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Abstract

The influence of an extreme event depends on the geographical features of
the region where the event occurs. In order to understand the behavior of
an extreme event, we consider statistical models capable of capturing the
extremes and their spatial dependence. Max-stable processes are widely
used in studying extreme events. However, assuming a fixed extremal
dependence for a max-stable process may not be reasonable, depending
on the topology of the region under study. In environmental extreme
events, different types of extremal dependencies can appear across the
spatial domain. In this study, we present an adapted spectral clustering
algorithm for max-stable processes. This algorithm combines spectral
clustering with extremal concurrence probability to cluster locations into
k regions, each with an homogeneous extremal dependence. Additionally,
we propose an approach to model the entire region based on the clustered
zones. In order to validate the proposed methodology, we tested it in
two simulation cases using a non-stationary max-stable mixture model.
The accuracy of the results encouraged us to apply it to two datasets:
rainfall data on the east coast of Australia and rainfall over France.

Keywords: Max-stable processes, Extremal dependence, Extremal
concurrence probability, Spectral clustering
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1 Introduction

Constructing a statistical model for environmental extreme events, such as
rainfall, temperature, and so on, is very important for understanding their
behavior and accurately predicting their occurrence. Max-stable processes are
natural models for spatial extremes, as they are natural extensions of the
Extreme Value Theory (EVT) to spatial domains. They are powerful statis-
tical models for extreme events in a continuous space and can assess the risk
in areas that do not have stations. One common assumption used for max-
stable models is that the extremal dependence is fixed across spatial domains.
However, this assumption may be incorrect and can lead to the construction
of meaningless models, particularly when the data sets are taken from a large
region or regions with complex geographical features (Richards and Wadsworth
(2021)). For instance, consider the rainfall data from the east coast of Aus-
tralia, a region characterized by mountain ranges. These mountains are known
to significantly influence rainfall events and can give rise to complex rainfall
patterns. Similarly, when considering rainfall data in France, which features
extensive coastal areas, extreme rainfall can be produced by disturbances from
both the Mediterranean Sea and the Atlantic Ocean.
Researching a max-stable model capable of capturing changing extremal
dependence is a recent topic of study. For instance, Huser and Genton
(2016) developed an approach that captures non-stationary patterns in spatial
extremes using covariates. They developed a non-stationary extremal-t model
by combining the extremal-t model with a non-stationary correlation func-
tion. This model is satisfactory in capturing the extremal dependence. Huser
and Genton (2016) presented another non-stationary max-stable model with-
out using it in their paper. This model is defined as a max-stable mixture, and
the details of this model are presented in Section 5. In short, this model is a
mixture of two max-stable models with a proportion of mixing that varies spa-
tially. This proportion can be modeled as a function depending on covariates.
This model could capture different extremal dependence in different spatial
regions. However, it is computationally difficult and requires prior knowledge
of relevant covariates.
Recently, clustering was used to create regionalisations of extreme events. Clus-
tering is an unsupervised machine learning tool that is widely used in data
analysis to identify subgroups with similar features. It has a wide range of
applications in fields such as computer science, statistics, biology, and climate
science.
In the context of spatial extremes, only a few studies use clustering to par-
tition an entire region into homogeneous sub-regions based on similarities in
extremal dependence. For instance, Bernard et al (2013) presented a novel
clustering algorithm for maxima, using the F-madogram introduced by Coo-
ley et al (2006). By combining the F-madogram with a partitioning around
medoids (PAM) algorithm, they were able to cluster the extremes based on
dependence strength. The algorithm was applied to analyze rainfall patterns
over France. Afterward, Bador et al (2015) applied this algorithm to large
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regions and different variables, analyzing the maxima of summer temperatures
across Europe. Saunders et al (2021) demonstrated that the PAM algorithm
presented by Bernard et al (2013) is sensitive to stations density. To address
this issue, they proposed the use of hierarchical clustering with F-madogram.
They applied their proposed algorithm to rainfall stations in Australia. Then,
for each of the resulting regions, they fitted a stationary max-stable model. In
this case, its not possible to model the dependence between two locations that
belong to different clusters. However, in all of these studies, there is no clear
idea about which model for the entire region can be estimated using these
clusters.
Our contribution in this paper has two paths. Firstly, we proposed a clustering
approach for max-stable processes. We adapted spectral clustering for max-
stable processes by combining it with the extremal concurrence probability
introduced by Dombry et al (2018). The extremal concurrence probability for
a max-stable process is the probability that the maximum value of the pro-
cess occurs at two or more locations simultaneously. This clustering algorithm
aims to identify regions with similar extremal dependence. We demonstrated
the applicability of this algorithm in clustering the max-stable mixture pro-
cess presented by Huser and Genton (2016) into k regional clusters, each with
a similar extremal dependence. Additionally, we considered different sizes of
blocks and discussed the effect of the block size on the clustering maps.
The second path involves using the clustered regions in modeling the entire
area. To the best of our knowledge, this paper is the first to address this. For
this purpose, we proposed a censored pairwise likelihood based on clusters. We
validated our clustering and estimation approaches through a simulation study
and then applied them to two datasets. The first dataset consists of rainfall
data from the east coast of Australia, while the second dataset includes rain-
fall data from France provided by Météo-France.
The paper is organized as follows. An overview of spectral clustering is pro-
vided in Section 2. Section 3 presents Max-stable processes. Section 4 describes
the adapted spectral clustering for max stable process. Section 5 presents the
applicability of the adapted spectral clustering . Section 6 presents the infer-
ence using composite liklihood approach. A simulation study is presented in
Section 7. Section 8 applies the methodology to data: rainfall over east coast
of Australia and rainfall over France. Finally, Section 9 presents the discussion
and conclusions of our study.

2 Spectral clustering : an overview

Spectral clustering is a technique used in machine learning and data analysis
for clustering data points into groups based on the similarity between them.
It is based on the concept of spectral graph theory, which is the study of the
properties of graphs using linear algebra.
Spectral clustering has several advantages, as it can handle high-dimensional
data, which is often a limitation for other clustering algorithms. This is done by
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reducing the high-dimensional data to a lower-dimensional space using eigen-
value decomposition. Furthermore, it can handle different kinds of similarity
measures, which makes it flexible and adaptable to different types of data.
Also, it does not make any assumptions on the shape or size of clusters.
Spectral clustering considers the dataset as a graph, where each data point
Pi, i = 1, · · · , N represents a vertex in an undirected weighted graph. An
undirected graph G = (V,E,W ) is generally defined by a set of vertices
V = {v1, v2, · · · , vn}, a set of edges E = {(vi, vj)|vi, vj ∈ V } between these ver-
tices, and a similarity matrix W . An element wij ∈ W represents the amount
of similarity between the vertices vi,vj and the weight that will be assigned
to each edge. It is important to note that since the graph is undirected, the
similarity matrix should be symmetric. If wij = 0, this means that there is no
edge between the vertices vi,vj . Each vertex vi in the graph has a degree di:

di =

N∑
j=1

wij . (1)

The degrees d1, · · · , dN represent the elements of a diagonal matrix called the
degree matrix of the graph D.
Spectral clustering aims to separate the main graph G into sub-graphs so
that the weights of the edges between these sub-graphs are small, indicating
dissimilarity between the clusters, while the weights of the edges connecting
nodes within each sub-graph are relatively high, indicating similarity within
the clusters.

