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Abstract

The influence of an extreme event depends on the geographical fea-
tures of the region where the event occurs. To understand the behavior
of an extreme event, we consider statistical models capable of captur-
ing the extremes and their spatial dependence. Max-stable processes
are widely used in studying extreme events. However, assuming a fixed
extremal dependence for a max-stable process may not be reasonable,
depending on the topology of the region under study. In environmen-
tal extreme events, different types of extremal dependencies can appear
across the spatial domain. In this study, we present an adapted spectral
clustering algorithm for max-stable processes. This algorithm combines
spectral clustering with extremal concurrence probability to cluster loca-
tions into k regions, each with a homogeneous extremal dependence. In
addition, we propose an approach to model the entire region based on the
clustered zones. To validate the proposed methodology, we tested it in
two simulation cases using a non-stationary max-stable mixture model.
The accuracy of the results encouraged us to apply it to two datasets:
rainfall data on the east coast of Australia and rainfall over France.

Keywords: Max-stable processes, Extremal dependence, Extremal
concurrence probability, Spectral clustering
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1 Introduction

Constructing a statistical model for environmental extreme events, such as
rainfall, temperature, and so on, is very important for understanding their
behavior and accurately predicting their occurrence. Max-stable processes
are natural models for spatial extremes, as they are considered the natural
extensions of the Extreme Value Theory (EVT) to spatial domains. They are
powerful statistical models for extreme events in a continuous space and can
assess the risk in areas that do not have stations. One common assumption
in max-stable models is that the extremal dependence is fixed across spa-
tial domains. However, this assumption may be incorrect and can lead to the
construction of meaningless models, particularly when the data sets are for
a large region or regions with complex geographical features (Richards and
Wadsworth (2021)). For instance, consider the rainfall data from the east coast
of Australia. This region is characterized by mountain ranges, which signifi-
cantly influence rainfall events and can give rise to complex rainfall patterns,
as known. Similarly, when considering rainfall data in France, which features
extensive coastal areas, extreme rainfall can be produced by disturbances from
the Mediterranean Sea and the Atlantic Ocean.
Searching for a max-stable model able to capture the changes in extremal
dependence is a recent topic of study. For instance, Huser and Genton
(2016) developed an approach that captures non-stationary patterns in spatial
extremes using covariates. They presented a non-stationary extremal-t model,
which is the extremal-t model with a non-stationary correlation function. This
model is satisfactory in capturing the extremal dependence. Huser and Gen-
ton (2016) presented another non-stationary max-stable model without using
it in their paper, named a max-stable mixture. In brief, this model represents
a mix of two max-stable models where the mixing proportion varies spatially
and is modeled as a function depending on covariates. This model could cap-
ture different extremal dependencies in different spatial regions. However, this
model requires prior knowledge of relevant covariates.
Recently, clustering has been used to create regionalizations of extreme events,
where it is an unsupervised machine-learning tool widely used in data analysis
to identify subgroups with similar features. It has a wide range of applications
in several fields such as computer science, statistics, biology, and climate sci-
ence (see for example Dhanachandra et al (2015), Talebi et al (2020), Wright
(2024) and Gaetan et al (2024)).
In the spatial extremes field, only a few studies used clustering to partition an
entire region into homogeneous sub-regions. For instance, Bernard et al (2013)
presented a novel clustering algorithm for maxima, using the F-madogram
introduced by Cooley et al (2006). By merging the F-madogram with a parti-
tioning around medoids (PAM) algorithm, they clustered the extremes based
on dependence strength. The algorithm was applied to analyze rainfall pat-
terns over France. Afterward, Bador et al (2015) applied this algorithm to large
regions and different variables, analyzing the maxima of summer temperatures
across Europe. Saunders et al (2021) demonstrated that the PAM algorithm
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presented by Bernard et al (2013) is sensitive to stations density. To address
this issue, they proposed using hierarchical clustering with F-madogram. They
applied their proposed algorithm to rainfall stations in Australia. Then, they
fitted a stationary max-stable model for each resulting region. In this case, it’s
not possible to model the dependence between two locations belonging to dif-
ferent clusters. However, in all the above-presented literature there is no clear
idea about which model for the entire region can represented using these clus-
ters.
Regarding the regionalization for extremal dependence modeling, Castro-
Camilo and Huser (2020) proposed a spatial modeling framework for a
non-stationary dependence structure of extremes. They presented a non-
stationary exponential factor copula model with spatially varying parameters.
Also, they suggested a censored local likelihood by fitting a stationary ver-
sion of this model locally, assuming that the stationarity might be valid in
small regions. This framework is applied to model the dependence structure of
extreme precipitation over the U.S. region. Majumder and Reich (2023) intro-
duced a non-stationary process mixture model, consisting of a mix between
a max-stable process with a transformed Gaussian process, where the mixing
proportion was allowed to vary spatiotemporally. They considered two hydro-
logic regions in the studied area so that each has its mixing proportion modeled
as a function of the yearly precipitation at that region, resulting in a mix-
ing proportion for the model varying over space and time. They fitted their
model to annual streamflow maxima in the central United States. Hector and
Reich (2024) presented a spatial regionalization approach to fit the Brown-
Resnick model in high dimension. This approach consists of partitioning the
whole spatial domain into subsets of the spatial domain and estimating its
marginal and dependence parameters locally using censored pairwise compos-
ite likelihood, then integrating them using a modified Generalized Method of
Moments(GMM). They showed this approach leads to less bias in parameter
estimations compared to the full-data approach. They applied this procedure
to modeling the streamflow data in the United States.
Our contribution has two paths. Firstly, we proposed a clustering approach
for max-stable processes. We adapted spectral clustering for max-stable pro-
cesses by combining it with the extremal concurrence probability introduced
by Dombry et al (2018). The extremal concurrence probability for a max-stable
process is the probability that the maximum value of the process occurs at
two or more locations simultaneously. This clustering algorithm aims to iden-
tify regions with strong and homogeneous extremal dependence, which may
reduce the possibility of non-stationary. We demonstrated the applicability
of this algorithm in clustering the non-stationary max-stable mixture process
presented by Huser and Genton (2016) into k regional clusters.
The second path involves using the clustered regions to model the entire
area. For this purpose, we proposed a composite pairwise likelihood based
on clusters. We validated our clustering and estimation approaches through a
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simulation study and then applied them to two datasets. The first dataset con-
sists of rainfall data from the east coast of Australia, while the second dataset
includes rainfall data from France provided by Météo-France.
The paper is organized as follows. An overview of spectral clustering is pro-
vided in Section 2. Section 3 presents max-stable processes. Section 4 describes
the adapted spectral clustering for max-stable process. Section 5 presents the
applicability of the adapted spectral clustering . Section 6 presents the infer-
ence using composite liklihood approach. A simulation study is presented in
Section 7. Section 8 applies the methodology to data: rainfall over east coast
of Australia and rainfall over France. Finally, Section 9 presents the discussion
and conclusions of our study.

