5] to train deep belief networks
[10, 14, 15] we use it here to sample a single RBM, which
we refer to as bottom RBM. We then qualitatively il-
lustrate the operation of deep tempering and the repre-
sentations learned by nested RBMs when data are or-
ganized into a perfect hierarchical tree. Last of all we
show how deep tempering efficiently samples (bottom)
RBM trained on MNIST0/1 and Lattice Protein data,
and largely outperforms standard alternating Gibbs sam-
pling.

A. Architecture and training

The architecture supporting deep tempering is
sketched in Fig. 3(a). It consists of a stack of RBMs,
whose widths are such that the number Mn of hidden
units of the nth RBM equals the number Nn of visible
units of the (n + 1)th one. This constraint is essential
to make communication between RBM possible, as ex-
plained below. In addition, we choose the sizes of visible
layers to decrease with the index n, i.e. Nn > Nn+1,
making deeper RBM ‘simpler’ than their predecessors in
the stack.

The RBM of interest, which is trained on the data vp,
p = 1, ..., P , and is sampled to generate new data is the
bottom one, and corresponds to n = 1. We use stan-
dard maximum-likelihood learning procedure, see Sec-
tion IIA 3 for training. Note that there is no inconsis-
tency between the capability of training a RBM, which
heavily relies on training, and the hardness of sampling
it at later times. Training extensively relies on the avail-
ablity of data to initialize the dynamical chains in con-
strative or persistent contrastive divergence, without con-
sideration about mixing between the modes of the data
distribution.

After the training of the bottom RBM, a set of hid-
den representations {hp

1} of dimension M1 are stochasti-
cally drawn from the conditional probabilities P1 (h|vp)
for every p = 1, ..., P . These hidden representations are
then considered as data configurations {vp

2} for the next
RBM, n = 2. This is possible since the dimension of
the visible layer of the second RBM, N2, is equal to M1.
The second RBM is then trained by maximizing the log-
likelihood of the ‘data’ {vp

2}p=1...P . After training of the
second RBM a set of representations {hp

2} of the ‘data’
{vp

2} are drawn, which are then used for training the
third RBM. The process can be iterated all the way up
to the last RBM.

Once all RBM are trained the marginal distributions
of their configurations are fully defined. We hereafter

denote by, respectively, P v
n ∝ exp(−Ev

n) and Ph
n ∝

exp(−Eh
n) the marginal distributions over the visible and

hidden configurations of the nth RBM.

FIG. 3. Principle of deep tempering. (a) Example with three
RBMs. The number of visible units of the (n+ 1)th RBM is
equal to the number of hidden units of the nth RBM. Data
are learnt and generated by the bottom RBM. Deeper RBMs
iteratively detect relevant collective modes of hidden units of
the bottom RBM, hence facilitating its sampling. (b) Illus-
tration of deep tempering (here, only the nth and (n + 1)th

RBMs are shown). Alternating Gibbs Sampling is used to
generate visible and hidden configurations in each RBM. At
any step t the configurations vt

n+1 on the visible layer of the
(n + 1)th RBM and ht

n on the hidden layer of the nth RBM
can be exchanged, with probability An(h

t
n,v

t
n+1), see Eq. 8.

B. Sampling and exchanges

Each one of the RBMs can be sampled with Alternat-
ing Gibbs sampling, which consists of a stochastic chain
ht
n ∼ Pn

(
h|vt−1

n

)
and vt

n ∼ Pn (v|ht
n). After each Gibbs

step t one attemps to exchange the visible configuration
vt
n+1 of the (n+1)th RBM and the hidden configuration

ht
n of the nth, see Fig. 3(b). These two configurations

are swapped with probability:

An(h
t
n,v

t
n+1) = min

(
1,

P v
n+1(h

t
n)P

h
n (v

t
n+1)

P v
n+1(v

t
n+1)P

h
n (h

t
n)

)
(8)

= min

(
1,

exp
(
−Ev

n+1(h
t
n)− Eh

n(v
t
n+1)

)
exp

(
−Ev

n+1(v
t
n+1)− Eh

n(h
t
n)
))

The definition of the acceptance probability An ensures
that detailed balance is satisfied. Crucially it does not
depend on the intractable normalizations (Z factors) of
P v
n+1, P

h
n , but only on the effective energies Ev

n+1, E
h
n

that are easy to compute.
The expression of An is reminiscent of the one used in

the parallel tempering algorithm [16, 17], in which con-
figurations sampled from an energy landscape at two (or
more) temperatures can be exchanged. Here, exchange
is possible between configurations ht

n and vt
n+1 sampled

from the energy landscapes Eh
n(h) and Ev

n+1(v). As
the number of visible units is decreasing with the depth,

5

see Fig. 3(a), and the RBM parameters are regularized,
the energy landscape Ev

n+1 of the (n + 1)th RBM is ex-

pected to be smoother than Eh
n. In accordance, as we

shall see below, the diversity of hidden representations of
the initial data progressively diminishes with the depth:
the number of distinct configurations in {hp

n}p=1...P de-
creases with n.

Informally speaking, deeper RBM express simpler ap-
proximations of the landscape captured by the bottom
RBM. They can therefore be easily sampled, and in turn
help the bottom RBM to undergo non local moves in
its complex landscape, without getting trapped in local
minima or valleys. Contrary to the original version of
deep tempering in [5] our objective is therefore not to
sample accurate deep belief networks. By construction
we here require our narrow and deeply nested RBMs to
poorly represent the data at higher depths. Their role is
to extract meaningful nested approximations of the data
distribution.

