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FIXED POINTS UNDER PINNING-PRESERVING

AUTOMORPHISMS OF REDUCTIVE GROUP SCHEMES

PRAMOD N. ACHAR, JOÃO LOURENÇO, TIMO RICHARZ, AND SIMON RICHE

Abstract. In this paper we determine the scheme-theoretic fixed points of

pinned reductive group schemes acted upon by a group of pinning-preserving
automorphisms. The results are used in a companion paper to establish a

ramified geometric Satake equivalence with integral or modular coefficients.

1. Introduction

1.1. In this paper we study some basic properties (e.g. flatness and smoothness) of
the fixed point group scheme for an action of an abstract group on a split reductive
group scheme by pinning preserving automorphisms. Our motivation for such a
study comes from work on a ramified version of the geometric Satake equivalence;
in fact, in the companion paper [ALRR23] we show that such fixed points group
schemes (over the spectrum of the `-adic integers Z` or the finite field F` for some
prime number `) arise as Tannakian groups for appropriate categories of equivariant
perverse sheaves on affine Grassmannians attached to parahoric groups associated
with special facets of Bruhat–Tits buildings. (An analogous study over Q` was
undertaken by Zhu [Zhu15] and by the third named author [Ric16].) We believe
that our study is of independent interest. It is treated here in greater generality
and in more detail than what is actually needed in [ALRR23].

1.2. Statement. Let S be a nonempty scheme, and consider a pinned reductive
group (G,T,M,R,∆, X) over S. In particular, T = DS(M) is a (split) maximal
torus in G, R is the associated root system, ∆ is a basis of R, and X is a collection of
nonvanishing sections of the root subspaces in Lie(G) attached to simple roots. (In
case S is the spectrum of a field or a principal ideal domain, one can take for G any
reductive group scheme admitting a split maximal torus T; then M is the lattice of
characters of T, and a pinning X always exists because the weight spaces in Lie(G)
are free over O(S).) We then have a corresponding group Aut(G,T,M,R,∆, X) of
automorphisms of G preserving these data (see §3.2 for precise references), which
identifies with the group of automorphisms of the associated root datum. We
consider an abstract group A and an action of A on G defined by a homomorphism
A→ Aut(G,T,M,R,∆, X).

P.A. was supported by NSF Grant Nos. DMS-1802241 and DMS-2202012. J.L. was supported
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and by the ERC Consolidator Grant 770936 via Eva Viehmann. This project has received funding
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Our main result is the following (see Theorem 5.1 and Proposition 5.10). In
this statement, MA denotes the group of coinvariants for the action of A on M
(see §2.2).

Theorem 1.1. (1) The group scheme GA is flat over S.
(2) The group scheme GAhas geometrically connected fibers over S iff either

MA is torsion free or S has exactly one residual characteristic ` > 0 and
the torsion part of MA is an `-group.

(3) The group scheme GA is smooth over S iff the following conditions hold:
(a) the order of the torsion subgroup of MA is prime to all residual char-

acteristics of S;
(b) if R has an indecomposable component of type A2n for some n ≥ 1

whose stabilizer in A acts nontrivially on this component, then 2 is
not a residual characteristic of S.

(4) If S = Spec(k) for some field k, then the reduced neutral component (GA)◦red

is a split reductive group scheme, and if k is an algebraic closure of k one
has

((k⊗k G)A)◦red = k⊗k (GA)◦red.

Let us first discuss some previous occurrences of such results in the literature.
Statement (4) was already known. The case when k is algebraically closed and
A is finite and cyclic (and satisfies a condition weaker than preserving a pinning)
was treated by Steinberg [Ste68]; see also [DM94, Théorème 1.8] for a further
study. A more general version (not requiring G to be split, and also replacing
the existence of a fixed pinning by a weaker condition) is due to Adler–Lansky,
see [AL14, Proposition 3.5]. In case k is algebraically closed and A is finite, the
same statement as ours appears in work of Haines [Hai15]. All of these proofs are
based on [Ste68]. We give a new proof of this statement here, which does not rely
on [Ste68] except for elementary claims on root systems.

The smoothness of GA (in case S = Spec(Z[ 1
2 ]), G is semisimple and simply-

connected and A is cyclic) is also proved in [DHKM20, Lemma 4.25]; the nons-
moothness in the setting of condition (3b) is mentioned in [DHKM20, Remark 4.26].
In case S = Spec(k) for a field k, and A is finite of cardinality invertible in k (but
does not necessarily fix a pinning), the fact that (GA)◦ is reductive (in particular,
smooth) is also proved in [PY02, Theorem 2.1].

Let us point out also that if S is the spectrum of a mixed characteristic discrete
valuation ring and the coinvariants MA of the action of A on M are torsion-free,
then GA is a quasi-reductive S-group scheme in the sense of Prasad–Yu [PY06]
(see Theorem 5.1(4)). A particularly interesting example is when S = Spec(Z2)
and G = SL2n+1,Z2

for some n ≥ 1, with the unique nontrivial action of Z/2Z. In
this case, GA → S is nonsmooth by (3), and hence in particular nonreductive.

1.3. Outline of the proof. The main step in the proof of Theorem 1.1 consists of
an analysis of the fixed points of A on the big cell in G attached to our given pinning.
For this we study separately the fixed points on T (which is rather straightforward)
and on the (positive and negative) “maximal unipotent subgroups” U and U−. This
part is more subtle, and requires the construction of an appropriate “extension” of
X to a Chevalley system compatible (in the appropriate sense) with the action of
A. We also analyze the case when S is the spectrum of an algebraically closed field
in great detail in §5.3.
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Let us note that the groups considered in Theorem 1.1 share many standard
properties of reductive group schemes, although they are not reductive in general.
In particular:

• to such a group we attach a root system (and even several root data,
see §6.1);
• in §4.3 we construct certain “twisted SL2-maps” associated with positive

roots in this root system (whose domain is not necessarily SL2,S);
• in §6.2 we show that the quotient of the normalizer of TA by its centralizer

is (the constant group scheme attached to) a Coxeter group, which identifies
with the Weyl group of the associated root system;
• in §6.3 we study analogues of parabolic and Levi subgroups in GA.

Here again, in the special case when S is the spectrum of a field, some of these
constructions appear in work of Adler–Lansky and Haines, sometimes under weaker
assumptions; see in particular [AL19, Hai18] for discussions of root data attached
to fixed points.

1.4. Contents. In Section 2 we recall the definition of fixed-point schemes, and
study some first examples. In Section 3 we recall the definition of pinned reductive
group schemes, and some basic results on their structure. In Section 4 we construct
our twisted SL2-maps. In Section 5 we prove Theorem 1.1. Finally, in Section 6 we
prove some complements, some of which will be used in [ALRR23].

1.5. Acknowledgements. We thank J. Adler, B. Conrad, S. Cotner, J. F. Dat
and P. Gille for interesting discussions on the subject of this paper.

2. Fixed points

2.1. Definition. Let S be a scheme, and let A be an abstract group. Recall that if
X → S is an S-scheme, endowed with an action of A by S-scheme automorphisms,
then the functor of A-fixed points XA is defined as the functor that sends an S-
scheme Y to the set HomS(Y,X)A, where A acts on the set of S-scheme morphisms
HomS(Y,X) via its action on X, and the superscript means fixed points in the usual
sense. (In other words, XA is the fixed-points sheaf associated with the natural
action of A on the fpqc sheaf on the category of S-schemes represented by X.) If
this functor is representable by a scheme, then this scheme will also be denoted XA.
It is clear from the definition that this construction is stable under base change;
namely, if S′ → S is a morphism of schemes then we have an identification of
functors

(2.1) S′ ×S XA ∼−→ (S′ ×S X)A

where on the right-hand side we consider the natural A-action on S′×S X induced
by the action on X. In particular, if XA is representable by a scheme, then so
is (S′ ×S X)A. It is also clear that given an open covering S =

⋃
i∈I Si, the

functor XA is representable by a scheme if and only if for any i the functor (Si ×S
X)A is representable by a scheme. (In this case we have an open covering XA =⋃
i∈I(Si ×S X)A.) This construction is functorial in the sense that if f : X → Y is

an A-equivariant morphism of schemes we have a canonical morphism of functors
fA : XA → Y A.

The following properties are easily verified from the definitions.
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Lemma 2.1. (1) Let X and Y be S-schemes endowed with actions of A, let
f : X → Y be an A-equivariant monomorphism over S, and let fA : XA →
Y A be the induced morphism. Then the following diagram is cartesian:

XA fA

//

��

Y A

��
X

f // Y.

In particular, if Y A is representable by a scheme then so is XA, and if f
is an open immersion, resp. a closed immersion, resp. an immersion, then
so is fA.

(2) Let X and Y be S-schemes endowed with actions of A, and consider the
diagonal action on X ×S Y . Then we have a canonical identification

(X ×S Y )A = XA ×S Y A.

For general results on fixed-point schemes the reader is referred to [Fog71]. Below
we will only consider the case when the morphism X → S is affine. Recall that
under this assumption XA is always representable by a scheme, and the natural
morphism XA → X is a closed immersion. Indeed, passing to an open covering we
can assume that S is affine, say S = Spec(k) for some ring k. Then X is also affine,
say X = Spec(R), where R is a k-algebra. The action of A on X corresponds
to an action on R by k-algebra automorphisms. It is easily checked that XA is
represented by the closed subscheme Spec(R/I) ⊂ X, where I ⊂ R is the ideal
generated by elements of the form r − a · r for r ∈ R and a ∈ A.

In case X is an affine group scheme over S and A acts by group scheme auto-
morphisms, then of course XA is a (closed) subgroup scheme of X.

2.2. The case of diagonalizable groups. Let us now study the construction
of §2.1 for certain actions on diagonalizable group schemes. Recall that for any
scheme S and any abelian group M , we have an associated group scheme

DS(M)

representing the group valued functor HomS-GrpSch(MS ,Gm,S) on the category of
S-schemes, see e.g. [DG70b, Exp. VIII, Définition 1.1]. Consider a group A and an
action of A on M by group automorphisms. We deduce an action of A on the group
scheme DS(M) over S, by group scheme automorphisms. (By [DG70b, Exp. VIII,
Corollaire 1.6], any action of A on DS(M) by group scheme automorphisms arises
in this way in case M is of finite type and S is connected.) We will denote by MA

the group of coinvariants for this action, i.e. the quotient of M by the subgroup
generated by the elements of the form m− a ·m for a ∈ A and m ∈M .

Lemma 2.2. There exists a canonical isomorphism of group schemes over S

DS(MA)
∼−→
(
DS(M)

)A
.

Proof. The projection M →MA is A-equivariant for the trivial action on the right-
hand side; it therefore induces an A-equivariant morphism DS(MA) → DS(M),
which necessarily factors through a morphism DS(MA) → (DS(M))A. To prove
that this morphism is an isomorphism we can assume that S = Spec(k) is affine.
Then (DS(M))A is the spectrum of the quotient R of the group algebra k[M ] by
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the ideal generated by the elements of the form x − a · x for a ∈ A and x ∈ k[M ].
For any k-algebra R′ we have

Homk-alg(R,R′) = Homk-alg(k[M ], R′)A = Homgps(M, (R′)×)A

= Homgps(MA, (R
′)×) = Homk-alg(k[MA], R′)

where k-alg is the category of k-algebras, gps is the category of groups, and in all
cases the A-action is induced in the natural way by the action on M . We deduce
an identification R = k[MA], which finishes the proof. �

Lemma 2.2 shows that (DS(M))A is always flat over S. If we assume that
M is of finite type, then by [DG70b, Exp. VIII, Proposition 2.1(e)] this group
scheme is smooth over S iff the order of the torsion subgroup of MA is prime to all
residual characteristics of S. Still assuming that M is of finite type, (DS(M))A is
geometrically connected iff either MA is torsion free or S has exactly one residual
characteristic ` > 0 and the torsion part of MA is an `-group.

2.3. The case of SL2n+1. Let n ≥ 1, and consider the group scheme SL2n+1,Z over
Spec(Z). In this subsection, we study the construction of §2.1 for a certain action
of the group A = Z/2Z on SL2n+1,Z.

2.3.1. Action. Denote by J2n+1 the square matrix of size 2n + 1 whose coefficient
in position (i, j) is given by:

• 0 if i+ j 6= 2n+ 2;
• 1 if i+ j = 2n+ 2 and i is even;
• −1 if i+ j = 2n+ 2 and i is odd.

That is, J2n+1 has entries (−1, 1,−1, . . . ,−1, 1,−1) on the anti-diagonal and 0 else,
so J2

2n+1 = id. We then make A = Z/2Z act on SL2n+1,Z by having the nontrivial
element act by

M 7→ J2n+1 · tM−1 · J2n+1.

2.3.2. The case of SL3. First, let us consider the case n = 1, and denote by U3,Z
the subgroup scheme of SL3,Z consisting of upper triangular unipotent matrices.
For any ring R, the action of the nontrivial element of A on U3,Z(R) is given by1 x y

0 1 z
0 0 1

 7→
1 z xz − y

0 1 x
0 0 1

 .

