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Abstract

This paper investigates the inverse problem of bi-revealed utilities in a defaultable
universe, defined as a standard universe (represented by a filtration F) perturbed by
an exogenous defaultable time τ . We assume that the standard universe does not
take into account the possibility of the default, thus τ adds an additional source of
risk. The defaultable universe is represented by the filtration G up to time τ , where
G stands for the progressive enlargement of F by τ . The basic assumption in force
is that τ avoids F-stopping times. The bi-revealed problem consists in recovering
a consistent dynamic utility from the observable characteristic of an agent. The
general results on bi-revealed utilities, first given in a general and abstract frame-
work, are translated in the defaultable G-universe and then are interpreted in the
F-universe. The decomposition of G-adapted processes provides an interpretation
of a G-characteristic XG

τ stopped at τ as a reserve process. Thanks to the charac-
terization of G-martingales stopped at τ in terms of F-martingales, we establish a
correspondence between G-bi-revealed utilities from characteristic and F-bi-revealed
pair of utilities from characteristic and reserves. In a financial framework, charac-
teristic can be interpreted as wealth and reserves as consumption. This result sheds
a new light on the consumption in utility criterion: the consumption process can be
interpreted as a certain quantity of wealth, or reserves, that are accumulated for the
financing of losses at the default time.
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Introduction

Bi-revealed utilities in a general framework. Decision making under uncertainty
is generally considered as the selection in an uncertain universe of an optimal sequence
of actions, according to a given preference criterion. Nevertheless, as pointed out first
by Samuelson in the 40’s and reformulated later by Chambers as "We can never see a
utility function, but what we might be able to see are demand observations at a finite list
of prices." This raises the "inverse" problem to recover the criterion from the data, posed
by Samuelson in the theory of "revealed preference" (Sam38; Sam48), and which is more
relevant today than ever due to the expansion of computer science. For example the
e-commerce is interested in recovering the utility function of a user from her searches and
purchases history on the Internet. This revealed utility is then used to target the user
with customized proposals of products in accordance with her preferences, see William
and al (WTKD04).
The preference relations are commonly represented by utility functions (see for exam-
ple Chambers & Echenique (CE16) or Arthur (Art99)) which are concave, continuous,
increasing functions, and usually satisfying Inada conditions. Contrary to a standard
approach relying on an optimisation context, we formulate and investigate the inverse
problem in a very general, abstract and dynamic framework, as in El Karoui and Mrad
(EKM21). The inverse problem starts form the observation of the outcomes {Xt(x)} of
a "player" from several initial conditions x. This characteristic Xt(x) at date t (starting
from x at t = 0) is the result of a series of decisions, for example the trajectory followed
on a decision tree. For a player, it can represent the amount of rewards collected, the
amount of money accumulated or simply the progress or the path taken. For an investor
in a financial market or a gambler in a horse race, {Xt(x)} is the wealth process. Based
on the observation of these outcomes {Xt(x)} of the player, we deduce her dynamic utility
{U(t, z)} by imposing time-consistency constraints. Indeed, in this uncertain and dynamic
universe, the time is also a source of risk playing against the actors who expect this effect
of time to be muted at for the ”best” sequence of decisions. In other words, one would
like to construct a dynamic utility process {U(t, z)} such that along the characteristic
process {Xt(x)} the criterion is constant in expectation, for any stopping time : {Xt(x)}
is then said to optimally reveal {U(t, z)}. To expect a unique solution, we associate the
dual problem driven by Ũ(t, y) the Fenchel conjugate of U (Ũ(t, y) := supz{U(t, z)− z y},
with equality for y = Uz(t, z)), and we require Ũ to be optimally revealed by some ad-
joint process {Yt(y)}. As in convex analysis, the adjoint processes {Yt(y)} (also known as
pricing kernel in economy) are negatively correlated to {Xt(x)}, that is {Xt(x)Yt(y)} is
decreasing in expectation ∀x, y (which means that the economic value of {Xt(x)} using
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the pricing kernel {Yt(y)} is decreasing). The powerful results in (EKM21) translate the
above constraints formulated in expectation into a pathwise construction of the bi-revealed
dynamic utility given by the pathwise first order condition Yt(uz(x)) = Uz(t,Xt(x)). This
highlights the one to one correspondence between the class of stochastic utilities revealed
by the characteristic process {Xt(x)} and the class of adjoint processes.

Defaultable Universe. Those algebraic results are applied in a framework where the
available information is modeled by a filtration, and we investigate in particular the im-
pact of an unpredictable adverse event arriving at a random time τ . For example, τ could
be a default time. We consider a defaultable universe, that consists in a standard universe
(represented by a filtration F) perturbed by an exogenous defaultable time τ . We assume
that the standard universe does not take into account the possibility of the default, which
is not accessible and adds an additional source of risk. We will see that the awareness
of such unfavorable event will change the agents’ behaviors, the precautionary principle
leading them to accumulate some reserves which could be used at the default. In this
context, the bi-revealed problem is applied directly in the defaultable universe stopped at
τ , and then translated in the standard universe. Under the standard assumption that τ
is independent of F, the projection on F is straightforward. Otherwise, one need to rely
on the theory of progressive enlargement of filtration that has been largely studied in the
literature, from the seminal papers in the seventies (such as Brémaud and Yor (BY78),
or Jeulin (Jeu80) e.g.) to more recent works often motivated by credit risk applications
(we refer to the survey book of Aksamit and Jeanblanc (AJ17)). To model this additional
risk conveyed by τ (that is not a F-stopping time), we consider the defaultable universe
as the progressive enlargement of the reference filtration F by the default time filtration
σ(t∧ τ), denoted as the filtration G. Different assumptions on the dependence between τ
and the standard universe are considered in the literature, including the density assump-
tion which is particularly useful when considering processes after τ , such as in El Karoui
et al. (EKJJ10). We consider here a defaultable universe stopped at time τ , and thus we
work under the weak assumption that τ avoids F-stopping times, which encompasses both
the standard independent case and the density assumption (with respect to a non-atomic
reference measure). Then any G-optional process HG stopped at τ is characterized by a
pair of F-processes (Hbd, Hsd) representing the before default, and stopped at the default,
components : HG

t = Hbd
t 1t<τ +Hsd

τ 1τ≤t. This decomposition is key to interpret the char-
acteristic at default XG

τ as a reserve process {Xsd
t }.

Defaultable bi-revealed problem. This decomposition also highlights a matching be-
tween G-dynamic utility UG = (Ubd, U sd) and pair of F-dynamic utilities (UF, V F) deter-
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mined respectively by Ubd and U sd, as well as for the conjugate utilities ŨG = (Ũbd, Ũ sd)

and (ŨF, Ṽ F). This, together with the characterization of G-martingales stopped at
τ in terms of F-martingales, allows us to provide a correspondence between the bi-
revealed utilities in the two universes: UG is bi-revealed by XG if and only if the pair
(UF, V F) is bi-revealed by (Xbd, CX) (a precise definition will be given in Section 3),
where CX

t (x) := Xsd
t (x)

Y sd
t

Y bd
t
(uz(x)) is the reserve process. In a financial framework, the

characteristic can be interpreted as wealth, the reserve as consumption, and the adjoint
process as pricing kernel. The previous equality means that the reserve/ consumption
process is the wealth at the default with a pricing kernel equal to the jump ratio of the
G-pricing kernel. This result sheds a new light on the consumption process in preferences
and bridges the gap between investment-consumption utility criteria and pure investment
utility criteria. The investment-consumption preference process is indeed equivalent to a
pure investment preference process, in a defaultable universe, with a random horizon.

The paper is organized as follows. Section 1 introduces the setting and states the
inverse problem of bi-revealed utilities, in a very general and abstract framework. The
main results are recalled, emphasizing on the key properties of the approach. Section 2
introduces the defaultable universe, as the progressive enlargement of a reference filtration
F by a random time τ . Assuming that τ avoids F-stopping times, G-adapted processes are
characterized by a pair of F-adapted processes and a characterization of G-martingales
stopped at τ , in terms of F-martingales, is provided. Results of the two previous sections
are gathered in Section 3 to interpret the characteristic process at default as a reserve
process and to establish a correspondence between G-bi-revealed utilities from character-
istic and F-bi-revealed pair of utilities from characteristic and reserves. Section 4 further
investigates this analogy in the specific framework of a financial market and explores this
new interpretation of the consumption as reserves put aside to accumulate a wealth at
default.