2 Spectral clustering : an overview

Spectral clustering is a machine learning technique used for data analysis to
cluster the data points into groups based on similarity. It depends on the con-
cept of spectral graph theory, which is the study of the properties of graphs
using linear algebra.
Spectral clustering has several advantages, as it can handle high-dimensional
data, which is often a limitation for other clustering algorithms. It used the
eigenvalue decomposition to reduce the high-dimensional data to a lower-
dimensional space. Furthermore, it can handle different similarity measures,
making it flexible and adaptable to different kinds of data. Also, it does not
make any assumptions about the shape or size of clusters.
Spectral clustering considers the dataset like a graph, where each data point
Pi, i = 1, · · · , N represents a vertex in an undirected weighted graph. An
undirected graph G = (V,E,W ) is generally defined by a set of vertices
V = {v1, v2, · · · , vN}, a set of edges E = {(vi, vj)|vi, vj ∈ V } between these
vertices, and a similarity matrix W . An element wij ∈ W represents the
amount of similarity between the vertices vi,vj , which is the weight assigned
to each edge. It is important to note that since the graph is undirected, the
similarity matrix should be symmetric. If wij = 0, there is no edge between
the vertices vi,vj . Each vertex vi in the graph has a degree di:

di =

N∑
j=1

wij (1)

The degrees d1, · · · , dN represent the elements of a diagonal matrix called the
degree matrix of the graph, denoted by D.
Spectral clustering aims to separate the main graph G into sub-graphs so
that the weights of the edges between these sub-graphs are small, indicating
dissimilarity between the clusters, and the weights of the edges connecting
nodes within each sub-graph are relatively high, indicating similarity within
the clusters.
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2.1 Steps of spectral clustering algorithm

In general, any spectral clustering algorithm involves the following three steps.

1. Pre-processing
Construct the similarity matrix W from the dataset using a measure that
considers the aim of clustering. Then, construction of the similarity graph to
model the neighborhood relation among the data points P1, · · · , PN . There
are different ways, which are summarized as follows:

� ε -neighborhood graph: In this graph, the vertices vi, vj will be con-
nected by an edge if they are similar enough, wij > ε, ε is a pre-defined
non-negative real number. Usually, this graph is unweighted.

� k-nearest neighbor graphs: In this graph, the distance between each
pair of vertices represents the Euclidean distance. The vertices vi, vj are
connected by an edge if vj is among the k nearest neighbors of vi or
vice versa, and the edge weight represents the similarity wij . Here, k is a
pre-defined integer number that controls the neighborhood relationship
among data points.

� The fully connected graph: In this graph, each vertex is connected
to all other vertices by edges, and the weights of these edges represent
the similarities wij . This type of graph is beneficial only if the similarity
function can model the neighborhood relation among the data points. The
commonly used similarity function is the Gaussian similarity function
defined as wij = exp(−∥Pi − Pj∥2/2σ2), where the neighborhood relation
is controlled by σ.

For further information on similarity graphs, we refer to Von Luxburg
(2007) and Parodi (2012).

2. Spectral representation
Compute the Laplacian matrix of the graph. It is an essential tool to identify
clusters in the data using spectral clustering. It characterizes the connec-
tivity of a graph, where it can capture the relationships between the nodes
and identify the most connected nodes. There are two definitions for this
matrix, which are described as follows.
(a) Unnormalized Laplacian matrix L: L = D −W .
(b) Normalized Laplacian matrix Lnorm: Lnorm = D− 1

2LD− 1
2 .

The choice of Laplacian matrix type in spectral clustering depends on the
application and the problem to be solved. Spectral clustering is often used
to optimize two objective functions: Ratio cut (Rcut) and Normalized cut
(Ncut). Both functions measure the quality of the partition of a graph into
sub-graphs (clusters). Let Cl be a subset of vertices i.e Cl ⊂ V, l = 1, · · · , k
and its complement Cl := V \Cl, the Ratio cut function (Rcut)( Hagen and
Kahng (1992)) is defined as:

Rcut(C1, · · · , Ck) =

k∑
l=1

cut(Cl, Cl)

|Cl|
, (2)
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where
cut(C,C) :=

∑
i∈C,j∈C

wij

|Cl| := number of vertices in Cl

In this function, the size of a subset Cl is measured by its number of ver-
tices. Using the unnormalized Laplacian matrix L in spectral clustering is
equivalent to minimizing the Ratio cut function.
In contrast, the Normalized cut function(Ncut)(Shi and Malik (2000)) is
defined as:

Ncut(C1, · · · , Ck) =

k∑
l=1

cut(Cl, Cl)

vol(Cl)
, (3)

where
vol(C) :=

∑
i∈C

di

In the Normalized cut function, the size of a subset Cl is measured by the
weights of its edges. Using the normalized Laplacian matrix Lnorm in spec-
tral clustering is equivalent to minimizing the Normalized cut function. For
more details about the Laplacian matrix see Von Luxburg (2007).
The matrices L and Lnorm have some important properties: they are sym-
metric and positive semi-definite matrices; the N eigenvalues λ1, · · · , λN of
these matrices are non-negative real-valued, so 0 = λ1 ≤ λ2 ≤ · · · ≤ λN ;
the multiplicity k of the value 0 as an eigenvalue of these matrices is equal
to the number of connected components C1, · · · , Ck in the graph. (for more
details, see Mohar et al (1991), Mohar (1997) and Chung (1997)).
After computing the Laplacian matrix, calculate its eigenvalues and eigen-
vectors. The eigenvectors constitute a low-dimensional data representation,
where the clusters are more-separated. Typically, the k eigenvectors cor-
responding to the k smallest eigenvalues construct a k-dimensional repre-
sentation of the data, as they capture the structure of the graph and the
main features of the data (see Wierzchoń and K lopotek (2018)). Reducing
dimensions can reveal hidden patterns in the data that may be difficult to
distinguish in higher dimensions.

3. clustering
Apply the k-means clustering algorithm to the low-dimensional representa-
tion to group the data points into k clusters.

Spectral clustering has a specific heuristic method to choose the number of
clusters k. This method relies on the gap between two consecutive eigenvalues,
with the number of clusters determined by the value of k that maximizes the
eigengap δk: δk =| λk+1 − λk |, k ≥ 2 (see Von Luxburg (2007)). This method
is effective when the dataset is well separated.

3 Max-stable processes

In this section, we will provide a brief overview of max-stable processes and
define the extremal concurrence probability, which is a critical tool for our
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approach. We essentially follow Dombry et al (2018) and refer the reader to
this reference for further details.

3.1 Definition of max-stable processes

Let Z1(s), Z2(s) · · · be a sequence of independent replications of a spatial pro-
cess {Z(s), s ∈ S},S ⊂ Rd, d ≥ 1. If there exist continuous functions An(s) > 0
and Bn(s) ∈ R such that

maxi=1,··· ,n Zi(s) −Bn(s)

An(s)

d
= X(s), s ∈ S, n → ∞, (4)

is non-degenerate, then {X(s), s ∈ S} is a max-stable process (see De Haan
and Pereira (2006)). The univariate maxima X(s) at any location s, follows a
Generalized Extreme Value distribution (GEV), i.e, for all x ∈ R,

P(X(s) ≤ x) = exp[−(1 + ξ(s)
x− µ(s)

σ(s)
)−1/ξ(s)], (5)

where µ(s) ∈ R is the location parameter, σ(s) > 0 is the scale parameter and
ξ(s) ∈ R is the shape parameter. These parameters are possibly different from
one location to another. Setting µ(s) = σ(s) = ξ(s) = 1, leads to consider unit
Fréchet distributions, i.e, P(X(s) ≤ x) = exp[−1/x], x > 0, and {X(s), s ∈ S}
is called a simple max-stable process (see Ribatet (2017) and Ribatet et al
(2016)). De Haan (1984) provided the spectral representation for simple max-
stable processes {X(s), s ∈ S} as follows:

X(s) = max
i≥1

ζiYi(s), s ∈ S,S ⊂ Rd, d ≥ 1 (6)

where {ζi, i ≥ 1} is a Poisson point process on (0,∞) with intensity ζ−2dζ
and Y1(s), Y2(s), · · · denote a sequence of independent replications of a non
negative stochastic process {Y (s), s ∈ S} with E[Y (s)] = 1 for all s ∈ S.
Equation (6) may be written as follows:

