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Abstract. Optimizing expensive models is a challenging task in the aeronautical design
community. Multi-fidelity optimization proposes to use different levels of fidelity to alleviate
the overall computational cost of the optimization. How to know which level of fidelity will
be useful for the optimization process ? In this work, we propose a methodology to decide
which levels of fidelity are useful. We construct a Pareto front for the fidelity levels in terms
of cost and accuracy, and then select only the Pareto optimal fidelity levels. All the models
considered in this work were considered as black-boxes, so a gradient-free optimizer is used to
solve the optimization problems. We chose to use a multi-fidelity Bayesian algorithm in order to
reduce the number of function evaluations. We showed the advantage of selecting the optimal
Pareto fidelity levels in the multi-fidelity process by comparing the cost to achieve convergence
using different scenarios for level selection. To this end, we applied our methodology to
several analytical test cases and to a simple drone design problem for which we obtained an
improvement of 38 percent improvement over the mono-fidelity algorithm and a 24 percent
improvement over the multi-fidelity algorithm with random selection.

1. Introduction
Multi-fidelity Bayesian optimization proved to overtake mono-fidelity Bayesian optimization
when solving problems where the involved models are very expensive [29, 3, 25]. Indeed, multi-
fidelity Bayesian optimizer can query low-fidelity models in order to explore the design space but
also high expensive fidelity models when exploitation of the surrogate is needed. Sometimes a
lot of fidelity levels are available to approach the quantities of interest. In this paper, we address
the problem of choosing how many and which levels of fidelity to use in the multi-fidelity process.
We propose an efficient approach to select the right combination of fidelity levels among all the
possible combinations. To make this selection, we first evaluate each fidelity level according to
two objectives which are their cost and accuracy, and then keep only the non-dominant fidelity
levels. The paper is divided as follows. Section 2 gives a state of the art on the multi-fidelity
Kriging and multi-fidelity Bayesian optimization. Next, Section 3 explains the proposed Pareto
optimal fidelity level (POFL) methodology. Some analytical test cases and the associated results
are presented in Section 4. The methodology is then experienced on a drone design test case in
Section 5. Finally, some conclusions and perspectives are given in Section 6.



2. State of the art
This section presents the multi-fidelity framework that is used in this paper. We want to solve
an optimization problem with inequality or/and equality constraints:

min
x∈Ω

f(x)

such that

{
g(x) ≤ 0
h(x) = 0

(1)

where the objective function f and the constraints g, h are evaluated with a Multidisciplinary
Design Analysis (MDA) costly to evaluate. In a multi-fidelity context, the f , g and h can be
obtained by different MDAs associated to different fidelity levels. To solve this multidisciplinary
optimization (MDO) problem with expensive black-box functions, Bayesian optimizers [30, 31]
are used to minimize the number of function evaluations. First Section 2.1 shows how to
construct a multi-fidelity Gaussian process surrogate model. Then, in Section 2.2, the current
Bayesian optimization approach is adapted to multi-fidelity by defining a criterion to choose the
fidelity level to query. We assume here that the reader is familiar both with Gaussian processes
(GP) interpolation also denoted Kriging models [19, 10, 20] and with the classical mono-fidelity
Kriging based Bayesian optimization methods like the Efficient Global Optimization (EGO) [5]
algorithm for unconstrained problems and the Super Efficient Global Optimization (SEGO)
algorithm [9, 6, 7] for constrained problems.

2.1. Multi-fidelity Kriging
The first extension of the Kriging model for multivariate functions, called co-Kriging, was first
developed in geostatistics (see [26, 27]). Next, [1] figured that making assumptions to relate
different levels of fidelity is a way to simplify multi-fidelity problems. In this section, focus
will be made on Le Gratiet’s [2] recursive formulation that we used to construct multi-fidelity
Kriging models. Let’s suppose that L + 1 fidelity levels f0, ..., fL sorted from the lowest to
the highest are available to approach the function f (the same philosophy could be applied to
the constraint functions) and that we dispose of L + 1 design of experiments (DoE), one for
each fidelity level, denoted (Di)i=0...L withDi = ((x0, fi(x0)), ..., (xj , fi(xj)), ..., (xNi , fi(xNi)))