C. Intuitive picture of deep tempering on
hierarchically organized data

To provide support to the informal justification of deep
tempering given above we consider a toy model of data
vk
1 , of dimension N = 1000, organized along a hierarchi-

cal tree. Data configurations define clusters, which can
be divided into subclusters. This specific structure of
configurations, called ultrametric, is reminiscent of spin
glasses [18, 19]. Figure 4(a) depicts the correlation ma-
trix of the data, with two main clusters divided into three
subclusters.

We train several stacks of RBMs on these artificial
data. Depending on the depth of the stacks and the
number of hidden units of the machines, the hidden rep-
resentations exhibit different behaviors, see Fig. 4(b,c,d).
For the first RBM, the correlation matrix of hk

1 mimics
the structure of the correlation matrix of the data vk

1 ,
with a level of coarse graining depending on the number
M1 of hidden units:

• For M1 of the same order as the number of clusters,
all data points in a cluster are mapped onto the
same hidden representation.

• For M1 of the same order as the number of sub-
clusters, all data points in a given subcluster have
identical hidden representations, but this represen-
tation varies with the subcluster.

• For M1 of the same order as the number of data
points, each pattern has its own hidden represen-
tation.

Therefore, by tuning the number of hidden units, we
can control the magnitude of the compression of the rep-
resentations. If the compression is too important, i.e.,
if the number of hidden units is too small, the RBM

learns a poor representation of the data. Ev
n+1(v) is a

crude approximation of Eh
n(h), the replica exchange rate

is low and the dynamics of the RBMs are decoupled: in
that case, Deep Tempering would be as efficient as Gibbs
sampling. Fig. 4(d) shows an example where each RBM
of the stack learns a different level of representation of
the hierarchical tree: the bottom RBM learns one repre-
sentation per pattern, the second RBM one representa-
tion per subcluster and the top RBM one representation
per cluster. Fig. 4(e) exhibits schematic representations
of the different landscapes learned by the RBMs in the
stack. Ev

1 (v) has a local minimum per pattern, Ev
2 (v)

per subcluster and Ev
3 (v) per cluster: Ev

n+1(v) has to

be a smooth approximation of Eh
n(h) in order to have

lower barriers while remaining a good approximation to
keep the replica exchange rate high between the different
RBMs.

D. Application to MNIST 0/1 and Lattice Proteins

We illustrate below these ideas on two different
datasets: MNIST0/1 and Lattice Proteins. In these two
examples, data are grouped into two distinct classes.

• For MNIST0/1, alternating Gibbs sampling is stuck
in one the two digit classes, see Fig. 5(a). Con-
versely, deep tempering with a stack of four RBMs
(N1 = 784, M1 = N2 = 200, M2 = N3 = 100,
M3 = N4 = 25, M4 = 10) is able to jump from
one class to the other in a very efficient way, see
Fig. 5(b). The sampling algorithm with replica ex-
changes improves the mixing between the modes,
as shown in Fig. 5(c,d).

• For Lattice Proteins, three RBMs are used (N1 =
27×20, M1 = N2 = 800, M2 = N3 = 50, M3 = 25).
The sampling algorithm with replica exchanges im-
proves the mixing between the two families and
generates high-quality proteins, see Fig. 6(a). The
sampled proteins also have high diversity: they are
far away from the training data. Deep tempering
efficicently mixes between the two families, while
alternating Gibbs sampling cannot (Fig. 6(b)).

Notice that, contrary to the hierarchical model in Sec-
tion III C), each class (0/1 or SA/SB) is not parti-
tioned in well-defined clusters. Neverthless we remark
that the different RBMs progressively compress the rep-
resentations of the data, as the number of distinct hid-
den representations decreases with the depth. To evalu-
ate the number of distinct hidden representations in the
hidden layer, for each training sample vp we can define
its most probable configuration hp

1 = argmax
h

P1(h|vp).

We can also define the most probable hidden represen-
tation in the hidden layer of the nth RBM as hp

n =
argmax

h
Pn(h|hp

n−1). We then compute the number of

distinct representations in each hidden layer. Results are

6

FIG. 4. The color map is the same for the different correlation matrices (from dark blue to yellow). (a) Correlation matrix of
600 visible patterns vk

1 , N = 1000. The patterns are divided into two clusters. Each cluster has also three subclusters. (b)
Correlation matrix of the hidden patterns hk

1 . (c) From the bottom to the top: correlation matrices of the hidden patterns
hk
1 and hk

2 . (d) From the bottom to the top: correlation matrices of the hidden patterns hk
1 , hk

2 and hk
3 . (e) Schematic

representation of the landscape Ev
1 (v), E

v
2 (v) and Ev

3 (v) learned by the different RBMs represented in the panel (d). The
details of the landscape are progressively smoothing out but in the same time the free energy barriers between the different
modes are decreasing.

shown in Table I for MNIST0/1 and in Table IIID for
Lattice Proteins SA/SB .

TABLE I. Number of distinct representations in the different
hidden layers for MNIST0/1

H1 H2 H3 H4
configurations 12635 12560 3099 68

TABLE II. Number of distinct representations in the different
hidden layers for Lattice Proteins SA/SB

H1 H2 H3
configurations 96234 39345 1273

IV. THEORETICAL ANALYSIS

We now seek to characterize the conditions on the data
distribution and on the RBM hyperparameters allowing
deep tempering to be efficient. To define an analytically
tractable framework, we consider the case of strongly
overparametrized RBM. Our analysis is organized along
four steps:

A. the determination of the form of the coupling ma-
trix after training a RBM in the overparametrized
regime;

B. the derivation of the log-likelihood of the RBM in
the case of structured data;

C. the identification of the pattern separation/pattern
completion regime and phase transition depending
on how much the RBM is regularized;