1 Bi-revealed utilities

1.1 Dynamic Utility

Traditionally, the expected utility criterion, first introduced by Neumann and Morgen-
stern (NM44) is used to measure the performance of an agent strategy. It is based on a
priori specification of a deterministic, concave and increasing (utility) function measuring
the terminal performance at a specified time horizon T . The concavity of the criterion
expresses the risk aversion of the agent described by the coefficient γ in the popular power
utility uγ(x) = x1−γ

(1−γ)
. To alleviate this horizon dependence and to allow a dynamic adap-
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tation of agent preferences to be adjusted to the environment evolution, we are concerned
with dynamic utilities (see (EKM13; EKHM18; EKM21)). This concept was introduced
for the first time by Musiela and Zariphopoulou (MZ; MZ10; MZ09) under the name of
”forward utilities” or ”performance processes”. It provides a flexible setting for dynamic
behavioral modeling of agents evolving in a stochastic environment. In economics, the
performance concerns essentially positive quantity (wealth for instance), so the perfor-
mance criteria are defined on R+ with non-negative values.
As usual, a "regular" (deterministic) utility is an increasing, concave function u : R+ →
R+∪{∞} with u(0) = 0 and whose first order derivative uz, also called marginal utility, is
continuous, positive and decreasing. Moreover its asymptotic behavior is specified by the
Inada conditions: uz(+∞) = 0 and uz(0) = +∞. As usual in convex analysis, it is useful
to introduce the conjugate utility ũ defined via the Fenchel-Legendre formula, described
by the properties of the Gap function.

Fenchel formula ũ(y) = u(u−1
z (y))− y u−1

z (y) = max
z∈Q+

(u(z)− z y), (1.1)

Gap function Gu(z, y) = zy − u(z) + ũ(y) ≥ 0 (1.2)

Legendre formula u−1
z (y) = ũy(y), Gu(z, uz(z)) = 0 (1.3)

By definition the conjugate ũ is a decreasing convex function, with derivative ũy(y) taking
values in (0,+∞). In what follows, we will be concerned by the pair of utility function
and its conjugate (u, ũ).

The classic notion of "regular" utility and its conjugate can be generalized to universes
in which the uncertainty does not concern only the specific risk. The randomness of the
universe is modeled via a probability space (Ω,H,P) equipped with a filtration H = (Ht)

satisfying the usual conditions of right-continuity and completeness.
A dynamic (or forward) utility U may be interpreted as a collection of random "regular"
utility functions U(t, ω, .) for which the temporal evolution is "updated" over the time in
accordance with the new information (Ht). The dynamic conjugate utility Ũ(t, ω, .) is the
collection of conjugate functions associated with U(t, ω, .) .

Definition 1.1. Let (Ω, (Ht),P) the reference probability space. A pair of dynamic utili-
ties (U, Ũ) is a family of adapted càdlàg random fields {U(t, z), z ∈ R+, Ũ(t, y), y ∈ R+}
such that

P.a.s., for every t, the function z 7→ U(t, z, ω) is a "regular" utility func-
tion (satisfying the Inada conditions), and the function y 7→ Ũ(t, ω, y) is the
associated conjugate random field, Ũ(t, y, ω) = maxz∈Q∗

(
U(t, z, ω)− z y

)
.
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1.2 Inverse problem settings

This paper falls into the theory of "revealed preference" introduced by Samuelson in the
40’s, where the problem is to find a dynamic utility maximizing dynamically the observed
strategy of a rational agent. More specifically, the problem is as follows: we suppose that
we observe a sequence of decisions taken by an agent or her characteristic process X and
we want to recover from these observations her preference criterion, that is her utility U
at each date.
To achieve this, one needs to specify the constraints and especially the link between
the observable (also called characteristic) X and the utility U we are trying to reveal.
The first point is that if the agent has decided to make a particular choice, then in
view of her criterion this choice must be the best one. Therefore, X is interpreted as an
"optimal" process for the revealed criterion. So by analogy with the classical optimization
framework where the value function along the characteristic process is a martingale, we
look for U verifying the condition {U(t,Xt(x))} is a martingale for any X0 = x. In
this dynamic point of view, this martingale property expresses the time-stability on the
"expected utility" (performance) of the preference criterion in the future. Obviously there
are many solutions U , so that as usual in convex analysis, we add dual constraints based
on the convex conjugate dynamic utility. A particularly interesting subclass is the class
of bi-revealed utilities, i.e. the class where revealing U automatically reveals its Fenchel’s
transform Ũ , i.e., there exists a positive process Y such that {Ũ(t, Yt(y))} is a martingale
for any y = Y0. To summarize, given a data X and an initial utility function U(0, .) = u(.),
we are looking for a pair of dynamic utilities {U(t, x), Ũ(t, y)}, (linked by the Legendre
relation U(t, x) = infy∈Q+{xy − Ũ(t, y)}) such that

− (U, Ũ) are optimally fitted with the observable X and some positive process Y , that
is the processes {U(t,Xt(x))} and {Ũ(t, Yt(y))} are martingales for any (x, y) > 0.

− As usual in convex analysis, X and Y are negatively dynamically depending, that is
the processes {Xt(x)Yt(y)} are assumed to be supermartingale for any (x, y) (that
is Y belongs to the "orthogonal" cone of X).

Remark: In El Karoui and Mrad (EKM21), the authors also show that identifying the
class of bi-revealed utilities is equivalent to identifying the process Y which we do not
assume to be observable.
The previous features are summarized in the following definition.

Definition 1.2 (Bi-revealed utility). A pair of dynamic conjugate utility
(
U(t, z), Ũ(t, y)

)
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is bi-revealed by the system
(
u(z), Xt(x), Yt(y)

)
if ∀x, y{

{U(t,Xt(x))} and {Ũ(t, Yt(y))} are martingales, (1.4)

The product {Xt(x)Yt(y)} is a supermartingale. (1.5)

A direct consequence of this definition combined with that of the Fenchel-transform is a
direct link between the two processes X and Y and the marginal utility Uz. This is an
important result, which can be interpreted as the analog of the maximum principle.

Theorem 1.1 (Necessary condition). Assume the pair of conjugate utility random fields(
U(t, z), Ũ(t, y)

)
to be bi-revealed by the system

(
u(z), {Xt(x)}, {Yt(y)}

)
. Then,{

Yt(uz(x)) = Uz(t,Xt(x)) a.s. ∀(t, x) (1.6)

The product {Xt(x).Yt(uz(x))} is a martingale. (1.7)

(ii) If in addition, ∀t ≥ 0, a.s. x 7→ Xt(x) is increasing, identity (1.6) implies that Y is
also increasing. Denoting by ξt(z) the inverse flow of x → Xt(x) (Xt(ξt(z)) = z) and by
ζt(v) that of y 7→ Yt(y), the marginal utilities (Uz, Ũz) are given by

Uz(t, z) = Yt(uz(ξt(z))) and Ũy(t, y) = −Xt(−ũy(ζt(v))), a.s. (1.8)

Then, since U(t, 0) = 0 and Ũ(t,∞) = 0, by a change of variable,

U(t,Xt(x)) =

∫ x

0

Yt(uz(z))dzXt(z) and Ũ(t, Yt(y)) =

∫ ∞

y

Xt(−ũy(z))dzYt(z)

Note that conditions (1.5) and (1.7) are different: depending on the initial conditions the
product XY is a supermartingale or a martingale. These initial conditions play a crucial
role in our study and are often the key to the main results established in (EKM21),
see Theorem 1.2. As it is shown in (ii), the monotonicity with respect to x suffices to
characterize these utilities but observe that necessarily Yt(uz(ξt(z)) has to be integrable
in a neighborhood of z = 0 as any marginal utility function.

Proof. The key point is that for any pair of utility function (u, ũ) and a pair of dynamic
utility (U, Ũ), the Gap formulation of the Fenchel inequality, implies that

Gu(y, x) = ũ(y)− u(x) + xy ≥ 0, and GU(t,Xt(x), Yt(y)) ≥ 0, a.s.

So, if for any x and y, {U(t,Xt(x))} and {Ũ(t, Yt(y))} are martingales, and {Xt(x)Yt(y)}
are supermartingales, then taking the expectation in the last inequality, leads to

E
[
GU(t,Xt(x), Yt(y))

]
= Gu(x, y) + E(Xt(x)Yt(y))− xy ≥ 0.

Since y = uz(x) implies that Gu(x, uz(x)) = 0, the right-hand side of this inequality is
equal to E(Xt(x)Yt(y))−xy which is non negative by the Gap properties and non positive
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by the supermartingale property. Then, E(Xt(x)Yt(uz(x))) = xuz(x).
The same relation applied to bounded stopping times is equivalent to the martingale
property of Xt(x)Yt(uz(x)). Moreover the non negative function GU(t,Xt(x), Yt(uz(x)))

having a null expectation, for any (x, t), GU(t,Xt(x), Yt(uz(x))) = 0, a.s.. By monotonicity
of Ũ(t, .), for any x and t Yt(uz(x)) = Uz(t,Xt(x)), a.s.. This means that the condition
y = uz(x) propagates in time and becomes Yt(uz(x)) = Uz(t,Xt(x)). This achieves the
proof of (i) and (ii) is straightforward.

