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ABSTRACT: We report a bio-inspired heterobimetallic photocatalystRuII
chromFeIII

cat and its relevant applications 

towards visible-light-driven CH bond oxidation of a series of hydrocarbons using O2 as oxygen atom source. The Ru(II) 
centre absorbs visible light near 460 nm and triggers a cascade of electrons to Fe(III) to afford a catalytically active high-
valent Fe(IV)=O species. The in-situ formed Fe(IV)=O has been employed for several high-impact oxidation reactionsin 
the presence of triethanolamine (TEOA) as the sacrificial electron donor.  

Nature uses many iron (Fe) containing enzymes to insert 
oxygen atom into organic substrates by activating 

dioxygen (O2) molecule.17Such oxygenase enzymes (heme 
or non-heme) promote reductive O2 activation to 
generate a high-valent iron-oxo (Fe(IV)=O) species which 

acts as an active oxidant.811 Despite their impressive 
efficacy in numerous organisms, the high potential of 
such enzymes in industries and laboratories is still 
hampered due to the limited stability and requirement of 
expensive reductant cofactor NAD(P)H.12 Consequently, 
mimicking the structure and function of these enzymes to 
develop syntheticmodels has become a mainstay for 
modern-day research. After a breakthrough report on 
crystal structure analysis of Fe(IV)=O species by Nam, 
Que, and co-workers,13 several bio-inspired Fe-based 

complexes have been developed.1431 However, most of 
them require a strong oxidizing agent e.g. H2O2, tBuOOH 
or PhIO to attain Fe(IV)=O formation.14,15 Sometimes, 
these harsh oxidizing agents show poor selectivity to the 
catalytic product and lead to uncontrolled oxidation 
reactions. 

Recent efforts in this field have thus sought to combine 
such iron catalysts with a visible-light sensitive 
chromophore to photogenerate Fe(IV)=O, in the presence 

of either H2O or O2 as oxygen atom source.3235 Inspired 

by pioneered works of Gray’s group3638 on chromophore-
CytP450 systems, many researchers demonstrated the 
possible photogeneration of iron-oxo using a mixture of 
non-heme iron catalyst and Ru(II)-chromophore in the 

presence of water.3943 Nevertheless, in majority of the 
cases reported so far, the photogeneration of Fe(IV)=O 
has been carried out using bimolecular 

chromophore/catalyst systems.3842,4448 Unlike 

bimolecular systems, covalent linking of a chromophore 
with Fe-based catalytic fragment to form supramolecular 

photocatalysts must facilitate a successful and aligned e 
transfer with higher efficiency.To the best of our 
knowledge, there is only single report by Leibl, Aukauloo, 
Banse and co-workers43 where non-heme Fe(IV)=O is 

photogenerated by a covalently bound Ru(II)Fe(II) 
system even so with H2O. 

          An alternative approach to generate iron-oxo would 
be a photoinduced reductive activation of O2.

37,38 Though 
O2 is an abundant and greenest oxidant, the 
photocatalytic aerobic oxidation reactions using non-
heme Fe-based catalysts are rare.44,45 Two parameters are 
essential to attain an efficient reductive O2 activation at 
the catalytic site in such systems: i) a short distance 
between the chromophore and catalytic fragments and ii) 
relatively lower redox potential of the chromophore as 
compared to the catalytic unit. Covalent linking of 
Ru(bpy)3

2+ based chromophore to Fe-TPA (TPA = 
tris(pyridin-2-ylmethyl)amine) based catalyst may act as 
an ideal photosystem as the excited Ru(bpy)3

2+ has 
relatively lower oxidation potential.43,49 

We report a unique example of heterobimetallic complex 
[(bpy)2Ru(imptp)Fe(Cl)]3+ (bpy = 2,2’-bipyridine; Himptp 
= N-((6-(1H-imidazo[4,5-f][1,10]phenanthrolin-2-
yl)pyridin-2-yl)methyl)(pyridin-2-yl)-N-(pyridin-2-
ylmethyl)methanamine), abbreviated here as 

RuII
chromFeIII

cat. This complexconsists of a RuII-bpybased 
chromophorecovalently bound with a Fe(TPA)-catalyst 
via imidazole linker (Scheme 1a). Complex 

RuII
chromFeIII

cat has been employed as photocatalyst for 

pertinent visible-light-driven CH oxidation of different 

hydrocarbons. Exposure of photogenerated RuII
FeII to 
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O2 leads to the formation of RuII
FeIV

oxo intermediate 
as a key oxidant for substrate oxidation (Scheme 1b).  