2.1 Steps of spectral clustering algorithm

In general, any spectral clustering algorithm involves the following three steps.

1. Pre-processing
Construct the similarity matrix W from the dataset using a measure that
takes into account the aim of clustering, and then construct the similarity
graph. There are different ways to do this depending on the pairwise simi-
larity wij . The aim is to model the neighborhood relation among the data
points x1, · · · , xn. These ways are summarized as follows:

� ε -neighborhood graph: In this graph, the vertices vi, vj will be con-
nected by an edge if they are similar enough, i.e if wij > ε, ε is a
pre-defined non-negative real number. Usually, this graph is considered
as an unweighted graph.

� k-nearest neighbor graphs: In this graph, the distance between each
pair of vertices is computed using the Euclidean distance. Then, the
vertices vi, vj are connected by an edge if vj is among the k nearest
neighbors of vi or vice versa, and the edge is weighted by the similarity
wij . The neighborhood relationship among data points is controlled by a
pre-defined integer number k.
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� The fully connected graph: In this graph, each vertex is connected to
all other vertices by edges, and these edges are weighted by the similar-
ities wij . This type of graph is useful only if the similarity function can
model the neighborhood relation among the data points. The commonly
used similarity function is the Gaussian similarity function, which is
defined as wij = exp(−∥Pi − Pj∥2/2σ2), where the neighborhood relation
is controlled by σ.

For further information on similarity graphs, we refer to Von Luxburg
(2007) and Parodi (2012).

2. Spectral representation
Compute the Laplacian matrix of the graph, which is an essential tool
to identify clusters in the data using spectral clustering. It is a matrix
that characterizes the connectivity of a graph. It captures the relationships
between the nodes, and can be used to identify the nodes that are most
closely connected to each other. There are two different definitions for this
matrix, depending on the degree matrix D and the similarity matrix S of
the graph, as follows.
(a) Unnormalized Laplacian matrix L: L = D −W .
(b) Normalized Laplacian matrix Lnorm: Lnorm = D− 1

2LD− 1
2 .

The choice of Laplacian matrix type to use with spectral clustering depends
on the application and the problem to be solved. Spectral clustering is often
used to optimize two objective functions: Ratio Cut (Rcut) and Normalized
Cut (Ncut). Both of these objective functions measure the quality of the
partition of a graph into clusters. Let Ci be a subset of vertices i.e Ci ⊂
V, i = 1, · · · , k and its complement Ci := V \Ci, the Ratio Cut function
(Rcut) ( Hagen and Kahng (1992)) is defined as:

Rcut(C1, · · · , Ck) =

k∑
i=1

cut(Ci, Ci)

|Ci|
. (2)

Where
cut(C,C) :=

∑
i∈C,j∈C

wij

|Ci| := number of vertices in Ci

In this function, the size of a subset Ci is measured by its number of vertices.
Using the unnormalized Laplacian matrix L with spectral clustering leads
to minimizing the Ratio Cut function.
In contrast, the Normalized cut function(Ncut)(Shi and Malik (2000)) is
defined as:

Ncut(C1, · · · , Ck) =

k∑
i=1

cut(Ci, Ci)

vol(Ci)
. (3)

where
vol(C) :=

∑
i∈C

di



Springer Nature 2021 LATEX template

6 Regionalization of the extremal dependence structure using spectral clustering

In the Normalized cut function, the size of a subset Ci is measured by the
weights of its edges. Using the normalized Laplacian matrix Lnorm with
spectral clustering leads to minimizing the Normalized cut function. For
more details see Von Luxburg (2007).
The matrices L and Lnorm have some important properties: they are sym-
metric and positive semi-definite matrices; the N eigenvalues λ1, · · · , λN of
these matrices are non negative real-valued, so 0 = λ1 ≤ λ2 ≤ · · · ≤ λN ;
the multiplicity k of the value 0 as an eigenvalue of these matrices is equal
to the number of connected components C1, · · · , Ck in the graph. (for more
details, see Mohar et al (1991), Mohar (1997) and Chung (1997)).
The eigenvalues of the graph Laplacian matrix and its associated eigen-
vectors are computed. Then, the eigenvectors are used to constitute a
low-dimensional representation of the data, where the clusters are more
separated. Typically, the k eigenvectors corresponding to the k smallest
eigenvalues are used to construct a k-dimensional representation of the data,
as they capture the structure of the graph and important features of the
data (see Wierzchoń and K lopotek (2018)). Reducing dimension can reveal
hidden patterns in the data that may be difficult to distinguish in higher
dimension.

3. clustering
Apply the k-means clustering algorithm to the low-dimensional representa-
tion to group the data points into k clusters.

In spectral clustering, a specific heuristic method has been proposed for choos-
ing the number of clusters k. This method relies on the gap between two
consecutive eigenvalues, with the number of clusters determined by the value of
k that maximizes the eigengap δk: δk =| λk+1 −λk | , k ≥ 2 (see Von Luxburg
(2007)). This method is effective in determining the number of clusters when
the dataset is well separated.

3 Max-stable processes

In this section, we will provide a brief overview of max-stable processes and
define the extremal concurrence probability, which is a critical tool for our
approach. We essentially follow Dombry et al (2018) and refer the reader to
this reference for further details.