X(s) = max
φ∈Φ

φ(s), s ∈ S (7)

where Φ = {φi(s) = ζiYi(s) : s ∈ S, i ≥ 1} is a Poisson point process on C0,
the space of non-negative continuous functions on S (see Ribatet (2017)).
Let S be a set of m spatial locations : S = {s1, · · · , sm} ⊂ S, then the
multivariate maxima distribution is given by

P{X(s1) ≤ x1, · · · , X(sm) ≤ xm} = exp

{
−E

[
max

j=1,··· ,m

Y (sj)

xj

]}
(8)
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where {Y (s), s ∈ S} is the process appearing in Equation (6). The exponent
function

VS(x1, · · · , xm) = E
[

max
j=1,··· ,m

Y (sj)

xj

]
, (9)

is called the exponent measure. It characterizes the dependence structure of
X(s1), · · · , X(sm). Since the exponent measure is homogeneous of order −1,
we can obtain a useful relation by setting xj = x for all j = 1, · · · ,m such
that VS(1, · · · , 1) = θ(s1, · · · , sm) where θ(.) is the extremal coefficient that
provides a summary of the dependence structure (see Schlather and Tawn
(2003) and Smith (1990)). Particularly, when S = {s, s′} ⊂ S and s, s′ are
separated by a spatial lag h : h = s − s′, the extremal coefficient satisfies
θ(s, s′) = VS(1, 1) ∈ [ 1, 2] . The lower bound corresponds to the variables X(s)
and X(s′) that are completely dependent, while the upper bound corresponds
to the case where they are independent. For simplicity θ(s, s′) can be denoted
by θ(h).
Several models for max-stable processes have been presented based on
this spectral representation, including the Smith model (see Smith (1990)),
the Schlather model (see Schlather (2002)), the Brown-Resnick model (see
Kabluchko et al (2009)), and the Extremal-t model (see Opitz (2013)). The
details about the construction of these models and their parametric forms are
shown in Appendix A.

3.2 Extremal concurrence probability

Other indices to measure the dependence between extremes exist in the liter-
ature. Dombry et al (2018) introduced the extremal concurrence probability
for measuring the extremal dependence, specially designed for max-stable pro-
cesses. It has properties similar to the pairwise extremal coefficient, but it
has the advantage of being a probability measure, which makes it more inter-
pretable and axiomatic. The extremal concurrence probability focuses on the
occurrence times of extremes, which means whether the record maxima at all
locations occurred simultaneously. It can be interpreted as the chance of a sin-
gle extreme event affecting all the spatial locations and being responsible for
the record maximum. The extremal concurrence probability is based on the
spectral representation of the max-stable processes. The idea behind this met-
ric can be explained as follows.
Recall the spectral representation in Equation (7). We say that the extremes
are concurrent at locations s1, · · · , sm ∈ S if

X(sj) = φℓ(sj), j = 1, · · · ,m (10)

for some ℓ ≥ 1. This means that the values of the process {X(s), s ∈ S} at
locations s1, · · · , sm come from the same spectral function φℓ.
The extremal concurrence probability is defined as

pr(s1, · · · , sm) = P{for some ℓ ≥ 1 : X(sj) = φℓ(sj), j = 1, · · · ,m} (11)
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According to Theorem 3 in Dombry et al (2018), the bivariate extremal
concurrence probability estimation coincides with Kendall’s τ statistic:

p̂r(s, s′) ≡ τ =
2

n(n− 1)

∑
1≤i<j≤n

sign{Xi(s) −Xj(s)}sign{Xi(s
′) −Xj(s

′)},

(12)
where {Xi(s), s ∈ S, i = 1, · · · , n} are n independent copies of {X(s), s ∈ S}.
The bivariate extremal concurrence probability for max-stable processes sat-
isfies pr(s, s′) = 0 if and only if X(s) and X(s′) are independent, and
pr(s, s′) = 1 if and only if X(s) and X(s′) are almost surely equal. These
properties were stated and proved in Proposition 1 of Dombry et al (2018).

4 Adapting spectral clustering for max-stable
process

Let Xi(sj), sj ∈ S, S ⊂ Rd, d = 2, i = 1, · · · , n be a sequence of n inde-
pendent and identically distributed max-stable processes at different locations
sj , j = 1, 2, · · · ,m. To apply spectral clustering in extremal dependence con-
text, locations s1, · · · , sm are considered vertices in a fully connected graph.
Each vertex is connected to all others by edges, and the weights of these
edges represent the similarity values among the locations. Figure 1 represents
a fully connected graph for a max-stable process consists 15 locations. For
viewing purposes, the self-edges are not shown. Selecting an appropriate met-

S1

S2 S3
S4

S5

S6

S7

S8

S9

S10

S11

S12

S13

S14

S15

Fig. 1 Fully connected graph with 15 vertices. Each vertex represents a location in the
max-stable process

ric to construct the similarity matrix is essential in the spectral clustering
algorithm, especially when using a fully connected graph. For our aim of clus-
tering, choosing an extremal dependence measure that can accurately model
the neighborhood relations among the locations is very important. In this
study, we used the extremal concurrence probability, as introduced by Dom-
bry et al (2018)(see Section 3.2). The similarity matrix represents the pairwise
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extremal concurrence probability matrix, denoted by CP ∈ Rm×m, where m
is the number of locations. For a pair (s, s′) ∈ S×S, the element of the matrix
CP is given by Equation (12).
After constructing the similarity matrix CP , it is used to compute the graph
Laplacian matrix. Using the normalized graph Laplacian matrix Lnorm helps
to achieve our goal of making the size of the resulting clusters dependent on
the concurrence of extremes (i.e., the weights of the graph edges). Then, the
spectrum λ and the eigenvectors of Lnorm are computed. The eigenvectors
q1, · · · , qk constitute a k-dimensional data representation. This is done by rep-
resenting these eigenvectors as columns of an m × k matrix denoted Q. Each
row in Q represents a location sj : sj → (qj,1, · · · , qj,k) , j = 1, · · · ,m, this is
called spectral mapping (see Wierzchoń and K lopotek (2018)). Normalizing
each row of Q to norm 1 results in a matrix denoted U ∈ Rm×k. According
to Ng et al (2001), this last step improves the performance of the clustering
algorithm. Instead of using k-means usually used at this step, we used a Gaus-
sian Mixture Model (GMM) to cluster the rows of U . GMM clusters the data
points based on probability distribution, considering that the data points come
from a Gaussian mixture. Each cluster has a Gaussian distribution model with
parameters mean and covariance. Taking the covariance into account makes
GMM more robust than k-means, which depends only on the cluster mean.
For more details about GMM, see for example Bouveyron et al (2019). We
summarize these steps in Algorithm 1.

Algorithm 1 adapted spectral clustering (ASC)

Require: The similarity matrix CP ∈ Rm×m constructed according to
Equation (12), and the number of clusters k.

Ensure: Clusters {C1, · · · , Ck}.
1: Compute the normalized Laplacian matrix Lnorm = D− 1

2 (D − CP )D− 1
2 .

2: Compute the spectrum of Lnorm.
3: Compute the k smallest eigenvectors q1, q2, · · · , qk of Lnorm, and arrange

these vectors in columns to be a matrix Q, where Q ∈ Rm×k.
4: Normalize the rows of Q to norm 1, resulting the matrix U ∈ Rm×k:

Ujl = Qjl/(
∑

l Q
2
jl)

1
2 , j = 1, · · · ,m, l = 1, · · · , k.