 

Scheme 1. (a) Chemical drawings of RuII
chrom and 

RuII
chromFeIII

cat. (b) Proposed electron flow for 

substrate oxidation by RuII
chromFeIII

cat. 
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To synthesize RuII
chromFeIII

cat, first, a monometallic 
complex [(bpy)2Ru(Himptp)]2+,abbreviated as RuII

chrom, 
was prepared by refluxing cis-Ru(bpy)2Cl2 with ligand 
Himptp (Scheme S1).Complex [(bpy)2Ru(Himptp)]2+ was 
then treated with anhydrous FeCl3 to obtain 

RuII
chromFeIII

cat.
1H NMR spectra of Himptp and 

RuII
chromclearly revealed all the expected resonances 

(Figures S3S4). A singlet at 14.01 ppm was assigned to -
NH- group of imidazole ring in free ligand.50 Two singlets 

near 3.89 ppm and 4.05 ppm wereassignedto CH2-
pyridine moieties of TPA unit. Furthermore, the ESI-MS 
study for RuII

chrom measured an exact mass of 1213.1915 
corresponding to protonated molecular ion [M + H]+ 
coinciding well with the theoretical value of 1213.1904 
(Figure S7). 

         The structure of RuII
chromFeIII

cat was established by 
single-crystal XRD analysis (Figure S1). BothRu(II) and 
Fe(III) adopt a pseudo-octahedral geometry. All the bond 
parameters concerning the metal cores in 

RuII
chromFeIII

cat (Tables S1S2) are consistent with the 
data reported earlier for Fe41,49 and Ru50,51 

analogues.Notably, the relatively short distance between 
Ru and Fe (8.328 Å)may promote a facile electron 
tunneling between the redox partners.52,53 

UVvisible spectra of RuII
chrom and RuII

chromFeIII
cat in 

deaerated acetonitrile solutions exhibit a broad 
absorption band near 460 nm (MLCT, 

dπRuπ*bpy)(M
1cm1 = 15,625 for RuII

chrom and 14,000for 

RuII
chromFeIII

cat) (Figure 1a).5456 In RuII
chromFeIII

cat, the 
band near 360 nm has been assigned to Fe-centered 
transition.This band coincides well with the absorption 
maxima observed in the parental Fe(TPA)Cl2 and its 
derivatives.43,49Excitation with 468 nm light resulted in 
bright-orange luminescence of RuII

chrom with an emission 
maxima centered at 614 nmin deaerated acetonitrile. 
Noteworthy, the luminescence intensity is significantly 

quenched (upto 70%) in RuII
chromFeIII

cat (Figure 1b) 

which may be typically attributed to photoinduced eor 
energy transfer process from excited chromophore to 

catalytic Fe center.5456 
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Figure 1. (a) UVvisible and (b) emission spectra of 

RuII
chrom (~5.5 x 106 M)and RuII

chromFeIII
cat (~5.5 x 106 

M)in deaerated acetonitrile solution. 

 

To assess the electronic communication between two 
components in photocatalyst, the redox behavior of 

RuII
chrom and RuII

chromFeIII
cat was investigated in 

degassed acetonitrile under inert atmosphere (Figure S10, 
Table S3). RuII

chrom displayed a reversible system upon 
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oxidation at E1/2 = 1.27 V vs. SCE (ΔEp = EpaEpc = 71 mV), a 
value close to that of Ru-bpy derivatives (E1/2 = 1.28 V vs. 