As said above, identifying the bi-revealed utilities compatible with the observable char-
acteristic process X and the initial utility u is equivalent to identifying Y satisfying the
above requirements. The synthesis of these results is given below (a detailed proof can be
found in (EKM21)).

Theorem 1.2 (Sufficient condition, (EKM21)). Let u be a deterministic utility function
and let the characteristic process X to be increasing (with respect to x). For any positive
increasing (with respect to y) process Y satisfying the conditions:

∀(x, y) {Xt(x)Yt(y)} is a supermartingale, {Xt(x)Yt(uz(x))} is a martingale, (1.9)

the pair of random fields (U, Ũ) is a bi-revealed dynamic utility, where

{U(t, x) :=
∫ x

0

Yt(uz(ξt(z)))dz} and {Ũ(t, y) =
∫ ∞

y

Xt(−ũy(ζt(z)))dz}.

1.3 Intrinsic universe

In the bi-revealed case, a very natural assumption on the behaviors at the boundary (0,∞)

of the reference processes X and Y allows us to significantly simplify the description. The
asymptotic in 0 for Xt(x), and in ∞ for Yt(y) have not been taken into account so far.
The new system is called an intrinsic dilated system.

Assumption 1.1 (Limit Assumption). lim
x→0

Xt(x)

x
= Xt > 0 and lim

y→∞

Yt(y)

y
→ Yt > 0, (1.10)

M int
t = XtYt, M

int
0 = 1 is a martingale under P (1.11)

Theorem 1.3. Under Assumption 1.1 we define a new probability measure Pint and two
new processes X int and Y int as follows

dPint

dP
|Ht =M int

t , X int
t (x) := Xt(x)/Xt, Y int

t (y) := Yt(y)/Yt.

Also, we define a new dynamic utility U int and its Fenchel transform Ũ int by

U int(t, z) = (M int
t )−1U(t, zXt), Ũ int(t, y) = Ũ(t, yYt).
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Then the pair of utility (U, Ũ) is P-bi-revealed by (u,X) iff (U int, Ũ int) is Pint-bi-revealed
by (u,X int). More importantly, for any (x, y), the processes {X int

t (x)}, and {Y int
t (y)} are

Pint-supermartingales.

These supermartingale properties are coherent with the intuition that in expectation, the
quality of the information given by the different processes deteriorates over the time. The
reader familiar with the notions of change of numeraire and change of probability measure
can interpreted the process 1/X as a numeraire, and the martingale product M int = XY
as a change of probability measure. Without loss of generality, we can therefore place
ourselves, within one change of probability/numeraire, in a universe where all processes
are positive supermartingales.

2 Application in an universe with one default

The purpose of this section is to apply the algebraic results of Section 1 in a context
where the available information is modeled by a filtration. More precisely, we develop
the previous results in a universe (represented by a filtration G) where an exogenous de-
faultable time τ can perturbed the standard universe (represented by a filtration F). As
highlighted in Section 1, special attention should be given to the semimartingale decom-
position in the new G-universe (here H = G) and to the characterization of martingale
property relatively to these two filtrations. How to enlarge a standard universe by a ran-
dom time τ has received a lot of attention since the seventies, under different assumptions
on the dependence between τ and the standard universe. Often, papers refer to initial
enlargement or progressive enlargement of the standard universe. Applications to finance
concern the default problem, when the variable τ is interpreted as a defaultable time. We
recall hereafter some results on this enlarged universe in a general setting.

2.1 The general framework of enlargement of filtration

The standard universe is represented by a general filtration F defined on a probability
space (Ω,A,P) satisfying the usual assumption of completeness and right continuity. This
standard universe does not take into account the possibility of an unpredictable adverse
event, arriving at a random time τ . How the awareness of such unfavorable event will
change the agents’ behaviors? To answer this question, it is convenient to introduce the
extended probability space (Ω̄, Ā), where Ω̄ = Ω × R+, and Ā = A ⊗ B(R+). We also
denote F̄t = Ft ⊗ B(R+), Ō = OF ⊗ B(R+), P̄ = PF ⊗ B(R+), where OF (resp PF ) are
the F-optional (resp. F-predictable) σ-fields.
Let τ be a finite random time, defined as a random horizon for the universe. Often, we
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make reference to this random horizon as a default time. A priori, τ is not a F-stopping
time. The default time τ is considered as a random event that does not perturb the
standard universe F before its arrival, and that has an impact when it arrives and after.
Therefore, the new filtration G of interest is defined as the progressive enlargement of
the filtration F by the random time τ . In the case of a progressive enlargement, the
exogenous information is given by the filtration D generated by the process (τ ∧ t), where
Dt = ∩s>tσ(τ ∧ s) is the minimal (right continuous) filtration that makes τ a stopping
time. A Dt-random variable is a function of τ ∧ t, f(τ ∧ t) = f(t)1t<τ + f(τ)1τ≤t. The
progressively enlarged filtration G is the right-continuous and complete version of the
filtration generated by the benchmark filtration F and the filtration D associated with the
process (τ ∧ t):

Gt := Ft ∨ Dt.

Then, a Gt-random variable is of the formHG
t = H̄t(τ∧t), where H̄t(θ) is a F̄t-random vari-

able. More generally, a G-optional (predictable) process is given from a H̄-optional (pre-
dictable) process by H̄t(t ∧ τ). Since τ is a G-stopping time, Gτ = {H̄τ (τ), H̄t(θ) ∈ ŌF}.
Sometimes, the default time τ is known and has an impact from the beginning, this
corresponds to the setting of the initial enlargement filtration GI

t = Ft ∨ σ(τ) (consider-
ing again the right-continuous and complete version of the filtration GI). Observe that
Ft ⊂ Gt ⊂ GI

t . This initially enlarged filtration GI is related to the filtration F̄ since
any GI-optional (predictable) process is given from a H̄-optional (predictable) process by
H̄t(τ).
In this paper, we are concerned with processes stopped at time τ , and then to the prop-
erties of the σ-algebra Gτ . Therefore, we only assume the following assumption, that is
weaker that the density assumption usually stated in the literature.

Assumption 2.1. τ avoids F-stopping time, that is for any F-stopping time η, P(τ =

η) = 0.

This condition, sometimes called "avoidance assumption", also appears e.g. in Choulli
et al. (CDV20), Corollary 2.5. and in Di Tella et al (DTE22). A direct consequence of
Assumption 2.1 is that any F-adapted càdlàg process Z is τ -continuous, meaning that
Zτ = Zτ−, a.s.. In particular, for any F-stopping time η, the F-optional process 1[0,η[(.)

stopped at time τ coincides with the F-predictable process 1[0,η](.) stopped at time τ :
1[0,η[(τ) = 1[0,η](τ) a.s. Since OF (resp. PF ) is generated by {1[0,η[, η F-stopping time},
(resp. {1[0,η], η F-stopping time}), Assumption 2.1 implies that any F-optional process
stopped at τ is indistinguishable to a F-predictable process stopped at τ .

Remark 2.1 (F -Density assumption). Assumption 2.1 is not standard in the
literature, which usually assumes the stronger density assumption with respect to a
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non-atomic reference measure: there exists a positive σ-finite, non-atomic measure
µ(dθ) and for any time t ≥ 0, a non negative F̄-adapted process αt(θ) such that,

P[τ ∈ dθ|Ft] = αt(θ)µ(dθ), with
∫ ∞

0
αt(θ)µ(dθ) = 1 P- a.s. (2.1)

This density assumption implies Hypothesis 2.1. Indeed, let η be a F-stopping time,

then the optional process 1{η=θ} is µ-negligeable since µ is non-atomic: P[τ = η] =

E
[∫

1{η=θ} αη(θ)µ(dθ)
]
= 0. The second condition in (2.1) expresses that τ is finite

a.s. This density assumption is particularly useful when considering processes after

τ , such as in El Karoui, Jeanblanc and Jiao (EKJJ10).