T ,
Ni being the number of points in Di. We make the nested DoE assumption which states
that each point evaluated at a fidelity level is also evaluated at all the lowest fidelity levels:
Dx

L ⊆ Dx
L−1 ⊆ . . . ⊆ Dx

0 where Dx
i = (x0, ..., xj , ..., xNi)

T corresponds to the inputs part of Di.
The nested DOE provides some properties useful to express the surrogate model variance in
closed form. Let’s make the following assumption first introduced by [1] in the bi-fidelity case
to link the fidelity levels

fl+1(x) = ρlfl(x) + δl+1(x) such that fl ⊥ δl+1 ∀l = 0, ..., L− 1 (2)

where δl+1(x) is a discrepancy function that captures the difference between the l + 1-th and
the l-th fidelity levels while ρl is a scaling factor which is applied to fl.
Le Gratiet [2] proposed to add the lowest fidelity function to the basis function set (hi)i=1...p

used in the universal Kriging regression term to get:

µ(x) =
∑

i=1,...,p

(
βihi(x)

)
+ βρ0f0(x) (3)

where βρ0 is an estimation of ρ0 and (βi)i=1...p is a set of unknown coefficients to be multiplied by
the basis functions. Estimations of these coefficients are done at the hyperparameter estimation
step performed by maximizing the likelihood [11, 18]. Since we used a nested DoE structure,
the independence between fidelity levels of the surrogate model is assumed. Then the following
recursive formulation for the mean (µ̂l+1) and variance (σ̂2

l+1) of each fidelity level GP surrogate
model can be written:

∀l = 0, ..., L− 1

{
µ̂l+1 = ρlµ̂l + µ̂δl+1

σ̂2
l+1 = ρ2l σ̂

2
l + σ̂2

δl+1

(4)
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In this case, ρl is considered as a constant but it can depend on x and we have ρl : x 7→ ρl(x).
The learning process is the following, first the lowest fidelity level is learnt, then the relationships
(scaling factor ρl and discrepancy function δl+1 with l = 0, ..., L − 1) between every successive
fidelity level are consecutively learnt. Since the variances can be expressed in closed form,
the contribution of each fidelity level to the total variance of the multi-fidelity model can
be expressed too. It constitutes the more remarkable advantage of Le Gratiet’s recursive
formulation. Denoting σ2

cont(l, x) the variance contribution of the lth fidelity level at the point
x, with the notation σ2

δ0
= σ2

0 we have:

∀l = 0, ..., L− 1 σ2
cont(l, x) = σ2

δl
(x)

L−1∏
j=l

ρ2j and σ2
cont(L, x) = σ2

δL
(x) (5)

2.2. Multi-fidelity Bayesian optimization
With a multi-fidelity Bayesian optimization process, one must decide which point is most
promising and the level of fidelity at which to evaluate it. It has been proposed in [2] to solve the
problem of finding the point and level of fidelity in two successive steps. First the point is found
using a classical acquisition function as in the mono-fidelity Bayesian optimization. Then the
variance contribution knowledge at each fidelity level gives some information to smartly decide
the fidelity level to choose. Let c0, ..., cL be respectively the querying costs of all the fidelity
levels f0, ..., fL. Let us denote σ

2
red(l, x

∗) the variance reduction of the high fidelity model when
the point x∗ is evaluated with all the fidelity levels ≤ l to ensure the nested DoE structure

σ2
red(l, x

∗) =
l∑

i=0

σ2
δi
(x∗)

L−1∏
j=i

ρ2j (6)

A criterion to choose the level of enrichment can then be written as:

l∗ = argmax
l∈0,...,L

σ2
red(l, x

∗)

(
∑l

i=0 ci)
2

(7)

One can remark that Eq (7) is a trade off between variance reduction and computational cost.
Then the cost ratios between the different fidelity levels are important parameters to the method.
This two step approach from [3] is described in Fig. 3 of Appendix 7.2. It is refered in the
following as the Multi-Fidelity Super Efficient Global Optimization (MFSEGO). Now that the
multi-fidelity model and optimization technique have been described, the method for selecting
the Pareto optimal fidelity level that we experimented with in this paper is explained.