SCE).5557 A supplementary irreversible wave detected at 
1.17 V can be assigned to the irreversible oxidation of free 

tertiary amine by direct comparison with RuII
chromFeIII

cat 

(vide infra). Two reversible waves at 1.40 (ΔEp = 48 mV) 

and 1.61 (ΔEp = 86 mV) are attributed to the successive 

reductions of bpy ligands.51,5557In case of RuII
chromFeIII

cat, 
the reversible oxidation of RuII  occurred at E1/2 = 1.26 V vs. 
SCE (Figure S10), similar to RuII

chrom.An additional 
reversible system was detected at E1/2 = 0.56 V (ΔEp = 59 
mV), assigned to the FeIII/II redox couple in agreement 
with reported data for analogous pyridyl-coordinated Fe-
Cl complexes.43,49 On the basis of experimental data which 
showed that the oxidation of the Ru(II) center in 

RuII
chromFeIII

cat occurs at a very close potential value to 
that of Ru(bpy)3

2+, we have approximated the standard 
potential of the RuIII/II* couple (in its excited state) for 

RuII
chromFeIII

cat to that of Ru(bpy)3
2+, i.e. E0 = 0.72 V vs. 

SCE.55,57 Consequently, the transfer of one electron from 
RuII* to FeIII may be thermodynamically favored, leading 

to the generation of new Ru(III)Fe(II) species. This 
assumption is in agreement with our spectroscopic 
studies which demonstrate luminescence quenching 
when iron is present (Figure 1b), thus evidencing a 

favored photoinduced e transfer.  
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Figure 2. UVvisible spectral changes upon illuminating 

CH3CN solution (LED; 468 nm) of RuII
chromFeIII

cat in 
presence of TEOA and O2. Inset: Kinetic traces at 786 nm. 

 

The next step has thus consisted of reacting the insitu 
generated Fe(II) species with O2. For that purpose, a 

sacrificial e donor TEOA was used to promote the return 
of Ru(III) ion to ground state.38,44,57 A solution of 

RuII
chromFeIII

cat with TEOA was thus subjected to a cycle 
of deoxygenation, light illumination at 468 nm, and O2 
exposure. The absorption spectra after each cycle 
indicated that exposure to O2, after irradiation, exhibited 

a broad band at λmax = 786 nm (Figure 2). Noteworthy, 
this band was not detected for RuII

chrom under the same 
reaction conditions, nor in the absence of any of the 
photocatalytic components (catalyst, TEOA, light or O2). 
Thus, it clearly shows that the reaction implies Fe(II) 
center, which led us to assign it to the high-valent 
Fe(IV)=O species, consistent with the previous 

reports.3943,49 

Encouraged with the light-induced etransfer and 

subsequent Fe(IV)=O formation, RuII
chromFeIII

catwas 
investigated for visible-light-driven oxidation reactions 
under O2 atmosphere. The preliminary tests were 
performed with cyclohexane as substrate. In duration of 6 

hours, RuII
chromFeIII

catprovided a TON of 66.5 with 
remarkable alcohol selectivity of 9.8 (Table 1; entry 1). A 
relatively low catalytic conversion (TON = 16.7) was 
observed without TEOA, probably due to theintervention 
of a competitive oxidation process (Table 1; entry 2) (vide 
supra).  

 

Table 1. Optimization of photocatalytic oxidation of 
cyclohexane. 

 

Catalytic reactions under inert atmosphere provided the 
traces of oxidation products validating the role of O2 as 
oxygen source (Table 1; entry 3). A slight conversion was 
also noticed (TON = 11.0) with RuII

chrom, with a low 
selectivity towards cyclohexanol (Table 1; entry 6). This 
oxidation may proceed via1O2 formation by excited 
RuII*(Scheme 2).58 In order to compare the catalytic 
efficacy of a covalently linked chromophore/catalyst 
system with that of a bimolecular system, we have 
employed a mixture of Ru(bpy)3

2+ and Fe(TPA)Cl2 
(individually synthesized)49 as catalyst (Table 1; Entry 7). 

Interestingly, RuII
chromFeIII

catproved to be more efficient 
as the TON was increased upto 3.0-fold as compare to 

Entry Cat. / Chrom. Sacrif.
donor 

Atmos. TONa A/K 

1. RuII
chromFeIII

cat TEOA O2 66.5 9.8 

2. RuII
chromFeIII

cat - O2 16.7 6.5 

3. RuII
chromFeIII

cat TEOA N2 traces - 

4.b RuII
chromFeIII

cat TEOA O2 73.6 12.6 

5.b 
RuII

chromFeIII
cat TEOA O2 74.8 12.5 

6. - / RuII
chrom TEOA O2 11.0 2.6 

7. b, c Fe(TPA)Cl2 / 
[Ru(bpy)3]