2.2 Before and at the default description

To facilitate the mapping between the G-point of view and the F-point of view, we intro-
duce a pair of F-processes, characterizing the before and at the default behaviors. This
decomposition is at the core of the interpretation of the characteristic at default as a re-
serve process, and thus highlights the precautionary behavior of the agent. Such splitting
formula is a priori not immediate and does not hold in all generality for G-optional pro-
cess, as pointed out by Song (Son14). It is usually stated under the density assumption.
In our setting, since we are concerned here with processes stopped at time τ , it is sufficient
to assume that τ avoids the F-stopping times: then {τ = t} is negligible and since F is
complete, for G-optional process HG stopped at time τ , the splitting formula holds{

HG
t = Hbd

t 1t<τ +Hsd
τ 1τ≤t

}
, (2.2)

where {Hbd
t } is a F-optional process and {Hsd

t } is F-predictable process. Remark that
to define the "stopped at the default behavior" Hsd

τ , one need to define an entire F-
predictable process {Hsd

t }. To refer to this splitting formula we will often use the char-
acterization of a G-optional process HG stopped at time τ as HG = (Hbd, Hsd). The
splitting formula for G-predictable processes stopped at time τ is more straightforward
(cf. Jeulin (Jeu80) Lemma 4.4): any G-predictable process HG stopped at τ admits the
predictable decomposition {

HG
t = Hbd

t 1t≤τ

}
(2.3)

where {Hbd
t } is a F-predictable process.

2.3 Doob-Meyer decompositions of survival processes

The survival process 1{τ>t} is a non-increasing càdlàg G-optional process with finite vari-
ation. Its G-dual predictable projection (also called predictable compensator) is denoted
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ΛG: ΛG is a G-increasing (and thus of finite variation) predictable process, constant after
τ . Thanks to the predictable splitting formula (2.3), there exists a F-predictable increasing
process ΛF such that ΛG

. = ΛF
.∧τ .

Lemma 2.2. There exists a F-predictable increasing process ΛF such that{
Ñ τ

t = 1{τ≤t} − ΛF
t∧τ

}
is a G-finite variation local martingale. (2.4)

Although this additive decomposition is commonly used in the literature, the following
(equivalent) multiplicative decomposition is more convenient in our framework.

Proposition 2.3. (i) In the G-universe, {LG
t = 1{τ>t} exp(Λ

F
t )} is a G-finite variation

local martingale, associated with the multiplicative decomposition of the G-survival process
1{τ>t}.
(ii) The F-projection of {LG

t } is the F-local martingale {LF
t = Ste

ΛF
t }, where

{St = P(τ > t|Ft)} is a F-supermartingale.

Proof. (i) The equivalence between the additive decomposition given by (2.4) and the
multiplicative decomposition is a direct consequence of the dynamics

dLG
t = −LG

t−d1{τ≤t} + 1{τ>t}exp(Λ
F
t )d(Λ

F
t ) = −LG

t−dÑ
τ
t .

(ii) Since exp(ΛF
t ) is Ft-measurable, the F-projection of LG

t is LF
t = P(τ > t|Ft)e

ΛF
t . Then

the F-local martingale property of LF is obtained from the G-local martingale property of
LG. St = P(τ > t|Ft) is F-supermartingale by transitivity of the conditional expectation.

Semimartingales (and more precisely supermartingales) play a key role in the character-
ization of bi-revealed utility (see Section 1). It is thus useful to specify the decompo-
sitions of F and G-semimartingales, stopped at time τ . Let

{
ZG

t = (Zbd
t , Zsd

t∧τ )
}

be a
G-semimartingale stopped at time τ . Hereafter we rather adopt the following multiplica-
tive decomposition, valid for G-semimartingales with positive before default process Zbd,
on which we focus in the sequel. Then ZG is equivalently defined by the positive before
default F-adapted process Zbd

t∧τ stopped at time τ , and its optional relative jump process{
RZ

t :=
Zsd
t

Zbd
t

} {
ZG

t = Zbd
t∧τ (1{τ>t} +RZ

τ 1{τ≤t} )
}
.

We recall that Zbd
τ = Zbd

τ− , a.s. since τ avoids F-stopping time (Assumption 2.1), and thus
Zbd

t∧τ is τ -continuous. We will address separately the jump part RZ
τ at time τ , and Zbd

t∧τ .
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2.4 Characterization of G-martingales stopped at time τ

2.4.1 G-martingale continuous at time τ

The first step consists in characterizing G-martingale τ -continuous and stopped at τ .
For G-processes which are τ -continuous and stopped at τ , the G-martingale property is
equivalent (under Assumption 2.1) to the orthogonality with the finite variation martin-
gale {LG

t = 1{τ>t} exp(Λ
F
t ) = 1{τ>t}

LF
t

St
}, whose unique jump is at time τ .

Proposition 2.4. Let
{
HG

t = Zbd
t∧τ

}
be a G-adapted process stopped and continuous at τ .

Then, under Assumption 2.1,
{
HG

t = Zbd
t∧τ

}
is G-local martingale if and only if one the

following equivalent assertions is satisfied:
(i) {Zbd

t L
G
t } is a G-local martingale.

(ii) {Zbd
t L

F
t } is a F-local martingale.

(iii) {Zbd
t +

∫
[dZbd

s ,
dLF

s

LF
s
]} is a F-local martingale.

Proof. (i) Let HG
t = Zbd

t∧τ be a G-adapted process stopped at time τ , with no jump at
time τ . Then, since LG

t is a pure jump finite variation G-local martingale, with one jump
at τ only, HG

t is a G-local martingale if and only if HG
t L

G
t is a G-local martingale. The

first equivalence follows by noticing that HG
t L

G
t = Zbd

t L
G
t since LG

t = 0 on {τ ≤ t}.
(ii) Since Gt = Ft on {t < τ}, the G-local martingale property of Zbd

t L
G
t is equivalent to

the F-local martingale property of its F-projection Zbd
t L

F
t .

(iii) By the rule of stochastic calculus, d(Zbd
t L

F
t ) = LF

t−dZ
bd
t + Zbd

t dL
F
t + d[Zbd

t , L
F
t ]. Since

LF
t is a F-local martingale, Zbd

t L
F
t is a F-local martingale if and only if Zbd

t +
∫
[dZbd

s ,
dLF

s

LF
s
]

is a F-local martingale.

2.4.2 Pure jump G-martingale

The pure-jump G-martingale LG is characterized by its initial value LG
0 = 1 and its value

LG
τ = 0 at time τ . The following proposition characterizes all positive pure jump G-

martingales JM,G having only one jump at time τ . JM,G is determined by the positive
F-optional process RJ associated with the relative jump : RJ

t =
JM,sd
t

JM,bd
t

(for LG, the relative
jump process is zero).

Proposition 2.5. Any nonnegative pure jump G-martingale JM,G such that JM,G
0 = 1,

with only one jump at time τ satisfies

dJM,G
t

JM,G
t−

= (1−RJ
t )
dLG

t

LG
t−
, with RJ

t =
JM,sd
t

JM,bd
t

(2.5)
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and has the following multiplicative representation

JM,G
t = LG

t− (1 + (RJ
τ − 1)1{τ≤t} )exp(−

∫ t∧τ

0

RJ
s dΛ

F
s ),

= (1 + (RJ
τ − 1)1{τ≤t} )exp(−

∫ t∧τ

0

(RJ
s − 1)dΛF

s ). (2.6)

The proof is similar to the one in El Karoui, Jeanblanc and Jiao (EKJJ10) (stated under
the density assumption), where we use that the processes here are stopped at time τ and
that τ avoids F-stopping times (Assumption 2.1). Differentiating (2.6) gives

dJMG
t = −JM,G

t (RJ
t − 1)dΛF

t + JM,G
t− ((RJ

t − 1)(dÑ τ
t + dΛF

t )) = JM,G
t− (RJ

t − 1)dÑ τ
t .

Therefore JM,G
t is the exponential martingale of the pure-jump martingale

∫
(RJ

t −1)dÑ τ
t .

This implies (2.5), recalling dLG
t = −LG

t−dÑ
τ
t .

2.4.3 Characterization of G-martingale stopped at time τ

In this section we are concerned with any G -semimartingale ZG stopped at time τ , with
positive before default process Zbd. Let us denote the relative jump of ZG by RZ

t =
Zsd
t

Zbd
t

,

that is RZ
t − 1 =

Zsd
t −Zbd

t

Zbd
t

. We have the following result.

Theorem 2.6. Let {ZG
t = Zbd

t∧τ (1{τ>t} + RZ
τ 1{τ≤t} )} be a G-semimartingale stopped at

time τ , with positive before default process Zbd. Then ZG is a G-supermartingale (resp.
submartingale) if and only if the following equivalent assertions is satisfied:
(i) {Zbd

t exp(
∫ t

0
RZ

s dΛ
F
s )1{τ>t}} is a G-supermartingale (resp. submartingale).

(ii) {Zbd
t exp(

∫ t

0
(RZ

s − 1)dΛF
s )L

F
t } is a F-supermartingale (resp. submartingale).