3. Pareto optimal fidelity levels methodology
In this section, we present a preprocessing method whose goal is to select the Pareto optimal
fidelity levels (POFL) of a function to be used in a multi-fidelity context. We consider two
objectives which are the accuracy and the computational cost associated with each fidelity
level. In a multi-objective context, the notion of optimality must be revised, and we speak
of Pareto optimality [4]. A point A dominates a point B if it is better in all objectives. For
example,in our case, a fidelity level that is more accurate and less expensive than another fidelity
level will dominate it. A point is said non-dominated and is called Pareto optimal if no other
evaluated point dominate it. The Pareto set is the set of Pareto optimal points. The Pareto
front is the set of images of the Pareto set (the objective values at the points of the Pareto set).

Suppose we have L + 1 fidelity levels f0, ..., fl, ..., fL that evaluate a function with different
accuracies. We consider here that the fidelity levels are not hierarchically ordered, except for
the last fidelity level L which is the highest fidelity level. Typically, it is possible that some
of these fidelity levels are not very interesting to use. For example, if one fidelity level is less
accurate than another but still more computationally expensive, it is not interesting to use it
in the multi-fidelity process we are building. The strategy we propose here is to evaluate each
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level of fidelity at points Qi of a DoE Q and estimate their accuracy and cost. The number of
points is card(Q) = npts. To approximate the computational cost cl associated to the l-th level
of fidelity, we compute the mean value ĉl defined by

ĉl =
1

npts

npts∑
i=1

ci,l (8)

where ci,l is the computational cost at point Qi with the level l. Assuming that the higher
fidelity level fL is the reference, ∀l ∈ L = {0, .., L} we approximate el the accuracy of the l-th
fidelity level by

êl =
1

1
npts

∑
p=1...P

||(fL(Q))p−(fl(Q))p||22
1

npts

∑npts
i=1 (fL(Qi))p

(9)

fl(Q) is the output of the evaluation of fl at all the points Q. Denoting P equals to the sum
of the number of objectives and the number of constraints, ∀l,∀i, fl(Qi) is a vector of size P .
Thus the estimated accuracy of the fidelity levels depends on the accuracy of the objective
value but also on the constraints. Next, we construct the Pareto front in terms of cost and
accuracy to select only the optimal Pareto fidelity levels. The dominated fidelity levels will not
be considered in the process [28].

4. Analytical test cases
The POFL method is validated on a selection of analytical test cases of increasing complexity
(unconstrained and constrained Rosenbrock in 2-dimension and the Borehole function in
dimension 8) to show its utility.

4.1. Four fidelities for the 2D-Rosenbrock function
For the purpose of this test case, we extend the two-dimensional two-fidelity Rosenbrock function
to a four-fidelity function using the method proposed by [24]. The high fidelity (HF) Rosenbrock
function is defined by:

fHF : [−2, 2]2 −→ R
(x0, x1) 7−→ 100(x1 − x20)

2 + (x0 − 1)2
(10)

The low fidelity (LF) Rosenbrock functions are of the following form

fLF,xs : [−2, 2]2 −→ R
(x0, x1) 7−→ 100(xsx1 − x20)

2 − 2((x1 − xs)
2 + (x0 − xs)

2)
(11)

The three LF functions are built using the same equation, but are parameterized by xs. Table 1
summarizes the chosen parameter xs and the chosen computational cost ratio for each fidelity
level. Knowing xs and the cost ratio for each fidelity level, the POFL method defined in Section 3

Table 1: LF and HF Rosenbrock functions: xs parameter and associated cost ratio to define
the four fidelity levels.

LF1 LF2 LF3 HF
xs 0.4 0.65 0.9 1

cost ratio 1000 10 100 1

is applied to build the associated Pareto front in terms of cost and accuracy using the data set
Q with npts = 100 points. The Pareto front is depicted in Fig 1a, we can clearly see that with
the chosen cost ratios, the second low fidelity function LF2 is dominated and could be removed
from the list of available fidelities.
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4.2. Four fidelities for the constrained 2D-Rosenbrock function
This test case uses the same functions as the ones defined in Section 4.1 with some different
cost ratios. We also add the following constraint

ca(x0, x1) = −x20 − (x1 − 1)
1
2 + 1.1 + a sin(10x0 + 5x1) ≥ 0 (12)

where a is an amplitude parameter for the sine. Table 2 sums up the value of this parameter a
and the cost ratio for each fidelity level.