D. the estimation of the mixing and swapping times
for a stack of two RBMs.

A. Learning K data points with a wide RBM:
nature of the coupling matrix

We train a RBM with Contrastive Divergence on a
dataset of K configurations vk, k = 1...K, whose com-
ponents vki , i = 1...N , are drawn independently and
uniformly at random from {−1,+1}. Hence, these con-
figurations are on average orthogonal. In addition, the
weights Wiµ are initialized with small random values,
drawn from a Gaussian distribution with zero mean and
variance equal to 1

N .
The outcome of the training procedure can be summa-

rized as follows:

7

FIG. 5. Application of deep tempering to MNIST0/1. Exam-
ple of sampled digits with (a) Alternating Gibbs Sampling
and (b) Deep Tempering. Digits are displayed every 750
steps. The two dynamics start from the same initial configura-
tion. (c) A random forest classifier is trained on MNIST0/1,
and predicts the class of the visible configuration sampled
by the RBM. Deep tempering generates high-quality digits
and mixes well between the two classes. (d) Mean number of
swaps between the two digits classes for the two sampling pro-
cedures. The initial configurations of the sampling dynamics
are random digits of MNIST0/1. Averages are computed over
2,000 random initial configurations.

• The singular values σℓ, with ℓ = 1...min(N,M)
of the coupling matrix W are clustered into two
groups, see Fig. 7(a,b). All but (at most) K singu-
lar values decay with the learning time, down to a
low level fixed by the intensity γ of the L2 regular-
ization.

• The left eigenvectors associated to the K relevant
singular values span the same space as the K data
points vk.

• The distribution of inputs

Iµ(v
k) ≡

∑
i

Wiµ v
k
i , (9)

is highly concentrated around two opposite values,
which we refer to as −w and w. The value of w is
a decreasing function of γ.

FIG. 6. Application of deep tempering to Lattice Proteins.
(a) Pnat(v|S) of sampled sequences for the two folds SA (red)
and SB (blue). Deep Tempering algorithm generates high-
quality sequences, folding either on SA or SB , and mixes well
between the two families. (b) Mean number of swaps between
the two families for the two dynamics. The initial configura-
tions of the dynamics are random sequences in the training
set. Averages are computed over 500 random initial configu-
rations.

• In agreement with the statements above the cou-
pling matrix can be approximately written as

Wiµ =
w

N

K∑
k=1

vki h
k
µ . (10)

Due to the statistical orthogonality of the data
points, hk

µ ≃ Iµ(v
k)/w is equal to ±1. This result is

similar to the one considered by [20] although sim-
pler, as we neglect noisy perturbation to the finite
rank W in Eq. 10.

Notice that the direction of the vectors hk is random
and mostly determined by the initial coupling matrix,
W (t = 0). Let us define the overlaps between the input
vectors at times 0 and t,

Ck,ℓ(t) =
1

M

∑
µ

sign

(∑
i

Wiµ(0)v
k
i

)
sign

(∑
i

Wiµ(t)v
ℓ
i

)
(11)

and their ‘diagonal’ and ‘off-diagonal’ averages:

Cdiag(t) =
1

K

∑
k

Ck,k(t) , Coff(t) =
2

K(K − 1)

∑
k ̸=ℓ

Ck,ℓ(t)

(12)

8

We show in Fig. 7(c) the behaviour of the diagonal and
off-diagonal overlaps. We see that the inputs to the hid-
den units for a given data point remain close to their
initial values, and essentially orthogonal to the one asso-
ciated to another data configuration.

Last of all, the definition of the coupling matrix alone
cannot break the symmetry between a data point, say,
vk, and the opposite vector, −vk. This symmetry is bro-
ken during training through the learning of biases cµ on
the hidden units, see Eq. 2. These biases are strongly
correlated with the sum of the hk vectors, of the order
of N−1/2, see Fig. 7(d). While their presence is sufficient
to ensure that, at the end of training, P (vk) ≫ P (−vk),
but their magnitude is small enough to be neglected com-
pared to the typical amplitude of the inputs Iµ.

B. Calculation of the log likelihood for structured
data: a minimal setting

In the previous section, we have shown that K (statis-
tically) orthogonal data points are learned by the RBM
through a rank K coupling matrix, corresponding to K
representations in one-to-one correspondence with the
data configurations. However what happens if the data
are structured, i.e. not statistically independent? Is the
one-to-one mapping between data and representations
maintained, or is there some form of clustering, in which
similar data are mapped onto the same representation?
To answer this question we consider the minimal case of
K = 2 data configurations, v1 and v2, with an arbitrary
overlap

x =
1

N

N∑
i=1

v1i v
2
i . (13)

We learn these two data points with a RBM with M =
αN hidden units (α is the aspect ratio) and L2 regu-
larization. According to the previous section we expect
the weight matrix to be given by Eq. 10, where the two
vectors h1 and h2 have dot product

y =
1

M

M∑
µ=1

h1
µ h

2
µ . (14)

To determine the relationship between y and x, α,w
we consider the log-likelihood of the data,

LL =
1

2

[
logP (v1) + logP (v2)

]
, (15)

where the probability of a visible configuration v is

P (v) =
1

Zv

∑
{hµ=±1}

exp

∑
i,µ

Wiµ vi hµ


=

1

Zv

M∏
µ=1

(
2 cosh

(
N∑
i=1

Wiµ vi

))
(16)

and Zv is the partition function. Using expression in
Eq. 10 for the coupling matrix W we readily obtain

LL =
M

2
(1 + y) log

(
2 cosh (w(1 + x))

)
(17)

+
M

2
(1− y) log

(
2 cosh (w(1− x))

)
− logZv

We are left with the computation of the partition func-
tion

Zv =
∑

{vi,hµ=±1}

exp

∑
i,µ

Wiµ vi hµ

 (18)

=
∑

{vi,hµ=±1}

exp

w ∑
k=1,2

(
1

N

N∑
i=1

vi v
k
i

)(
M∑
µ=1

hµ h
k
µ

) .