It follows that the fixed-point subscheme (U3,Z)Z/2Z is the closed subgroup scheme
defined by the equations

x = z, xz − y = y;

we therefore have
(U3,Z)Z/2Z ∼= Spec

(
Z[x, y]/(x2 − 2y)

)
.

Since x2 − 2y is monic as a polynomial in x, we see that (U3,Z)Z/2Z is finite and
flat over Spec(Z[y]) = A1

Z, and hence flat over Z. More generally, for an arbitrary
nonempty scheme S, considering the group scheme

U3,S := S ×Spec(Z) U3,Z,

in view of (2.1) we see that

(U3,S)Z/2Z = S ×Spec(Z) (U3,Z)Z/2Z
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is flat over S.
We claim that (U3,S)Z/2Z is smooth over S if and only if 2 is not a residual

characteristic of S. Indeed, if 2 is a residual characteristic, and if s ∈ S is such that
the residue field κ(s) has characteristic 2, then

Spec(κ(s))×S (U3,S)Z/2Z = Spec(κ(s)[x, y]/x2)

is not reduced, and hence not smooth (see [Sta22, Tag 056T]), so (U3,S)Z/2Z → S
is not smooth. To prove the converse implication we can assume that S is affine,
say S = Spec(k). If 2 is not a residual characteristic of S, then it is invertible in k,
so k → k[x, y]/(x2 − 2y) is a standard smooth ring map in the sense of [Sta22, Tag
00T6] (because ∂

∂y (x2 − 2y) is invertible), and finally (U3,S)Z/2Z → S is smooth

by [Sta22, Tag 00T7].

If S = Spec(k) is the spectrum of a field, the reduced subscheme (U3,k)
Z/2Z
red is

given by

(2.2) (U3,k)
Z/2Z
red =

{(
1 x x2/2
0 1 x
0 0 1

)}
if char(k) 6= 2,

{(
1 0 y
0 1 0
0 0 1

)}
if char(k) = 2.

Over Z[ 1
2 ], the map of group schemes SL2,Z[ 1

2 ] → (SL3,Z[ 1
2 ])

Z/2Z given explicitily

by (
a b
c d

)
7→

 a2 ab 1
2b

2

2ac ad+ bc bd
2c2 2cd d2


induces a closed immersion of group schemes

(2.3) ξ : PGL2,Z[ 1
2 ] → (SL3,Z[ 1

2 ])
Z/2Z.

(This morphism is induced by the adjoint action of SL2,Z[ 1
2 ] on its Lie algebra using

the ordered basis
(

0 −2
0 0

)
,
(

1 0
0 −1

)
, ( 0 0

1 0 ).) On the other hand, we will see below that

(SL3,F2
)Z/2Z is nonreduced; we have a closed immersion of group schemes

(2.4) ξ : SL2,F2 → (SL3,F2)
Z/2Z
red

where the right-hand side is the reduced group scheme associated with (SL3,F2)Z/2Z,
given explicitly by (

a b
c d

)
7→

a 0 b
0 1 0
c 0 d

 .

In fact, the maps (2.3) and (2.4) are isomorphisms as we show in Example 5.9(1).

2.3.3. Some morphisms. Now, let us return to the case of a general n ≥ 1. For
any ring R, let e1, e2, . . . , e2n+1 be the standard basis of the free module R2n+1 =
A2n+1

Z (R). For any i ∈ {1, . . . , n}, define an embedding

ϕi : A3
Z → A2n+1

Z by


e1 7→ ei,

e2 7→ en+1,

e3 7→ (−1)i+ne2n+2−i

Let Mi = spanR {ej : j /∈ {i, n+1, 2n+2− i}}. Then R2n+1 = image(ϕi(R))⊕Mi.

https://stacks.math.columbia.edu/tag/056T
https://stacks.math.columbia.edu/tag/00T6
https://stacks.math.columbia.edu/tag/00T6
https://stacks.math.columbia.edu/tag/00T7
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Make SL3,Z(R) act on R2n+1 by having it act trivially on Mi, and by the natural
action on A3

Z(R) (transported across ϕi). This action defines a closed immersion of
group schemes

(2.5) fi,n : SL3,Z → SL2n+1,Z.

Explicitly, fi.n sends a matrix M = (mrs)1≤r,s≤3 in SL3,Z(R) to the (2n + 1) ×
(2n+ 1) matrix whose entry in position (j, k) is given by the following table:

Position Entry Position Entry
(i, i) m11 (2n+ 2− i, i) (−1)i+nm31

(i, n+ 1) m12 (2n+ 2− i, n+ 1) (−1)i+nm32

(i, 2n+ 2− i) (−1)i+nm13 (2n+ 2− i, 2n+ 2− i) m33

(n+ 1, i) m21 (j, j), j /∈ {i, n+ 1, 2n+ 2− i} 1
(n+ 1, n+ 1) m22 all other entries 0
(n+ 1, 2n+ 2− i) (−1)i+nm23

One checks by explicit computation that this morphism is equivariant with respect
to the actions of Z/2Z considered above; it therefore restricts to a morphism of
group schemes

(SL3,Z)Z/2Z → (SL2n+1,Z)Z/2Z.

3. Pinned reductive group schemes

3.1. Definition. Let S be a nonempty scheme, and let (G,T,M,R,∆, X) be a
pinned reductive group scheme over S in the sense of [DG11b, Exp. XXIII, Defini-
tion 1.1]. In concrete terms:

• T is a maximal torus of G, M is a free abelian group of finite rank, and we
are given an isomorphism of S-group schemes T ∼= DS(M);
• R ⊂ M is a root system of G with respect to T such that (M,R) defines

a splitting of G in the sense of [DG11b, Exp. XXII, Définition 1.13];
• ∆ ⊂ R is a system of simple roots;
• X = (Xα : α ∈ ∆) is a collection of elements in Lie(G) such that each Xα

is a nowhere vanishing section of the invertible OS-module Lie(G)α.

The datum of ∆ ⊂ R determines a subset of positive roots, which will be denoted
R+.

Let us comment briefly on these data, following [DG11b, Exp. XXII, Proposi-
tion 2.2]. Consider a reductive group scheme G over S with a maximal torus T.
Saying that T is split is the same as saying that there exists a free abelian group
M and an isomorphism T ∼= DS(M). If S is connected, then M is canonically
determined by T, since it identifies with the group of S-scheme morphisms from T
to Gm,S .

Next, we have the functor of roots R of G with respect to T, which is a locally
constant, finite scheme, realized as an open and closed subscheme of the group
scheme HomS-GrpSch(T,Gm,S), see [DG11b, Exp. XIX, Proposition 3.8]. Given a
subset R of the group of morphisms of S-group schemes from T to Gm,S , R is a
root system for G with respect to T iff the canonical inclusions of RS and R into
HomS-GrpSch(T,Gm,S) induce an isomorphism RS → R.

We now observe that when G admits a split maximal torus T ∼= DS(M) and
S is connected, a root system always exists, and is unique. Indeed, the action
of T on Lie(G) determines an M -grading on this OS-module. If R ⊂ M is the
set of nonzero weights for this action, for any α ∈ R the corresponding α-weight
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space Lie(G)α is a direct summand in Lie(G), and hence a locally free sheaf.
Since its rank is locally constant (see [Sta22, Tag 01C9]), it has to be constant
(and positive), so α is a root for G by [DG11b, Exp. XIX, Définition 3.2]. In view
of [DG11b, Exp. XIX, Définition 3.2], R is therefore a root system for G with
respect to T.

Let us continue with the assumptions of the previous paragraph. As explained
above, for any α ∈ R the root subspace Lie(G)α is a locally free OS-module of rank
one, see [DG11b, Exp. XIX, §3.4]. The pair (M,R) defines a splitting of G with
respect to T in the sense of [DG11b, Exp. XXII, Définition 1.13] iff each Lie(G)α

is free, which is automatic e.g. if Pic(S) is trivial. Under this assumption, of course
a collection (Xα : α ∈ ∆) of nowhere vanishing sections of the root subgroups
attached to any choice of simple roots exists.

In conclusion, in case S is connected and Pic(S) is trivial (e.g. if S is the spectrum
of a principal ideal domain), the datum of a pinned reductive group scheme over S
is equivalent to the datum of a reductive group with a given split maximal torus,
a system of simple roots, and a collection of nowhere vanishing sections of the
associated simple root subspaces.

Example 3.1. Below we will use the standard pinning of the group scheme G =
SL2n+1,Z over Spec(Z) (for n ≥ 1). In this case:

• T is the subgroup of diagonal matrices;
• M is the quotient Z2n+1/∆Z (where ∆Z is the diagonal copy of Z in Z2n+1);
• R = {[εi − εj ] : i 6= j ∈ {1, . . . , 2n + 1}} (where (ε1, . . . , ε2n+1) is the

standard basis of Z2n+1, and [λ] is the class of an element λ ∈ Z2n+1 in
M);
• ∆ = {[εi − εi+1] : i ∈ {1, . . . , 2n}};
• if α = [εi − εi+1], then Xα is the matrix whose unique nonzero coefficient

is 1 in position (i, i+ 1).

3.2. Automorphisms. Let us now come back to the case of a general base scheme
S. From now on in this section we fix a pinned reductive group scheme

(3.1) (G,T,M,R,∆, X)

over S. We can then consider the group

Aut(G,T,M,R,∆, X)

of automorphisms f : G → G of G that preserve the given pinning, in the sense
of [DG11b, Exp. XXIII, Définition 1.3]. By definition (see in particular [DG11b,
Exp. XXII, Définition 4.2.1]), any such automorphism f restricts to an automor-
phism of T induced by an automorphism of M ,1 which preserves R and ∆, and it
permutes the collection X according to its action on ∆. In fact, as noted in [DG11b,
Exp. XXII, Remarque 4.2.2], f determines an automorphism of the root datum

(M,M∨,R,R∨)

attached to G, and by [DG11b, Exp. XXIII, Théorème 4.1] this procedure iden-
tifies Aut(G,T,M,R,∆, X) with the group of automorphisms of the root datum

1As noted in §2.2, in case S is connected, the condition that the restriction to T is induced by
an automorphism of M is automatically satisfied.

https://stacks.math.columbia.edu/tag/01C9
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(M,M∨,R,R∨) stabilizing the subset ∆ ⊂ R. We will say that a group A acts on
G by pinned automorphisms if it acts via a group homomorphism

A→ Aut(G,T,M,R,∆, X).

In this situation, there is an induced action of A on M preserving R and R+.

3.3. Root subgroups, Borel subgroup, and unipotent subgroup. Recall
that for any root γ ∈ R, there is a closed immersion

(3.2) expγ : Lie(G)γ ↪→ G

whose image, denoted by Uγ , is a closed subgroup scheme of G: see [DG11b,
Exp. XXII, Théorème 1.1].

We endow the subset R+ ⊂ R with some arbitrary order. Then one can consider
the product morphism ∏

α∈R+

Uα → G,

where the product on the left-hand side (to be understood as fiber product over
S) is taken with respect to our chosen order on R+. This morphism is a closed
immersion, and its image U is a subgroup scheme which does not depend on the
choice of order on R+; see [DG11b, Exp. XXII, §5.5]. The product morphism

T nS U→ G

is also a closed immersion, and a homomorphism of group schemes; its image will
be denoted B. On geometric fibers of G → S, B is a Borel subgroup in the usual
sense, and U is its unipotent radical. Similar considerations using the negative
roots −R+ produce a closed subgroup scheme denoted U−.

3.4. Chevalley systems. Recall that the set X = (Xα : α ∈ ∆) is indexed by
the simple roots. A Chevalley system is a collection (Yα : α ∈ R) parametrized by
R, where each Yα is again a nowhere vanishing section of Lie(G)α, and where the
entire collection is subject to certain conditions, spelled out in [DG11b, Exp. XXIII,
Définition 6.1]. By [DG11b, Exp. XXIII, Proposition 6.2], a Chevalley system exists.
More specifically, the proof of this proposition shows that there exist Chevalley
systems which satisfy the following additional conditions:

• for any α ∈ ∆ we have Xα = Yα;
• for any α ∈ R+ the sections Yα and Y−α are dual to each other with respect

to the pairing of [DG11b, Exp. XX, Corollaire 2.6].

When considering Chevalley systems below we will always tacitly assume (following
e.g. the conventions in [BT84, §3.2.2]) that these additional conditions are satisfied.
In this case, one can use the notation (Xα : α ∈ R) for a Chevalley system, and
this system is determined by the “positive” subset (Xα : α ∈ R+).

According to [DG11b, Exp. XXIII, Corollaire 6.5], one consequence of the con-
ditions in the definition is that in a Chevalley system, if α and β are roots such
that α+ β is also a root, then

(3.3) [Xα, Xβ ] = ±rXα+β
where r ∈ {1, 2, 3} is the smallest positive

integer such that β − rα is not a root.