Table 2: Constrained Rosenbrock test case: amplitude parameter and cost ratio for each fidelity
level

LF1 LF2 LF3 HF
a 0.15 0.1 0.05 0

cost ratio 100 1000 10 1

The Pareto front obtained with npts = 100 points is shown in Fig 4 in Appendix 7.3. One
can observe that the first low fidelity function LF1 does not belong to the Pareto front and
could be removed

On these first 2D examples, the POFL method proposes to eliminate one level of fidelity and
thus to decrease the number of levels of fidelity from 4 to 3.

4.3. Three fidelities for the 8D-Borehole function
The Borehole function is an unconstrained 8-dimensional test case, derived here to have three
fidelity levels denoted by LF, MF and HF. The form of the Borehole function is expressed as:

fb0,b1 : Ω −→ R
x 7−→ b0x2(x3−x5)

ln
x1
x0

(b1+
2x6x2

ln(x1/x0)x
2
0x7

+
x2
x4

)
(13)

where b0 and b1 are two parameters and the input space Ω ⊂ R8 is defined by

Ω = [0.05, 0.15]×[100, 50000]×[63070, 115600]×[990, 1110]×[63.1, 116]×[700, 820]×[1120, 1680]×[9855, 12045]

Table 3 gives the values of the parameters b0 and b1 and the chosen cost ratio for each fidelity
level.

Table 3: Borehole parameters and cost ratio for each fidelity level

LF MF HF
b0 5 7 2π
b1 1.5 0.5 1

cost ratio 10 100 1

The Pareto front obtained with npts = 100 points is shown in Fig. 5 in Appendix 7.3. The
LF function does not belong to the Pareto front and could be eliminated.

4.4. Optimization results of analytical test cases
In this section the optimization results obtained on the analytical test cases are described. We
compared a mono-fidelity optimization with several multi-fidelity optimizations: one using all
the fidelity levels available, one using only the Pareto optimal fidelity levels and one using
fidelity levels randomly chosen. Thus four scenarios are evaluated and compared.

The multi-fidelity Kriging models are computed with SMT[21, 23, 14]. SMT is an open
source toolbox developed by ONERA, ISAE-SUPAERO, NASA Glenn and University of
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Michigan specialized on the fast development of tailored surrogate models. The optimizations
are performed with SEGOMOE-toolbox [13] a Bayesian optimization toolbox developed at
ONERA and ISAE-SUPAERO including the proposed Multi-Fidelity strategy (MFSEGO). For
the random fidelity selection case, the HF level is always selected and the number of levels
is equal to the one chosen by the POFL strategy. For each scenario, 10 runs are performed
using a squared exponential kernel and the WB2 acquisition function [8]. For each run, first we
built an initial DoE for the optimization that uses all of the fidelity levels. Next, to construct
the initial DoE for each other scenario, we examine the selected fidelity levels with the POFL
method, and then select the parts corresponding to those fidelity levels from the full initial
DoE. For all analytical test cases, the initial DoE size for all multi-fidelity optimizations was
chosen as follows. First, we ranked all fidelity levels by accuracy, from k = 0 the least accurate
to k = L the most accurate. Next, we chose the initial DoE size for the HF level with ndoeHF

equal to twice the problem dimension, i.e., ndoeHF = 4 for the two Rosenbrock problems and
ndoeHF = 16 for the Borehole problem. Finally, the number of points evaluated with the k-th
level of fidelity is determined by the formula

ndoefidk = (ndoeHF )2
L−k

As MFSEGO needs a nested DoE structure as mentioned is Section 2.1, the initial DoEs have
then been created respecting this requirement. Reference solutions are known for the analytical
problems. Given this reference solution refsol, a convergence criterion for the mean (over the 10