3.1 Definition of Max-stable processes

Let Z1(s), Z2(s) · · · be a sequence of independent replications of a spatial pro-
cess {Z(s), s ∈ S},S ⊂ Rd, d ≥ 1. If there exist continuous functions An(s) > 0
and Bn(s) ∈ R such that

maxi=1,··· ,n Zi(s) −Bn(s)

An(s)

d
= X(s), s ∈ S, n → ∞, (4)
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is non-degenerate, then {X(s), s ∈ S} is a max stable process (see De Haan
and Pereira (2006)). The univariate maxima X(s) at any location s, follows a
Generalized Extreme Value distribution (GEV), i.e, for all x ∈ R,

P(X(s) ≤ x) = exp[−(1 + ξ(s)
x− µ(s)

σ(s)
)−1/ξ(s)], (5)

where µ(s) ∈ R is the location parameter, σ(s) > 0 is the scale parameter and
ξ(s) ∈ R is the shape parameter. These parameters are possibly different from
one location to another. Setting µ(s) = σ(s) = ξ(s) = 1, leads to consider unit
Fréchet distributions, i.e, P(X(s) ≤ x) = exp[−1/x], x > 0, and {X(s), s ∈ S}
is called a simple max-stable process (see Ribatet (2017) and Ribatet et al
(2016)). De Haan (1984) provided the spectral representation for simple max-
stable processes {X(s), s ∈ S} as follows:

X(s) = max
i≥1

ζiYi(s), s ∈ S,S ⊂ Rd, d ≥ 1 (6)

where {ζi, i ≥ 1} is a Poisson point process on (0,∞) with intensity ζ−2dζ
and Y1(s), Y2(s), · · · denote a sequence of independent replications of a non
negative stochastic process {Y (s), s ∈ S} with E[Y (s)] = 1 for all s ∈ S.
Equation (6) may be written as follows:

X(s) = max
φ∈Φ

φ(s), s ∈ S (7)

where Φ = {φi(s) = ζiYi(s) : s ∈ S, i ≥ 1} is a Poisson point process on C0,
the space of non-negative continuous functions on S (see Ribatet (2017)).
Let S be a set of m spatial locations : S = {s1, · · · , sm} ⊂ S, then the
multivariate maxima distribution is given by

P{X(s1) ≤ x1, · · · , X(sm) ≤ xm} = exp

{
−E

[
max

j=1,··· ,m

Y (sj)

xj

]}
(8)

where {Y (s), s ∈ S} is the process appearing in Equation (6). The exponent
function

VS(x1, · · · , xm) = E
[

max
j=1,··· ,m

Y (sj)

xj

]
, (9)

is called the exponent measure. It characterizes the dependence structure of
X(s1), · · · , X(sm). Since the exponent measure is homogeneous of order −1,
we can obtain a useful relation by setting xj = x for all j = 1, · · · ,m such
that VS(1, · · · , 1) = θS where θS is the extremal coefficient that provides a
summary of the dependence structure (see Schlather and Tawn (2003) and
Smith (1990)). Particularly, when S = {s1, s2} the extremal coefficient satisfies
θS = VS(1, 1) ∈ [ 1, 2] . The lower bound corresponds to the variables X(s1) and
X(s2) which are completely dependent, while the upper bound corresponds to
the case where they are independent.
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Several models for max-stable processes have been presented based on this
spectral representation, including the Brown-Resnick model (see Brown and
Resnick (1977)), the Smith model (see Smith (1990)), the Schlather model (see
Schlather (2002)), and the Extremal-t model (see Opitz (2013)).

3.2 Extremal concurrence probability

Other indices in order to measure the dependence between extremes exist in
the literature. Dombry et al (2018) introduced the extremal concurrence prob-
ability for the analysis of extremal dependence, which was especially designed
for max-stable processes. It has properties similar to the pairwise extremal
coefficient, but it has the advantage of being a probability measure, which
makes it more interpretable and axiomatic. The extremal concurrence proba-
bility focuses on the occurrence times of extremes, which means whether the
record maxima occurs simultaneously, i.e., at the same time for all locations.
It can be interpreted as the chance of a single extreme event affecting all the
locations and being responsible for the record maximum.
It is based on the spectral representation of the max-stable processes. The idea
behind this metric can be explained as follows.
Recall the spectral representation in Equation (7). We say that the extremes
are concurrent at locations s1, · · · , sm ∈ S if

X(sj) = φℓ(sj), j = 1, · · · ,m (10)

for some ℓ ≥ 1. This means that the values of the process {X(s), s ∈ S} at
locations s1, · · · , sm come from the same spectral function φℓ.
The extremal concurrence probability is defined as

pr(s1, · · · , sm) = P{for some ℓ ≥ 1 : X(sj) = φℓ(sj), j = 1, · · · ,m} (11)

According to Theorem 3 in Dombry et al (2018), the bivariate extremal
concurrence probability estimation coincides with Kendall’s τ statistic:

p̂r(s1, s2) ≡ τ =
2

n(n− 1)

∑
1≤i<j≤n

sign{Xi(s1)−Xj(s1)}sign{Xi(s2)−Xj(s2)},

(12)
where {Xi(s), s ∈ S, i = 1, · · · , n} are n independent copies of {X(s), s ∈ S}.
The bivariate extremal concurrence probability for max-stable processes sat-
isfies pr(s1, s2) = 0 if and only if X(s1) and X(s2) are independent, and
pr(s1, s2) = 1 if and only if X(s1) and X(s2) are almost surely equal. These
properties were stated and proved in Proposition 1 of Dombry et al (2018).
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4 Adapting spectral clustering for max stable
process

Let Xi(sj), sj ∈ S, S ⊂ Rd, d = 2, i = 1, · · · , n be a sequence of n
independent and identically distributed max stable processes at different loca-
tions sj , j = 1, 2, · · · ,m. In order to apply spectral clustering in extremal
dependence context, locations s1, · · · , sm are considered as vertices in a fully
connected graph. Each vertex is connected to all others by edges, and the
weights of these edges represent the similarity values among the locations.
Figure 1 represents a fully connected graph for a max-stable process consisting
of 15 locations. For viewing purposes, the self-edges were not shown. Select-

S1

S2 S3
S4

S5

S6

S7

S8

S9

S10

S11

S12

S13

S14

S15

Fig. 1 Fully connected graph with 15 vertices. Each vertex represents a location in the
max-stable process

ing an appropriate metric to construct the similarity matrix is essential in the
spectral clustering algorithm, especially when using a fully connected graph.
It is important to choose an extremal dependence measure that can accurately
model the neighborhood relations among the locations. In this study, we used
the extremal concurrence probability, as introduced by Dombry et al (2018)(see
Section 3.2). The similarity matrix represents the pairwise extremal concur-
rence probability matrix, denoted by CP ∈ Rm×m, where m is the number of
locations. For a pair (s, s′) ∈ S ×S, the element of the matrix CP is given by:

p̂r(s, s′) =
2

n(n− 1)

∑
1≤i<j≤n

sign{Xi(s) −Xj(s)}sign{Xi(s
′) −Xj(s

′)} (13)

After constructing the similarity matrix CP according to Equation (13), it
is used to compute the graph Laplacian matrix. Using the normalized graph
Laplacian matrix Lnorm helps to achieve our goal of making the size of the
resulting clusters dependent on the concurrence of extremes (i.e., the weights
of the graph edges). The spectrum λ and the eigenvectors of Lnorm are then
computed. The eigenvectors q1, · · · , qk are used to constitute a k-dimensional
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representation for the data. This is done by representing these eigenvectors
as columns of an m × k matrix denoted Q. Each row in Q represents a loca-
tion sj : sj → (qj,1, · · · , qj,k) , j = 1, · · · ,m, this is called spectral mapping
(see Wierzchoń and K lopotek (2018)). Normalizing each row of Q to norm 1
results in a matrix denoted Y ∈ Rm×k. According to Ng et al (2001), this last
step improves the performance of the clustering algorithm. Instead of using k-
means, which is usually used at this step, we used a Gaussian Mixture Model
(GMM) to cluster the rows of Y . GMM clusters the datapoints based on prob-
ability distribution, considering that the datapoints come from a Gaussian
mixture. Each cluster has a Gaussian distribution model with parameters mean
and covariance. Taking the covariance into account makes GMM more robust
than k-means, which depends only on the cluster mean. For more details about
GMM, see for example Bouveyron et al (2019). We summarize these steps in
Algorithm 1.