Of course, if α+ β is not a root then [Xα, Xβ ] = 0.
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Example 3.2. Let us give an example where one can write down (the positive part
of) a Chevalley system explicitly in terms of a pinning (Xα : α ∈ ∆). Assume that
G is of type D4, and number the simple roots as α1, α2, α3, α4 with 〈α2, α

∨
i 〉 = −1

for i ∈ {1, 3, 4}. There are eight other positive roots. One can easily check that the
following vectors are the positive part of a Chevalley system:

Xαi+α2 = [Xαi , Xα2 ] (i = 1, 2, 3), Xα2+α3+α4 = [[Xα3 , Xα2 ], Xα4 ],

Xα1+α2+α3 = [[Xα1 , Xα2 ], Xα3 ], Xα1+α2+α3+α4 = [[[Xα1 , Xα2 ], Xα3 ], Xα4 ],

Xα1+α2+α4 = [[Xα1 , Xα2 ], Xα4 ], Xα1+2α2+α3+α4 = [[[[Xα1 , Xα2 ], Xα3 ], Xα4 ], Xα2 ].

Once a Chevalley system (Xα : α ∈ R+) as above is fixed, for any α ∈ R+ there
exists a unique morphism of S-group schemes

(3.4) ϕα : SL2,S → G

which satisfies

ϕα

(
1 a
0 1

)
= expα(aXα), ϕα

(
1 0
a 1

)
= exp−α(aX−α)

for any a ∈ Ga,S , see [DG11b, Exp. XX, Corollaire 2.6]. In this case we automati-
cally have

ϕα

(
a 0
0 a−1

)
= α∨(a)

for any a ∈ Gm,S . We set

nα := ϕα

(
0 1
−1 0

)
.

(This section coincides with the section denoted wα(Xα) in [DG11b, Exp. XXIII,
Définition 6.1].)

3.5. Reduction to simply connected quasi-simple groups. We will say that
a pinned reductive group scheme (G,T,M,R,∆, X) is quasi-simple and simply
connected if R is indecomposable and R∨ generates M∨ (or, in other words, if
Gs is quasi-simple and simply connected in the usual sense of semisimple algebraic
groups for any geometric point s of S). For some constructions below, we will
reduce the problem to this case (or to products of such groups) as follows.

The root datum of our group G with respect to T is (M,M∨,R,R∨). We set
Msc := HomZ(ZR∨,Z), and M∨sc := ZR∨. We have natural (dual) maps M∨sc →M∨

and M → Msc. The latter morphism is injective on the subset R, which can
therefore also be regarded as a subset of Msc. We then have a morphism of root
data

(Msc,M
∨
sc,R,R

∨)→ (M,M∨,R,R∨)

in the sense of [DG11b, Exp. XXI, Définition 6.1.1]. If we denote by

(Gsc,Tsc,Msc,R,∆, Xsc)

the pinned reductive group scheme over S with root datum (Msc,M
∨
sc,R,R

∨), then
this morphism corresponds to a morphism of pinned groups

Gsc → G.

Moreover, for any geometric point s of S, this morphism identifies (Gsc)s with the
simply connected cover of the derived subgroup of Gs. The roots of G and Gsc

are the same, and our morphism Gsc → G restricts to an isomorphism on root
subgroups with the same label, identifying the given pinnings.
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One can make Gsc more concrete as follows. Consider the decomposition

R =
⊔
i∈I

Ri

of R as a direct sum of indecomposable constituents. This determines a direct-sum
decomposition

Msc =
⊕
i∈I

Msc,i,

and hence a product decomposition (where the product is fiber product over S)

(3.5) Gsc =
∏
i∈I

Gsc,i

where Gsc,i is the pinned reductive group scheme over S with root datum

(Msc,i, (Msc,i)
∨,Ri,R

∨
i ).

4. Equivalence classes of roots and twisted SL2-maps

4.1. An equivalence relation on roots. In this subsection we consider an arbi-
trary reduced root system R in a real vector space V , and a basis ∆ ⊂ R of R. We
assume we are given a group A and an action of A on V preserving R and ∆. We
will denote by R+ the system of positive roots determined by ∆. (This subset is
also preserved by A.) Let us consider the equivalence relation ∼ on R+ defined as
follows:

(4.1) α ∼ β if
∑
γ∈A·α

γ and
∑
δ∈A·β

δ are scalar multiples of one another.

(Here we mean scalar multiples in the real vector space V . This relation of course
depends on the group A and its action on R, although it does not appear in the
notation.)

First, assume that R is indecomposable. In this case this equivalence relation
is studied in [Ste68], and this analysis (based on a case-by-case verification) shows
that each equivalence class E for ∼ is of one of the following two forms.

(i) E is a single A-orbit, and if α, β ∈ E then α+ β is not a root.
(ii) E is of the form {α, a ·α, α+ a ·α} for some a ∈ A and α ∈ R; in this case,
{α, a · α} is an A-orbit, and α+ a · α is fixed by A.

In more detail, if the image of A in the automorphism group of the Dynkin diagram
of R is a cyclic group, then this statement is [Ste68, Claim (2′) in the proof of
Theorem 8.2]. The only case not covered is that in which R is of type D4, and the
image of A is the full automorphism group (which is the symmetric group S3). In
that case, a direct calculation shows that there are six equivalence classes for ∼,
each of type (i).

As explained in [Ste68], equivalence classes of type (ii) occur if and only if R
is of type A2n and A acts nontrivially. More explicitly, if we choose a labeling
α1, . . . , α2n of the simple roots such that 〈αi, α∨j 〉 = −1 if |j − i| = 1, then the
equivalence classes of type (ii) are the sets of the form

(4.2) {αi + · · ·+ αn, αn+1 + · · ·+ α2n+1−i, αi + · · ·+ α2n+1−i}

with i ∈ {1, . . . , n}.
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Now we consider the general case. Write

(4.3) R =
⊔
i∈I

Ri

for the decomposition of R as a direct sum of its indecomposable constituents.
Given a ∈ A and i ∈ I there exists a unique σ(a)(i) ∈ I such that a(Ri) = Rσ(a)(i),
and this operation defines a group homomorphism

(4.4) σ : A→ SI .

For any i ∈ I, we denote by Vi ⊂ V the subspace spanned by Ri, by Ai = {a ∈ A |
σ(a)(i) = i} the stabilizer of the component Ri, and by ∼i the equivalence relation
defined as above for the action of Ai on the root system Ri.

Lemma 4.1. If α, β ∈ R+, we have α ∼ β if and only if there exist a ∈ A and
i ∈ I such that a · α and β both belong to Ri, and moreover (a · α) ∼i β.

Proof. Let us write i ↔ j if i and j belong to the same orbit of the action of A
on I via σ. In this case, fix an element ai,j ∈ A such that ai,j(Ri) = Rj . Then if
α ∈ Ri, the projection of

∑
a∈A a · α to Vj along the decomposition V =

⊕
k Vk is

ai,j · (
∑
a∈Ai

a · α) if i↔ j, and zero otherwise. The claim easily follows. �

This lemma and the analysis of the indecomposable case above show that, in
general, each equivalence class E for ∼ is of one of the following two forms.

(i′) E is a single A-orbit, and if α, β ∈ A then α+ β is not a root.
(ii′) R contains an indecomposable constituent R′ of type A2n whose stabilizer

A′ acts nontrivially on this constituent, and

E =
⊔

a∈A/A′
a · E′

where E′ is a subset of the form (4.2) in the given indecomposable con-
stituent of R.

We will say that a positive root β is special if it belongs to an equivalence class
E of type (ii′) and is a sum of two roots which belong to E. In other words, if
E is an equivalence class of type (ii′) and E′ is as above, then E′ is of the form
{α, a · α, α+ a · α} for some α ∈ R′ and a ∈ A′; the special roots in E are those of
the form b · (α+ a · α) for some b ∈ A. In this situation, E is the union of exactly
two A-orbits, one consisting of special roots, and the other of nonspecial roots.

Remark 4.2. Note that each equivalence class E for ∼ is “closed under positive
combinations” in the following sense: if α, β ∈ E are distinct and i, j ∈ Z≥1 are
such that iα + jβ ∈ R, then in fact iα + jβ ∈ E. If E is of type (ii′), then this
claim is clear from the explicit description above. If E is of type (i′), we use the
fact that if α, β are positive roots such that α+β /∈ R, then there are no i, j ∈ Z≥1

and such that iα + jβ ∈ R. (In fact, since neither α + β nor α − β are roots
we have 〈β, α∨〉=0 by [Bou02, Chap. VI, Corollary to Theorem 1]. If we assume
for a contradiction that there exists a root of the form iα + jβ with i, j ≥ 1, and
choose these coefficients such that i+j is minimal, then since 〈iα+jβ, α∨〉 = 2i > 0,
by [Bou02, Chap. VI, Corollary to Theorem 1] (i−1)α+jβ is a root. By minimality
we must have i = 1, so that jβ is a root. Since R is reduced this forces j = 1,
which provides a contradiction since α+ β is not a root.)

In §5.3 we will use the following fact.
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Lemma 4.3. Let (α1, . . . , αr) be representatives for the equivalence classes for
∼, and let (ᾱ1, . . . , ᾱr) be their images in the coinvariants VA. Then each ᾱi is
nonzero, and the lines (R · ᾱ1, . . . ,R · ᾱr) in VE are pairwise distinct.

Proof. The proof can be easily reduced to the case R is irreducible. In this case,
the claim can be checked case-by-case by inspecting the description of roots in each
type (see e.g. [Bou02]), and the various possibilities for the action of A. �

4.2. Chevalley–Steinberg systems. From now on in this section we fix a pinned
reductive group scheme (3.1) over S as in §3.1 (without any special assumption on
S), endowed with an action of a group A by pinned automorphisms (see §3.2).
Below we will need to consider Chevalley systems which afford some compatibility
property with our given action of A. (Such systems are called Chevalley–Steinberg
systems in [Lan96, Definition 4.3] or [Lou19, Définition 2.1.4].) The statement of
this property involves the equivalence relation ∼ on R+ from §4.1 for the given
action of A on R, seen as a root system in the subspace it generates in R⊗Z M .

Proposition 4.4. There exists a Chevalley system (Xα : α ∈ R) such that

(4.5) a ·Xβ = Xa·β

for all a ∈ A and all nonspecial β ∈ R+.

Proof. First, assume that R is indecomposable. In this case, the statement is
essentially proved in [Lan96, Proposition 4.4]. Let us give a brief outline of the
argument, for the reader’s convenience. The basic observation is that making sign
changes in a Chevalley system on vectors associated with nonsimple positive roots
(and the corresponding changes for the opposite roots) produces a new Chevalley
system.

We can of course replace A by its image in Aut(G,T,M,R,∆, X). Since G
is quasi-simple, the group Aut(G,T,M,R,∆, X) is the automorphism group of a
connected Dynkin diagram, and therefore has order 1, 2, or 6 (the last possibility
occurring only in type D4, where the group is S3). The subgroup A thus is cyclic
of order 1, 2, 3, or A ∼= S3. One can then make sign changes on some elements
Xα (α ∈ R+) to ensure that the desired condition holds, by considering the various
orbits A · β of nonspecial roots as follows (see [Lan96, Proposition 4.4] for details).

• If A is cyclic (i.e., of order 1, 2, or 3) and the stabilizer in A of β has odd
order (either 1 or 3), then one can ensure that a ·Xγ = Xa·γ for all a ∈ A
and γ ∈ A · β.
• Assume now that A has order 2 and the stabilizer of β is all of A (so that
A · β = {β}). Denote by a the unique nontrivial element in A. Since β is
not special, it is not of the form γ + a · γ for some γ ∈ R+. Then a brief
calculation using root system combinatorics shows that a ·Xβ = Xβ for any
a ∈ A.
• When A has order 6, the argument in [Lan96, Proposition 4.4] does not seem

to be quite complete. In this case, G has type D4, and all equivalence classes
for ∼ are of type (i). Applying a to each of the equations in Example 3.2
one sees that this Chevalley system satisfies

a ·Xβ = Xa·β for all a ∈ A.

(In fact, it is enough to check this for a belonging to some set of generators
of the group A ∼= S3.)
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Now, let us explain how to treat the general case. Using the construction of §3.5
one can assume that G is a product of quasi-simple simply connected groups. (In
fact, if Gsc is as in §3.5, the root subgroups and the notion of Chevalley system
coincide for Gsc and G.) In this case, associated with the decomposition (4.3) is
the decomposition

G =
∏
i∈I

Gi.