5: Consider each row of U as a point in Rk and implement Gaussian Mixture
Model (GMM) to cluster them into k clusters.

6: Assign the location sj to cluster l if and only if row j of the matrix U is
assigned to cluster l.
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5 Applicability of the adapted spectral
clustering (ASC)

The adapted spectral clustering algorithm, which uses the extremal concur-
rence probability as a similarity matrix, aims to identify regions with high
concurrence probability between locations. As a result, we obtain regions where
the locations exhibit a strong and homogenous extremal dependence since
their pairwise extremal concurrence probabilities are similar in value. That can
reduce the possibility that the extremal dependence will be non-stationary in
the clusters.
We assume the spatial structure of locations is relatively homogeneous, and
expect that the geographically closer locations exhibit strong extremal depen-
dences and have a high extremal concurrence probability. So, as a preliminary
step, we need to determine the spatial structures of the k clusters. We obtain
these spatial structures by applying the partitioning around medoids (PAM)
clustering algorithm proposed by Kaufman and Rousseeuw (1990), where its
general steps are shown in Algorithm 2. We applied Algorithm 2, where
data points and the distance matrix are represented by the locations and the
Euclidean distances matrix between the spatial coordinates of these locations,
respectively. As a result, we obtained k clusters, in which the locations are
spatially closer when measured by their Euclidean distances.
We illustrate the application of the adapted spectral clustering by exam-

Algorithm 2 partitioning around medoids (PAM) clustering

Require: The distance matrix and the number of clusters k.
Ensure: Clusters {C1, · · · , Ck}.
1: Select k datapoints randomly and set them as the initial medoids.
2: Form the clusters by assigning each of the remaining datapoints to the

closest medoid.
3: Update the medoids of each cluster, by choosing the datapoint that

minimizes the total intracluster distance.
4: If there is no change in the medoids then the algorithm stop, otherwise

goback to to step 2.

ining a non-stationary max-stable process. We construct this process using
an approach presented by Huser and Genton (2016), named max-stable mix-
tures. Let X1(s) and X2(s) be independent max-stable processes that have
unit Fréchet margins defined on the same space S. Then the process X(s) =
max

{
π(s)X1(s), (1 − π(s))X2(s)

}
is a simple max-stable process, where π(s)

is any function with 0 ≤ π(s) ≤ 1. The bivariate distribution is given by

F (x1, x2; Ψ) = P{X(s) ≤ x1, X(s′) ≤ x2} = exp
{
−V mix

S (x1, x2)
}

(13)
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and
V mix
S (x1, x2) = V 1

S

( x1

π(s)
,

x2

π(s′)

)
+V 2

S

( x1

1 − π(s)
,

x2

1 − π(s′)

)
(14)

where, V 1
S and V 2

S are the exponent measure of X1(s) and X2(s), respectively,
and S = {s, s′}. The proportion π(s) determines which of the processes X1(s)
and X2(s) prevails at location s. If π(s) is constant across space, then the
process X(s) is stationary. However, X(s) becomes non-stationary when π(s)
varies spatially, such as if it depends on covariates. This variation may lead to
capturing different extreme behaviors in different spatial regions.
For clustering purposes, we will consider that each spatial cluster has its mixing
proportion i.e π(s) = πl for all s ∈ Cl, l = 1, · · · , k. We will demonstrate in
the simulation study (Section 7) the ability of ASC to recover these clusters.
Assuming we have k clustered regions, depending on these clusters and letting
Cl, Cl′ refer to two different clusters, we can rewrite the bivariate distribution
in Equations 13 and 14 as

F (x1, x2; Ψ) =


exp

{
−
{
V 1
S (x1

πl
+ x2

πl
)) + V 2

S ( x1

1−πl
+ x2

1−πl
)
}}

, if s, s′ ∈ Cl

exp
{
−
{
V 1
S (x1

πl
+ x2

πl′
)) + V 2

S ( x1

1−πl
+ x2

1−πl′
)
}}

, if s ∈ Cl, s
′ ∈ Cl′

(15)
For simplicity we will denote the distribution function components in Equation
15 by FCl

(x1, x2; Ψ) if s, s′ ∈ Cl, and FCll′ (x1, x2; Ψ) if s ∈ Cl, s
′ ∈ Cl′ . Using

the distribution in Equation 15, we can model the whole region under study
depending on clustered regions.

6 Inference: composite likelihood approach

The full likelihood inference for max-stable models is computationally
intractable (Castruccio et al (2016)). The most widely used approach is the
pairwise composite likelihood (Padoan et al (2010)). Let Ψ represent the vector
of unknown parameters; the pairwise composite log-likelihood can be expressed
as follows:

P(Ψ) =

n∑
i=1

m−1∑
j=1

m∑
j′=j+1

Wjj′ logL(xij , xij′ ; Ψ) =:

n∑
i=1

Pi(Ψ) (16)

where xij represents the block maxima i which recorded at station j,
L(xij , xij′ ; Ψ) is the likelihood of the pair (xij , xij′) and Wjj′ are non nega-
tive weights that specify the contribution of each pair. Therefore the maximum
pairwise liklihood estimator is given by Ψ̂ = arg maxP(Ψ). Under some
regularity conditions (see Padoan et al (2010)), Ψ̂ obtained by maximiz-
ing the pairwise composite log-likelihood in Equation (16) is consistent and
asymptotically normally distributed, such that

Ψ̂ ∼ N (Ψ, I(Ψ)−1) (17)
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with
I(Ψ) = H(Ψ)J (Ψ)−1 H(Ψ) (18)

where I(Ψ) is the sandwich information matrix, H(Ψ) = E
[
−∇2 P(Ψ)

]
is the

sensitivity matrix and J (Ψ) = V
[
∇P(Ψ)

]
is the variability matrix. There-

fore, the variance of the estimated parameters can be assessed by estimating
the matrices H(Ψ) and J (Ψ). In this context, the empirical estimates of the
matrices H(Ψ) and J (Ψ) are given by

Ĥ(Ψ) = −
n∑

i=1

∇2 Pi(Ψ̂) (19)

and

Ĵ (Ψ) =

n∑
i=1

∇Pi(Ψ̂)∇Pi(Ψ̂)T (20)

In practice, Ĥ(Ψ) can be obtained directly from the optimization algorithm
since it equals the negative of the Hessian matrix.
In this paper, our interest is to use the clustered regions in modeling
the whole region. We define the composite pairwise likelihood contribution
LCL(xij , xij′ ; Ψ) for a pair (xij , xij′) as follows

LCL(xij , xij′ ; Ψ) =


∂2
12FCl

(xij , xij′), if sj , sj′ ∈ Cl

∂2
12FCll′ (xij , xij′), if sj ∈ Cl, sj′ ∈ Cl′

(21)

where ∂i is the differentiation with respect to variable xi.
Finally, selecting the best-fitted model under the composite likelihood
approach is performed using the Composite Likelihood Information Criterion
(CLIC)(Varin and Vidoni (2005)), which is defined as CLIC = −2P(Ψ̂) +
2 tr(Ĥ(Ψ̂)−1 Ĵ (Ψ̂)). The lowest value of CLIC corresponds to the best-fit
model. In this paper, we empirically estimated the matrices H(Ψ) and J (Ψ)
as in Equations (19) and (20), respectively.

7 Simulation study

We consider two simulation cases to assess the accuracy of the adapted spec-
tral clustering (ASC) and compare it with partitioning around medoids (PAM)
clustering. In each case, the coordinates of the locations were generated ran-
domly and uniformly in [0, 1]2. We consider one case with 40 locations while
the other with 80 locations, and in both cases the number of observations is
fixed to 300 to have simulated data closed in the dimensions to the data used
in the application (see Section 8).