Algorithm 1 Adapted spectral clustering

Require: The similarity matrix CP ∈ Rm×m, constructed according to
Equation (13) .

Ensure: Clusters {C1, · · · , Ck}.
1: Compute the normalized Laplacian matrix Lnorm = D− 1

2 (D − CP )D− 1
2 .

2: Compute the spectrum of Lnorm.
3: Compute the eigengap δk and determine the potential number of clusters

which correspond to relatively large values of δk. Then for each of them
repeat the steps 4 to 7.

4: Compute the k smallest eigenvectors q1, q2, · · · , qk of Lnorm, and arrange
these vectors in columns to be a matrix Q, where Q ∈ Rm×k.

5: Normalize the rows of Q to norm 1, resulting the matrix Y ∈ Rm×k:
Yjl = Qjl/(

∑
l Q

2
jl)

1
2 , j = 1, · · · ,m, l = 1, · · · , k.

6: Consider each row of Y as a point in Rk and implement Gaussian Mixture
Model (GMM) to cluster them into k clusters.

7: Assign the location sj to cluster l if and only if row j of the matrix Y is
assigned to cluster l.

5 Applicability of the adapted spectral
clustering

The adapted Spectral clustering algorithm, which utilizes the extremal con-
currence probability as a similarity matrix, aims to identify regions where the
pairwise concurrence probability between locations is high. As a result, we
obtain regions where the locations exhibit a similar extremal dependence. This
can reduce the possibility that the extremal dependence will be non-stationary
in the clusters.
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As a preliminary step, we need to determine the spatial structure of the k
clusters. This stems from the expectation that locations geographically close
to each other may exhibit similar extremal dependence. We obtained the spa-
tial structure of these k clusters by applying the Partitioning Around Medoids
(PAM) clustering algorithm proposed by Kaufman and Rousseeuw (1990) to
the spatial coordinates of these locations. As a result, we obtained k clusters
in which the locations are spatially closer to each other, as measured by their
euclidean distances.
We illustrate the application of spectral clustering by examining a non-
stationary max-stable process. We construct this process using an approach
presented by Huser and Genton (2016), named max-stable mixtures. Let X1(s)
and X2(s) be independent max stable processes that have unit Fréchet margins
defined on the same space S. Then the process X(s) = max

{
π(s)X1(s), (1 −

π(s))X2(s)
}

is a simple max stable process, where π(s) is any function with
0 ≤ π(s) ≤ 1. The bivariate distribution is given by

F (x1, x2; Ψ) = P{X(s) ≤ x1, X(s′) ≤ x2} = exp
{
−V mix

S (x1, x2)
}

(14)

and
V mix
S (x1, x2) = V 1

S

( x1

π(s)
,

x2

π(s′)

)
+V 2

S

( x1

1 − π(s)
,

x2

1 − π(s′)

)
(15)

where, V 1
S and V 2

S are the exponent measure of X1(s) and X2(s), respectively,
and S = {s, s′}. The proportion π(s) determines which of the processes X1(s)
and X2(s) prevails at location s. If π(s) is constant across space, then the
process X(s) is stationary. However, X(s) becomes non-stationary when π(s)
varies spatially, such as if it depends on covariates. This variation may lead to
capturing different extreme behaviors in different spatial regions.
For clustering purposes, we will consider that each spatial cluster k has its own
mixing proportion πk. To make the process more realistic, we take into account
the presence of regression in the values of πk between the clusters. Figure 2
represents an example of realization of such a process by mixing a Schlather
and an extremal-t process over the [0, 1]2. In the simulation study (Section 7),
we will explore how spectral clustering can recover these clusters of locations.
Assuming we have two clustered regions, depending on these clusters, we can
rewrite the bivariate distribution in Equations 14 and 15 as

F (x1, x2; Ψ) =


exp

{
−
{
V 1
S (x1

π1
+ x2

π1
)) + V 2

S ( x1

1−π1
+ x2

1−π1
)
}}

, if s, s′ ∈ C1

exp
{
−
{
V 1
S (x1

π2
+ x2

π2
)) + V 2

S ( x1

1−π2
+ x2

1−π2
)
}}

, if s, s′ ∈ C2

exp
{
−
{
V 1
S (x1

π1
+ x2

π2
)) + V 2

S ( x1

1−π1
+ x2

1−π2
)
}}

, if s ∈ C1, s
′ ∈ C2

(16)
For simplicity we will denote the distribution function components in Equation
16 by FC1(x1, x2; Ψ) if s, s′ ∈ C1, FC21(x1, x2; Ψ) if s, s′ ∈ C2 and
FC12(x1, x2; Ψ) if s ∈ C1, s

′ ∈ C2. Using the distribution in Equation 16, we
can model the whole region under study depending on clustered regions.
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Fig. 2 Example of realization of a max-stable mixtures process on the logarithm scale. Left
panel: realization of an Extremal-t process with whittle-matérn correlation function ρ(h) =
(21−c1/Γ(c1))(∥h∥/c2)c1Kc1 (∥h∥/c2) with degree of freedom equal to 5, range c2 = 0.7 and
smooth c1 = 1. Middle panel: realization of a Schlather process with exponential correlation
function ρ(h) = exp(−∥h∥/ϕ), with range ϕ = 0.7. Right panel: corresponding realization
of the max-stable mixture with π(s) = 3x − 1 if x ∈ [0.4, 0.6], if x < 0.4 π(s) = 0.2 and
π(s) = 0.8 if x > 0.6, where x represents the value of the X coordinate corresponding to
location s.