Recall also the action of A on I given by σ, see (4.4), and choose a subset J ⊂ I
of representatives for the A-orbits. For any j ∈ J , we also denote by Aj ⊂ A the

stabilizer of j, and choose representatives aj1, . . . , a
j
r(j) for the quotient A/Aj . We

then have a bijection ⊔
j∈J

Rj × {1, . . . , r(j)}
∼−→ R

given by (α, k) 7→ ajk ·α if α ∈ Rj , which restricts to a bijection between nonspecial
roots on each side. We choose a Chevalley system as in the proposition for each
Gj (j ∈ J), and then set

Xajk·α
= ajk ·Xα

if α ∈ Rj . It is easily checked that this procedure produces a Chevalley system
with the required property. �

Remark 4.5. In Proposition 4.4 we have specified only what happens for nonspecial
roots. In fact, as soon as special roots exist, there does not exist any Chevalley
system which satisfies (4.5) for all a ∈ A and α ∈ R. More precisely, this equality
sometimes fails by a sign when β is special. (It is instructive to work out this failure
in the example of the action of Z/2Z on SL3,Z considered in §2.3.2.). It is possible
to specify these signs explicitly, but this require some choices. Since this will not
be necessary below, we omit the details.

4.3. Twisted SL2-maps. From now on we fix a Chevalley system (Xα : α ∈ R) as
in Proposition 4.4. Our goal in the rest of this section is to explain the construction
of analogues of the maps (3.4) for the group GA. More specifically, these maps will
be attached to equivalence classes for ∼. In case E is of type (i′), it will be given
by a group scheme morphism

ıE : SL2,S → GA.

In case E is of type (ii′), it will be given by a group scheme morphism

ıE : (SL3,S)Z/2Z → GA,

where the action on the left-hand side is that considered in §2.3.2. For orbits of type
(i′) the construction is uniform, but depends on the choice of Chevalley system. For
orbits of type (ii′) the construction is more ad hoc.

4.3.1. Equivalence classes of type (i′). We start with the easier case when E is an
equivalence class of type (i′). (In particular, this class consists of nonspecial roots.)
For any α ∈ E we have a morphism ϕα as in (3.4). Moreover, if a ∈ A and α ∈ E,
since a ·Xα = Xa·α, by uniqueness we have

a ◦ ϕα = ϕa·α

(where by abuse we denote by a the action of a on G). By the comments in Re-
mark 4.2, if α, α′ ∈ E are distinct then no positive combination of α and α′ is a root,
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which implies that Uα and Uα′ commute by the commutation relations [DG11b,
Exp. XXII, Corollaire 5.5.2]. As a consequence, the map

ı′E :=
∏
α∈E

ϕα :
∏
α∈E

SL2,S → G

is a morphism of group schemes, which is moreover A-equivariant where A acts on
the left-hand side by permuting the factors (according to the action on E). Passing
to A-fixed points and using the fact that(∏

α∈E
SL2,S

)A
= SL2,S ,

we obtain the desired morphism ıE .
An important property of this morphism, which will be used below, is the fol-

lowing. The considerations above show that we have a natural closed immersion of
group schemes ∏

α∈E
Uα → G.

(Because the Uα’s appearing here commute with one another, we do not need to
specify an order on E.) The image of this morphism is stable under the action of
A, and will be denoted UE . If we denote by U2,S the subgroup of SL2,S of upper
triangular unipotent matrices, then ıE restricts to an isomorphism

(4.6) U2,S
∼−→ (UE)A.

Moreover, we have

(4.7) ıE

(
a 0
0 a−1

)
=
∏
α∈E

α∨(a).

4.3.2. Equivalence classes of type (ii′). Now, let us fix an equivalence class E of
type (ii′). In this case, we use the considerations of §3.5 to reduce the construction
to the case where G is a product of quasi-simple simply connected groups. Namely,
consider the group Gsc constructed in §3.5. The action of A on G induces an
action on its root datum, which in turn provides an action on the root datum of
Gsc, and finally an action on Gsc by pinned group automorphisms. For this action,
the morphism Gsc → G is A-equivariant, and hence restricts to a group scheme
morphism (Gsc)A → GA. The roots associated with these two group schemes
coincide, as does the equivalence relations on R+ determined by the actions of A
(see §4.1) and the notions of orbits of type (i′) or (ii′). It therefore suffices to
construct our morphism for the group Gsc.

Recall next the decomposition (3.5) and the action of A on I determined by (4.4).
If we decompose I into its orbits for this action:

I =
⊔
j∈J

Ij

and set Gj
sc =

∏
i∈Ij Gsc,i, then each Gj

sc is stable under the action of A, and

moreover by Lemma 2.1(2) we have

(Gsc)A =
∏
j∈J

(Gj
sc)A.

We can (and will) therefore assume that the action of A on I is transitive.
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In this case, all constituents Ri have the same type. Since we are interested in
equivalence classes of type (ii′), it suffices to consider the case when this type is
A2n for some n ≥ 1. We can also assume that the stabilizer in A of each component
acts nontrivially on this component. For any i ∈ I, the intersection ∆ ∩ Ri is
a basis of Ri. Let us fix an identification of Ri and its basis ∆i with the root
system of SL2n+1 and its basis from Example 3.1. (There exist exactly two such
identifications; we choose one of them.) This determines an identification of pinned
reductive group schemes

Gsc,i = SL2n+1,S

(where the pinning on the right-hand side is as in Example 3.1). Taking these
identifications together we obtain an identification

Gsc =
(
SL2n+1,S

)×SI
.

The group of pinned automorphisms of (SL2n+1,S)×SI is (Z/2Z)×I o SI ; our
given action of A is therefore determined by a “lift” of (4.4) to a group homomor-
phism σ̃ : A → (Z/2Z)×I o SI . There exists k ∈ {1, . . . , n} such that our given
equivalence class E of type (ii′) is the union of the subsets

{αk + · · ·+ αn, αn+1 + · · ·+ α2n+1−k, αk + · · ·+ α2n+1−k}

in the root system of each copy of SL2n+1,S . One can then consider the morphism

(fk,n)×SI : (SL3,S)×SI → (SL2n+1,S)×SI ,

see (2.5). This morphism is equivariant with respect to the actions of (Z/2Z)×IoSI

on each side, so it induces a morphism(
(SL3,S)×SI

)(Z/2Z)×IoSI →
(
(SL2n+1,S)×SI

)(Z/2Z)×IoSI

between fixed points. Here the left-hand side identifies with (SL3,S)Z/2Z, and our
given morphism σ̃ determines a morphism(

(SL2n+1,S)×SI
)(Z/2Z)×IoSI → (Gsc)A.

This construction therefore provides the desired morphism

ıE : (SL3,S)Z/2Z → (Gsc)A.

Remark 4.6. In the construction above we have chosen an identification of each
Ri with the root system of type A2n. Changing these identifications amounts to

composing the identification Gsc =
(
SL2n+1,S

)×SI
with the action of a certain

element of (Z/2Z)×I . This change will lead to a different morphism (SL3,S)×SI →
Gsc, but it will not affect its restriction (SL3,S)Z/2Z → (Gsc)A. In other words, the
morphism ıE does not depend on these choices.

The morphism we have constructed here again has a property similar to that
explained at the end of §4.3.1. Namely, choosing any order on E we can consider
the product morphism ∏

α∈E
Uα → G.

This morphism is a closed immersion, and its image is a subgroup scheme which
does not depend on the choice of order; it will be denoted UE . In particular, this
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image is stable under the action of A. Recall the subgroup scheme U3,S of SL3,S

considered in §2.3.2. Then the morphism ıE restricts to an isomorphism

(4.8) (U3,S)Z/2Z
∼−→ (UE)A.

To check this claim, one can e.g. use the following fact.

Lemma 4.7. Let H be a pinned reductive group scheme over S which is a quasi-
simple simply connected group, and assume given a finite set I and an action of a
group A on H×SI by pinned automorphisms. As in (4.4) this determines an action
of A on I. If this action is transitive, then, for any i ∈ I, projection onto the
component parametrized by i induces an isomorphism of group schemes(

H×SI
)A ∼−→ HAi

where Ai is the stabilizer of i in A.

Proof. The inverse isomorphism is constructed as follows. By assumption the action
of A on I induces a bijection A/Ai

∼−→ I. Choose, for any j ∈ I, an element aj ∈ A
such that σ(aj)(i) = j. Then the action of aj on H×SI identifies the copy of H
indexed by i with that indexed by j. It is easily checked that the assignment

h 7→
∏
j

(aj · h)

induces a morphism HAi →
(
H×SI

)A
which is inverse to the morphism of the

statement. �

Finally, we have a counterpart of (4.7):

(4.9) ıE

a 0 0
0 1 0
0 0 a−1

 =
∏
α∈E

α special

α∨(a).

5. Flatness and smoothness

5.1. Statement. We continue with our pinned reductive group scheme (3.1) over
S, and our group A which acts on G by pinned automorphisms. Let MA denote
the coinvariants for the induced action of A on M (see §2.2). Recall also that A
acts on R, and permutes its indecomposable components.

The following statement is the main result of this paper.

Theorem 5.1. (1) The group scheme GA is flat over S.
(2) The group scheme GA has geometrically connected fibers over S iff either

MA is torsion-free or S has exactly one residual characteristic ` > 0 and
the torsion subgroup of MA is an `-group.

(3) The group scheme GA is smooth over S iff the following conditions hold:
• the order of the torsion subgroup of MA is coprime to all residual

characteristics of S;
• if R has an indecomposable component of type A2n for some n ≥ 1

whose stabilizer in A acts nontrivially on this component, then 2 is
not a residual characteristic of S.

(4) If S is the spectrum of a mixed characteristic DVR and MA is torsion-
free, then GA is a quasi-reductive S-group scheme in the sense of Prasad–
Yu [PY06].
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5.2. Fixed points in the big cell. The main step in our proof of Theorem 5.1 will
be the study of the fixed points of A on the “big cell” in G. Recall the subgroups
U, U− introduced in §3.3. For any α ∈ R and a ∈ A, the action of a on G induces
an isomorphism

Uα
∼−→ Ua·α.

By the independence of U on the choice of order on R+, this implies that this
subgroup is stable under the action of A. Similar comments apply to U−.

By [DG11b, Exp. XXII, Proposition 4.1.2], the multiplication morphism

U− ×S T×S U→ G

is an open immersion. Its image (called the big cell) is denoted C ⊂ G. This open
subscheme is stable under the action of A, and using Lemma 2.1(2) we see that
multiplication induces an isomorphism

(5.1) (U−)A ×S TA ×S UA ∼−→ CA.

Moreover, by Lemma 2.1(1) the morphism CA → GA induced by the open immer-
sion C→ G is itself an open immersion.

Lemma 5.2. (1) The scheme TA is flat over S. It is smooth over S iff the
order of the torsion subgroup of MA is prime to all residual characteristics
of S.

(2) The scheme UA is flat over S. It is smooth over S iff it satisfies the
following condition: if R has an indecomposable component of type A2n for
some n ≥ 1 whose stabilizer in A acts nontrivially on this component, then
2 is invertible on S.

(3) The scheme CA is flat over S. It is smooth over S iff the conditions in
Theorem 5.1(3) hold.

Proof. (1) This follows from the discussion in §2.2.
(2) Consider the equivalence relation ∼ on the set of positive roots R+ that

was defined in §4.1 (for the given action of A on R). In §4.3, we have associated
to each equivalence class E for ∼ a subgroup scheme UE ⊂ G. After choosing a
numbering E1, . . . , En of these equivalence classes, the product morphism induces
an isomorphism

UE1
×S · · · ×S UEn

∼−→ U.

Using Lemma 2.1(1) we deduce that multiplication induces an isomorphism

(5.2) (UE1)A ×S · · · ×S (UEn)A
∼−→ UA.

Here, the factors are described in (4.6) or (4.8).
This shows that UA is a product of factors which are either isomorphic to Ga,S

or to (U3,S)Z/2Z; moreover, this second case occurs iff R has an indecomposable
component of type A2n for some n ≥ 1 whose stabilizer in A acts nontrivially on
this factor. Each of these factors is flat over S (see §2.3.2 for the second case)
so UA is flat. If 2 is not a residual characteristic of S or if no factor (U3,S)Z/2Z

occurs then all of these factors are smooth over S (see again §2.3.2), so that UA is
also smooth over S. On the other hand, if 2 is a residual characteristic of S and
a factor (U3,S)Z/2Z occurs, then as in §2.3.2 one sees that there exists s ∈ S such
that Spec(κ(s))×S UA is not reduced, so that UA is not smooth over S.

(3) The conclusion of (2) of course also applies to (U−)A. Using (5.1) we deduce
that CA is flat over S. If the conditions of Theorem 5.1(3) hold, then by (1) and (2)
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each of TA, UA and (U−)A is smooth over S, so that CA is smooth over S by (5.1).
Conversely, if one of these conditions fails, then as in (2) one sees that there exists
s ∈ S such that Spec(κ(s)) ×S CA is not reduced, so that CA is not smooth over
S. �

Example 5.3. If G is semisimple and either simply connected or of adjoint type,
then MA is free since M admits a basis permuted by A. (In the first case one can
take the basis of fundamental weights, and in the second case the basis of simple
roots.) Hence in these cases TA is a torus.