2+ 

TEOA O2 22.9 7.6 

Reaction conditions: Cyclohexane (0.5 mmol), Catalyst (0.93 mol %), 

TEOA (250 mol %), in CH3CN: CH2Cl2: H2O (3:1:1), LED irradiation 
(468 nm), O2 bubbling. yields were calculated by GC-FID, duration: 6 h 

except entry 5 (8 h), bone drop CH3COOH, cFe(TPA)Cl2 (1 mol%), 
[Ru(bpy)3]

2+ (4 mol%), TEOA (15 mol %) A/K: alcohol/ketone ratio. 

Abbreviations: Cat. = Catalyst; Chrom. = Chromophore; Sacrif.= 

Sacrificial; Atmos. = Atmosphere. 
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bimolecular Ruchrom/Fecat combination. Moreover, ca. 4.0-
fold higher amount of chromophore was used to achieve 
this result in bimolecular system. The use of covalently 
linked assembly not only provides the greater efficiency, 
but also reduces the amount of expensive chromophores 
in the catalysis process. The substrate scope of 

RuII
chromFeIII

cat has also been checked for various 
hydroxylation reactions (Table S5). Under the same 
conditions, the bimetallic complex exhibits similar TON 
(ca. 70) and A/K (ca. 12) values within this series, hence 
showing that the catalyst can be efficient and selective for 
a range of substrates. 

 

 

Figure 3. Time profile for photoinduced cyclohexane 
oxidation. 

 

Time profile studies were carried out for cyclohexane 

oxidation usingRuII
chromFeIII

cat(Figure 3). The reaction 

proceeds linearly with time upon illumination with a blue 
LED. Conversely, no catalytic conversion was observed 
upto 6 hours under dark conditions. A test reaction under 
the alternative environment of blue LED illumination and 
dark conditions has been monitored for a period of 6 
hours.  

Based on previous reports5759 and our results, two major 
mechanistic pathways may be proposed (Scheme 2). 
Pathway 1 is Fe-catalyst free pathway, in which the excited 
Ru(II)* may generate 1O2as an active oxidant to carry out 
substrate oxidation.58This pathway does not play a 
significant role in C-H oxidation process. However, its 
presence cannot be ignored as they have shown their 
contribution in test reactions (Table 1: Entries 2-

3).Pathway 2 involves the photoinduced e transfer 
between redox partners and reductive O2 activation at Fe 
centre to generate iron-oxo species. This pathway is 
considered as the most probable route with the highest 
influence in catalytic conversion. During this event, upon 
light illumination into MLCT absorption band, Ru(II)* 
may easily transfer an electron to reduce covalently 
bound Fe(III) center. The resultant Fe(II) is sensitive to 
coordinate with O2 to generate high valent Fe(IV)=O to 
subsequently carry out oxidation reactions. The oxidant 
Ru(III) is quenched to attain the ground state Ru(II) by 
the sacrificial e- donor. 

 

 

 

 

 

Scheme 2. Plausible mechanistic pathways for photocatalytic oxidation reactions by RuII
chromFeIII

cat. 
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In conclusion, we demonstrate the first example of a non-
heme based chromophore-catalyst system for reductive 

O2 activation. Complex RuII
chrom

FeIII
catacts as an efficient 

photocatalyst for synthetically challenging C-H oxidation 
reactions. In comparison to a bimolecular 
Ru(bpy)3

2+/Fe(TPA)Cl2 catalytic system, the covalently 
bound dyad proved to be more efficient towards substrate 
oxidation. Therefore, it represents a promising alternative 
to the reported photoassisted Ru(II)-based systems. 

Although the present study validates the concept, recent 
efforts are directed towards the optimization and deep 
mechanistic investigation of such systems. In particular, 
we are focused to improve the excited state properties of 
covalently bound chromophore/catalyst assemblies by 
modifying the ligands. The exploration and 
implementation of more potent oxidation catalysts are 
under process for their further use.  
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A novelheterobimetallic complexRu
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chrom
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Fe

III
cathas been employed as photocatalyst for pertinent 

visible-light-driven C-H oxidation of different hydrocarbons in the presence of O2 and a sacrificial 

agent. 

 