6 Inference: composite likelihood approach

The full likelihood inference for max-stable models is computationally
intractable (Castruccio et al (2016)). The most widely used approach is the
pairwise composite likelihood (Padoan et al (2010)). Let Ψ represent the vector
of unknown parameters; the pairwise composite log-likelihood can be expressed
as follows:

P(Ψ) =

n∑
i=1

m−1∑
j=1

m∑
j′=j+1

Wjj′ logL(xij , xij′ ; Ψ) =:

n∑
i=1

Pi(Ψ) (17)

where xij represents the block maxima i which recorded at station j,
L(xij , xij′ ; Ψ) is the likelihood of the pair (xij , xij′) and Wjj′ are non nega-
tive weights that specify the contribution of each pair. Therefore the maximum
pairwise liklihood estimator is given by Ψ̂ = arg maxP(Ψ). Under some
regularity conditions (see Padoan et al (2010)), Ψ̂ obtained by maximiz-
ing the pairwise composite log-likelihood in Equation (17) is consistent and
asymptotically normally distributed, such that

Ψ̂ ∼ N (Ψ, I(Ψ)−1) (18)

with
I(Ψ) = H(Ψ)J (Ψ)−1 H(Ψ) (19)

where I(Ψ) is the sandwish information matrix, H(Ψ) = E
[
−∇2 P(Ψ)

]
is the

sensitivity matrix and J (Ψ) = V
[
∇P(Ψ)

]
is the variability matrix. There-

fore, the variance of the estimated parameters can be assessed by estimating
the matrices H(Ψ) and J (Ψ). In this context, the empirical estimates of the
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matrices H(Ψ) and J (Ψ) are given by

Ĥ(Ψ) = −
n∑

i=1

∇2 Pi(Ψ̂) (20)

and

Ĵ (Ψ) =

n∑
i=1

∇Pi(Ψ̂)∇Pi(Ψ̂)T (21)

In practice, Ĥ(Ψ) can be obtained directly from the optimization algorithm
since it equals the negative of the Hessian matrix.
In this paper, our interest is to use the clustered regions in modeling
the whole region. We define the censored pairwise likelihood contribution
LCL(xij , xij′ ; Ψ) for a pair (xij , xij′) as follows

LCL(xij , xij′ ; Ψ) =


∂2
12FC1(xij , xij′), if sj , sj′ ∈ C1

∂2
12FC2(xij , xij′), if sj , sj′ ∈ C2

∂2
12FC12(xij , xij′), if sj ∈ C1, sj′ ∈ C2

(22)

where ∂i is the differentiation with respect to variable xi.
Finally, selecting the best-fitted model under the composite likelihood
approach is performed using the Composite Likelihood Information Criterion
(CLIC)(Varin and Vidoni (2005)), which is defined as CLIC = −2P(Ψ̂) +
2 tr(Ĥ(Ψ̂)−1 Ĵ (Ψ̂)). The lowest value of CLIC correspond to best fit model.

7 Simulation study

In order to assess the accuracy of our algorithm, we tested it on two simulation
cases. In each cases, the coordinates of the locations were generated randomly
and uniformly in [0, 1]2. In practice, we usually do not have two completely
separated and independent clusters, some smoothness and dependence from
one to the other may be present, this is why we will use the max-stable mixture
model in two different simulation case.

� Case 1: In this case, we assumed the existence of two clusters, one in the
north and the other in the south. To identify the spatial structure of these
clusters, we applied the PAM algorithm to the coordinates of 80 locations.
The left panel in Figure 3 displays the two clusters, with the first cluster in
the north (depicted by red points) and the second in the south (depicted by
blue points). We then established the boundary area between the clusters
arbitrarily, represented by the gray points located between two black lines
(latitude ranging from 0.4 to 0.55), as shown in the right panel of Figure 3.
In this context, we have named the cluster in the north as A, the cluster in
the south as B, and the boundary area as middle. Then, we simulated a non-
stationary process, as described in Section 5. Denoted by M1 , the model
represents a mixture of the Schlather model with a powered exponential
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Fig. 3 The left panel shows the spatial structure of the two clusters, while the right panel
displays cluster A in the north, cluster B in the south, and the middle, which is the boundary
area between clusters A and B.

correlation function ρ(h) = exp(−(∥h∥/ϕ)α), and the Brown-Resnick model
with a semivariogram γ(h) = (∥h∥/ϕ)α . The parameters of the Schlather
model are set to ϕ1 = 0.3 and α1 = 1, where the subscript index 1 refers
to the first mixing component. The parameters of the Brown-Resnick model
are set to ϕ2 = 0.7 and α2 = 1.2, where the subscript index 2 refers to the
second mixing component. The number of observations is fixed at 500, and
the spatially varying proportion was set as follows:

π(s) =


0.3, if s ∈ A
53
30 − 8

3 × latitude, if s ∈ Middle

0.7, if s ∈ B

(23)

in order to get continuous realizations of the underlying process. With this
choice, we get two different areas (A and B) where the underlying process
is stationary; moreover the areas A and B are dependent leading to a more
realistic model for environmental phenomena.
Afterward, we applied adapted spectral clustering to this process. The eigen-
gap heuristic indicated that the number of clusters equals 2, as illustrated
in the left panel of Figure 4. In order to further confirm this choice, we
employed the widely used Silhouette Index (Rousseeuw (1987)) for cluster-
ing validation. The Silhouette Index is a valuable metric for assessing the
separation of clusters, with values ranging from -1 to 1. The highest Sil-
houette Index value corresponds to the most reliable clustering results. We
considered potential numbers of clusters, including 2, 3, and 4, which cor-
responded to relatively large eigengap values, the right panel of Figure 4
clearly shows that the optimal number of clusters is 2. The spectral cluster-
ing result for k equals 2 is depicted in the left panel of Figure 5, with red
points representing cluster A, blue points representing cluster B, and black
triangles representing the points that lie in middle. The pairwise extremal
concurrence probability matrix for the clustering result is displayed in the
right panel of Figure 5. Since we know the true clusters A, Middle and B, We
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Fig. 4 The left panel shows the eigengap values against number of clusters k, while the
right panel displays Silhouette Index values against number of clusters k.
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Fig. 5 The left panel shows the spectral clustering result for k=2 where the red points
represent cluster A, blue points represent cluster B and the black traingles represent the
points that lie in the middle, while the right panel shows the pairwise extremal concurrence
probability matrix for the clustering result.

can calculate the precision of the spectral clustering algorithm for recover-
ing the true clusters by determining the ratio of locations in the true cluster
shared in common with the cluster resulting from spectral clustering. We
will denote this ratio as ACt,Csp

for simplicity:

ACt,Csp =
|Ct ∩ Csp|

|Ct|
(24)

where Ct represents the true cluster, Csp represents the cluster resulting
from spectral clustering, and |.| denotes the number of elements in a set.
The values of ACt,Csp for all combinations between the true clusters and the
spectral clustering clusters are presented in Table. 1. Its clear that the true
clusters A and B are correctly recovered by spectral clustering. Regarding
the Middle cluster, 4 locations are clustered with A which has π(s) values
closer to 0.3 and 6 locations are clustered with B which has π(s) values closer
to 0.7. To assess whether the number of observations affects the algorithm
performance, we implemented it with different numbers of observations: n
= 500, 200, 100, and 50. For each number of observations, we simulated 10
processes on the same coordinates with the same parameters as mentioned
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Table 1 The values of ACt,Csp for one simulation of case 1 with the number of
observation equals 500

Spectral clustering clusters

True
clusters A B

A 1 0
Middle 0.4 0.6
B 0 1

above. The mean of ACt,Csp
for the 10 simulations is shown in Table 2.