� Case 1: This case consists of 40 locations with coordinates shown in the
left panel of Figure 2. We assumed the existence of four regions, each with
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different extremal dependence. We applied the PAM algorithm to the coor-
dinates of the locations, as mentioned in Section 5, to have the spatial
structures of these regions. The right panel of Figure 2 shows the spatial
structures of the four regions. Then, we simulated a non-stationary process,

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

Longitude

L
a

ti
tu

d
e

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

Longitude

L
a

ti
tu

d
e

Regions

1

2

3

4

Fig. 2 The left panel shows the coordinates of the 40 locations considered in case 1, while
the right panel displays the spatial structures of the assumed regions.

as described in Section 5. Denoted by M1 , the model represents a mix-
ture of the Schlather model with a powered exponential correlation function
ρ(h) = exp(−(∥h∥/ϕ1)α1), and the Brown-Resnick model with a semivari-
ogram γ(h) = (∥h∥/ϕ2)α2 . The parameters of the Schlather model are set
to ϕ1 = 0.2 and α1 = 1.5. The parameters of the Brown-Resnick model are
set to ϕ2 = 0.8 and α2 = 0.5. The spatially varying proportion was set as
follows:

π(s) =


0.2, if s ∈ region 1

0.4, if s ∈ region 2

0.6, if s ∈ region 3

0.8, if s ∈ region 4

(22)

Afterward, we applied the adapted spectral clustering (ASC) to this process
with the correct number of clusters k equals 4. The ASC outputs are dis-
played in the left panel of Figure 3. For comparison purposes, we applied
the partitioning around medoids (PAM) for maxima introduced by Bernard
et al (2013). It can done simply using Algorithm 2, and considering the pair-
wise F-madogram matrix as a distance matrix. The right panel of Figure 3
displays the PAM outputs.
To measure the ability of ASC and PAM to correctly group the simu-
lated locations for each region into the same cluster, we used the clustering
purity measure (Schütze et al (2008)). It calculates the ability of a cluster-
ing method to recover known groups. The clustering purity measure can be
applied even when the number of clusters k is not equal to the number of
known groups. It works by assigning a label to each cluster based on the
most common group, then summing the number of correct group labels in
each cluster and dividing it by the total number of data points. The clus-
tering purity measure is a value in the interval [0,1], where the higher value
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Fig. 3 The plot displays the clustering outputs from the adapted spectral clustering algo-
rithm (left panel) and partitioning around medoids clustering algorithm (right panel). The
black diamonds refer to the locations that are incorrectly clustered.

indicates better clustering performance, meaning that the algorithm can
accurately identify clusters that correspond to the correct groups of data
points. Depending on the specific clustering issue at hand, the formula for
the purity measure is:

purity(C,R) =
1

m

k∑
ℓ=1

max
i=1,··· ,g

|Cℓ ∩Ri| (23)

Where C = {C1, · · · , Ck} is the set of identified clusters by ASC or PAM,
R = {R1, · · · , Rg} is the set of simulated regions, |Cℓ ∩Ri| is the number of
locations in cluster ℓ being in region i and m is the total number of locations.
Using Equation 23 we calculated the purity of ASC and PAM in clustering
the process M1, which is equal to 1 and 0.975, respectively.
To assess whether the number of observations n affects the accuracy of ASC
and PAM algorithms, we implement the two algorithms with n = 500, 300,
100, and 50, respectively. For each number of observations, we simulated
ten processes on different coordinates with the same parameters of M1 as
mentioned above. Table 1 shows the mean of purity for the ten simulations.
From Table 1, it is clear that ASC is more accurate than PAM, as its mean

Table 1 The mean of purity for the ten simulations of the process M1 with the number of
observations set to n = 500, 300, 100, and 50.

m = 40

n = 500 n = 300 n = 100 n = 50

no. of clusters ASC PAM ASC PAM ASC PAM ASC PAM

k = 2 0.975 0.860 0.945 0.925 0.925 0.903 0.848 0.763
k = 3 0.910 0.915 0.958 0.905 0.850 0.853 0.833 0.773
k = 4 0.903 0.938 0.943 0.928 0.800 0.785 0.738 0.705
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of purity is higher in most cases. Also, the performance of the two algo-
rithms decreases as the number of observations decreases. This may be due
to the fact that ASC and PAM depends on empirical extremal dependence
measures, which need enough observations to be estimated well.
We assess the ability of the proposed composite pairwise likelihood, as
defined in Section 6, Equation 21, to estimate the parameters of model M1

for modeling the whole region based on clusters. We simulate N = 100 from
the non-stationary max-stable mixture processes (model M1) on the same
coordinate shown in the left panel of Figure 2, with the same conditions as
explained previously, and the number of observations equals 300. Then, we
use Equation 21 to obtain the estimator Ψ̂. After that, we create boxplots of
the errors of the estimated parameters Ψ̂ − Ψ and calculate the mean esti-
mate and the root mean square error (RMSE) for each estimated parameter.
Let Ψ̂i denoted the ith estimation, then

RMSE =

[
1

N

N∑
i=1

(Ψ̂i − Ψ)2
]1/2

(24)

The boxplots of the errors in the estimated parameters are displayed in
Figure 4, and the performance metrics values (mean estimates and RMSE)
are shown in Table 2. From Figure 4, it is clear that the proposed com-
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Fig. 4 Boxplots displaying (Ψ̂−Ψ) of the estimated parameters using composite pairwise
likelihood (Equation 21) based on 100 simulations of model M1 with parameters π1 = 0.2,
π2 = 0.4, π3 = 0.6, π4 = 0.8, ϕ1 = 0.2, α1 = 1.5, ϕ2 = 0.8 and α2 = 0.5. The number of
observations fixed at 300. The red horizontal line represents the zero value.

posite pairwise likelihood performs well when estimating the parameters for
M1 in the whole region depending on clustered regions. The variation is low
except for α1 and ϕ2. Also, the mean estimates are nearly equal to the true
parameter values, as explained in Table 2, indicating that the estimates are
unbiased. Furthermore, the RMSE has reasonable values.
The main problem is to choose the correct number of clusters k. It is a hard
issue, especially when the data points are not clearly separated. In general,
the clustering validation metrics assess how well the clustering algorithm
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Table 2 The performance metrics (mean estimates and RMSE) of the composite pairwise
likelihood (Equation 21) based on 100 simulations of model M1 with parameters π1 = 0.2,
π2 = 0.4, π3 = 0.6, π4 = 0.8, ϕ1 = 0.2, α1 = 1.5, ϕ2 = 0.8 and α2 = 0.5.

True parameters

Performance metrics π1 π2 π3 π4 ϕ1 α1 ϕ2 α2

Mean estimate 0.20 0.41 0.60 0.80 0.20 1.47 0.84 0.50
RMSE 0.05 0.08 0.06 0.05 0.03 0.21 0.2 0.06

has partitioned the locations into meaningful clusters, and it does not con-
sider the overall process fit. We proposed to fit the considered model with
a different number of clusters k and choose k that corresponds to the best
CLIC. Table 3 summarized the results of fitting model M1 consedering dif-
ferent numbers of clusters k on a simulated process from M1 with k equals 4
as described at the beginning of case1. The lowest value of CLIC in Table 3
corresponds to k equals 4, which is the correct number of considered regions
in the simulated process M1.