According to the expression above the summation over
the visible configurations v can be expressed as a four-
dimensional integral over the overlaps

qk =
1

N

N∑
i=1

vi v
k
i , (19)

and their conjugated parameters, q̂k, for k = 1, 2. We
write

Zv =

∫ ∏
k=1,2

dqkdq̂k

2π/N

∑
{hµ}

exp

(
w
∑
µ

hµ

∑
k

qh hh
µ

)
×
∑
{vi}

exp

(∑
k

q̂k
(∑

i

vki vi −N qk
))

(20)

=

∫ ∏
k=1,2

dqkdq̂k

2π/N
e−N

∑
k qk q̂k

∏
σ=±1

(
2 cosh

(
w(q1 + σ q2)

))M
2 (1+σy)

×
∏

τ=±1

(
2 cosh

(
q̂1 + τ q̂2

))N
2 (1+τx)

.

9

FIG. 7. Evolution of the coupling matrix during learning. Numerical experiments are realized with N = 200, M = 60, K = 6,
and with L2 regularization on the weights. Quantities of interests are averaged over 50 different initialization of K random
data points and of the initial coupling matrix W0. (a) Normalized sum of the M −K smallest singular values of the coupling
matrix W as a function of the learning time t. (b) Evolution of the singular values through time. K singular values emerge
from the bulk. The other M − K singular values decrease over time due to the L2 regularization. (c) Blue line: diagonal
overlap Cdiag(t), see Eq. 12. Orange line: off-diagonal overlap Coff(t). (d) Mean value of the field cmu acting on hidden unit µ
vs. average value of the data representations on this unit.

Defining ∆± = q1 ± q2 and ∆̂± = q̂1 ± q̂2, we obtain, in the N,M → ∞ limit (at fixed ratio α),

1

N
logZv =

1

2
max

∆±,∆̂±

[
−∆+∆̂+ −∆−∆̂− + α(1 + y) log

(
2 cosh

(
w∆+

))
+ α(1− y) log

(
2 cosh

(
w∆−

))
+ (1 + x) log

(
2 cosh ∆̂+

)
+ (1− x) log

(
2 cosh ∆̂−

)]
. (21)

Equations 17 and 21 give access to the log-likelihood LL
of the data as a function of the control parameters. Op-
timization of LL over y yields the overlap between the
hk vectors as a function of the the overlap x between
the data, the aspect ratio α and the amplitude w of the
weight (which is, in practice, tuned through L2 regular-
ization).

C. Representational regimes and phase transition

The optimal overlap y∗(x, α,w) between the hidden
representations of the data points is the one maximizing
LL. Due to the parity of LL under the change of signs
of x and y (at fixed α,w) we assume with no loss of
generality that x > 0.

The log-likelihood LL given by Eqs. 17 and 21 can eas-
ily be optimized numerically with respect to y. We first
find that y∗(x, α,w) is a decreasing function of the pa-
rameters α and w at fixed data overlap x, see Fig. 8(a,b).
In other words, regularizing more the RBM, by decreas-
ing either the amplitude w of the weights or the number
of hidden units (equivalently, the aspect ratio α), pro-
duces more similar representations. For strong enough
regularization, i.e. low enough α or w, we obtain y∗ = 1,
showing that the two representations of the data points
become identical though x < 1.
We then plot y∗ as a function of x in Fig. 8(c). We

identify three different regimes:

• At low data overlaps, y∗ is a slowly increasing func-
tion of x, with a slope smaller than unity. The
RBM has a tendency to produce representations

10

less correlated than the data. This regime can be
referred to as pattern separation, a vocable used in
the context of neuroscience.

• At intermediate data overlaps, y∗ is a quickly in-
creasing function of x, with a slope larger than
unity. The RBM has a tendency to produce rep-
resentations more correlated than the data. This
regime is reminiscent of pattern completion.

• At large data overlaps, for x > xc, y∗ = 1: the
RBM has mapped similar but distinct data onto a
unique representation. This regime can be referred
to as clustering and is an extreme version of pat-
tern completion. The value of xc is computed in
Appendix A.

As shown in Fig. 8 these theoretical predictions are
in good agreement with direct estimation of the proba-
bilities P (v1) and P (v2) (and thus of the log-likelihood
LL), bypassing the calculation done in Section IVB. To
estimate the partition function Zv appearing in P we use
Annealed Importance Sampling (AIS) [15, 21]. In prac-
tice, we sample random vectors v1, v2 with correlation x.
For y ∈ [0, 1], we then sample random vectors h1, h2 with
a correlation y, and define the weight matrix according
to Eq. 10. The partition function is then evaluated with
AIS. The [0, 1] range over y is discretized to locate the
maximum of LL with sufficient accuracy, and the proce-
dure is repeated 25 times for each x. Dots in Fig.8 are
the mean value of the optimal y, and the shaded areas
show the standard deviation of the optimal y.

The boundary between the pattern separation and
completion regimes is a genuine phase transition, charac-
terized by the onset of a non-zero order parameter, here
∆− = q2−q1. In intermediate-to-large x regime, ∆− = 0,
while ∆− > 0 at low x. This phase transition has a con-
crete interpretation in terms of the generative diversity
of the RBM. Once the training is done we can use our
RBM to generate ‘new’ data through Alternating Gibbs
Sampling. In the ∆− = 0 regime, whatever the initial
configuration v = v1 or v2 on the visible layer, the RBM
will generate the same data distribution. In the ∆− > 0
regime, there is ergodicity breaking between the two pos-
sible initial conditions, and the RBM will generate data
similar to the data point initially present on the layer
only.