Proof. Let us consider the multiplicative decomposition of ZG
t = Zbd

t∧τ (1{τ>t} +R
Z
τ 1{τ≤t} )

ZG
t = Zbd

t∧τ exp(

∫ t∧τ

0

(RZ
s − 1)dΛF

s ) (1{τ>t} +RZ
τ 1{τ≤t} )exp(−

∫ t∧τ

0

(RZ
s − 1)dΛF

s )

that can be written also in terms of (Zbd, Zsd)

ZG
t = Zbd

t∧τ exp(

∫ t∧τ

0

Zsd
s − Zbd

s

Zbd
s

dΛF
s ) (1 +

Zsd
τ − Zbd

τ

Zbd
τ

1{τ≤t} )exp(−
∫ t∧τ

0

Zsd
s − Zbd

s

Zbd
s

dΛF
s ).

It is the product of a pure jump G-martingale (1{τ>t} +R
Z
τ 1{τ≤t} )exp(−

∫ t∧τ
0

(RZ
s −1)dΛF

s )

(see Proposition 2.5) and a process Zbd
t∧τ exp(

∫ t∧τ
0

(RZ
s − 1)dΛF

s ) stopped at τ and τ -
continuous. Therefore, ZG is a G-supermartingale (resp. submartinagale) if and only
if the process Zbd

t∧τ exp(
∫ t∧τ
0

(RZ
s − 1)dΛF

s ) is a G–supermartingale (resp. submartingale)
(τ -continuous), that will be necessarily orthogonal to the pure jump martingale. This
together with Proposition 2.4 achieves the proof.
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Note that if the process ZG does not jump at τ , then RZ = 1 and exp(
∫ t

0
RZ

s dΛ
F
s ) =

exp(ΛF
t ) does not depend on the process ZG (which is exactly Proposition 2.4). Be-

sides, the compensator ΛF can be explicitly computed under the density assumption:
ΛF

t = αt(t)/St− .

We also provide hereafter the additive version of the multiplicative characterization of
G-martingales, in terms of F-martingales.

Corollary 2.7. Let ZG = (Zbd, Zsd) be a G-semimartingale stopped at time τ . Then ZG

is G-martingale if and only if {
(
Zbd

t +
∫
(Zsd

s − Zbd
s )dΛF

s

)
LF
t } is a F-martingale.

Proof. According to Proposition 2.6, ZG is G-martingale if and only if the process Mt :=

Zbd
t exp(

∫ t

0
(RZ

s − 1)dΛF
s )L

F
t is a F-martingale, with RZ

t =
Zsd
t

Zbd
t

. Besides,

dMt = exp(

∫ t

0

(RZ
s − 1)dΛF

s )
(
dZbd

t + (Zsd
t − Zbd

t )dΛF
t

)
LF
t + Zbd

t exp(

∫ t

0

(RZ
s − 1)dΛF

s )dL
F
t

+ exp(

∫ t

0

(RZ
s − 1)dΛF

s )[dZ
bd
t , dLF

t ]

which implies

exp(−
∫ t

0

(RZ
s − 1)dΛF

s )
dMt

LF
t

− Zbd
t

dLF
t

LF
t

= dZbd
t + (Zsd

t − Zbd
t )dΛF

t + [dZbd
t , dLF

t ].

Since LF is a F-martingale, M is a F-martingale if and only if the process {
(
Zbd

t +
∫
(Zsd

s −
Zbd

s )dΛF
s

)
LF
t } is also a F-martingale, which concludes the proof.

3 Bi-revealed utility in a universe with one default

This section is dedicated to the problem of bi-revealed utility in a universe with one default
(the G-universe). Applying results of Sections 1 and 2 provides a nice interpretation in
terms of a standard universe (the F-universe) in which the characteristic at default time τ
can be interpreted as cumulative reserves kept aside to face this unpredictable event. We
then associate with the revealed utility in the G-universe with default a pair of utilities
of characteristic and reserve in the F-universe without default.

3.1 Intrinsic universe and semimartingale interpretation

As developed in Section 1.3, without loss of generality, we can place ourselves in the
intrinsic G-universe. The characteristic process XG and the adjoint process Y G are su-
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permartingales in this universe and have the following decomposition
XG

t∧τ (x) = Xbd
t∧τ (x)

(
1{τ>t} +RX

τ (x)1{τ≤t}
)
, RX

t (x) :=
Xsd

t (x)

Xbd
t (x)

,

Y G
t∧τ (y) = Y bd

t∧τ (y)
(
1{τ>t} +RY

τ (y)1{τ≤t}
)
, RY

t (y) :=
Y sd
t (y)

Y bd
t (y)

.

Let UG be a bi-revealed utility by the system
(
u(.), XG, Y G

)
. By definition and by The-

orem 1.1, we have necessarily that{
XG(x)Y G(y) is a G−supermartingale, ∀x, y and a G−martingale if y = uz(x).

}
Applying Theorem 2.6 and denoting RXY

t (x, y) :=
Xsd

t (x)Y sd
t (y)

Xbd
t (x)Y bd

t (y)
, this is equivalent to

{
Xbd

t (x)Y bd
t (y)e

∫ t
0 (R

XY
s (x,y)−1)dΛF

sLF
t

} {
is a F−supermartingale,∀x, y

and F−local martingale if y = uz(x).
(3.1)

Relation (3.1) seems first to indicate that the appropriate probability measure to consider
on the small filtration F is QL defined as dQL := LFdP. This change of probability only
depends on τ and thus is conveying the impact of the "pure default" risk. Then, the
(F,QL)(super)-martingale property of

{
Xbd

t Y
bd
t e

∫ t
0 (R

XY
s −1)dΛF

s = Xbd
t e

∫ t
0 RXY

s dΛF
sY bd

t e−ΛF
t

}
can be related to a similar property in a universe without default with a reserve rate
RXY (that is the rate of the characteristic that is put aside), and with Y bde−ΛF as the
adjoint process. The analogy with a financial market with consumption as in (EKHM18)
is developed in Section 4.

3.2 Correspondence between G- and F-bi-revealed utilities

The following Theorem 3.1 specifies the mapping between a G-utility and a F-pair of
utilities of characteristic and reserve. Since the reserve is integrated with respect to dΛF

t

in (3.1), we use in the following notations the upper script Λ to remind this point.

Theorem 3.1. Let UG be a G-dynamic utility bi-revealed by the triplet (u,XG, Y G). From
UG = (Ubd, U sd), we define the pair (UF, V F,Λ) of F-dynamic utilities as follows{

UF(t, z) := e−ΛF
tUbd(t, z)

}
and

{
V F,Λ(t, c) := e−ΛF

tU sd(t, c
Y bd
t

Y sd
t

)
}
. (3.2)

Let QL be the equivalent probability measure defined from the P-martingale LF by dQL =

LFdP with
{
LF
t = Ste

ΛF
t

}
and

{
St = P(τ > t|Ft)

}
. We denote by CΛ the reserve process{

CΛ
t (x) := Xsd

t (x)
Y sd
t (uz(x))

Y bd
t (uz(x))

}
. Then the following martingale properties are equivalent{

UG(t,XG
t (x)) = U bd(t,Xbd

t (x))1t<τ + U sd(t,Xsd
t (x))1τ≤t

}
is a (G,P)− martingale, ∀x. (3.3){

UF(t,Xbd
t (x)) +

∫ t

0
V F,Λ(s, CX

s (x))dΛF
s

}
is a (F,QL)−martingale,∀x. (3.4)
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By construction, the random fields UF and V F inherit the property of monotonicity and
concavity of UG and they are F-progressive processes: therefore UF and V F are F-dynamic
utilities. The conjugate utilities in the F-universe are characterized from UF and V F,Λ

using the Legendre relation:{
ŨF(t, z) := e−ΛF

t Ũbd(t, zeΛ
F
t )
}

and
{
Ṽ F,Λ(t, c) := e−ΛF

t Ũ sd(t, ceΛ
F
t
Y sd
t

Y bd
t

)
}
. (3.5)

In what follows we will concentrate on the dynamic utilities UF and V F,Λ, equivalent
results for the dynamic conjugate utilities ŨF and Ṽ F,Λ can be directly deduced from
(3.5).
A direct consequence of Theorem 3.1 is the following result.

Corollary 3.2. A G-dynamic utility UG = (Ubd, U sd) and its conjugate ŨG is bi-revealed
by the triplet (u,XG, Y G) if and only if the pair (UF, V F,Λ) of F-dynamic utilities and their
conjugate (ŨF, Ṽ F,Λ) given in (3.2),(3.5) is bi-revealed by the triplet (u, (Xbd, CX), Y bde−ΛF

).