runs) of the objective value at the best feasible point ȳfeasiblebest is defined by:

|ȳfeasiblebest − fHF(refsol)| ≤ ϵ0|fHF (refsol)|+ ϵ1 (14)

where ϵ0 and ϵ1 are respectively the relative and absolute tolerances. Typically we chose
ϵ0 = ϵ1 = 1e−3 for the analytical test cases. Figure 1b shows the evolution of the mean of
the best feasible objective value against the budget for the unconstrained Rosenbrock test case.
Figures 7 and 8 in Appendix 7.4 show the mean value evolutions respectively for the constrained
Rosenbrock and Borehole test cases. Overall results are summed up in Table 4. The term ”not
reached” in this table means that the maximum allocated budget for the optimization has been
reached before the convergence criterion Eq. (14) was satisfied. For all the analytical test cases
we can see that the POFL method overtakes all other methods. Moreover these results highlight
that using all of the fidelity levels available is not efficient, even compared to the mono-fidelity
strategy. In Fig 1b and Fig 7 for unconstrained and constrained Rosenbrock cases, the curve
for the random scenario quickly approaches the reference solution, which means that for some
of the 10 runs the random strategy was effective in finding the optimum. Nevertheless, the
convergence criterion (see Eq. (14)) on the average over the 10 runs is not even reached using
the whole allowed budget. We can therefore deduce that the random strategy is not at all
robust.

Table 4: Summary of the needed budget to reach the convergence criterion for the three
analytical test cases with ϵ0 = ϵ1 = 1e−3 (”not reached” means that the maximum allocated
budget for the optimization has been reached before the convergence criterion Eq. (14) was
satisfied).

Unconstrained Rosenbrock Constrained Rosenbrock Borehole
All fidelity levels not reached not reached 37.0
Mono-fidelity 89 67.0 34.4

POFL 75.2 30.686 19.84
Random not reached not reached 43.95
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(a) Fidelity level Pareto front for 2D-
unconstrained Rosenbrock test case

(b) Unconstrained Rosenbrock case: mean and
1-sigma confidence interval over 10 runs of the
objective value at the best HF feasible point
against budget

Figure 1: Unconstrained Rosenbrock test cases fidelity level Pareto front and convergence curves.

5. Drone design test case
5.1. The drone model
For the purpose of this test case, we developed a parametric drone model with the OpenMDAO
framework [17]. The core of the model is the aerostructural part which relies on an aerostructural
simulation code called OpenAeroStruct [15] [12] [16] (OAS) developed by University of Michigan
within OpenMDAO. The model has a propulsion group handled using the electrical extension
of the Breguet range equation. This equation is valid in the steady level flight case and its
expression is given in Appendix 7.6. In order for the drone to ensure longitudinal stability, the
model also has a group that balances the root chord tail such that the tail surface over wing
surface ratio is equal to 0.15. This model has been derived in 5 fidelity levels by combining
different mesh dimensions and drone speed parameterizations. The different combinations are
given in Table 5. Using different speeds allows us to simulate several codes of a priori similar
levels. This is a way to emulate more levels of fidelity for our problem without using more tools
and codes.

Table 5: Parameterization of the OpenAeroStruct models

wing mesh dim tail mesh dim Drone speed
(chordwise, spanwise) (chordwise, spanwise)

HF (19,41) (17,37) 20 m.s−1

MF1 (9,15) (7,11) 20 m.s−1

MF0 (9,15) (7,11) 30 m.s−1

LF1 (3,5) (3,5) 20 m.s−1

LF0 (3,5) (3,5) 30 m.s−1

The MDO problem to be solved can be defined as:

max
x∈R19

SOC(x)

such that

 CL ≥ 0.4
wingfailure ≤ 0
tailfailure ≤ 0

where the SOC is the state of charge of the battery at the end of the mission and x is the vector
of 19 design variables relative to wing and tail geometrical parameters. They are detailed in
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Table 8 in Appendix 7.5. The Pareto front obtained with npts = 100 points is shown in Fig 6 in
Appendix 7.3. We can see that the two models MF0 and LFO that consider a 30 ms−1 speed
are not Pareto optimal.