As a final note let us emphasize that the representation
regimes and phase transition identified here is not specific
to the case K = 2. The analytical calculation of the log-
likelihood LL done above can be extended to any finite
K > 2 (while N,M are sent to infinity). Analysis of the
extremization equations for K generic data points shows
that, as α and w are progressively decreased, a sequence
of clustering-like phase transitions takes place, with more
and more similar representations. The number of distinct
representations varies from K to 1 as the regularization
is made stronger.

FIG. 8. Optimal overlap y∗(w, x, α). Dashed lines: theo-
retical results obtained by maximizing LL with respect to
y. Dots: numerical estimate of y∗ obtained with Annealed
Importance Sampling (N = 200) (mean value over 25 real-
izations of v1 and v2 with overlap equal to x). Shaded areas
correspond to the empirical error bars. (a) Behaviour of y∗

vs. w at fixed x = 0.5 (b) Behaviour of y∗ vs. w at fixed
α = 0.5. (c) Behaviour of y vs. x at fixed w = 2. The vertical
bars locate xc.

D. Mixing and swap time for a stack of two RBMs
learning hierarchical data

We will illustrate the speed up offered by Deep Tem-
pering with respect to conventional Gibbs sampling in a
simple setting.
Consider a dataset of size K, made of K ′ orthogonal

clusters Ck centered in vk, while each cluster includes

11

K/K ′ configurations, see Fig. 9(a). Cluster centers are
orthogonal (and have thus zero overlap).

These data are learned by a RBM, with M1 = α(1)N
hidden units (see Fig. 9(b)) and weight matrix

W
(1)
iµ =

w(1)

N

K∑
k=1

vki h
k
µ . (22)

This expression implicitly assumes that all the configura-
tions in a cluster are mapped onto the same representa-
tion, see Section IVC and Fig. 9(a). In other words, the
normalized overlap between the center of a cluster and
any attached configuration, x, is larger than the cluster-
ing overlap xc.
For this first RBM, we introduce the characteristic

time scale τ
(1)
cross to go from one cluster to another with

Alternating Gibbs Sampling. This time scale is deter-
mined by the barrier height, in the effective free-energy
landscape Ev, between the the different clusters. It can
be determined with standard statistical mechanics calcu-
lations, with the result

τ (1)cross ∝ exp
(
N B

(
α(1), w(1),K

))
(23)

where the function B is defined in Appendix B, see

Eq. B9. Hence, the time τ
(1)
cross is exponential in N , show-

ing that mixing is extremely slow, as expected for a mul-
timodal data distribution.

A second RBM with M2 hidden units (M2 ≪
M1, M2 ≫ K) is trained on the K representations
{hk

1}k=1...K on the cluster centers produced by the first
RBM, see Eq. 22. Its weight matrix can be written:

W
(2)
iµ =

w(2)

M1

K∑
k=1

hk
i h̃

k
µ , (24)

where {h̃k}k=1...K is a set of mutually orthogonal vectors,
depending mainly on the (random) value of W (2) at the
beginning of the training phase. w(2) is a free-parameter
that can be tuned by adding a regularisation during the
training.

For this second RBM, the characteristic time scale

τ
(2)
cross to sample, with alternating Gibbs sampling, mul-
tiple clusters can be computed again as in Appendix B.
We thus find

τ (2)cross ∝ exp
(
M1 B

(
α(2), w(2),K

))
, (25)

where α(2) = M2/M1. We stress that τ
(2)
cross is exponential

in M1, and is therefore much smaller than the mixing

time τ
(1)
cross of the first RBM.

We now study how the two RBMs, which generate, re-
spectively, configurations {vt

1,h
t
1} and {vt

2,h
t
2}, can oc-

casionally exchange their configurations:

vt+1
2 = ht

1 , ht+1
1 = vt

2 , (26)

see Figs. 3 and 9. The swap between ht
1 and vt

2 is ac-
cepted with probability A1(h

t
1,v

t
2), see Eq. 8. The mean

value of this acceptance ratio can be computed, and its
inverse is an estimate of the characteristic time τswap be-
tween two replica exchanges, see Appendix C for a de-
tailed calculation,

τswap ∝ exp
(
M1 C

(
α(2), w(2),K

))
, (27)

which is exponentially large in M1.
From the discussion, it appears that the time necessary

for Deep Tempering to mix between the modes of the
data distribution,

τDT = max

(
τ (2)cross, τswap

)
, (28)

scales exponentially with M1 and is therefore much

smaller than τ
(1)
cross.

The choice of the aspect ratio and of the amplitude of
the weight can also help decrease τDT. As seen above the
characteristic time τDT is therefore the result of a trade-
off implemented by the second RBM. On the one hand,
it is better for this RBM to have low barriers and fast
mixing, i.e. low τ

(2)
cross. On the other hand, the visible

configurations of the second RBM must be similar to the
representations produced by the first RBM, otherwise ex-
changes will be excessively rare and τswap extremely long.

In general, we find that τ
(2)
cross is an increasing function of

w(2)α(2), while the swap time τswap decreases with this
product, see Fig. 10.
There exists an optimal choice for w(2), see Fig.

10(c,f). For this optimal value, τDT ≪ τ
(1)
cross. Choos-

ing the optimal w2 is somewhat similar to choosing the
optimal temperature in conventional parallel tempering.