5.3. The case of algebraically closed fields. In this subsection we assume that
S = Spec(k) is the spectrum of an algebraically closed field k. Below we prove
in particular in this case that the reduced neutral component (GA)◦red is a split
reductive group. As explained in the introduction this case was already treated by
Adler–Lansky and Haines, but for the reader’s convenience we give a self-contained
argument. We simultaneously establish a number of facts about the structure
theory of this reductive group, listed in Proposition 5.4 below, which will be useful
for the further study in Section 6.

In this statement, we denote by N the normalizer of T in G, and by W the Weyl
group of (G,T), i.e. the quotient N/T. (As explained in [DG70b, Exp. XII, §2],
N is a smooth subgroup scheme of G, and W is a finite constant group scheme,
see also [Con14, Proposition 5.1.6]. For simplicity, we will not distinguish W from
W(k).) Since A stabilizes T, it also stabilizes N, and this action induces an action
on W.

Proposition 5.4. The following assertions hold:

(1) (GA)◦red is a connected reductive group;
(2) (TA)◦red ⊂ (GA)◦red is a maximal torus, and (BA)◦red is a Borel subgroup;
(3) the positive roots of ((GA)◦red, (T

A)◦red) determined by (BA)◦red are in nat-
ural bijection with the equivalence classes for the equivalence relation ∼ on
R+ (see (4.1));

(4) for any equivalence class E, seen as a positive root for ((GA)◦red, (T
A)◦red),

the corresponding root subgroup of (GA)◦red is ((UE)A)red;
(5) the natural maps provide bijections

NA(k)/TA(k) ∼= WA ∼= BA(k)\GA(k)/BA(k);

(6) the open subscheme CA ⊂ GA is dense;
(7) the embedding TA → GA induces an isomorphism between the groups of

connected components of these group schemes;
(8) the Weyl group of (GA)◦red with respect to (TA)◦red identifies canonically

with WA.

Proof. Let K be the unipotent radical of (GA)◦red, and set R := (GA)◦red/K which
is a connected reductive group over k. Let q : (GA)◦red → R be the quotient map.

Step 1. The restriction of q to a map (TA)◦red → R is a closed immersion.
In particular, R contains a torus of dimension dim(TA). This follows from the
observation that the subgroup (TA)◦red = Dk(MA/(MA)tor) is a torus. It therefore
has trivial intersection with the unipotent group K.

Step 2. For each equivalence class E, there is a map

ϕE : SL2,k → GA
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whose restriction to the subgroup U2,k ⊂ SL2,k of upper triangular unipotent matri-
ces induces an isomorphism

U2,k
∼−→ (UE)Ared.

If E is of type (i′), set ϕE = ıE . We have seen in (4.6) that this map behaves as
desired on U2,k. (In this case, the scheme (UE)A is already reduced.) If E is of
type (ii′), consider the sequences of maps

U2,k ↪→ SL2,k � PGL2,k
(2.3)−−−→ (SL3,k)Z/2Z

ıE−→ GA if char(k) 6= 2;

U2,k ↪→ SL2,k
(2.4)−−−→ (SL3,k)Z/2Z

ıE−→ GA if char(k) = 2.

We have seen in (4.8) that ıE restricts to an isomorphism (U3,k)Z/2Z
∼−→ (UE)A, so

the claim follows from the observation that either (2.3) or (2.4) (depending on the

characteristic of k) induces an isomorphism U2,k
∼−→ (U3,k)

Z/2Z
red . (Recall that the

scheme (U3,k)Z/2Z is reduced if and only if char(k) 6= 2.)
Step 3. The map γ∨E : Gm,k → GA given by

γ∨E(a) = ϕE

(
a 0
0 a−1

)
is a nontrivial cocharacter of (TA)◦red. The fact that γ∨E factors through (TA)◦red

follows from the fact that Gm,k is reduced and connected. To check that γ∨E is
nonzero, we simply remark that in M∨, by (4.7) and (4.9) (combined with (2.3)
and (2.4) in the latter case), we have

γ∨E =


∑
α∈E α

∨ if E is of type (i′),

2
∑
α∈E, α special α

∨ if E is of type (ii′) and char(k) 6= 2,∑
α∈E, α special α

∨ if E is of type (ii′) and char(k) = 2.

For future reference, we rewrite this formula as follows, using the observation that
in type (ii′), the sum of all nonspecial roots is equal to the sum of all special roots:

(5.3) γ∨E =


∑
α∈E α

∨ if E is of type (i′),

or if E is of type (ii′) and char(k) 6= 2,∑
α∈E, α special α

∨ if E is of type (ii′) and char(k) = 2.

Step 4. For each equivalence class E, let ᾱE be the weight by which the torus
(TA)◦red acts on Lie((UE)Ared). Then each ᾱE is nonzero. Since Lie((UE)Ared) is
a subspace of Lie(UE), it is enough to check that (TA)◦red has no nonzero fixed
vectors in Lie(UE). Consider the cocharacter γ∨E from Step 3. The claim follows
from the fact that 〈α, γ∨E〉 > 0 for all α ∈ E. More precisely, a straightforward
computation (by reducing to the quasi-simple case) shows that

〈α, γ∨E〉 = 2 for all α ∈ E if E is of type (i′),

〈α, γ∨E〉 =


1 if α ∈ E is nonspecial and char(k) = 2,

2 if α ∈ E is nonspecial and char(k) 6= 2,

2 if α ∈ E is special and char(k) = 2,

4 if α ∈ E is special and char(k) 6= 2,

and E is of type (ii′).

Step 5. For each equivalence class E for ∼, the morphism (UE)Ared → R obtained
by restricting q is finite, with kernel the r-th infinitesimal neighborhood of the unit
for some r ≥ 1. The kernel of the morphism under consideration is a subgroup
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scheme of (UE)Ared
∼= Ga,k, which is stable under the action of (TA)◦red by conjuga-

tion; if it is not an infinitesimal neighborhood of the unit then it is all of (UE)Ared.
By Step 2, it follows that the composition

U2,k ↪→ SL2,k
ϕE−−→ (TA)◦red ⊂ (GA)◦red → R

is trivial. The kernel of SL2,k → R is therefore a normal subgroup scheme of
SL2,k that contains U2,k. The only such subgroup is all of SL2,k: so the map
SL2,k → R is trivial. But Steps 1 and 3 together imply that this map is nontrivial

on {( a 0
0 a−1 )} ⊂ SL2,k, a contradiction.

Step 6. If E1 and E2 are distinct equivalence classes, then ᾱE1
and ᾱE2

are
linearly independent. Consider the morphism Gsc → G as in §3.5, and the maximal
torus Tsc of Gsc. As explained in Example 5.3, (Tsc)A is reduced and connected.
The morphism Gsc → G induces a morphism (Tsc)A → (TA)◦red, hence a morphism
relating characters of these tori. Explicitly, we have

(Tsc)A = Dk((Msc)A), (TA)◦red = Dk(MA/(MA)tor)

where Msc is as in §3.5, i.e. Msc is the lattice of weights of the root system R, and
this morphism is given by the obvious morphism

MA/(MA)tor → (Msc)A.

The desired claim therefore follows from Lemma 4.3, using the embedding (Msc)A →
R⊗Z (Msc)A = (R⊗Z Msc)A.

Step 7. Proof of parts (1), (2), (3), and (4). All four of these assertions will
follow from the fact that q : (GA)◦red → R is an isomorphism. To prove this fact,
it is enough to show the equality

dim((GA)◦red) = dim(R).

It is obvious that dim((GA)◦red) ≥ dim(R); we need only prove the opposite in-
equality. Let N be the number of equivalence classes for ∼. The analysis of CA

in §5.2 shows that dim((GA)◦red) = dim((TA)◦red) + 2N . On the other hand, using
Steps 1, 5, and 6 and considering the action of (TA)◦red on the Lie algebra of R we
see that dim(R) ≥ dim((TA)◦red) + 2N , so we are done.

Step 8. The natural morphism

(5.4) NA(k)→WA

is surjective. By [Hée91, Corollaire 3.5], WA admits a system of Coxeter generators
in bijection with orbits of A in ∆. For any such orbit the construction of §4.3
provides a twisted SL2-map with domain either SL2,k or (SL3,k)Z/2Z. In the first,

resp. second, case, the image of the matrix
(

0 1
−1 0

)
, resp.

(
0 0 1
0 −1 0
1 0 0

)
, provides a

representative of the corresponding reflection in WA.
Step 9. Study of the Bruhat decomposition. Recall the Bruhat decomposition

G =
⊔
w∈W

UwB =
⊔
w∈W

BwB,

where each UwB = BwB is a locally closed subscheme of G. For any a ∈ A, the
action of a induces an isomorphism

UwB
∼−→ U(a · w)B = B(a · w)B;

it follows that GA ∩ (UwB) = GA ∩ (BwB) is empty unless w ∈ WA, so that
we have a decomposition GA =

⊔
w∈WA(UwB)A. By surjectivity of (5.4) each
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w ∈ WA admits a lift ẇ ∈ NA(k). Using such a lift and the usual description
of Bruhat cells (see e.g. [Jan03, Equation (1) in §II.13.2]) we deduce that for any
w ∈WA we have

(UwB)A = UAẇBA = BAẇBA.

We conclude that there is a decomposition

(5.5) GA =
⊔

w∈WA

UAẇBA =
⊔

w∈WA

BAẇBA.

Let us now note that for w ∈WA and E an equivalence class for∼, we either have
w(E) ⊂ R+ or w(E) ⊂ −R+. In the latter case, we write w(E) < 0. Using (5.2),
we obtain

(5.6) (UwB)A =

 ∏
E equiv. class for ∼

w−1(E)<0

(UE)A

 ẇBA.

It then follows that

dim(UAẇBA) = #{E ∈ (R+/ ∼) | w−1(E) < 0}+ dim(BA).

Step 10. Proof of (5). The first bijection follows from Step 8 and the observa-
tion that the kernel of (5.4) is T(k) ∩NA(k) = TA(k); the second bijection is a
restatement of (5.5).

Step 11. Proof of (6). Let w0 ∈W be the longest element. Since the action of A
preserves lengths, we have w0 ∈WA. The subscheme BAẇ0B

A is the unique term
of maximal dimension in (5.5). Since all irreducible components of GA have the
same dimension (because it is a group scheme), we deduce that BAẇ0B

A is dense
in GA. Finally, comparing (5.6) (for ẇ0) with (5.1), we obtain an identification
BAẇ0B

A ∼= CA.
Step 12. Proof of (7). By Step 11, the embedding CA → GA induces a bijec-

tion between sets of connected components. In view of (5.1), and since (UA)red

and ((U−)A)red are isomorphic to affine spaces, the same property holds for the
embedding

TA → CA,

which proves (7).
Step 13. Proof of (8). Thanks to Step 12, Example 5.3 shows that GA is con-

nected if G is semisimple and simply connected. The study of the morphism (5.4)
above therefore shows that this surjection admits a (set theoretic) section which
takes values in NA(k) ∩ (GA)◦(k). From now on, we assume that the lifts ẇ (for
w ∈ WA) are chosen in (GA)◦red(k) = (GA)◦(k). Let us also fix some representa-
tives t1, . . . , tr ∈ TA(k) for the connected components of TA. Then we have

NA =
⊔

w∈WA

i∈{1,...,r}

ẇti(T
A)◦,

and hence
(NA) ∩ (GA)◦red =

⊔
w∈WA

ẇ(TA)◦red.

On the other hand, there exists a natural closed immersion

(NA) ∩ (GA)◦red → N(GA)◦red
((TA)◦red),
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and we deduce an embedding

(5.7) WA ↪→ N(GA)◦red
((TA)◦red)/(TA)◦red.

For any w ∈WA we similarly have

(BAẇBA) ∩ (GA)◦red = (BA)◦redẇ(BA)◦red,

hence
(GA)◦red =

⊔
w∈WA

(BA)◦redẇ(BA)◦red,

and finally a bijection

WA ∼−→ (BA)◦red(k)\(GA)◦red(k)/(BA)◦red(k).

Using the Bruhat decomposition for the reductive group (GA)◦red, we deduce that
the morphism (5.7) is an isomorphism, which finally proves (8). �

Remark 5.5. Proposition 5.4(3) says that the positive roots for (GA)◦red are in
bijection with the set of equivalence classes for ∼, and in Step 5 of the proof, we
introduced the notation ᾱE for the root corresponding to an equivalence class E.
This is a character of (TA)◦red, or, equivalently, an element of MA/(MA)tor. It is
immediate from the definition of UE that ᾱE is the image of some element α ∈ E
under the projection M → MA/(MA)tor (and this observation was adequate for
Step 6 of the proof).

But of which element is ᾱE the image? If E is of type (i′), then it consists of
a single A-orbit, and its image in MA/(MA)tor is a singleton. But if E is of type
(ii′), its image in MA/(MA)tor consists of two elements: one is the image of the
nonspecial roots, and the other is the image of the special roots. The latter is twice
the former. We claim that ᾱE is the image in MA/(MA)tor of

any root in E if E is of type (i′),

any nonspecial root in E if E is of type (ii′) and char(k) 6= 2,

any special root in E if E is of type (ii′) and char(k) = 2.

