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Abstract

Modeling extreme events requires the understanding of the spatial
dependence structure in order to construct reliable statistical models.
Assuming the stationarity of the dependence structure of the spatial pro-
cess may not be reasonable, depending on the topology of the region
under study for example. In environmental extreme events, different
types of extremal dependencies could appear across the spatial domain.
In this study, we present an adapted spectral clustering algorithm for
spatial extremes by combining spectral clustering with extremal con-
currence probability. This algorithm involves a heuristic method that
can detect non stationarity in the dependence structure. In the case
of a non-stationary dependence structure, the algorithm clusters the
stations into k regions so that each region has a stationary depen-
dence structure. To validate the proposed methodology, we tested it on
different simulation cases using one or more max-stable models. The
accuracy of the results encouraged us to apply it on two real data sets:
rainfall data in the east coast of Australia and rainfall over France.

Keywords: Max-stable processes, Non-stationary dependence structures,
Extremal concurrence probability, Spectral clustering



Springer Nature 2021 BTEX template

2 Spectral clustering for spatial stationarity detection

1 Introduction

Constructing a reliable statistical model for environmental extreme events,
such as rainfall and temperature, is very important for understanding their
behavior and accurately predicting their occurrence. Max-stable processes are
natural models for spatial extremes, as they are natural extensions of the
Extreme Value Theory (EVT) to spatial domains. They are powerful statisti-
cal models for extreme events in a continuous space and can assess the risk in
areas that do not have stations. One basic assumption used in modeling is the
stationarity of the dependence structure, but this assumption may be incorrect
and can lead to the construction of meaningless models. In particular, if the
data sets are taken from a large region or from regions with complex spatial
features, it is plausible that the dependence structure will appear non station-
ary (Richards and Wadsworth (2021)). A non-stationary spatial dependence
structure refers to the situation where the strength of the spatial dependence
between extremes of a spatial process varies across the spatial domain.

In fact, dealing with non stationary spatial dependence structures is difficult in
practice. Several approaches have been presented for modeling non-stationary
dependence structures. For instance, Huser and Genton (2016) developed
an approach that captures non-stationary patterns in spatial extremes using
covariates. This method combines max-stable processes with a non-stationary
correlation function. However, it requires prior knowledge of relevant covari-
ates. Castro-Camilo and Huser (2020) developed a new methodology for
modeling sub-asymptotic spatial extremes observed over large, heterogeneous
regions using factor copula models. The proposed approach is able to capture
complex non-stationary patterns and is well-suited for situations where the
dependence strength weakens as events become more extreme. This methodol-
ogy is flexible and efficient but it is computationally expensive. Richards and
Wadsworth (2021) presented an approach for modeling nonstationary extremal
dependence. They adapted deformation methods for spatial extremes by using
least squares minimization of the difference between theoretical and empiri-
cal extremal dependence measures as a new objective function. Although this
approach is effective, the estimation of the deformed space can be challenging.
If the focus is on understanding the spatial patterns of extreme events, inde-
pendent stationary dependence structures in different regions can be useful
for modeling non-stationary dependence. This approach provides a simple and
computationally efficient way to model spatial dependence in the data.
Recently, clustering was used to create regionalisations of the extreme events.
Clustering is an unsupervised machine learning tool that is widely used in data
analysis to identify subgroups with similar features. It has a wide range of
applications in fields such as computer science, statistics, biology, and climate
science.

In the context of spatial extremes, only a few studies have used clustering
to partition an entire region into homogeneous sub-regions based on similar-
ities in dependence structure. For instance, Bernard et al (2013) presented
a novel clustering algorithm for maxima, using the F-madogram introduced
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by Cooley et al (2006). By combining the F-madogram with a partitioning
around medoids (PAM) algorithm, they were able to cluster the extremes
based on dependence strength. The algorithm was applied to analyze rainfall
patterns over France. Afterward, Bador et al (2015) applied this algorithm to
large regions and different variables, analyzing the maxima of summer tem-
peratures across Europe. Saunders et al (2021) demonstrated that, the PAM
algorithm that presented by Bernard et al (2013) is sensitive to stations den-
sity. To address this issue, they proposed the use of hierarchical clustering with
F-madogram. Then applied their proposed algorithm to rainfall stations in
Australia and compared the resulting clusters to those obtained by the PAM
algorithm.