From Table 2, we can observe that a higher number of observations leads

Table 2 The mean values of ACt,Csp for 10 simulations of case 1 with the number of
observations set to n = 500, 200, 100, and 50.

Spectral clustering clusters

n = 500 n = 200 n = 100 n = 50

True
clusters A B A B A B A B

A 1 0 1 0 1 0 0.98 0.02
Middle 0.41 0.59 0.43 0.57 0.39 0.61 0.51 0.49
B 0 1 0 1 0 1 0.07 0.93

to better recovery of the true clusters. However, the algorithm performs well
even when the number of observations is relatively small.
Its worth noting that for the 40 simulations in Table 2, the accuracy of
determining the number of clusters (k = 2) using the eigengap heuristic is
0.8. However, the eigengap is still useful in providing us with the potential
number of clusters, which corresponds to the relatively largest eigengap.
When we calculate the Silhouette Index only for this potential number of k,
we achieve an accuracy of 1 in determining the correct number of clusters.
Now, we will assess the ability of the proposed censored pairwise likelihood,
as defined in Section 6, Equation 22, to estimate the parameters of the
whole region based on clusters. We simulate N = 100 max stable mixture
processes (model M1) with the same conditions as explained previously,
with the number of observations fixed at 100. Then, we use Equation 22 to
obtain the estimator Ψ̂. After that, we will create a boxplot for the estimated
parameters and calculate the mean estimate and the root mean square error
(RMSE) for each estimated parameters. Let Ψ̂i denoted the ith estimation,
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then

RMSE =

[
1

N

N∑
i=1

(Ψ̂i − Ψ)2
]1/2

(25)

The boxplots of the errors of the estimated parameters, i.e., (Ψ̂ − Ψ), are
displayed in the left panel of Figure 6, and the RMSE values are shown
in the right panel of Figure 6. The subscript index 1 (2) refers to the first
(second) mixing model. The mean estimates of the parameters are π̂1 = 0.29,

π̂2 = 0.67, ϕ̂1 = 0.28, α̂1 = 0.98, ϕ̂2 = 0.66 and α̂2 = 1.23. Generally, the
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Fig. 6 The left panel shows the boxplots displaying (Ψ̂ − Ψ) of the estimated parameters
using censored pairwise likelihood Equation 22 based on 100 simulations of model M1 with
parameters π1 = 0.3, π2 = 0.7, ϕ1 = 0.3, α1 = 1, ϕ2 = 0.7 and α2 = 1.2. The number of
observations fixed at 100. The red horizontal line represents the zero value. Meanwhile, the
right panel displays the barplots for the RMSE of Ψ̂ = {π̂1, π̂2, ϕ̂1, α̂1, ϕ̂2, α̂2} for the same
simulations.

proposed censored pairwise likelihood appears to work well in estimating
the parameters for the whole region depending on clustered regions.

� Case 2: Here, similar to case 1, we assumed the existence of two clusters, one
in the west and the other in the east. The spatial structure of these clusters is
depicted in the left panel of Figure 7 after applying the PAM algorithm to the
coordinates of 40 locations. The red points represent the west cluster, while
the blue points represent the east cluster. We then established the boundary
area between the clusters arbitrarily, represented by the gray points located
between two black lines (longitude ranging from 0.4 to 0.6), as shown in the
right panel of Figure 7. We have named the cluster in the west as A, the
cluster in the east as B, and the boundary area as middle. Next, we mixed
the Brown-Resnick model with a semivariogram γ(h) = (∥h∥/ϕ)α, with an
isotropic Smith model, as described in Section 5, we denote this model by
M2. In this model, the parameters of the Brown-Resnick model are set to
ϕ1 = 0.3 and α1 = 1, where the subscript index 1 refers to the first mixing
component. The parameter of the isotropic Smith model are set to ϕ2 = 0.5,
where the subscript index 2 refers to the second mixing component. The
number of observations is set to 500, and the spatially varying proportion



Springer Nature 2021 LATEX template

18 Regionalization of the extremal dependence structure using spectral clustering

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

Longitude

L
a
ti
tu

d
e

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

Longitude

L
a
ti
tu

d
e

Clusters

A

Middle

B

Fig. 7 The left panel shows the spatial structure of the two clusters, while the right panel
displays cluster A in the west, cluster B in the east, and the middle, which is the boundary
area between clusters A and B.

was defined as follows:

π(s) =


0.2, if s ∈ A

−1 + 3 × longitude, if s ∈ Middle

0.8, if s ∈ B

(26)

Then, we applied adapted spectral clustering to this process. The eigengap
heuristic and Silhouette Index indicate that the number of clusters equals
2, as illustrated in the left and right panels of Figure 8 respectively. The
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Fig. 8 The left panel shows the eigengap values against number of clusters k, while the
right panel displays Silhouette Index values against number of clusters k.

spectral clustering result for k equals 2 is depicted in the left panel of Figure
9, with red points representing the west cluster A, blue points representing
the east cluster B, and black triangles representing the points that lie in the
boundary area. The pairwise extremal concurrence probability matrix for the
clustering result is displayed in the right panel of Figure 9. Table 3 represents
the values of ACt,Csp

for all combinations between the true clusters and the
spectral clustering clusters. It’s clear that the true clusters A and B are
correctly recovered by spectral clustering. As for the Middle cluster, 3 out of
7 locations are clustered with A, which has π(s) values closer to 0.2, and 4 out



Springer Nature 2021 LATEX template

Regionalization of the extremal dependence structure using spectral clustering 19

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

Longitude

L
a

tit
u

d
e Clusters

A

B

0

10

20

30

40

0 10 20 30 40

0.2

0.4

0.6

0.8

1.0

value

Fig. 9 The left panel shows the spectral clustering result for k=2 where the red points
represent cluster A, blue points represent cluster B and the black traingles represent the
points that lie in the middle, while the right panel shows the pairwise extremal concurrence
probability matrix for the clustering result.

of 7 locations are clustered with B, which has π(s) values closer to 0.8. Table

Table 3 The values of ACt,Csp for one simulation of case 2 with the number of
observation equals 500

Spectral clustering clusters

True
clusters A B

A 1 0
Middle 0.43 0.57
B 0 1

4 presents the algorithms performance for different numbers of observations:
n = 500, 200, 100, and 50. For each number of observations, we simulated 10
processes on the same coordinates with the same parameters as mentioned
above. The table displays the mean of ACt,Csp

for the 10 simulations. From

Table 4 The mean values of ACt,Csp for 10 simulations of case 2 with the number of
observations set to n = 500, 200, 100, and 50.