TABLE III. Values of the products wα for the RBMs trained
on MNIST0/1

w(1)α(1) w(2)α(2) w(3)α(3) w(4)α(4)

Value 2.01 2.96 2.31 1.69

TABLE IV. Values of the products wM for the RBMs trained
on Lattice Proteins SA/SB

w(1)α(1) w(2)α(2) w(3)α(3)

Value 38.80 0.88 2.37

V. CONCLUSIONS

The idea of deep tempering was first proposed in the
context of deep belief networks (DBN) [5, 22]. The DBN
considered in [22] showed increasing numbers of hidden

12

FIG. 9. Theoretical setting for deep tempering performance assessment. Data distribution and representations (a) and the

stack of two RBMs (b). The times τ
(1)
cross and τ

(2)
cross refer to the mixing times of the two machines, and τswap to the average

time between two exchanges of h(1) and v(2).

units with the depth, and deeper representations could
better disentangle the underlying factors of variation of
the data. DBN as a whole were therefore conceived to
be a better model than a single RBM [15]. In [5], a new
training algorithm for DBN, called Deep Tempering, was
introduced. RBMs were trained jointly with replica ex-
changes between neighboring RBMs to exploit the pro-
gressive disentanglement along the stack. In these nu-
merical experiments, the number of hidden units of the
different RBMs were kept constant, while the regular-
ization of their RBMs increased with the depth. DBNs
obtained with this algorithm showed better performance
than DBNs trained greedily.

In our work, the underlying mechanism for deep tem-
pering is different: deeper restricted Boltzmann machines
and representations are not meant to better disentangle
the underlying factors of variation of the data, but rather
to compress the bottom RBM’s hidden representations.
Each mode of the data has few distinct representations
in the hidden space of the top RBM. By reducing the
number of hidden units with the depth, the hidden rep-
resentations are progressively simplified. Due to the com-
pression, our DBN as a whole is a poorer model than the
bottom RBM. However, we do not aim at sampling the
visible landscape of the DBN. The Deep Tempering pro-
cedure is here used to sample the landscape of the bottom
RBM only. In the present implementation, deep temper-
ing is not a training algorithm for RBMs or DBNs: its
main goal is to improve the sampling of the bottom RBM
after its training. The other (N − 1) RBMs are meant
to enhance the mixing between the modes of the bottom
RBM through replica exchanges between them.

RBM can encode meaningful hidden representations
of the data. Using these representations can be help-

ful to detect relevant collective modes of units. Adding
Metropolis-Hastings steps in the hidden space can help
the sampling [9]. We also introduce a stack of RBMs to
detect and cluster the hidden representations of the data.
In a simple example of a data distribution, where the
data of interest are grouped into unrelated (orthogonal)
clusters, we show that a dynamical scheme in which dif-
ferent RBMs are coupled together through configuration
exchanges can decrease the characteristic time scale to
go from one cluster to another: Deep Tempering is thus
more efficient than Gibbs sampling. On real data, this
algorithm with our deep architecture also enhances the
mixing between different modes. In this context, beyond
the gain in sampling time offered by deep tempering, it
would be appealing to further study the properties of
our architecture for real data, and better understand the
ways a stack of RBMs can coarse-grain complex, multi-
modal distributions.

ACKNOWLEDGMENTS

C. Roussel acknowledges funding from DGA.

Appendix A: Expression of xc

We first compute the derivative of the log-likelihood
with respect to y

∂
(
LL
N

)
∂y

=
1

2
log

(
cosh (w(1 + x)) cosh (w∆−)

cosh (w(1− x)) cosh (w∆+)

)
(A1)

13

FIG. 10. Mixing and swap times for the hierarchical distribution of Fig. 9(a), with K = 3, N = 128,M1 = 32,M2 = 8 (left)
and K = 5, N = 256,M1 = 64,M2 = 32 (right). Dashed lines: theoretical results. Dots: numerical estimates. (a) and (d)

Characteristic time τ
(2)
cross vs. α(2) w(2). The offset between the theory and the numerical results for large values α(2) w(2) is

equal to −(K − 2) log 2. This term corresponds to the logarithm of the number of optimal distinct paths joining two global

minima of the free energy. (b) and (e) Characteristic time τswap vs α(2) w(2). (c) and (f) Characteristic time τDT defined in

Eq. 28 vs. α(2) w(2). For comparison we show τ
(1)
cross, the mixing time of the first RBM with Alternating Gibbs Sampling alone.

The clustering crossover point xc is defined by the con-

dition
∂(LL

N)
∂y

∣∣∣
y=1

= 0. Then,

cosh (w(1 + xc))

cosh (w(1− xc)) cosh (w∆+)
= 1 (A2)

as ∆− = 0 in the pattern completion regime.

We now need to derive an expression for ∆+. To do so

we extremize Eq. 21 over ∆̂+,∆+. We obtain ∆̂+ =

αw(1 + y) tanh(w∆+) and ∆+ = (1 + x) tanh(∆̂+).
Combining these equations and the one above we find

that xc is the root of the following implicit equation:

1

w(1 + xc)
cosh−1

(
cosh(w(1 + xc)

cosh(w(1− xc)

)
(A3)

= tanh

(
2αw tanh

[
cosh−1

(
cosh(w(1 + xc)

cosh(w(1− xc)

)])
Appendix B: Computation of τcross

Let f(mv,mh) be the free–energy density associated
to states with magnetizations mv = (mv

1, ...,m
v
K) and

mh = (mh
1 , ...,m

h
K), where

mv
k =

1

N

N∑
i=1

⟨vi⟩vki , mh
k =

1

M

M∑
µ=1

⟨hµ⟩hk
µ (B1)

and ⟨·⟩ denotes the average over P (v,h) in Eq. 1 and cou-
pling matrix in Eq. 22. Following standard calculations
[23] we obtain

14

F (mv,mh) = α(1)w(1)
K∑

k=1

mv
k m

h
k − α(1)