Remark 3.3. The results of Theorem 3.1 and Corollary 3.2 remain valid if the charac-
teristic processes (Xbd, Y bd) are changed into (XbdeΨ, Y bde−Ψ) for any F-adapted process
Ψ, since the martingale property of {Xbd

t e
∫ t
0 RXY

s dΛsY bd
t e−ΛF

t } is preserved by such a trans-
formation.

Proof. of Theorem 3.1. Let UG = (Ubd, U sd) be a bi-revealed utility by the system(
u(.), XG, Y G

)
. Adopting the additive form for the performance process {UG(t,XG

t (x))}
and for its jump size

{
JU◦X
t (x) := U sd(t,Xsd

t (x))−U bd(t,Xbd
t (x))

}
, the martingale prop-

erty (3.3) of {UG(t,XG
t )} can be rewritten as{

UG(t,XG
t (x)) = U bd(t ∧ τ,Xbd

t∧τ (x)) + JU◦X
τ (x)1τ≤t

}
is a (G,P)-martingale,∀x.

According to Corollary 2.7 this property is equivalent to{(
Ubd(t,Xbd

t (x)) +

∫ t

0

JU◦X
s (x)dΛF

s

)
LF
t

}
is a (F,P)−martingale,∀x,

or, under the equivalent probability measure QL, to{
Ubd(t,Xbd

t (x))−
∫ t

0

(
Ubd(s,Xbd

s (x))− U sd(s,Xsd
s (x))

)
dΛF

s

}
is a (F,QL)−martingale, ∀x.(3.6)

Using the notations

UF(t, z) := e−ΛF
tUbd(t, z), V F,Λ(t, c) := e−ΛF

tU sd(t, c
Y bd
t

Y sd
t

) and CΛ
t (x) := Xsd

t (x)
Y sd
t (uz(x))

Y bd
t (uz(x))

,

(3.6) is equivalent to{
UF(t,Xbd

t (x)) +

∫ t

0

V F,Λ(s, CΛ
s (x))dΛ

F
s

}
is a (F,QL)−martingale,∀x
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since

d
(
UF(t,Xbd

t ) +

∫ t

0

V F,Λ(s, CΛ
s )dΛ

F
s

)
= d

(
e−ΛF

tUbd(t,Xbd
t ) +

∫ t

0
e−ΛF

sU sd(s,Xsd
s )dΛF

s

)
= e−ΛF

t

[
dUbd(t,Xbd

t ) +
(
U sd(t,Xsd

t )− Ubd(t,Xbd
t )

)
dΛF

t

]
which achieves the proof.

Interpretation and comments The analogy between the G and F-universes in terms
of utility processes and characteristic processes are gathered below:
(i) The before-default component of the G-dual characteristic process Y G = (Y bd, Y sd)

determines the F-dual characteristic process Y F = Y bde−ΛF .
(ii) The G-characteristic process XG = (Xbd, Xsd) is analog to the F-characteristic
process XF := Xbd with accumulation of reserves CΛ = XsdRY . This means that the
F-characteristic coincides with the G-characteristic before default, and the reserve process
CΛ = XsdRY is the G-characteristic at the default Xsd multiplied by the jump ratio RY

of the G-dual process.
(iii) The before-default component of the G-utility process UG = (Ubd, U sd) determines
the F-utility from wealth UF = e−ΛF

Ubd and its at the-default component determines the
F-utility V F,Λ = e−ΛF

U sd of reserve.

In a financial framework, the reserve process CΛ = XsdRY can be interpreted as the
wealth at the default multiplied by the jump ratio of the pricing kernel Y G. This is equiv-
alent to the identity CΛY bd = XsdY sd where the quantities CΛ and Xsd are evaluated
with the corresponding pricing kernels before default Y bd and at the default Y sd.
This result sheds a new light on the consumption process in preferences and bridges the
gap between investment-consumption utility criteria and pure investment utility criteria.
Indeed, depending on the topics, utility optimization focuses either on the consump-
tion or on the wealth. In economics, especially in studies concerning long term invest-
ments, the consumption plays a major role. But in finance, putting the emphasis on
consumption is not common. Denoting (U, V ) the stochastic utilities from wealth and
consumption respectively, the investment-consumption preference process is written as∫ T

0
V (s, cs)ds+U(T,XT ). Observe the different natures of the two parts in the preference

process. On the one hand,
∫ T

0
V (s, cs)ds is an integral of the utility of a rate (per unit

of time) of consumption. On the other hand, U(t,XT ) is the utility of the "aggregate"
wealth (which is itself an integral of a rate of wealth). In these two terms, the integral
operators and utility functions are inverted. Despite these difference, very often the same
type of functions, with eventually different risk aversion parameters, are used. This ap-
parent discrepancy is solved thanks to this new viewpoint on the consumption process.
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The consumption is interpreted as precautionary reserves to accumulate wealth that will
be available at default time. The next section further investigates this analogy in the
framework of financial market and explores this new interpretation of the consumption.

4 Defaultable Financial Market and consumption.

In an incomplete financial framework, the observable (characteristic) processes X and
its dual Y are respectively the optimal wealth process and optimal discounted pricing
kernel, for a given utility criterion. For this criterion, X is optimal among the set of
admissible self-financing strategies, and Y is optimal among the set of pricing kernels
(also called state price density processes), that are processes orthogonal to the financial
assets tradable in the market. We define below a generic financial market, in the G and
F-universes. A financial market is characterized by the tradable assets and the set of
admissible self-financing strategies. The No Arbitrage condition is stated in terms of the
existence of at least one pricing kernel. In the G-market, to hedge against the default,
investors may invest in a defaultable asset, in addition to non-defaultable assets. Relying
on previous results in Section 2 and Section 3, the link with a F-market, in which investors
are allowed to consume, is provided. This highlights the analogy between consumption
and wealth at the default.

4.1 The defaultable G-market

We define below the defaultable market and the set of admissible wealth processes. This
set contains the observable wealth X, that is optimal for some criterion U . To avoid
confusion, an admissible wealth is denoted by W , while the notation X is kept for the
optimal one.

4.1.1 The tradable assets in the G-market

In the defaultable market (also called G-market), agents can invest in non-defaultable
F-adapted risky assets {Si, i = 1...d} and a risk free asset S0 characterized by the short
interest rate

{
rt
}
. In addition, in the situation of a random horizon, investors may want

to protect themselves against this additional source of risk induced by this uncertain time
τ . For example τ is the time of switching to a new regime of the economy, or the time of
an ecological catastrophe, or the time of a sovereign default, or the death of the investor.
Therefore in the G-market, a defaultable (G-adapted) asset is tradable to propose a hedge
against the risk induced by the default.
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The defaultable asset Typically, this defaultable asset is a perpetual Credit Default
Swap (CDS), characterized by continuous payments (the CDS "fee" or "spread") and, in
exchange, the payoff of a compensation in the event of default. As usually for a swap, its
value at time 0 is zero. The cash flow of such defaultable contract has one jump (of size
1) at time τ , and is modelled (in the additive form) by

SWt = 1τ≤t −
∫ t∧τ

0

φsw
s ds (4.1)

where φsw is the CDS spread. If the CDS spread φsw
t dt coincides with the default com-

pensator dΛt then the CDS price SW is a G-martingale. Remark that the defaultable
asset jumps at τ , on the contrary to the non-defaultable assets Si, which are F-adapted,
and therefore are continuous at τ (as a consequence of Assumption 2.1). The following
quantities will be extensively used in the sequel:

Φsw
t :=

∫ t

0

φsw
s ds and Ψt :=

∫ t

0

ψtds for ψt := φsw
t − Φsw

t rt. (4.2)

In the G-market, all investments in these tradable assets are stopped at time τ and the
strategies are self-financing. We first make precise Remark 3.3 in this framework of G-
financial market, by characterizing the set of adjoint processes Y G in this setting.

4.1.2 Pricing kernels in the G-universe

The No Arbitrage condition implies the existence of at least one pricing kernel (state
price density process). A pricing kernel is defined as a non-negative adapted process Y G

which is orthogonal to the tradable assets in the market, that is (SiY G) (for i = 0, · · · , d)
and (SW. Y G) are (G,P)-local-martingales. Thanks to the self financing dynamics of
the admissible wealth processes, pricing kernels are also orthogonal to any admissible
wealth process, whatever the initial wealth. In this financial context, pricing kernels are
the adjoint processes, with a stronger condition of orthogonality compared to the abstract
framework of Section 1 (S.Y G are here local martingales instead of only supermartingales).
The orthogonality of Y G = (Y bd, Y sd) with the non-defaultable assets Si determines the
before default part Y bd of Y G, while the orthogonality with respect to the defaultable
asset determines the jump relative jump RY = Y bd

Y sd as explained in the following theorem.