Table 3 Summary of fitting M1 model with different number of clusters k on the
simulated process from M1 with k = 4 which described in case 1. The bold number for
CLIC indicates the lowest value

no. of

clusters π̂1 π̂2 π̂3 π̂4 ϕ̂1 α̂1 ϕ̂2 α̂2 CLIC

k = 2 0.17 0.58 - - 0.20 1.78 0.72 0.45 1848583
k = 3 0.17 0.59 0.55 - 0.20 1.77 0.74 0.44 1848524
k = 4 0.17 0.42 0.57 0.78 0.21 1.68 0.86 0.42 1846464

� Case 2: In this case, we consider 80 locations with coordinates shown in
the left panel of Figure 5. Here, we assumed the existence of three regions,
each with different extremal dependence. So, we applied the PAM algorithm
to the coordinates of the locations to construct the spatial structures of
these regions, where they are shown in the right panel of Figure 5. We used
these regions to simulate a non-stationary process. We mixed the Extremal-
t model with an exponential correlation function ρ(h) = exp(−∥h∥/ϕ1),
with a Brown-Resnick model with a semivariogram γ(h) = (∥h∥/ϕ2)α2 , as
mentioned in Section 5, we denoted this model by M2. In this model, the
parameters of the Extremal-t are set to ϕ1 = 0.3 and df1 = 5, where df1
refers to the degree of freedom parameter. While the parameters of the
Brown-Resnick model are set ϕ2 = 0.9 and α2 = 1.5. The spatially varying
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Fig. 5 The left panel shows the coordinates of the 80 locations considered in case 2, while
the right panel displays the spatial structures of the assumed regions.

proportion was set as follows:

π(s) =


0.1, if s ∈ region 1

0.4, if s ∈ region 2

0.7, if s ∈ region 3

(25)

We applied the ASC and PAM (Bernard et al (2013)) algorithms to this
process with the correct number of clusters k equals 3. The ASC and PAM
outputs are displayed in the left and right panels of Figure 6, respectively.
Figure 6 shows that ASC is more accurate than PAM in clustering the pro-
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Fig. 6 The plot displays the clustering outputs from the adapted spectral clustering algo-
rithm (left panel) and partitioning around medoids clustering algorithm (right panel). The
black diamonds refer to the locations that are incorrectly clustered.

cess M2. According to Equation 23, the purity of ASC equals one while it
equals 0.85 for PAM. This conforms with the discussion of Saunders et al
(2021) about the PAM algorithm (Bernard et al (2013)) as they demon-
strated that PAM is sensitive to the spatial density of locations. The medoids
of each cluster are biased toward regions of higher density of locations, which
leads to the locations that are far away being clustered incorrectly.
We assess the accuracy of ASC and PAM algorithms considering different
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numbers of observations, n = 500, 300, 100, and 50, respectively, in Table 4.
For each number of observations, the value in Table 4 represents the mean
of purity for ten simulations of the process M2 with the same parameters as
mentioned above, each simulation done on different coordinates. Compar-

Table 4 The mean of purity for the ten simulations of the process M2 with the number of
observations set to n = 500, 300, 100, and 50.

m = 80

n = 500 n = 300 n = 100 n = 50

no. of clusters ASC PAM ASC PAM ASC PAM ASC PAM

k = 2 0.916 0.688 0.900 0.691 0.816 0.714 0.786 0.693
k = 3 0.943 0.815 0.954 0.771 0.944 0.806 0.843 0.753
k = 4 0.931 0.804 0.926 0.765 0.856 0.741 0.864 0.731

ing the results in Table 4 and Table 1 confirms that the PAM is not accurate
enough when clustering regions with highly dense locations. Also, it is clear
from Table 4 that ASC outperforms PAM, especially with large n.
To assess the performance of the composite pairwise likelihood, we simu-
lated N = 100 from the non-stationary process M2 on the same coordinate
shown in the left panel of Figure 5, with the same regions and parameters as
stated previously. Also, the number of observations equals 300. Afterward,
we estimate the parameters using Equation 21. Figure 7 displays the box-
plots of the errors in the estimated parameters, while Table 5 displays the
performance metrics values (mean estimates and RMSE).
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Fig. 7 Boxplots displaying (Ψ̂−Ψ) of the estimated parameters using composite pairwise
likelihood (Equation 21) based on 100 simulations of model M2 with parameters π1 = 0.1,
π2 = 0.4, π3 = 0.7, ϕ1 = 0.3, df1 = 5, ϕ2 = 0.9 and α2 = 1.5. The number of observations
fixed at 300. The red horizontal line represents the zero value.

Figure 7 indicates that the proposed composite pairwise likelihood works
well in estimating the parameters for M2, except for df1 where we observe a
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Table 5 The performance metrics (mean estimates and RMSE) of the composite pairwise
likelihood (Equation 21) based on 100 simulations of model M2 with parameters π1 = 0.1,
π2 = 0.4, π3 = 0.7, ϕ1 = 0.3, df1 = 5, ϕ2 = 0.9 and α2 = 1.5.

True parameters

Performance metrics π1 π2 π3 ϕ1 df1 ϕ2 α2

Mean estimate 0.10 0.40 0.70 0.32 5.07 0.91 1.49
RMSE 0.02 0.02 0.02 0.12 1.29 0.05 0.03

huge variability. That is normal since the degree of freedom of the Extremal-
t model is known to be difficult to estimate. Furthermore, the estimates
are unbiased, as shown in Table 5, and the estimations are accurate as the
RMSE values are low.
Finally, to confirm that we can use CLIC to choose the best number of
clusters, we fit model M2 considering different numbers of clusters k on a
simulated process from M2 with k equals 3 as mentioned in case 2 previously,
where the results are summarized in Table 6. The lowest value of CLIC in
Table 6 indicates that the best number of clusters that better represent the
data is equal to three. That is equivalent to the correct number of clusters
in the simulated process.

Table 6 Summary of fitting M2 model with different number of clusters k on the
simulated process from M2 with k = 3 which described in case 2. The bold number for
CLIC indicates the lowest value

no. of

clusters π̂1 π̂2 π̂3 π̂4 ϕ̂1 d̂f1 ϕ̂2 α̂2 CLIC

k = 2 0.24 0.70 - - 0.32 5.22 0.70 1.62 7688422
k = 3 0.10 0.43 0.72 - 0.29 4.34 0.79 1.58 7662620
k = 4 0.10 0.45 0.71 0.57 0.26 3.99 0.78 1.56 7675077

In the two simulated cases, ASC works well provided that the simulated loca-
tions have a spatial structure relatively homogeneous. It was able to produce
clusters that satisfy the local stationarity of the process.
To assess whether the ASC is sensitive to the choice of mixture components,
we tested it in different scenarios. Considering scenarios where the mixing com-
ponents represent different models with equal range parameters. Also, cases
where the mixing components were from the same model with unequal range
parameters. In all of these scenarios, the ASC still works well. The results are
available upon request.
Since the simulation results appear satisfactory, we can use this technique for
regionalization and modeling the maxima for rainfall in East Australia and
France.
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8 Application on data

This section is devoted to two data applications: one on rainfall in Australia’s
east coast, and the other on rainfall in France.

8.1 Rainfall over east coast of Australia

We will begin with a brief description of the data, followed by the application
of our clustering and modeling technique, and then a discussion of the results.

8.1.1 Description of the data

This data represents the daily rainfall totals (in millimeters) measured over
a 24-hour period at 40 stations on the east coast of Australia during the
winter season (April to September) from 1972 to 2019, resulting in a total
of 183 * 48 = 8,784 observations at each station. The altitude of these sta-
tions ranges from 2 to 540 meters. The distance between the stations ranges
approximately from 11 km to 2058 km. The geographic locations of the 40
stations are illustrated in Figure 8. More information about this data can be
found in references such as Ahmed et al (2022), Bacro et al (2016), Ahmed
et al (2017), and Abu-Awwad et al (2020). The data is freely available on the
website http://www.bom.gov.au.
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Fig. 8 Geographic locations of 40 stations on the east coast of Australia.