∑
σ

φv(σ) log

(
2 cosh

(
w(1)

K∑
k=1

mv
k σk

))

−
∑
τ

φh(τ) log

(
2 cosh

(
α(1)w(1)

K∑
k=1

mh
k τk

))
, (B2)

where
∑
σ

runs over the 2K vectors σ of length K with

binary components, σk ± 1. The K data configurations
vk can be written in a matrix of size N ×K, and φv(σ)
is the frequency of σ among the N lines of this matrix.
In the same way, we define φh(τ) based on the statistics
the K vectors hk.
For statistically orthogonal and uniform vectors,

φv(σ) = φh(τ) = 1
2K

, and we may look for saddle-points
(barrier state) of the free energy f of the form

mv = mv (1, 1, . . . 1︸ ︷︷ ︸
r

, 0, 0, . . . , 0︸ ︷︷ ︸
K−r

) ,

mh = mh (
︷ ︸︸ ︷
1, 1, . . . 1,

︷ ︸︸ ︷
0, 0, . . . , 0) . (B3)

Differentiating the free energy in Eq. (B2), we find two
coupled equations for ξv, ξh:

mh =
1

2r−1

∑
σ

tanh

(
α(1)w(1)mv

(
1 +

∑
ℓ

σℓ

))
(B4)

where the sum runs over the 2r vectors σ of length r with
binary coefficients (±1), and similarly

mv =
1

2r−1

∑
σ

tanh

(
w(1)mh

(
1 +

∑
ℓ

σℓ

))
(B5)

These equations admit non-zero solutions as soon as

α(1)
(
w(1)

)2
> 1, see Fig. 11(a,c). For α(1)w(1)mh ≫ 1

and w(1)ξv ≫ 1, we obtain

mv = mh =
1

22c

(
2c

c

)
≡ mr , (B6)

where r = 2c for even r and r = 2c + 1 for odd r. This
result is similar to the symmetric spurious memories of
the Hopfield model at zero temperature [23].

The free-energies Fr of this symmetric saddle-point

Fr =

{
−α(1)w(1)rm2

r if r is odd
−α(1)w(1)rm2

r − (1 + α(1)) log 2mr if r is even
(B7)

can be ordered as follows

F1 < F3 < F5 < . . . < F4 < F2 (B8)

For even r, the free energy Fr is a decreasing function of
r, while, for odd r, it is increasing with r, see Fig. 11(b,d).
Notice that saddle-point that are not symmetric under
the permutation of the k indices exist, but their free en-
ergies are higher than the one of the symmetric saddle-
point with r = 3.

We may now conclude:

• the lowest free energy solution corresponds to r =
1;

• the lowest excited state, on the transition path to
state, say, k = 1 to k = 2, corresponds to r = 3
(and has therefore non-zero projection onto another
state, here, K = 3);

• the lowest barrier to cross along the transition path
is thus

B(α(1), w(1),K) = F1 − F3 . (B9)

Notice that the expression above is intensive, and
must be multiplied by N to obtain the full barrier
height.

Appendix C: Computation of τswap

We hereafter compute the characteristic time τswap be-
tween two replica exchanges between configurations vt

2

sampled by the top RBM and ht
1 sampled by the bot-

ton RBM in Fig. 9. The acceptance probability for the
exchange is defined in Eq. 8, and equal to

A1(h
t
1,v

t
2) = min

(
1,

P v
2 (h

t
1)P

h
1 (v

t
2)

P v
2 (v

t
2)P

h
1 (h

t
1)

)
. (C1)

We want to estimate the mean value of this acceptance
probability,

⟨A1⟩ =
∑
h1,v2

Ph
1 (h1)P

v
2 (v2)A1(h1,v2) . (C2)

Notice that the expression above is exact if the two Monte
Carlo chains sampling the two RBMs are independent
from each other, otherwise the configurations h1,v2 are
not independent. This approximation should be harmless
if the exchanges are rare, i.e. when τswap ≫ 1.
We expect Ph

1 (h1) to be very peaked around the repre-
sentations hk

1 of the data cluster centers. This statement
implies that, in order to have a reasonable probability of
an exchange, we should have both h1 and v2 close to one
of the hk

1 ’s; if this condition is realized, we have A1 ≃ 1.
Therefore, the mean value of the acceptance ratio can

be bounded by

⟨A1⟩ ≤
K∑

k=1

Ph
1

(
hk
1

)
P v
2

(
hk
1

)
≤ 1

K

K∑
k=1

P v
2

(
hk
1

)
. (C3)

15

FIG. 11. (a-b) mr and Fr under the assumptions α(1)w(1)mr ≫ 1 and w
(1)
r ≫ 1. Dashed lines: theoretical result in Eqs. B6

and B7. Dots: numerical results. (c-d) mr and Fr against αw. Black dashed line: threshold where αw2 = 1.

We now need to estimate P v
2 (v) for v ≃ hk

1 for, say,
k = 1. Suppose v differs from h1

1 on d sites (with d ≪
M1/2). Then, using Eq. 24 for the coupling matrix of
the second RBM,

P v
2 (v) =

1

Z

∑
{h̃µ=±1}

exp

(
M1∑
i=1

M2∑
µ=1

W
(2)
iµ vih̃µ

)

=
1

Z

M2∏
µ=1

2 cosh

(
w(2)

M1
(M1 − 2d) h̃1

µ

)
. (C4)

Therefore, the probability P v
2 decreases exponentially

with d and the partition function Z can be exactly com-
puted. We obtain

P v
2 (v) =

e−η d

K
(
1 + e−η

)M1
, η ≡ 2α(2)w(2) tanhw(2) (C5)

Keeping only the exponential in M1 terms in the upper
bound for ⟨A1⟩, we obtain

τswap ≃ 1

⟨A1⟩
≥ exp

(
M1 C

(
α(2), w(2)

))
, (C6)

where

C
(
α(2), w(2)

)
= log

(
1 + e−2α(2)w(2) tanhw(2)

)
. (C7)

Notice that, to a good level of approximation, we have

C
(
α(2), w(2)

)
≃ log

(
1 + e−2α(2)w(2)

)
, which is a function

of the product α(2)w(2) only.