5.2. Optimization results for the drone design
This section presents the optimization results obtained with the drone design test case. The
size of the initial DoEs and the cost ratios are given in Table 6.

Table 6: Size of initial DoEs and cost ratios for the drone design test case.

LF0 LF1 MF0 MF1 HF
Initial DoE size 20 20 10 10 5

cost ratio 100 100 10 10 1

The same convergence criterion, see Eq. (14), as for the analytical cases is now parameterized
by ϵ0 = 0.005 and ϵ1 = 0.0025 and the reference solution has been found using the SNOPT
algorithm [22] which stands for Sparse Nonlinear OPTimizer. For this test case we also compared
the results with an other type of fidelity selection strategy that we named dominated selection.
Indeed, since the low and medium fidelity levels are mainly intended to explore the design space,
we decided to check the impact on the optimization performance of selecting the dominated low
fidelity models instead of the non-dominated low fidelity models. Then, the same methodology
as for the analytical cases is used to obtain the results presented in Fig. 2. The representation is
slightly different to show the budget. For each of the 5 strategies, the number of runs that found
the optimum is given by the blue line and the number of executions that found a feasible point
with respect to the budget by the green line. Table 7 sums up the required budget to reach
the convergence criterion. In the end, the POFL method is the most efficient. The dominated
selection method is less efficient than the POFL method but still better than all other strategies.
The mono-fidelity strategy is not the most effective but it is quite robust. On the opposite the
random strategy is very effective for most of the runs but is slow for one of them. It emphasizes
that this strategy is not robust to the initial DoE as we started to see with the analytical test
cases. Finally, the all fidelity level strategy seems to be the worst. Using a large number of
fidelity levels can lead to redundancy and complicate surrogate modeling, which could explain
this inefficiency.

Table 7: Summary of the needed budgets to reach the convergence criterion for the drone design
test case with ϵ0 = 5× 1e−3 and ϵ1 = 2.5× 1e−3.

All fidelity levels Mono-fidelity POFL dominated selection Random
24.87 14 8.71 10.59 11.41

6. Conclusion
In this work, we proposed a method to select the most useful fidelity levels to use in a multi-
fidelity process among all available levels. We experimented with this POFL method on several
analytical optimization problems and on a UAV design problem that we solved using single
and multi-fidelity Bayesian optimizations. Overall, the POFL selection proves to be the most
computationally efficient for solving these problems. The budget required to achieve convergence
was divided by a factor between 1.2 and 2.2 using the POFL method compared to the mono-
fidelity method. However, the POFL has some limitations. For example, if the cost and accuracy
of each model is not known or has not yet been estimated, it must be done to obtain the Pareto
front and this can be expensive. Nevertheless, once this has been done once, the cost and
accuracy estimates can be reused.
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(a) 1F strategy (b) 5F strategy (c) Random strategy

(d) POFL strategy (e) Dominated selection strat-
egy

(f) legend

Figure 2: Evolution of the number of runs that have found a feasible point and the number that
have found the optimum.
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7. Appendix
In this appendix, we first find a pseudo-code of the MFSEGO methodology in Section 7.1. Then,
Section 7.2 presents this MFSEGO methodology in a diagrammatic form. Section 7.3 shows
the fidelity level Pareto fronts for the constrained Rosenbrock, Borehole and drone design test
cases. Section 7.4 shows the optimization convergence curves for the constrained Rosenbrock
and Borehole test cases. A table summarizing the lower and upper bounds, the unit and the
dimension of all of the design variables for the drone test case is provided in Section 8. Finally,
Section 7.6 details how to find the expression of the electric Breguet range equation.

7.1. Pseudo-code of the multi-fidelity Bayesian optimization methodology based on Le Gratiet’s
recursive formulation.
The following pseudo-code explains the MFSEGO methodology.

Algorithm 1 Multi-fidelity Bayesian optimization algorithm, based on Le Gratiet’s recursive
formulation.