Spectral clustering clusters

n = 500 n = 200 n = 100 n = 50

True
clusters A B A B A B A B

A 1 0 1 0 1 0 1 0
Middle 0.46 0.54 0.46 0.54 0.46 0.54 0.46 0.54
B 0 1 0 1 0 1 0 1
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Table 4, its clear that the algorithm successfully recovers the true clusters
in all the tested numbers of observations, also, the number of observations
does not affect the clustering of points that lie in the boundary area. Its
worth noting that, in the 40 simulations presented in Table 4 the accuracy
of determining the number of clusters (k = 2) using the eigengap heuristic
and the Silhouette Index is equal to 1.
In order to asses the performance of the the proposed censored pairwise
likelihood, we simulate N = 100 models the same conditions as M2 and
with the number of observations fixed at 100. Afterwards, we estimate the
parameters use Equation 22. Figure 10 display in its left panel the boxplots of
the errors of the estimated parameters, while its right panel shown the RMSE
values. As before, the subscript index 1 (2) refers to the first (second) mixing
model. The mean estimates of the parameters are π̂1 = 0.25, π̂2 = 0.76,
ϕ̂1 = 0.29, α̂1 = 1.05 and ϕ̂2 = 0.47. Regardless of a slight overfitting or
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Fig. 10 The left panel shows the boxplots displaying (Ψ̂−Ψ) of the estimated parameters
using censored pairwise likelihood Equation 22 based on 100 simulations of model M2 with
parameters π1 = 0.2, π2 = 0.8, ϕ1 = 0.3, α1 = 1 and ϕ2 = 0.5. The number of observations
fixed at 100. The red horizontal line represents the zero value. Meanwhile, the right panel
displays the barplots for the RMSE of Ψ̂ = {π̂1, π̂2, ϕ̂1, α̂1, ϕ̂2} for the same simulations.

underfitting for some parameters, the proposed censored pairwise likelihood
works well.

Since the results of the simulations appear satisfactory, we can use this tech-
nique to clustering and modeling the maxima for rainfall in East Australia and
France.

8 Application on data

This section is devoted to two data applications: one on rainfall in Australia’s
east coast, and the other on rainfall in France.

8.1 Rainfall over east coast of Australia

We will begin with a brief description of the data, followed by the application
of our clustering method and a discussion of the results.
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8.1.1 Description of the data

This data represents the daily rainfall totals (in millimeters) measured over a
24-hour period at 40 stations on the east coast of Australia during the winter
season (April to September) from 1972 to 2019, resulting in a total of 183 * 48
= 8,784 observations at each station. The altitude of these stations ranges from
2 to 540 meters. The distance between the stations ranges approximately from
11 km to 2058 km. The geographic locations of the 40 stations are illustrated
in the left panel of Figure 11. More information about this data can be found
in references such as Ahmed et al (2022), Bacro et al (2016), Ahmed et al
(2017), and Abu-Awwad et al (2020). The data is freely available on the website
http://www.bom.gov.au.
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Fig. 11 Geographic locations of 40 stations on the east coast of Australia.

8.1.2 Regionalizing the maxima for rainfall over east coast of
Australia

We will apply the adapted spectral clustering algorithm, described in Section 4
Algorithm 1, to clustering the extremal dependence. To demonstrate the effect
of the block size on the resulting clusters, we will use different sizes of block.
Specifically, we will test block sizes of 183 days, 30 days, 15 days and 10 days.
Figure 12 shows the results of spectral clustering for Australia’s rainfall data
for each block size. We can observe from the first column of Figure 12 that the
eigengap heuristic indicates that the number of clusters is 2 for all the tested
block sizes. To reinforce this result, we calculated the Silhouette Index for the
potential number of clusters, and the results confirm that the best number
of clusters is 2 for all the tested block sizes, as shown in the middle column
of Figure 12. In the right column of Figure 12 it is evident that the spectral
clustering result is the same for all the tested block sizes, with the exception
of one location in a block size of 10 days. This variation is expected since it is
located in the boundary area between the clusters. For this data, we can say
that the size of the block does not affect the clustering map.
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Fig. 12 The left column displays Eigengap values, and the middle column shows the Silhou-
ette Index against the number of clusters k, while the right column represents the spectral
clustering result for the east coast of Australia rainfall data over the period of 1972-2019.
The first (second, third, and fourth) row is for a block size of 183 days (30 days, 15 days,
and 10 days) respectively.
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8.1.3 Modelling the rainfall over east coast of Australia

In order to determine whether the clustering of extremal dependence is signif-
icant in modeling the maxima of rainfall over the east coast of Australia, we
will assess this by modeling with a 30 day block size.
We consider nine arbitrary models that belong to three classes: max-stable, sta-
tionary max-stable mixture (constant mixing proportion), and non-stationary
max-stable mixture (different mixing proportions for each cluster). The
descriptions of the models are as follows.
Class I: consists of max stable models I1-I3.

� I1: Schlather model with an powered exponential correlation function ρ(h) =
exp(−(∥h∥/ϕ)α), ϕ > 0 and 0 < α ≤ 2.

� I2: Brown-Resnick model with semivariogram γ(h) = (∥h∥/ϕ)α, ϕ > 0 and
0 < α ≤ 2.

� I3: Extremal-t model with an exponential correlation functions ρ(h) =
exp(−∥h∥/ϕ), ϕ > 0.

Class II: consists of stationary max stable mixture models II1-II2.

� II1: max stable mixture model which combines I1 and I2.
� II2: max stable mixture model which combines I3 and I2.
� II3: max stable mixture model which combines I2 and isotropic Smith model

with a covariance matrix Σ = ϕ Id2

Class III: consists models III1-III3 which are the non stationary max stable
mixture models as defined in Equation 16 for models II1-II3.
For all the models above, the univariate must be unit Fréchet. Therefore, we
use the empirical distribution function to transform the data to a unit Fréchet
distribution. After that, we estimate the dependence parameters using the
composite likelihood approach, assuming equal weights. For model selection,
we calculate CLIC. The results are summarized in Table 5, where ϕ, α, df and π
represent the range, smooth, degree of freedom and spatial mixing proportion
parameters. The subscript index 1 (2) refers to the first (second) mixing model.
Regarding the results in Table 5, the best fitting model for the data is the

max stable mixture with different spatial proportions for each cluster.