16

[1] R. H. Swendsen and J.-S. Wang, Phys. Rev. Lett. 58,
86 (1987), URL https://link.aps.org/doi/10.1103/

PhysRevLett.58.86.
[2] U. Wolff, Phys. Rev. Lett. 62, 361 (1989), URL https:

//link.aps.org/doi/10.1103/PhysRevLett.62.361.
[3] R. H. Swendsen and J.-S. Wang, Phys. Rev. Lett.

57, 2607 (1986), URL https://link.aps.org/doi/10.

1103/PhysRevLett.57.2607.
[4] N. L. Roux and Y. Bengio, Neural Computation 20, 1631

(2008), ISSN 0899-7667, conference Name: Neural Com-
putation.

[5] G. Desjardins, H. Luo, A. Courville, and Y. Bengio,
arXiv:1410.0123 [cs, stat] (2014), arXiv: 1410.0123, URL
http://arxiv.org/abs/1410.0123.

[6] Y. LeCun, http://yann. lecun. com/exdb/mnist/ (1998).
[7] E. Shakhnovich and A. Gutin, J. Chem. Phys. 93, 5967

(1990), ISSN 0021-9606, publisher: American Institute
of Physics, URL https://aip.scitation.org/doi/10.

1063/1.459480.
[8] L. Mirny and E. Shakhnovich, Annu. Rev. Bio-

phys. Biomol. Struct. 30, 361 (2001), ISSN
1056-8700, publisher: Annual Reviews, URL
https://www.annualreviews.org/doi/10.1146/

annurev.biophys.30.1.361.
[9] C. Roussel, S. Cocco, and R. Monasson, Phys. Rev. E

104, 034109 (2021), URL https://link.aps.org/doi/

10.1103/PhysRevE.104.034109.
[10] G. E. Hinton, S. Osindero, and Y.-W. Teh, Neural Com-

put 18, 1527 (2006), ISSN 0899-7667.
[11] T. Tieleman, in Proceedings of the 25th international con-

ference on Machine learning (Association for Comput-
ing Machinery, New York, NY, USA, 2008), ICML ’08,
pp. 1064–1071, ISBN 978-1-60558-205-4, URL https:

//doi.org/10.1145/1390156.1390290.
[12] S. Miyazawa and R. L. Jernigain, J Mol Biol 256,

623 (1996), ISSN 0022-2836, 1089-8638, URL https:

//europepmc.org/article/med/8604144.
[13] H. Jacquin, A. Gilson, E. Shakhnovich, S. Cocco,

and R. Monasson, PLOS Computational Biology 12, 1
(2016), URL https://doi.org/10.1371/journal.pcbi.

1004889.

[14] G. E. Hinton and R. R. Salakhutdinov, Science 313, 504
(2006), ISSN 0036-8075, 1095-9203, publisher: Amer-
ican Association for the Advancement of Science Sec-
tion: Report, URL https://science.sciencemag.org/

content/313/5786/504.
[15] R. Salakhutdinov and I. Murray, in Proceedings of the

25th international conference on Machine learning (Asso-
ciation for Computing Machinery, New York, NY, USA,
2008), ICML ’08, pp. 872–879, ISBN 978-1-60558-205-4,
URL https://doi.org/10.1145/1390156.1390266.

[16] R. H. Swendsen and J.-S. Wang, Phys. Rev. Lett. 57,
2607 (1986), publisher: American Physical Society, URL
https://link.aps.org/doi/10.1103/PhysRevLett.57.

2607.
[17] G. Desjardins, A. Courville, Y. Bengio, P. Vincent, and

O. Delalleau, in Proceedings of the thirteenth interna-
tional conference on artificial intelligence and statistics
(MIT Press Cambridge, MA, 2010), pp. 145–152.

[18] M. Mézard, G. Parisi, N. Sourlas, G. Toulouse, and
M. Virasoro, Phys. Rev. Lett. 52, 1156 (1984), pub-
lisher: American Physical Society, URL https://link.

aps.org/doi/10.1103/PhysRevLett.52.1156.
[19] R. Rammal, G. Toulouse, and M. A. Virasoro, Rev.

Mod. Phys. 58, 765 (1986), publisher: American Physi-
cal Society, URL https://link.aps.org/doi/10.1103/

RevModPhys.58.765.
[20] A. Decelle, G. Fissore, and C. Furtlehner, Europhysics

Letters 119, 60001 (2017), URL https://dx.doi.org/

10.1209/0295-5075/119/60001.
[21] R. M. Neal, Statistics and Computing 11, 125 (2001),

ISSN 1573-1375, URL https://doi.org/10.1023/A:

1008923215028.
[22] Y. Bengio, G. Mesnil, Y. Dauphin, and S. Rifai, in In-

ternational Conference on Machine Learning (PMLR,
2013), pp. 552–560, iSSN: 1938-7228, URL http://

proceedings.mlr.press/v28/bengio13.html.
[23] D. J. Amit, H. Gutfreund, and H. Sompolinsky, Phys.

Rev. A 32, 1007 (1985), publisher: American Physi-
cal Society, URL https://link.aps.org/doi/10.1103/

PhysRevA.32.1007.