To justify the latter two cases, we use (4.8) to reduce the problem to the setting of
G = SL3,k. In this setting, the claim follows from (2.2).

With the formula for ᾱE in hand, we read off from Step 5 of the proof that

〈ᾱE , γ∨E〉 = 2

for any E. Since γ∨E comes from a homomorphism SL2,k → GA as in Step 2, we
conclude that γ∨E is in fact the coroot for (GA)◦red corresponding to ᾱE .

Remark 5.6. Let us explain an argument proving the surjectivity of (5.4) which

does not rely on the results of [Hée91]. We denote by R(A), resp. R
(A)
+ , the image

of R, resp. R+, in MA. This subset will be studied more thoroughly in §6.1 below;
for now, we note that Steps 5 and 6 in the preceding proof show that the natural
map R → R(A) induces a bijection R/A

∼−→ R(A) and that, by parts (3)–(4)
of the proposition, the root system R(A)′ of (GA)◦red is obtained from R(A) by

discarding one element from each pair of the form {α, 2α}. In particular, R
(A)
+

defines a positive system R
(A)′
+ in R(A)′. Since A-invariant elements of W act

compatibly on R and on MA, WA acts on R(A). If w ∈ WA then w(R
(A)′
+ ) is a

positive system for R(A)′; hence there exists n ∈ N(GA)◦red
((TA)◦red)(k) such that
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w(R
(A)′
+ ) = n(R

(A)′
+ ). The argument in the proof of Lemma 6.3(2) below shows

that N(GA)◦red
((TA)◦red)(k) ⊂ NA(k). In particular n defines an element w′ in WA

such that w−1w′ induces a based automorphism of R. Hence w′ = w, which proves
the desired claim.

5.4. Proof of Theorem 5.1. We can finally explain the proof of Theorem 5.1.
For part (1), we will study the multiplication morphism

f : CA ×S CA → GA,

along with its base changes to points or geometric points of S.
First, let s : Spec(k)→ S be a geometric point. By Proposition 5.4(6) the open

subscheme CA
s ⊂ GA

s is dense, and hence fs is surjective. Since any point of a
scheme is the image of a geometric point, it follows that f is surjective.

Next, let s ∈ S, and consider the base change fs : CA
s ×κ(s) CA

s → GA
s . This

map factors as the composition

CA
s ×κ(s) CA

s
inclusion−−−−−→ GA

s ×κ(s) GA
s

(g,h)7→(g,gh)−−−−−−−−→
∼

GA
s ×κ(s) GA

s

projection to 2nd factor−−−−−−−−−−−−−−−→ GA
s .

The first map is an open immersion (by Lemma 2.1(1)); the second is an isomor-
phism; and the third is flat, since GA

s is (obviously) flat over Spec(κ(s)). We
conclude that fs is flat.

The two preceding paragraphs and Lemma 5.2(3) show that f satisfies the as-
sumptions of the fiberwise criterion for flatness (see [Sta22, Tag 039E]). This crite-
rion implies that GA is flat over S, i.e. that (1) holds.

Part (2) follows from Proposition 5.4(7) and the comments following Lemma 2.2.
Regarding part (3), if GA is smooth then so is the open subscheme CA, so that

the conditions in the statement must be satisfied by Lemma 5.2(3). Conversely, if
these conditions are satisfied then CA is smooth. We deduce that for any s ∈ S
the fiber GA

s admits a smooth open subscheme containing the unit, and is therefore
smooth by [DG70a, II, §5, Théorème 2.1]. Since GA is known to be flat over S,
by [Sta22, Tag 01V8] this implies that GA is smooth, and finishes the proof.

Finally, regarding (4), we have seen that GA is flat over S in (1). It is clearly
affine, and its generic fiber is smooth by (3) and geometrically connected (and hence
connected) by (2). The identity connected component of its geometric special fiber
is reductive by Proposition 5.4(1), which finishes the verification of the conditions
of the definition in [PY06]. (These conditions include an extra condition on com-
parison of dimensions, but this condition is automatic when the group scheme is of
finite type, which is the case here, as explained in the discussion following [PY06,
Theorem 1.2].)

Remark 5.7. Consider the morphism f used in the proof of Theorem 5.1(1). The
fiberwise criterion for flatness also implies that f is flat. Since it is also surjective,
it is faithfully flat. It is of finite type, hence an fppf cover, and in particular an
epimorphism.

Corollary 5.8. Assume G and A satisfy the conditions of Theorem 5.1(3). Let
(GA)◦ ⊂ GA be the “fiberwise identity component,” i.e., the open subgroup scheme
characterized by the following property:

https://stacks.math.columbia.edu/tag/039E
https://stacks.math.columbia.edu/tag/01V8
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For each point s ∈ S, (GA)◦s is the connected component of the unit
in the smooth group scheme (GA)s over κ(s).

Then (GA)◦ is a split reductive group scheme over S. In particular, if G is semisim-
ple and either simply connected or of adjoint type, then GA is a split reductive group
scheme over S.

For the existence of the subgroup scheme (GA)◦, see [DG11a, Exp. VIB, §3].

Proof. Let N be the order of the torsion subgroup of MA, multiplied by 2 if R
has an indecomposable constituent of type A2n with a nontrivial action of its sta-
bilizer in A. The conditions in Theorem 5.1(3) imply that S admits a map to
Spec(Z[ 1

N ]). Then G (together with the action of A) can be obtained by base

change from a pinned reductive group scheme over Spec(Z[ 1
N ]); by compatibility

of the operation (−)◦ with base change (see [DG11a, Exp. VIB, Proposition 3.3]),
this reduces the proof to the case S = Spec(Z[ 1

N ]). Now (GA)◦ is smooth, as an

open subscheme of the smooth scheme GA. The open immersion (GA)◦ → GA

is quasi-compact because GA is noetherian (see [Sta22, Tag 01OX]), so (GA)◦ is
quasi-affine over Spec(Z[ 1

N ]) by [Sta22, Tag 02JR] and [Sta22, Tag 01SN]. In view

of [DG11a, Exp. VIB, Proposition 12.9], it follows that (GA)◦ is affine. Finally,
each geometric fiber of (GA)◦ is a connected reductive group, so (GA)◦ is a re-
ductive group scheme. The subgroup (TA)◦ is a split maximal torus of (GA)◦ by
Proposition 5.4(2).

For the last assertion, if G is semisimple and either simply connected or of adjoint
type, Example 5.3 and Proposition 5.4(7) imply that every geometric fiber of GA

is connected, so (GA)◦ = GA. �

Example 5.9. Let us come back to the example considered in §2.3.1, with the pinning
of Example 3.1. (With this choice of pinning, it is easily seen that Z/2Z acts by
pinned automorphisms.)

(1) First, assume that n = 1, i.e. G = SL3,Z. By Corollary 5.8,

Spec(Z[ 1
2 ])×Spec(Z) (SL3,Z)Z/2Z

is a reductive group scheme over Spec(Z[ 1
2 ]). In fact, considering the root

data (see §6.1 below) one sees that (2.3) is an isomorphism. On the other
hand, Spec(F2)×Spec(Z) (SL3,Z)Z/2Z is not reduced, and (2.4) is an isomor-
phism.

(2) Now, consider the case n ∈ Z≥2. Then GA is a flat and geometrically
connected group scheme over Z, the restriction

Spec(Z[ 1
2 ])×Spec(Z) (SL2n+1,Z)Z/2Z

is isomorphic to SO2n+1,Z[ 1
2 ], but Spec(F2)×Spec(Z) (SL2n+1,Z)Z/2Z is nonre-

duced. The associated reduced group scheme is simple and simply con-
nected of type Cn, i.e. isomorphic to Sp2n,F2

. In particular, the base change
of G to Z2 is a quasi-reductive Z2-group scheme in the sense of Prasad–
Yu [PY06] which is nonreductive.

5.5. The case of general fields. For completeness, we explain in this subsection
how to generalize the results of §5.3 to more general base fields. We therefore assume
that S = Spec(k) for some field k, which we do not assume to be algebraically

https://stacks.math.columbia.edu/tag/01OX
https://stacks.math.columbia.edu/tag/02JR
https://stacks.math.columbia.edu/tag/01SN
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closed. We choose an algebraic closure of k, which we denote by k. For any scheme
X over k, we set Xk := k⊗k X. With this notation, by (2.1) we have

(GA)k = (Gk)A;

this group scheme will be denoted GA
k .

Proposition 5.10. (1) The reduced subscheme (GA)red is geometrically re-
duced; as a consequence it is a subgroup scheme of GA, and we have
(GA)red,k = (GA

k )red.

(2) We have ((GA)◦red)k = (GA
k )◦red, and (GA)◦red is a split reductive group over

k.

Proof. (1) Consider once again the open subscheme CA ⊂ GA, and the decompo-
sitions (5.1) and (5.2). For any equivalence class E in R+ we have the subgroup
((UE)A)red which is isomorphic to Ga,k (as in Step 2 of the proof of Proposition 5.4);
in particular (UA)red is an affine space over k. Similarly ((U−)A)red is an affine
space over k. We deduce that (CA)red is the product of (TA)red and an affine space;
in particular it is geometrically reduced.

Recall now the morphism

f : CA ×CA → GA

from the proof of Theorem 5.1. Since f is faithfully flat it induces an injective
morphism O(GA) ↪→ O(CA ×CA), hence an embedding

O((GA)red) ↪→ O((CA ×CA)red).

Here, since (CA)red is geometrically reduced we have (CA × CA)red = (CA)red ×
(CA)red, and this scheme is also geometrically reduced. Hence (GA)red is geomet-
rically reduced. The other statements in (1) are immediate consequences.

(2) Since the formation of the neutral component commutes with field extensions
(as follows from [Sta22, Tag 04KV]) we have

((GA)◦red)k = ((GA)red,k)◦,

and by (1) the right-hand side coincides with (GA
k )◦red, which proves the desired

equality. Since the latter group is connected and reductive by Proposition 5.4(1),
we deduce that (GA)◦red is a reductive group over k. The maximal torus (TA)◦red =
Dk(MA/(MA)tor) is split, hence (GA)◦red is split. �

Once Proposition 5.10 is established, the other structural properties of Propo-
sition 5.4 follow for general base fields. In particular, here again the connected
components of GA are in bijection with those of TA; some of these connected
components might therefore not be geometrically connected.

6. Complements

6.1. Root data for fixed points. In this subsection we discuss the notion of roots
and coroots for the fixed point group schemes GA. We will give a description that
only depends on the following data: a root datum

Φ = (M,R,M∨,R∨),

https://stacks.math.columbia.edu/tag/04KV
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a basis ∆ ⊂ R, and an action of a group A on Φ preserving ∆. In this setting we

will denote by WΦ the Weyl group of Φ, and by R(A), resp. R
(A)
+ , resp. ∆(A), the

image of R, resp. R+, resp. ∆, along the quotient map

M →MA.

Considering a pinned reductive group scheme with root datum (M,R,M∨,R∨) and
basis ∆ over an algebraically closed field, Steps 5–6 in the proof of Proposition 5.4
(and the fact that K is trivial) show that the natural map

R→ R(A)

induces a bijection R/A
∼−→ R(A). In particular, we have

R(A) = R
(A)
+ t −R(A)

+ .

Recall the equivalence relation ∼ considered in §4.1. If an equivalence class E is
of type (ii′), write it as E = E′ tE′′ with E′ being the set of nonspecial roots, and
E′′ the set of special roots. (Both E′ and E′′ are A-orbits.) Now, we denote by:

• R
(A)
nd,nm,+ ⊂ R

(A)
+ the subset consisting of restrictions of equivalence classes

E of type (i′);

• R
(A)
m,+ ⊂ R

(A)
+ the subset consisting of restrictions of A-orbits of the form

E′ where E = E′ t E′′ is an equivalence class of type (ii′);

• R
(A)
d,+ ⊂ R

(A)
+ the subset consisting of restrictions of A-orbits of the form

E′′ where E = E′ t E′′ is an equivalence class of type (ii′).

We also set

R
(A)
nd,nm = R

(A)
nd,nm,+ t−R

(A)
nd,nm,+, R(A)

m = R
(A)
m,+ t−R

(A)
m,+, R

(A)
d = R

(A)
d,+ t−R

(A)
d,+.

Then we have a partition

R(A) = R
(A)
nd,nm tR(A)

m tR
(A)
d ,

and the assignment γ 7→ 2γ induces a bijection R
(A)
m

∼−→ R
(A)
d . (Here, “m” stands

for “multipliable,” “d” for “divisible,” and “n” for “non”.) We also set

R
(A)
1 = R

(A)
nd,nm tR(A)

m , R
(A)
2 = R

(A)
nd,nm tR

(A)
d .

Finally, we set

∆
(A)
2 = (∆(A) ∩R

(A)
nd,nm) t {2α : α ∈ ∆(A) ∩R(A)

m }.