8.1.2 Regionalizing the maxima for rainfall over east coast of
Australia

We will apply the adapted spectral clustering algorithm, described in Section 4
Algorithm 1, to clustering the extremal dependence of the monthly maxima for
the rainfall over east coast of Australia. We considered the number of clusters
k equals 2,3 and 4, the outputs of ASC are shown in Figure 9. The clusters
appear logical, as the spatially nearest locations were clustered together. The
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resulting regions for each considered k are used in Section 8.1.3 to fit a non-
stationary model. Accordingly, we can decide which k is better to represent
the data depending on the overall model fit using CLIC.

−40

−30

−20

−10

140 145 150 155

Longitude

L
a
tit

u
d
e Clusters

1

2

No. of clusters k=2

−40

−30

−20

−10

140 145 150 155

Longitude

L
a
tit

u
d
e

Clusters

1

2

3

No. of clusters k=3

−40

−30

−20

−10

140 145 150 155

Longitude

L
a
tit

u
d
e

Clusters

1

2

3

4

No. of clusters k=4

Fig. 9 represents the adapted spectral clustering (ASC) outputs for the monthly maxima
of rainfall over the east coast of Australia during the period of 1972-2019.

8.1.3 Modelling the rainfall over east coast of Australia

For comparison purposes, we will proceed by fitting stationary models on the
monthly maxima of rainfall over the east coast of Australia. We consider six
arbitrary models that belong to two classes: max-stable models and stationary
max-stable mixture models (constant mixing proportion). The descriptions of
the models are as follows.
Class I: consists of max-stable models I1-I3.

� I1: Schlather model with an powered exponential correlation function ρ(h) =
exp(−(∥h∥/ϕ)α), ϕ > 0 and 0 < α ≤ 2.

� I2: Brown-Resnick model with semivariogram γ(h) = (∥h∥/ϕ)α, ϕ > 0 and
0 < α ≤ 2.

� I3: Extremal-t model with an exponential correlation functions ρ(h) =
exp(−∥h∥/ϕ), ϕ > 0.

Class II: consists of stationary max-stable mixture models II1-II2.

� II1: max-stable mixture model which combines I1 and I2.
� II2: max-stable mixture model which combines I3 and I2.
� II3: max-stable mixture model which combines I2 and isotropic Smith model

with a covariance matrix Σ = ϕ Id2

For all the fitted models, in this section and later in this paper, the uni-
variate marginal distribution is fixed to a unit Fréchet. Therefore, we use
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nonparametric transformation to unit Fréchet distribution defined as

X(s) → −1

log {F (X(s))}
, (26)

where F (.) represents the empirical distribution function, i.e., F (x) =
1

n+1

∑n
i=1 1Xi(s)<x. After that, we estimate the dependence parameters using

the composite likelihood approach defined in Equation 16, assuming equal
weights. For model selection, we calculate CLIC. The results are summarized
in Table 7, where ϕ, α, df , and π represent the range, smoothness, degree
of freedom, and spatial mixing proportion parameters, respectively. The sub-
script index 1 (2) refers to the first (second) mixing model. Regarding the

Table 7 Summary of fitting stationary models on the monthly maxima of the rainfall
over the east coast of Australia. The bold number for CLIC indicates the lowest value.

Class I ϕ̂ α̂ d̂f CLIC

I1 169.11 1.06 - 1871755
I2 134.23 0.63 - 1866939
I3 661.62 - 3.23 1865962

Class II ϕ̂1 α̂1 d̂f1 π̂ ϕ̂2 α̂2 CLIC

II1 380.17 1.37 - 0.25 115.73 0.61 1865515
II2 1716.34 - 4.66 0.54 48.66 0.54 1865280
II3 224.10 0.77 - 0.88 55.54 - 1866101

results in Table 7, the best fitting model for the data is II2. It refers to, the
mixture models better representing the data than the max-stable models. To
determine whether the clustering of extremal dependence is significant in mod-
eling the monthly maxima of rainfall over the east coast of Australia, we fit
non-stationary max-stable mixture models as defined in Equation 15, denoted
by Class III.
Class III: consists models III1-III3 which are the non-stationary max-stable
mixture models as defined in Equation 15 for models II1-II3, with k equals 2,3
and 4, and considering the regions which represented the outputs of ASC in
Section 8.1.2.
The results of fitting Class III on the monthly maxima are summarized in
Table 8. Looking at the CLIC values, the models belonging to model III2 bet-
ter represent the data in general. Also, the CLIC values for k = 3 and k = 4
are very similar, so one can’t say which is better. Furthermore, when k = 4,
the values of the mixing proportions π1 and π4 are close. For that, a bootstrap
study is done for model III2 with k = 2, 3, 4 to construct a confidence interval
for the estimated parameters to evidence if an increase in the number of clus-
ters is significant. Due to the computation complexity, we took 100 resamples
in the bootstrap study and constructed a 90% confidence interval for the esti-
mated parameters, reported in Table 8. There is a high intersection between
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the confidence intervals of the mixing proportions π1 and π4 for the case when
k = 4, which means their values can’t considered different enough. There is no
evidence for considering the case of k = 4. Accordingly, we choose the region-
alization model III2 with k = 3 as the best model representing the data, as its
mixing proportions can be considered different based on its confidence inter-
vals. Furthermore, the three regions we obtained may be in concordance with
the regions where the precipitations are similar in terms of extremes during El
Niño/La niña.

8.2 Rainfall over France

This subsection is devoted to the study of rainfall data in France.

8.2.1 Description of the data

This data is provided by Météo-France and represents the hourly precipitation
recorded at 80 French monitoring stations. The data was measured during the
fall season (September, October, and November) over the period 1993 - 2021.
Each station has 24 * 91 * 29 = 63336 observations. The distance between
the stations ranges approximately from 12 km to 1248 km. The geographic
locations of these stations were chosen to cover all the French metropolitan
regions. Figure 10 illustrates the geographic locations of the 80 stations. This
data was studied by Bernard et al (2013) during the period 1993 - 2011.
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Fig. 10 Geographic locations of 80 stations over France region

8.2.2 Regionalizing the maxima for rainfall over France

We consider the weekly maxima of the rainfall over France. To construct a
regionalization for the extremal dependence, we apply the ASC described in
Section 4 Algorithm 1. The outputs of ASC considering different numbers of
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clusters k, k = 2, 3, 4, are displayed in Figure 11. In Section 8.2.3, we use these
regions to fit non-stationary models on the weekly maxima and choose which
regionalization is better to represent the data depending on CLIC value.
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Fig. 11 represents the adapted spectral clustering (ASC) outputs for the weekly maxima
of rainfall over France during the period of 1993-2021.

8.2.3 Modelling the rainfall over France

Again, we begin with fitting stationary models on the weekly maxima. We con-
sider the same models presented in Section 8.1.3 and follow the same modeling
steps. The summary of the results appears in Table 9. The lowest CLIC value
indicates that the mixture model II2 is the best to represent the data. We fit
non-stationary max-stable mixture models considering the regions obtained
by ASC in Section 8.2.2. We fitted the same Class III models described in
Section 8.1.3, and the results are summarized in Table 10. From Table 10, it is
clear that the non-stationary models III2 are better than others to represent
the data. For that, we construct 90% confidence intervals for their estimated
parameters from bootstrap studies with 100 resamples. Confidence intervals
are put between parentheses in Table 10. The lowest CLIC value indicates that
the best-fitting model is III2 when k equals three. Although the value of the
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Table 9 Summary of fitting stationary models on the weekly maxima of the rainfall over
France. The bold number for CLIC indicates the lowest value.