8.2 Rainfall over France

This subsection is devoted to the study of rainfall data in France.

8.2.1 Description of the data

This data is provided by Météo-France and represents the hourly precipitation
recorded at 80 French monitoring stations. The data was measured during the
fall season (September, October and November) over the period 1993 - 2021.
Each station has 24 * 91 * 29 = 63336 observations. The distance between
the stations ranges approximately from 12 km to 1248 km. The geographic
locations of these stations were chosen to cover all the French metropolitan
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Table 5 Summary of the fitted models based on the 30-day maxima of rainfall over the
east coast of Australia. The bold number for CLIC indicates the lowest value.

Class I ϕ α df CLIC

I1 169.11 1.06 - 1871755
I2 134.23 0.63 - 1866939
I3 661.62 - 3.23 1865962

Class II ϕ1 α1 df1 π ϕ2 α2 CLIC

II1 380.17 1.37 - 0.25 115.73 0.61 1865515
II2 1716.5 - 4.66 0.54 48.66 0.54 1865280
II3 224.04 0.77 - 0.88 28.74 - 1866104

Class III ϕ1 α1 df1 π1 π2 ϕ2 α2 CLIC

III1 100.02 0.34 - 0.11 0.53 90.11 0.44 1866179
III2 604.90 - 2.44 0.41 0.88 125.31 0.48 1864845
III3 224.77 0.77 - 0.89 0.87 53.26 - 1865982

regions. Figure 13 illustrates the geographic locations of the 80 stations. This
data was studied by Bernard et al (2013) during the period 1993 - 2011.
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Fig. 13 Geographic locations of 80 stations over France region

8.2.2 Regionalizing the maxima for rainfall over France

In order to clustering the rainfall extremal dependence, we implemented the
adapted spectral clustering on the data. Additionally, we studied the effect of
the block size on the clustering map of extremal dependence. The block sizes
we considered are monthly, 2 weeks, and weekly. The results obtained with
the spectral clustering on this data for each block size are shown in Figure 14.
The eigengap heuristic indicated that the number of clusters is 2 for all tested
block sizes, as shown in the left panels of Figure 14. This was reinforced by
the Silhouette Index, as is evident in the middle panels of Figure 14.
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We will begin our discussion with the weekly block size since it was studied by
Bernard et al (2013). Implementing spectral clustering on the data with this
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Fig. 14 The left column displays Eigengap values, the middle column shows the Silhou-
ette Index against the number of clusters k, and the right column represents the spectral
clustering result for the France rainfall data over the period of 1993-2021. The first, second,
and third rows are for a monthly block size, a two-week block size, and a weekly block size,
respectively.

block size divides France into two regional areas, north and south, along the
Loire valley line. Each of these regions has a different extremal dependence,
as explained in the right panel of the third row of Figure 14. This can be
interpreted easily. The extreme rainfall in the north of France is produced by
disturbances from the Atlantic, which affect Brittany, Paris and other areas in
the north of France. In contrast, the extreme rainfall in the south of France is
caused by the Mediterranean sea, which affects the coastal areas, particularly
Cévennes and the Montagne Noire. The results are similar to those obtained
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by Bernard et al (2013), where the selection criterion for the number of clusters
indicated that k = 2. The locations clustering result is relatively close to
Bernard et al (2013), where France was divided into north and south regions.
This indicates that the behavior of the data has not changed since 2011.
The right panels of Figure 14 show the location clustering results for all tested
block sizes. It is clear that the south region becomes smaller as the block size
becomes larger. For this data, we can say that the size of the block may affect
the clustering map.

8.2.3 Modelling the rainfall over France

Once again, we will check if the clustering of extremal dependence is valuable
in modeling the maxima of rainfall over France. We will use the weekly block
size and consider the same models proposed for Australian data, following the
same modeling steps as in section 8.1.3. The results are summarized in Table 6.
The lowest value for CLIC in Table 6 indicates that the best-fitting model for

Table 6 Summary of the fitted models based on the weekly maxima of rainfall over
France. The bold number for CLIC indicates the lowest value.

Class I ϕ α df CLIC

I1 164.89 0.96 - 9900596
I2 86.58 0.55 - 9918058
I3 344.08 - 1.88 9890874

Class II ϕ1 α1 df1 π ϕ2 α2 CLIC

II1 408.38 1.05 - 0.48 56.89 0.55 9886465
II2 100.28 - 1 0.53 90.15 0.47 9894430
II3 100.06 0.42 - 0.87 90 - 9909144

Class III ϕ1 α1 df1 π1 π2 ϕ2 α2 CLIC

III1 426.87 1.02 - 0.50 0.43 57.05 0.56 9885185
III2 840.75 - 1.90 0.59 0.49 30.38 0.55 9884561
III3 331.47 0.87 - 0.76 0.66 316.06 - 9895379

the France data is the max-stable mixture with different spatial proportions for
each cluster. Although the difference in the value of π between the clusters in
the north and in the south is not too large, it appears significant in modeling.

9 Discussion and Conclusion

Modeling environmental extreme events requires an understanding of the
extremal dependence structure. In many studies, it is assumed that extremal
dependence is fixed. However, this assumption may be incorrect, especially
in large regions or areas with complex geographical or climatic patterns.
Therefore, finding a method that can detect regions with similar extremal
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dependence is valuable.
In this study, we combined spectral clustering with extremal concurrence
probability to develop a simple clustering method for max-stable processes.
Additionally, we modeled the entire region based on the regions resulting from
spectral clustering. We validated our approach through a simulation study
based on a non-stationary max-stable process. Then, we applied it to two envi-
ronmental datasets.
The first dataset consists of daily rainfall data over the east coast of Australia.
Spectral clustering divided the east coast area with respect to rainfall max-
ima into two regional clusters, where assuming fixed extremal dependence for
each cluster is reasonable. We found that, for this data, the block size does
not affect the clustering map.
The second dataset consists of hourly precipitation data over France. Spec-
tral clustering divided the France region into two regional clusters: one in the
north and the other in the south, each exhibiting similar extremal dependence.
However, for this data, the clustering maps are not the same for all the tested
block sizes. Therefore, we conclude that the block size can result in changes in
regional clusters and should be taken into consideration.
Modeling these two datasets indicates that the best-fitted model for each
of them is the max-stable mixture model with different spatial mixing pro-
portions for each clustered region. This leads us to consider regionalizing
extremal dependence to help model the non-stationary max-stable mixture
model, instead of relying on covariates that are not always provided to model
spatial proportions.
Finally, despite the simplicity of the adapted clustering algorithm, it is pow-
erful. As a future direction of this study, one can study other variables like
temperature. Another direction is to test the efficiency of this clustering algo-
rithm when applied to a larger region, such as the whole of Australia or the
continent of Europe.
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