Theorem 4.1. We recall that Φsw
t =

∫ t

0
φsw
s ds and Ψt =

∫ t

0
ψtds for ψt = φsw

t − Φsw
t rt.

Then Y G = (Y bd, Y sd) is a (G,P)-pricing kernel if and only if

Y bdeΨ−ΛF is a (F,QL)-pricing kernel, and Y sd
t

Y bd
t
dΛF

t = (φsw
t − Φsw

t rt)dt = ψtdt.

The relative jump RY = Y sd

Y bd is independent on the initial condition y and is determined
by the CDS-spread φsw, the spot-rate r and the cumulative compensator ΛF.
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No Arbitrage condition implies the positivity of ψ, so that Y sd remains positive. Indeed
ψt = (φsw

t − Φsw
t rt) > 0 for all t is equivalent to ∀ 0 < t0 < t, Φsw

t > Φsw
t0

exp(
∫ t

t0
rsds)

that is the CDS’ return is greater than the risk free rate : on {t < τ}, SWt

SWt0
>

S0
t

S0
t0

. If this
condition is not fulfilled, arbitrage opportunities (through investments in CDS and in the
risk free asset) can be realized.

Proof. Y G = (Y bd, Y sd) is a G-pricing kernel if and only if it is orthogonal to the non-
defaultable assets Si (for i = 0, · · · , d) and to the defaultable asset SW .
(i) Y G is orthogonal to SW if and only if

{
Y G
t SWt = −Φsw

t Y
bd
t 1t<τ +Y sd

t (1−Φsw
τ )1τ≤t

}
is a (G,P)-local-martingale. By Theorem 2.6, and recalling the equivalent probability
measure dQL := LFdP, this is equivalent to

{Φsw
t Y

bd
t exp(

∫ t

0

(RY
s

Φsw
s − 1

Φsw
s

− 1)dΛF
s )} is a (F,QL)− local-martingale.

Denoting by µbd
t the finite variation part of the (F,QL)-semi-martingale Y bd, this is

equivalent to e−
∫ t
0 (

RY
s

Φsw
s

+1)dΛF
s

(
Φsw

t dµ
bd
t + Y bd

t φsw
t dt + (Y sd

t (Φsw
t − 1) − Φsw

t Y
bd
t )dΛF

t

)
= 0,

a.s, ∀t, that is

dµbd
t = −Y bd

t

φsw
t

Φsw
t

dt− (Y sd
t

Φsw
t − 1

Φsw
t

− Y bd
t )dΛF

t , a.s ∀t. (4.3)

(ii) Using again Theorem 2.6, the (G,P)-local-martingale property of
{
Y G
t S

0
t

}
is equivalent

to (since S0 is continuous at τ) {Y bd
t S0

t exp(
∫ t

0
(RY

s −1)dΛF
s )} is a (F,QL)-local-martingale,

that is
dµbd

t = −Y bd
t rtdt− (Y sd

t − Y bd
t )dΛF

t , a.s ∀t. (4.4)

Combining (4.3) and (4.4) determines the relative jump RY = Y sd

Y bd of Y G

Y sd
t

Y bd
t

dΛF
t = (φsw

t − Φsw
t rt)dt = dΨt. (4.5)

(iii) Y G is orthogonal to the non-defaultable F-adapted assets Si (i = 1, · · · , d) (Si has
no jump at τ) iff {Y bd

t Si
t exp(

∫ t

0
(RY

s − 1)dΛF
s )} is a (F,QL) − local-martingale, that is

iff {Y bd
t Si

te
Ψte−ΛF

t } is a (F,QL)-local martingale, since RY
t dΛ

F
t = (φsw

t − Φsw
t rt)dt = dΨt.

This means that Y bdeΨ−ΛF is (F,QL)-pricing kernel.
Denoting by µi

t the finite variation part of the (F,QL)-semi-martingale Si, this is equiva-
lent to dµbd

t + Y bd
t dµi

t + (Y sd
t − Y bd

t )dΛF
t + [dY bd

t ,
dSi

t

Si
t
] = 0, a.s ∀t, which becomes, using

(4.4), dµi
t − [

dY bd
t

Y bd
t
,
dSi

t

Si
t
] = rtdt, a.s ∀t.
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4.1.3 Admissible wealth processes in the G-market

The agent invests in this financial market a fraction π of her positive wealth WG in the
risky assets S, the quantity α in the defaultable asset SW and the rest in the cash:

WG
t = [WG

t πt].St + [αt]SWt + [
WG

t −WG
t πt.St − αtSWt

S0
t

]S0
t (4.6)

The class of admissible strategies (π, α) reflects the incompleteness of the market by
restrictions on the risky portfolios π that are constrained to live in a given adapted
subspace. All investments are stopped at time τ . The portfolio evolves according to the
self-financing dynamics, with positive initial wealth WG

0 ∈ R∗
+:

dWG
t = 1t≤τ

(
WG

t rtdt+WG
t πt.(dSt − rtStdt) + αt(d SWt − rt SWt dt)

)
. (4.7)

The wealth process WG can be written as WG
t = W bd

t∧τ + (W sd
τ −W bd

τ )1τ≤t.

According to (4.6), since SWt = 1τ≤t − 1t<τ

∫ t∧τ
0

φsw
s ds = 1τ≤t − Φsw

t 1t<τW bd
t = [W bd

t πt].St − [αt]Φ
sw
t + [

W bd
t −W bd

t πt.St + αtΦ
sw
t

S0
t

]S0
t , (4.8)

W sd
τ −W bd

τ = WG
τ −WG

τ− = ατ (SWτ − SWτ−) = ατ . (4.9)

The G-wealth process WG has one jump at time τ , of size ατ . If the agent wants to obtain
the wealth W sd

τ = WG
τ at the default time, she has to invest αt = (W sd

t −W bd
t ) in the

defaultable asset at any time t. Therefore one can equivalently parametrize the G-wealth
process by (π, α) or by (π,W sd).

4.1.4 From the class of admissible wealth processes to the observable process

Given a utility criterion, the investor aims to optimize her preferences among the set of
admissible wealths described above. This leads to a stochastic control problem, usually
formulated backward in the literature, and for which the value function is an example of
dynamic consistent utility (under technical regularity assumptions to ensure - among other
properties - its concavity, see (EKHM18)). In the backward problem setting, authors give
little importance to the role of the initial condition. Indeed, in the optimization program,
they consider a large class of controls (so-called Open-Loop controls) and at the optimum
they select a Markovian control. But it should be noted that these optimal strategies
depend in a complex way on the state Xt(x) at each date t, except in very particular
cases (such as power utilities). Therefore the optimal wealth, which is a controlled process
belonging to the general class of admissible wealths, depends on x in a non-linear way: it
is a random field depending on x and t, such as the controlled strategies π(t, x), α(t, x).
Similarly, the optimal adjoint process Yt(y) also depends on its initial condition y in a
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not necessarily linear form, see (EKHM22) for more details on this dependency. In our
inverse problem, where we assume to observe the optimal process, the role of the initial
condition cannot be neglected. In a sense, assuming that we have data for several initial
conditions is enough to fill the lack of information about the universe and its uncertainties.
As recalled in Theorems 1.1 and 1.2, the monotonicity of X and Y is a key property to
reconstruct the utility process from the observable. This monotonicity can be proved in
an Itô framework by considering the Stochastic Differential Equations satisfied by X and
Y and checking that these SDEs have sufficiently regular coefficients.

Example of an Itô financial market We provide here the classic example of an Itô
financial market, in which the filtration F is driven by a n-standard Brownian motion B.
The risk free asset is characterized by the short rate

{
rt
}
, the non-defaultable F-assets

{Si
t , i = 1...d} by the n-dimensional risk premium vector

{
ηt
}

and the d × n volatility
matrix

{
σt
}
. The existence of a multivariate risk premium η is a weak form of absence

of arbitrage opportunity in this F-market (without default). The incompleteness of the
F-market is expressed by restrictions on the risky portfolios σtπt that are constrained to
live in a given progressive vector space Rt.

In this Itô framework, the dynamics of a F-pricing kernel Y F,ν is characterized by an
orthogonal volatility ν ∈ R⊥ as follows 1 (we refer to (EKHM18) for more details)

dY F,ν
t (y) = Y F,ν

t (y)[−rtdt+(νt(Y
F,ν
t (y))−ηt).dBt], νt(Y

F,ν
t (y)) ∈ R⊥

t , Y F,ν
0 (y) = y ∈ R∗

+.

(4.10)
In the G-market, the defaultable asset is still given by the CDS (4.1) and the characteristic
XG is a G-admissible wealth satisfying the self-financing dynamics (4.7),

dXG
t (x) = 1t≤τ

(
XG

t (x)(rtdt+ (σtπt(X
G
t (x)).(dBt + ηtdt)) + αt(X

G
t (x)(d SWt − rt SWt dt)

)
.