It turns out that R(A) “extends” to a root datum. For this, one has to define

the set of coroots R(A),∨ via the following formula. Let γ ∈ R
(A)
+ , and let E be the

unique equivalence class containing the A-orbit in R+ corresponding to γ. Then
we set

(6.1) γ∨ =

{∑
α∈E α

∨ if γ ∈ R
(A)
nd,nm tR

(A)
m ;∑

α∈E′′ α
∨ if γ ∈ R

(A)
d .

If γ ∈ −R(A)
+ , we set γ∨ := −(−γ)∨. In both cases, we regard these coroots as

elements in (M∨)A.
If T is a torus with character lattice M (over a connected scheme S), and if we

consider the action on A induced by our given action on M , the set of cocharacters
Gm → TA identifies naturally with (M∨)A, where M∨ is identified with the lattice
of cocharacters Gm → T. Hence, the formulas above determine cocharacters of
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TA. This contrasts with the character lattice MA of TA which may admit a non-
trivial torsion subgroup (MA)tor. The corresponding quotient MA/(MA)tor is the
weight lattice of the maximal subtorus scheme of TA. Steps 5–6 in the proof of
Proposition 5.4 show that the quotient morphism MA → MA/(MA)tor is injective
on R(A), so that this set can (and will) also be regarded as a subset in MA/(MA)tor.

We will denote by R(A),∨, resp. R
(A),∨
1 , resp. R

(A),∨
2 , the image of R(A), resp. R

(A)
1 ,

resp. R
(A)
2 , under the assignment γ 7→ γ∨.

The following proposition is essentially proved in [Hai15, Hai18]; see also [AL19].

Proposition 6.1. (1) The quadruple (MA/(MA)tor,R
(A)
1 , (M∨)A,R

(A),∨
1 ) is a

reduced root datum, with basis ∆(A) and Weyl group (WΦ)A.

(2) The quadruple (MA/(MA)tor,R
(A)
2 , (M∨)A,R

(A),∨
2 ) is a reduced root da-

tum, with basis ∆
(A)
2 and Weyl group (WΦ)A.

(3) The quadruple (MA/(MA)tor,R
(A), (M∨)A,R(A),∨) is a (not necessarily re-

duced) root datum, with basis ∆(A) and Weyl group (WΦ)A.

In the rest of this subsection, we briefly explain how this statement can be re-
covered from the analysis in §5.3. We first consider the first two parts. Assume
that S is the spectrum of an algebraically closed field k, and consider the pinned
reductive group scheme G over S with root datum Φ. By Proposition 5.4 and
Remark 5.5, (GA)◦red is a connected reductive algebraic group, with maximal torus
(TA)◦red (whose lattice of characters identifies with MA/(MA)tor), and its root sys-

tem is R
(A)
1 if char(k) 6= 2, and R

(A)
2 if char(k) = 2. Remark 5.5 also describes its

coroots: they are the cocharacters constructed in Step 3 of the proof of Proposi-
tion 5.4, in (5.3). Note that that formula agrees with (6.1).

In each case it is easily seen that ∆(A) is a basis, and it follows from Proposi-
tion 5.4(8) that the corresponding Weyl group is (WΦ)A.

This justifies the first two cases in Proposition 6.1. The third case follows, using
the standard observation that a union of root systems of types Bn and Cn produces
a nonreduced root system of type BCn.

Remark 6.2. In the setting of Corollary 5.8, from the pinning of G one can obtain a

pinning of (GA)◦, with associated root datum (MA/(MA)tor,R
(A)
1 , (M∨)A,R

(A),∨
1 ).

6.2. Weyl group. In this subsection we prove some results on the interplay be-
tween the maximal torus T, its normalizer N, the Weyl group W, and fixed points.

Let us consider once again a pinned reductive group scheme (3.1) over S, and
our group A which acts on G by pinned automorphisms. As in §5.3 (but now
over an arbitrary base), we denote by N the normalizer of T in G. By [Con14,
Proposition 2.1.2], N is a smooth subgroup scheme of G. Denote by λ the sum of the
positive coroots in R∨; then λ defines a cocharacter Gm,S → T, which is A-invariant
and hence takes values in TA. As explained e.g. in [Con14, Theorem 5.1.13], T
coincides with the centralizer of λ; in particular, T is its own centralizer in G.
The Weyl group W is the quotient sheaf N/T for the fppf topology. By [Con14,
Proposition 5.1.6], W is representable by the constant group scheme (WΦ)S over
S, where WΦ is the Weyl group of the root datum Φ = (M,R,M∨,R∨).

Lemma 6.3. The following properties hold:

(1) the centralizer of TA in G is representable by T; in particular, the central-
izer of TA in GA is representable by the closed subgroup scheme TA;
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(2) the normalizer of TA in G is contained in N; in particular, the normalizer
of TA in GA is representable by the closed subgroup scheme NA;

(3) the quotient sheaf NA/TA is representable by the constant S-group scheme
((WΦ)A)S.

Proof. (1) As explained above, the cocharacter λ takes values in TA; its centralizer
in G (i.e. T) therefore contains the centralizer of TA. We deduce that ZG(TA) = T,
and then that ZGA(TA) = TA.

(2) The normalizer NG(TA) of TA in G must preserve the centralizer ZG(TA) =
T. We deduce an inclusion NG(TA) ⊂ N. Intersecting with GA, it follows that
NGA(TA) ⊂ NA. The opposite inclusion is clear.

(3) The quotient sheaf NA/TA injects into WA = ((WΦ)A)S by definition.
The proof of surjectivity is similarly to the proof of surjectivity of (5.4): either
by [Hée91, Corollaire 3.5] or because WA is the Weyl group of the root datum
(MA/(MA)tor,R

(A), (M∨)A,R(A),∨) (see Lemma 6.1), this group is generated by
the simple reflections associated with equivalence classes in R+ which intersect ∆.
If E is such an equivalence class of type (i′), resp. (ii′), then the corresponding

reflection is the image of ıE
(

0 1
−1 0

)
, resp. ıE

(
0 0 1
0 −1 0
1 0 0

)
. �

6.3. Parabolic and Levi subgroups. Let us consider once again a pinned re-
ductive group scheme (3.1) over S, and our group A which acts on G by pinned
automorphisms. Recall that given an S-scheme X which is affine over S and en-
dowed with an action of a diagonalizable group scheme DS(N), following [May22],
for any submonoid Q ⊂ N we have a closed subscheme XQ ⊂ X called the attrac-
tor scheme associated with Q. (This construction generalizes the classical notion
of attractor for an action of Gm used e.g. in [CGP15, Con14].) In this subsec-
tion we will consider this construction in the case of the action of T = DS(M),
resp. TA = DS(MA), on X = G, resp. X = GA.

Recall the root datum

(MA/(MA)tor,R
(A), (M∨)A,R(A),∨)

considered in Proposition 6.1(3), and its basis ∆(A). We have a canonical identifi-

cation ∆/A
∼−→ ∆(A), and therefore a canonical bijection between subsets of ∆(A)

and A-stable subsets of ∆. Consider an A-stable subset Γ ⊂ ∆, and denote by
Γ(A) ⊂ ∆(A) its image in ∆(A). To Γ we can associate a parabolic subgroup P
of G, whose Lie algebra is the sum of Lie(B) and the root subspaces in Lie(G)
associated with the roots which belong to ZΓ =

∑
γ∈Γ Z · γ. Following [Con14,

Example 5.2.2], this subgroup scheme can be realized as the attractor subscheme
associated with the conjugation action of Gm,S on G via a cocharacter µ ∈ M∨
which satisfies {

〈µ, α∨〉 > 0 if α ∈ ∆ r Γ;

〈µ, α∨〉 = 0 if α ∈ Γ.

We also have the Levi factor M of P containing T, which can be realized as the
fixed point subscheme associated with the same action of Gm,S , see [Con14, Propo-
sition 5.4.5 and its proof], and its unipotent radical UP, see [Con14, Corollary 5.2.5].
The theory of [May22] allows us to make this construction more canonical, by sup-
pressing the choice of the cocharacter µ. Namely, denote by NΓ the submonoid
of M generated by ∆ t (−Γ). The following claim is an immediate generalization
of [May22, Proposition 7.3].
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Lemma 6.4. We have

P = GNΓ , M = GZΓ.

Proof. The proof is the same as that of [May22, Proposition 7.3]. Namely, choose
µ ∈ M∨ as above, which we now consider as a morphism M → Z. The induced
morphism Gm,S = DS(Z) → DS(M) = T is precisely µ seen as a cocharacter.

By [May22, Lemma 5.6] we have Gµ−1(Z≥0) = GZ≥0 where on the left-hand side we
regard G with the action of T, and on the right-hand side we regard G with the
action of Gm,S via µ. As explained above the right-hand side is known to coincide
with P. Using the fact that NΓ ⊂ µ−1(Z≥0), in view of [May22, Remark 3.5] we
deduce that GNΓ ⊂ P. On the other hand we have P = M n UP. It is easily
seen that both M and UP are contained in GNΓ , which implies that P ⊂ GNΓ and
finishes the proof of the first claim. The proof of the second one is similar. �

Now, let us consider the submonoid N
(A)
Γ of MA generated by ∆(A) t (−Γ(A))

and the subgroup ZΓ(A) generated by Γ(A).

Proposition 6.5. The natural morphisms

PA → (GA)N
(A)
Γ and MA → (GA)ZΓ(A)

are isomorphisms.

Proof. The proof is similar to that of Lemma 6.4; we explain the first case, and
leave the easy modifications to treat the second case to the reader. The cocharacter
µ considered above can be chosen to be A-invariant. (In fact one can reduce the
situation to that of a semisimple and simply connected group, and then average any
cocharacter satisfying our conditions along the action of A.) Then µ takes values
in TA, or in other words the associated morphism M → Z (still denoted µ) factors
through a morphism µ : MA → Z. Since the action of Gm,S via µ commutes with
the action of A we have

PA = (GZ≥0)A = (GA)Z≥0 .

By [May22, Lemma 5.6] we have (GA)Z≥0 = (GA)µ
−1(Z≥0). SinceN

(A)
Γ ⊂ µ−1(Z≥0),

we deduce that

(GA)N
(A)
Γ ⊂ PA.

On the other hand, if T is an S-scheme and x : T → PA is a T -point of PA, then
since P = GNΓ we have a canonical morphism

x′ : AS(NΓ)→ G

where the left-hand side is the S-scheme associated with the monoid NΓ follow-
ing [May22, §3]. This morphism is easily seen to be A-invariant; it therefore re-
stricts to a morphism x′′ : (AS(NΓ))A → GA. We also have a canonical morphism

NΓ → N
(A)
Γ , which induces a morphism AS(N

(A)
Γ ) → AS(NΓ). This morphism is

A-equivariant with respect to the trivial action on its domain, so it factors through

a morphism AS(N
(A)
Γ )→ (AS(NΓ))A. Composing with x′′ we obtain a morphism

AS(N
(A)
Γ )→ GA.

This construction shows that PA ⊂ (GA)N
(A)
Γ , which finishes the proof. �
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In particular, given γ ∈ ∆(A), we can consider the parabolic subgroup and its
Levi factor Mγ ⊂ Pγ ⊂ G associated with the A-orbit in ∆ corresponding to γ, and
the corresponding fixed points (Mγ)A ⊂ G. The following claim will be required
in [ALRR23].

Corollary 6.6. The unique subgroup scheme of GA that contains (Mγ)A for every

γ ∈ ∆(A) is GA itself.

Proof. Let H ⊂ GA be a subgroup scheme that contains all the subgroups (Mγ)A

for γ ∈ ∆(A). Then H contains TA, and also the elements in NA correspond-
ing to the simple reflections in the Weyl group WA constructed in the proof of
Lemma 6.3(3). Since these elements generate WA, we deduce that H contains NA.

Since any root in R
(A)
1 is WA-conjugate to a root in ∆(A) (see §6.1), we then de-

duce that H contains each subgroup (UE)A with E an equivalence class in R+, and
therefore that it contains CA (see (5.1) and (5.2)). Finally, since the multiplication
morphism CA ×CA → GA is an epimorphism (see Remark 5.7), this implies that
H = GA. �

6.4. Center and isogenies. Let us consider once again a pinned reductive group
scheme (3.1) over S, and our group A which acts on G by pinned automorphisms.
Recall the definition of the center of a group scheme; see [Con14, Definition 2.2.1].
(By definition, this center is a sheaf of groups, which is not necessarily repre-
sentable.) In particular let Z ⊂ G denote the center of G. By [Con14, Theo-
rem 3.3.4], Z is representable by a diagonalizable group scheme; more explicitly we
have

Z =
⋂
α∈∆

ker(α) = DS(M/ZR).

By functoriality, Z is preserved by the A-action, so we may form its fixed-point
scheme ZA, which is again a diagonalizable group scheme: more explicitly, by
Lemma 2.2 we have

(6.2) ZA = DS((M/ZR)A).

Lemma 6.7. The closed subgroup scheme ZA represents the center of GA.