Class I ϕ̂ α̂ d̂f CLIC

I1 164.89 0.96 - 9900596
I2 86.58 0.55 - 9918058
I3 344.08 - 1.88 9890874

Class II ϕ̂1 α̂1 d̂f1 π̂ ϕ̂2 α̂2 CLIC

II1 408.39 1.05 - 0.48 56.90 0.55 9886465
II2 670.44 - 1.58 0.54 35.69 0.54 9886158
II3 323.26 0.89 - 0.73 289.11 - 9897158

mixing proportion π1 and π3 are close, we can consider it different, as their
confidence intervals refer.
Furthermore, the regionalization with k equals three can interpreted easily.
There is a specific rainfall pattern in the southeast of France with the Cévennes
events. Also, the rainfall in the upper north part of France is affected by a
huge influence of the Atlantic and a third region that mixes both patterns in
the southwest.

9 Discussion and Conclusion

Modeling environmental extreme events requires an understanding of the
extremal dependence structure. In many studies, the extremal dependence
is assumed to be fixed. However, this assumption may be incorrect, espe-
cially in large regions or areas with complex geographical or climatic patterns.
Therefore, finding a method to detect regions with homogeneous extremal
dependence is valuable.
In this study, we combined spectral clustering with extremal concurrence
probability to develop a simple clustering method for max-stable processes.
Additionally, we modeled the entire region based on the regions resulting from
the adapted spectral clustering. We validated our approach through a simula-
tion study based on a non-stationary max-stable process. Then, we applied it
to two environmental datasets.
The first dataset consists of daily rainfall data over the east coast of Aus-
tralia. We found that the best-fitting mode for the extremal dependence of
monthly maxima is a non-stationary max-stable mixture model considering
three regional clusters obtained from the adapted spectral clustering. That
supports the assumption that fixing the extreme dependence for each region
is significant.
The second dataset consists of hourly precipitation data over France. The best
regionalization obtained from the adapted spectral clustering divided France
into three regional clusters: one in the north, one in the southeast, and the
other in the southwest. Assuming a fixed extremal dependence for each region
is significant when modeling the entire area.
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Modeling these two datasets indicates that the best-fitted model is the
max-stable mixture model with different spatial mixing proportions for each
clustered region. That leads us to consider regionalizing extremal dependence
to help model the non-stationary max-stable mixture process instead of rely-
ing on covariates, which are not always available to model spatial proportions.
Finally, although the adapted clustering algorithm is simple, it is powerful. As
a future direction for this study, one can study other variables like tempera-
ture. Another direction is to test the efficiency of the proposed technique when
applied to a larger region, such as the whole of Australia or the continent of
Europe.

Acknowledgments We acknowledge partial support from the PAUSE pro-
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Appendix A Parametric forms of the spatial
max-stable models

In this appendix, we provided the parametric forms for some of the spatial
max-stable models used in this paper. Let {X(s), s ∈ S} be a max-stable
process with unit Fréchet margins, then depend on Equations (8) and (9), we
can write the bivariate distribution function as

P{X(s) ≤ x1, X(s′) ≤ x2} = exp
{
−VS(x1, x2)

}
(A1)

here, S represent a set of two spatial locations : S = {s, s′} ⊂ S. The two
locations s, s′ are separated by spatial lag h : h = s − s′. Each max-stable
model has its bivariate exponent function VS(x1, x2), where its parametric
form depends on the choice of the process Y (s) in the spectral representation
defined in Equation (6). we will show some of these models that are used in
this paper.

1. Smith model
Smith (1990) introduced this model, also called the Gaussian extreme value
model. This model assumed Yi(s) = ϕd(s − Ui; Σ) in Equation (6), where
{Ui, i ≥ 1} represents a unit rate Poisson point process on S = Rd and
ϕd(.; Σ) represents the d-dimensional probability density function of a cen-
tered Gaussian distribution with covariance matrix Σ. In this model, the
range of dependence and the degree of anisotropy are controlled by the
matrix Σ. The bivariate exponent function of Smith model is defined as

VS(x1, x2) =
1

x1
Φ

(
τ(h)

2
+

log(x2

x1
)

τ(h)

)
+

1

x2
Φ

(
τ(h)

2
+

log(x1

x2
)

τ(h)

)
(A2)
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where τ(h) =
√
h⊺Σ−1h represents the Mahalanobis distance between two

locations s, s′ and Φ(.) represents the standard Gaussian distribution.
Depending on the relation between the exponent function and the extremal
coefficient, the latter can written as

θ(h) = 2Φ
(τ(h)

2

)
(A3)

2. Schlather Model
It is the so-called Extremal Gaussian Model introduced by Schlather

(2002). Its spectral representation obtained by setting {Y (s), s ∈ S} D
=

{
√

2π max{0, ε(s)}, s ∈ S}, where {ε(s), s ∈ S} is a standard Gaussian pro-
cess with correlation function ρ(.).
Its bivariate exponent function is defined as

VS(x1, x2) =
1

2

( 1

x1
+

1

x2

)[
1 +

√
1 − 2

(ρ(h) + 1)x1x2

(x1 + x2)2

]
(A4)

So, the extremal coefficient for this model is defined as

θ(h) = 1 +

(
1 − ρ(h)

2

)1/2

(A5)

3. Brown-Resnick model
This model is presented by Kabluchko et al (2009). It is occasionally called
the Geometric Gaussian model. The distribution assumption for {Y (s), s ∈
S} was set to be {Y (s), s ∈ S} D

= {exp{ϵ(s)−γ(s)}, s ∈ S}, where {ϵ(s), s ∈
S} represent a stationary centered Gaussian process with semivariogram
γ(.). The semivariogram is often considered as γ(h) = (∥h∥/ϕ)α, where
ϕ > 0 and 0 < α ≤ 2. Accordingly, the bivariate exponent function for this
model is defined as

VS(x1, x2) =
1

x1
Φ

(√
2γ(h)

2
+

log(x2

x1
)√

2γ(h)

)
+

1

x2
Φ

(√
2γ(h)

2
+

log(x1

x2
)√

2γ(h)

)
(A6)

As a result, its extremal coefficient is defined as

θ(h) = 2Φ
(√2γ(h)

2

)
(A7)

4. Extremal-t model
Opitz (2013) presented this model. It represents the generalization of the

Schlather model, assuming that {Y (s), s ∈ S} D
= {cdf max{0, ε(s)}df , s ∈

S}, cdf =
√
π 21−df/2

{
Γ
(
df+1
2

)}−1
, df ≥ 1, where {ε(s), s ∈ S} defined as

in Schlather model, Γ(.) represents the gamma function and df represents
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the degree of freedom. For this model, the bivariate exponent function is
defined as

VS(x1, x2) =
1

x1
Tdf+1

[
(x2/x1)1/df − ρ(h)

(df + 1)−1/2 [1 − ρ2(h)]1/2

]
+

1

x2
Tdf+1

[
(x1/x2)1/df − ρ(h)

(df + 1)−1/2 [1 − ρ2(h)]1/2

]
,

(A8)

where Tdf (.) represents the Student t distribution function with degree of
freedom df . So, the extremal coefficient for the Extremal-t model can be
written as

θ(h) = 2Tdf+1

[
1 − ρ(h)

(df + 1)−1/2 [1 − ρ2(h)]1/2

]
(A9)
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