Compute initial DoE using LHS
while (maximum budget is not reached) and (convergence criterion not reached) do
Learn LF Kriging surrogate model (µ̂0 and σ̂2

0)
for k = 1...L do
Learn ρk−1 and µ̂δk
Deduce µ̂k and σ̂2

k and so the k-th fidelity level Kriging surrogate model
end for
Choose xnext that maximizes the acquisition function
Select the level of enrichment t (see Eq. (7))
for l = 0...t do
Add (xnext; fl(xnext)) to the DoE

end for
yfeasiblebest = min Y feasible

end while
return yfeasiblebest
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7.2. Diagram of the multi-fidelity Bayesian optimization methodology based on Le Gratiet’s
recursive formulation.
Figure 3 describes the MFEGO methodology schematically.

Figure 3: MFSEGO methodology diagram.

7.3. Others Pareto front figures
Figure 4 depicts the fidelity level Pareto front for the constrained 2D-Rosenbrock test case.

Figure 4: Fidelity level Pareto front for the constrained 2D-Rosenbrock test case

Figure 5 depicts the fidelity level Pareto front for the 8D-Borehole test case.
Figure 6 depicts the fidelity level Pareto front for the drone design test case.
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Figure 5: Fidelity level Pareto front for the Borehole test case

Figure 6: Fidelity level Pareto front for the drone design test case

7.4. Others optimization results figures
Figure 7 shows the evolution of the mean over the 10 runs of objective value at the best HF
feasible point along the optimization for the constrained 2D-Rosenbrock test case. Figure 8
shows the evolution of the mean over the 10 runs of objective value at the best HF feasible
point along the optimization for the constrained 8D-Borehole test case.

7.5. Design variables of the drone design problem
Table 8 sums up the design variables of the drone design optimization problem, their lower and
upper bound, their unit and their dimension.

7.6. Electric Breguet range equation demonstration
First lets notice that the range R can be expressed with the speed and the time flying at that
speed: R = V × t. Under ideal conditions, the time needed to empty a battery is given by:

t =
mbatteb
Pbatt

(15)

where eb is the specific energy density of the battery (unit: J.kg−1), mbatt is the battery mass

and Pbatt is the battery power. Lets define the overall propulsion system efficiency ηtot =
Pprop

Pbatt

with Pprop is the required propulsive power to reach the equilibrium. ηtot can be expressed as
13



Figure 7: Constrained Rosenbrock case: mean and 1-sigma confidence interval over 10 runs of
the objective value at the best HF feasible point against budget

Figure 8: Borehole case: mean and 1-sigma confidence interval over 10 runs of the objective
value at the best HF feasible point against budget

Table 8: Design variables of the drone design problem

lower bound upper bound unit dimension
spanwing 5 6 m 1

rootchord wing 0.9 1.2 m 1
taperwing 0.6 1 ∅ 1
sweepwing 0 5 deg 1
sweeptail 0 5 deg 1

thicknesscp wing [0.001; 0.001; 0.001] [0.01; 0.01; 0.01] m 3
thicknesscp tail [0.001; 0.001; 0.001] [0.01; 0.01; 0.01] m 3
dihedralwing -3 3 deg 1
dihedraltail -3 3 deg 1
twistcp wing [0; 0.5; 1] [0.5; 1; 1.5] deg 3
twistcp tail [0; 0.5; 1] [0.5; 1; 1.5] deg 3

Total number of variables 19
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the product of 3 individual efficiencies: ηp the propeller efficiency, ηm the motor efficiency and
ηESC the electric speed controller efficiency. Pprop = TV with T the required thrust. Assuming
the steady level flight hypothesis, we have {

T = D

L = W
(16)

where L is the lift force, D is the drag force and W is the weight. Equation (16) implies

T =
L
L
D

=
W
L
D

=
mg
L
D

with g being the gravity acceleration. A relation is now available for the speed:

V =
Pprop

T
=

Pbatt ηtot
mg
L
D

(17)

Then the final expression for the range is given by:

R = V × t =
mbatteb
Pbatt

× Pbatt ηtot
mg
L
D

=
L

D
ηpηmηESC

eb
g

mbatt

m
(18)

Note that the L
D ratio can be replaced by the ratio of lift and drag coefficient CL

CD
. Indeed,

L = qSCL and D = qSCD with S being the lifting surface area and q being the dynamic
pressure.
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