The dynamics of (G,P)-pricing kernels follows from Theorem 4.1: Y G = (Y bd, Y sd) is a
G-pricing kernel if and only if Y sd

t dΛF
t = Y bd,ν

t dΨt and Y bd = Y bd,ν (ν ∈ R⊥) solution of

dY bd,ν
t (y) = Y bd,ν

t (y)
[
− rtdt− dΨt + dΛF

t + (νt(Y
bd,ν
t (y))− ηt).dBt

]
.

4.2 The defaultable G-market as a F-market with consumption.

This section investigates the link between the G-market with the defaultable asset and a
F-market with consumption, providing a new point of view for the consumption. From
equations (4.8) and (4.9), a self-financing portfolio, stopped at time τ , is decomposed as
follows WG

t = W bd
t 1t<τ +

(
W bd

τ + [ατ ](1 + Φsw
τ ))1τ≤t,

1For R a vector subspace of Rn, R⊥ denotes its orthogonal space. For any x ∈ Rn, xR is the orthogonal
projection of the vector x onto R.
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with W bd
t = [W bd

t πt].St − [αt]Φ
sw
t + [

Wbd
t −Wbd

t πtSt+αtΦsw
t

S0
t

]S0
t . The dynamics of the before

default wealth W sd
τ satisfies

dW bd
t = W bd

t πtdSt − αtdΦ
sw
t +

(
W bd

t −W bd
t πtSt + αtΦ

sw
t

)
rtdt.

= W bd
t rtdt+W bd

t πt(dSt − rtStdt) + (W sd
t −W bd

t )dt

= W bd
t

[
rtdt− (RW

t − 1)ψtdt+ πt.(dSt − rtStdt)
]

(4.11)

where we used the parametrization αt = W sd
t −W bd

t for the second equality, and the pre-
vious notations ψt = φsw

t −Φsw
t rt and RW = W sd

Wbd for the third equality. The multiplicative
form of the dynamics (4.11) ensures the positivity of the wealth. (4.11) is similar to the
dynamics of an admissible wealth in a F-market with consumption. In the F-market, the
agent is allowed to invest only in the non-defaultable (F-adapted) assets {Si, i = 1...d}
and S0. She can not invest in the defaultable asset, but she is allowed to consume a
part of her non-negative wealth at the progressive rate ct = ρtW

F,π,ρ
t ≥ 0, where ρ is the

fraction of wealth that is consumed. Indeed, by denoting as before by πt the fraction of
her wealth W F,π,ρ

t invested in the risky assets, the dynamics of a positive wealth process
in the F market with admissible risky portfolio π and relative consumption rate ρ ≥ 0,
starting from the positive initial wealth W F,π,ρ

0 , is given by

dW F,π,ρ
t = W F,π,ρ

t [(rt − ρt) dt+ πt.(dSt − rtStdt)]. (4.12)

In depth discussion on the backward/forward approaches for utilities of investment and
consumption is provided in (EKHM18).

4.2.1 The consumption process as reserves to face a default event

We recall that the appropriate probability measure to consider on the small filtration
F is QL defined as dQL = LFdP, and that Ψt =

∫ t

0
(φsw

s − Φsw
s rs)ds =

∫ t

0
ψsds. Then,

according to (4.11) and Theorem 4.1, we have the following correspondence between F-
market processes and G-market processes{

W bd,π
t = W F,π,ρ

t eΨt ,

Y bd
t = Y F

t e
ΛF
t−Ψt ,

where W F,π,ρ is a F-wealth process with strategy π and consumption rate ρ = RWψ, and
Y F is a F-pricing kernel.

Proposition 4.2. We have the equivalence between G-self-financing strategies and F-self-
financing strategies with consumption, for t ≤ τ :
• G-strategies :

{
πt
}

on the non-defaultable risky assets,
{
αt = W sd

t −W bd,π
t

}
on the

defaultable asset, leading to the wealth
{
WG,π

t

}
on [0, τ ].
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• F-strategies :
{
πt
}

on the non-defaultable risky assets, consumption rate
{
ρt = ψtR

W
t

}
,

leading to the wealth
{
W F,π,ρ

t = e−ΨtW bd,π
t

}
.

• G-pricing kernels
{
Y G
t

}
and F-pricing kernels

{
Y F
t

}
are linked by

{
Y bd
t = Y F

t e
ΛF
t−Ψt

}
.

Note that the quantities in the F-market are recapitalized by e−Ψt , the recapitalization
rate depending on the CDS-spread φsw and the market spot rate r.

4.2.2 F and G-bi-revealed utilities in financial markets

In the framework of a financial market, the characteristic processes (X, Y ) one would like
to consider are optimal wealth process for X and optimal pricing kernel for Y . In the
light of Proposition 4.2, for the F-market, the characteristic processes should be e−ΨXbd,π

(instead of Xbd,π) and Y bd = Y FeΛ
F−Ψ (instead of Y bdeΛ

F). This is coherent with Remark
3.3 since

Xbd
t (x)Y bd

t (y)e
∫ t
0 (R

XY
s (x)−1)dΛF

s =
(
Xbd

t (x)e
∫ t
0 RXY

s (x)dΛF
s+Ψt

)(
Y bd
t (y)e−ΛF

t−Ψt

)
.

Ψ is interpreted as a parameter of adjustment specific to the market-model. Note that the
coefficient RXY = RXRY depends only on x and not on y, as underlined in Theorem 4.1.
Thus the consumption CX and the F-utilities defined below do not depend on y, which is
crucial to ensure the monotonicity of the characteristic process and the concavity of V F.
Theorem 3.1 can be rewritten in the following slightly different form, taking into account
the adjustment parameter Ψ.

Corollary 4.3. Let u a deterministic utility, XG a G-self-financing optimal wealth and
Y G a G-optimal pricing kernel, to which we associate the F-self-financing optimal wealth
XF(x) := Xbd(x)e−Ψ with consumption CF

t (x) := Xsd
t (x)ψt and the G-optimal pricing

kernel Y F(y) := Y bd(y)eΨ−ΛF as in Proposition 4.2. Then a G-dynamic utility UG =

(Ubd, U sd) and its conjugate ŨG is bi-revealed by the triplet (u,XG, Y G) if and only if the
pair of utility of wealth and consumption (UF, V F) and their conjugate (ŨF, Ṽ F)

{
UF(t, z) := e−ΛF

tUbd(t, zeΨt)
}

and
{
V F(t, c) := e−ΛF

tU sd(t,
c

ψt

)
ψt

RY
t

}
,{

ŨF(t, y) := e−ΛF
t Ũbd(t, yeΛ

F
t−Ψt)

}
and

{
Ṽ F(t, c) := e−ΛF

t Ũ sd(t, ceΛ
F
tRY

t )
ψt

RY
t

}
.

is bi-revealed by the triplet (u, (XF, CF), Y F).

Using the following identities of ρt(x) = RX
t (x)ψt (Proposition 4.2) and of the G-pricing

kernel jump RY
t (y)dΛ

F
t = ψtdt (Theorem 4.1), we remark that the consumption CF

t (x) =

Xbd
t (x)ρt(x) can be written as CF

t (x)dt = Xsd
t (x)ψtdt = Xsd

t (x)RY
t dΛ

F
t = CΛ

t (x)dΛ
F
t using
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the notations of Section 3. Then Corollary 4.3 is an immediate consequence of Theorem
3.1, by observing the equivalence of the following martingale properties{

UG(t,XG
t (x)) = U bd(t,Xbd

t (x))1t<τ + U sd(t,Xsd
t (x))1τ≤t

}
is a (G,P)− martingale,∀x.{

UF(t,XF
t (x)) +

∫ t

0

V F,Λ(s, CΛ
s (x))dΛ

F
s

}
is a (F,QL)−martingale,∀x.{

UF(t,XF
t (x)) +

∫ t

0

V F(s, CF
s (x))ds

}
is a (F,QL)−martingale,∀x.

Conclusion By adopting the general abstract viewpoint on bi-revealed utilities and
applying it to a defaultable universe, this paper proves the equivalence between a utility
criterion from aggregate wealth and consumption with a utility criterion from aggregate
wealth with random horizon. The consumption process is interpreted as an accumulation
of reserves that are kept aside in order to face an unpredictable event arriving at the
random date τ . Given the interpretation of τ , many models are possible. In the case
of an ecological risk, τ is an exponential time independent to the basic financial assets
of the market. In the case of a sovereign default, the natural hypothesis is, as in the
credit literature, that the default admits a stochastic intensity. All these models are
encompassed in the general setting of defaultable universe considered in this paper.
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