Proof. Denote by Z′ the center of GA. Since Z is the center of G, we have ZA ⊂ Z′.
On the other hand, we know by Lemma 6.3 that TA is its own centralizer, so Z′ is
contained in TA. Considering the TA-action on each (UE)A, we obtain that

Z′ ⊂
⋂

α∈∆(A)

ker(α),

which in view of (6.2) shows that Z′ ⊂ ZA, and hence that Z′ = ZA. �

Recall the group scheme Gsc considered in §3.5, and denote by Zsc its center.
The natural morphism f : Gsc → G restricts to a morphism Zsc → Z. It is a
standard fact that the natural morphism

Gsc ×Zsc

S Z→ G

is an isomorphism, where the left-hand side is the (fppf) quotient of Gsc ×S Z by
the action of Zsc defined by z · (g, h) = (gz−1, f(z)h). In other words, we have an
exact sequence of fppf sheaves of groups

(6.3) 1→ Zsc → Gsc ×S Z→ G→ 1
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where the first morphism is the natural antidiagonal embedding. The next lemma
provides a version of this result for the group GA, which will be used in [ALRR23].

Proposition 6.8. The natural map

(Gsc)A ×(Zsc)A

S ZA → GA

is an isomorphism, where the left-hand side is the quotient of (Gsc)A×S ZA by the
action of (Zsc)A induced by the action of Zsc on Gsc ×S Z considered above.

Proof. The given map is clearly a monomorphism of group objects in fppf sheaves,
as taking A-fixed points is a left exact functor. To conclude the proof, it therefore
suffices to check surjectivity of the morphism GA

sc×SZA → GA in the fppf topology.
Since the multiplication map CA ×S CA → GA is an epimorphism of fppf sheaves
(see Remark 5.7), we are reduced to showing surjectivity of CA

sc×SZA → CA where
Csc is the big cell of Gsc. But passing to simply connected covers does not affect
root groups so, due to the decomposition (5.1), it is enough to show the surjectivity
of the morphism

TA
sc ×S ZA → TA.

In order to see this, we remark that T/Z = Tadj := DS(ZR). By left exactness of
fixed points, we can embed TA/ZA into (Tadj)

A, reducing the problem to proving
that the morphism (Tsc)A → (Tadj)

A is surjective. In fact, in view of [DG70b,
Exp. VIII, §3] or [Oes14, §5.3], to prove this claim it suffices to prove that the
natural morphism (ZR)A → (Msc)A is injective, which follows from the fact that
these Z-modules are free of finite rank (because ZR and Msc both have a basis
permuted by A), and that the given morphism becomes an isomorphism after tensor
product with Q. �

6.5. Further study of the case of SL3. In this subsection we prove a tech-
nical statement regarding the group scheme (SL3,Z2

)Z/2Z for the action consid-
ered in §2.3.2 (see Proposition 6.9) that will be required in the companion pa-
per [ALRR23].

If we set

n :=

0 0 1
0 −1 0
1 0 0

 ,

then n is a Z-point of (SL3,Z)Z/2Z. Let us denote by C3,Z the big cell constructed
from the pinning of Example 3.1. We also let U3,Z be as in §2.3.2, U−3,Z be the similar
group of lower triangular matrices, and T3,Z be the maximal torus of Example 3.1.

With this notation, (SL3,Z)Z/2Z has an affine open covering with two open subsets
given explicitly by

(C3,Z)Z/2Z ∼= (U−3,Z)Z/2Z ×Spec(Z) (T3,Z)Z/2Z ×Spec(Z) (U3,Z)Z/2Z

and

n · (C3,Z)Z/2Z ∼= (U−3,Z)Z/2Z ×Spec(Z) (T3,Z)Z/2Z ×Spec(Z) (U3,Z)Z/2Z.

(To see that these two subschemes cover (SL3,Z)Z/2Z, it suffices to check that they
contain all points over Spec(Z[ 1

2 ]) and over Spec(F2), and this follows from the
analysis in §5.3.) As explained in §2.3.2, we have

(U−3,Z)Z/2Z ∼= (U3,Z)Z/2Z ∼= Spec(Z[x, y]/(x2 − 2y)),
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and the considerations in §2.2 show that we have an isomorphism

(6.4) Gm,Z
∼−→ (T3,Z)Z/2Z

given explicitly by
a 7→ diag(a, 1, a−1).

For any commutative ring A, we denote by SL3,A, C3,A, etc., the schemes ob-
tained by base change to Spec(A). We will be particularly interested in the cases
where A is Z2 or F2. Our goal is to prove the following statement.

Proposition 6.9. Let H be a flat affine group scheme over Z2, and let

π : H→ (SL3,Z2
)Z/2Z

be a morphism of group schemes such that π|Spec(F2) is surjective (at the level of

topological spaces). Then the schematic image of π|Spec(F2) is (SL3,F2
)Z/2Z.

We start with two preliminary lemmas.

Lemma 6.10. The only closed subgroup schemes of (SL3,F2
)Z/2Z containing the

subgroup (SL3,F2
)
Z/2Z
red are (SL3,F2

)
Z/2Z
red and (SL3,F2

)Z/2Z.

Proof. Let K be a closed subgroup scheme of (SL3,F2
)Z/2Z containing (SL3,F2

)
Z/2Z
red .

The closed immersion (T3,F2
)Z/2Z ↪→ (SL3,F2

)Z/2Z factors through (SL3,F2
)
Z/2Z
red , and

hence through K, and (T3,F2)Z/2Z identifies with Gm,F2 , see (6.4). We will consider
the attractor, resp. repeller, scheme associated with the conjugation action of this

subgroup on SL3,F2 and (SL3,F2)
Z/2Z
red , in the sense of [CGP15, §2.1]. The attractor,

resp. repeller, for the action on SL3,F2
is the standard positive, resp. negative, Borel

subgroup, see e.g. [Con14, Theorem 5.1.13 and its proof]. Hence the corresponding
attractor, resp. repeller, for the action on (SL3,F2)Z/2Z identifies with

(T3,F2)Z/2Z ×Spec(F2) (U3,F2)Z/2Z, resp. (U−3,F2
)Z/2Z ×Spec(F2) (T3,F2)Z/2Z.

In view of [CGP15, Proposition 2.1.8(3)], we deduce that

K ∩ (C3,F2)Z/2Z =(
K ∩ (U−3,F2

)Z/2Z
)
×Spec(F2) (T3,F2

)Z/2Z ×Spec(F2)

(
K ∩ (U3,F2

)Z/2Z
)
.

Now, we observe that the matrix description for (U3,F2
)Z/2Z provides a short exact

sequence of group schemes

1→ (U3,F2)
Z/2Z
red → (U3,F2)Z/2Z → α2,F2 → 1.

Since K contains (U3,F2
)
Z/2Z
red , it follows that K ∩ (U3,F2

)Z/2Z is either (U3,F2
)Z/2Z

or (U3,F2
)
Z/2Z
red . Since K(F2) contains the image of the element n considered above,

we have

K ∩ (U−3,F2
)Z/2Z =

{
(U−3,F2

)Z/2Z if K ∩ (U3,F2)Z/2Z = (U3,F2)Z/2Z;

(U−3,F2
)
Z/2Z
red if K ∩ (U3,F2)Z/2Z = (U3,F2)

Z/2Z
red .

As a conclusion, we have either

K ∩ (C3,F2
)Z/2Z = (C3,F2

)Z/2Z or K ∩ (C3,F2
)Z/2Z = (C3,F2

)
Z/2Z
red .

Using once again the fact that K(F2) contains the image of n, and the description
of the open cover of (SL3,Z)Z/2Z considered above, in the first case we deduce that

K = (SL3,F2
)Z/2Z, and in the second case that K = (SL3,F2

)
Z/2Z
red . �



34 PRAMOD N. ACHAR, JOÃO LOURENÇO, TIMO RICHARZ, AND SIMON RICHE

The second lemma uses the notion of dilatation (or affine blow-up) from [MRR20].
We will apply this construction to the scheme (SL3,Z2

)Z/2Z, the principal subscheme

(SL3,F2
)Z/2Z, and either the closed subscheme (SL3,F2

)
Z/2Z
red ⊂ (SL3,F2

)Z/2Z or the

closed subscheme (T3,F2)Z/2Z ⊂ (SL3,F2)Z/2Z. The construction of [MRR20] pro-
vides two affine schemes

Bl
(SL3,F2 )Z/2Z

(SL3,F2 )
Z/2Z
red

(
(SL3,Z2

)Z/2Z
)

and Bl
(SL3,F2 )Z/2Z

(T3,F2 )Z/2Z

(
(SL3,Z2

)Z/2Z
)

endowed with canonical morphisms to (SL3,Z2)Z/2Z. Moreover, by the universal
property of dilatations (see [MRR20, Proposition 2.6]) there exists a canonical
morphism

(6.5) Bl
(SL3,F2 )Z/2Z

(T3,F2 )Z/2Z

(
(SL3,Z2

)Z/2Z
)
→ Bl

(SL3,F2 )Z/2Z

(SL3,F2 )
Z/2Z
red

(
(SL3,Z2

)Z/2Z
)

over (SL3,Z2
)Z/2Z.

Lemma 6.11. The morphism (6.5) restricts to an isomorphism over (C3,Z2)Z/2Z.

Proof. By compatibility of dilatations with flat base change (see [MRR20, Lem-
ma 2.7]), we have

Bl
(SL3,F2 )Z/2Z

(SL3,F2 )
Z/2Z
red

(
(SL3,Z2)Z/2Z

)
×(SL3,Z2

)Z/2Z (C3,Z2)Z/2Z ∼= Bl
(C3,F2 )Z/2Z

(C3,F2 )
Z/2Z
red

(
(C3,Z2)Z/2Z

)
,

with

Bl
(C3,F2 )Z/2Z

(C3,F2 )
Z/2Z
red

(
(C3,Z2

)Z/2Z
)

=

Bl
Spec(F2[x,y,z±1,x′,y′]/(x2,(x′)2))
Spec(F2[y,z±1,y′])

(
Spec(Z2[x, y, z±1, x′, y′]/(x2 − 2y, (x′)2 − 2y′))

)
.

Now one checks that the right-hand side identifies with

Spec(Z2[u, y, z±1, u′, y′]/(2u2 − y, 2(u′)2 − y′)),
with the morphism to Spec(Z2[x, y, z±1, x′, y′]/(x2−2y, (x′)2−2y′)) corresponding
to the ring homomorphism

Z2[x, y, z±1, x′, y′]/(x2− 2y, (x′)2− 2y′)→ Z2[u, y, z±1, u′, y′]/(2u2− y, 2(u′)2− y′)
defined by x 7→ 2u and x′ 7→ 2u′. (In fact the given scheme satisfies the universal
property of [MRR20, Proposition 2.6].) This description shows that the restriction
of the canonical morphism

Bl
(C3,F2 )Z/2Z

(C3,F2 )
Z/2Z
red

(
(C3,Z2)Z/2Z

)
→ (C3,Z2)Z/2Z

to Spec(F2) factors through Spec(F2[z±1]) since x, x′, y, y′ get sent to 0; by the
universal property of dilatations (and again compatibility of dilatations with flat
base change) we deduce a canonical morphism

Bl
(SL3,F2 )Z/2Z

(SL3,F2 )
Z/2Z
red

(
(SL3,Z2

)Z/2Z
)
×(SL3,Z2

)Z/2Z (C3,Z2
)Z/2Z →

Bl
(SL3,F2 )Z/2Z

(T3,F2 )Z/2Z

(
(SL3,Z2

)Z/2Z
)
×(SL3,Z2

)Z/2Z (C3,Z2
)Z/2Z.

We claim that this morphism is an inverse to the restriction of (6.5). Indeed, both
are flat affine schemes over Spec(Z2) with generic fiber equal to (SL3,Q2

)Z/2Z, so
to prove the claim it is enough to see that their global sections inside those of
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(SL3,Q2
)Z/2Z coincide. But each containment is implied by the existence of a map

of spectra in the opposite direction. �

Proof of Proposition 6.9. Let π be as in the statement, and assume that the sche-
matic image of π|Spec(F2) is not (SL3,F2

)Z/2Z. By Lemma 6.10, we conclude that

the schematic image of this morphism is (SL3,F2
)
Z/2Z
red . By the universal property of

dilatations (see [MRR20, Proposition 2.6]), we then have a unique factorization

π : H→ Bl
(SL3,F2 )Z/2Z

(SL3,F2 )
Z/2Z
red

(
(SL3,Z2

)Z/2Z
)
→ (SL3,Z2

)Z/2Z.

Using Lemma 6.11, we deduce that the restriction of π|Spec(F2) to (C3,F2
)Z/2Z factors

through (T3,F2
)Z/2Z, yielding a contradiction. �
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Bois Marie 1962–64 (SGA 3). 4, 5, 19, 32
[DG11a] M. Demazure and A. Grothendieck. Schémas en groupes (SGA 3). Tome I. Propriétés
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