Our main goal in this work is to investigate whether the spatial process under
study has a stationary dependence structure or not, and if so, we aim to clus-
ter the spatial process into k regional clusters, each with its own stationary
dependence structure. To achieve this goal, we have adapted spectral clus-
tering for spatial extremes by combining it with the extremal concurrence
probability introduced by Dombry et al (2018). We also propose a heuristic
method capable of detecting the stationarity of the dependence structure. The
extremal concurrence probability for a max-stable process is the probability
that the maximum value of the process occurs at two or more stations simul-
taneously. It is an important concept in the statistical modeling of extreme
events, since the extremes exhibit concurrence, meaning that they have the
same dependence structure. This motivated us to use it in conjunction with
spectral clustering to identify regions with a stationary dependence structure.
This combination of tools makes the proposed algorithm efficient in automati-
cally determining the number of clusters and accurately clustering each station
into its own group. We validated our method through a simulation study and
then applied it to two sets of real data. The first dataset consists of rainfall
data in the east coast of Australia, while the second dataset includes rainfall
data over France provided by Météo-France.

The paper is organized as follows. Section 2 presents Max-stable processes. An
overview of spectral clustering is provided in Section 3. Section 4 describes the
adapted spectral clustering for spatial extremes. A simulation study is pre-
sented in Section 5. Section 6 applies the methodology to real data: rainfall
over east coast of Australia and rainfall over France. Finally, Section 7 presents
the discussion and conclusions of our study.

2 Max-stable processes

In this section, we will provide a brief overview of max-stable processes and
define the extremal concurrence probability, which is a critical tool in our
research.
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2.1 Definition of Max-stable processes

Let Z1(s), Za(s) - - - be a sequence of independent replications of a spatial pro-
cess {Z(s),s € S},S C R d > 1. If there exist continuous functions A,,(s) > 0
and B, (s) € R such that

maxi—1,... n Zi(s) — Bn(s) a
An(s) B

X(s),s € S,n — oo, (1)

is non-degenerate, then {X(s),s € S} is a max stable process (see De Haan
and Pereira (2006)). The univariate maxima X (s) at any location s, follows a
Generalized Extreme Value distribution (GEV), i.e, for all z € R,

PX(s) < ) = expl (1 + £(s) T %) /50, ®)

where p(s) € R is the location parameter, o(s) > 0 is the scale parameter and
€(s) € R is the shape parameter. These parameters are possibly different from
one location to another. Setting u(s) = o(s) = £(s) = 1, leads to consider unit
Fréchet distributions, i.e, P(X(s) < x) = exp[—1/z],x > 0, and {X(s),s € S}
is called a simple max-stable process (see Ribatet (2017) and Ribatet et al
(2016)). De Haan (1984) provided the spectral representation for simple max-
stable processes {X (s),s € S} as follows:

X(s):mafch;(sLseS,SCRd,dz1 (3)

i>

where {(;,i > 1} is a Poisson point process on (0, cc) with intensity ¢ ~2d¢ and
Yi(s),Ya(s), -+ denote a sequence of independent replications of a positive
process {Y(s),s € S} with E[Y (s)] =1 for all s € S.

Equation (3) may be written as follows:

X(s)= max o(s),s €S (4)

where ® = {p;(s) = (;Yi(s) : s € S§,i > 1} is a Poisson point process on Cy,
the space of non-negative continuous functions on S (see Ribatet (2017)).
Let S be a set of m spatial locations : S = {s1, -+ ,8n} C S, then the
multivariate maxima distribution is given by

P{X(81)<m1,~-~,X(sm)<xm}:exp{—E[ max Y(Sj)]} (5)

j=l-"m oz

where {Y(s),s € S} is the process appearing in Equation (3). The exponent
function v
Vs(zq, - ,xm):E[ max (sj)], (6)

j=l-"m oz
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is called the exponent measure. It characterizes the dependence structure of
X(s1), -+, X(8m). Since the exponent measure is homogeneous of order —1,
we can obtain a useful relation by setting x; = x for all j = 1,--- ,m such
that Vg(1,---,1) = Og where g is the extremal coefficient that provides a
summary of the dependence structure (see Schlather and Tawn (2003) and
Smith (1990)). Particularly, when S = {s1, s2} the extremal coefficient satisfies
0s = Vs(1,1) € [1,2]. The lower bound corresponds to the variables X (s1) and
X (s2) which are completely dependent, while the upper bound corresponds to
the case where they are independent.

Several models for max-stable processes have been presented based on this
spectral representation, including the Brown-Resnick model (see Brown and
Resnick (1977)), the Smith model (see Smith (1990)), the Schlather model (see
Schlather (2002)), and the Extremal-t model (see Opitz (2013)).

2.2 Extremal concurrence probability

Other indices in order to measure the dependence between extremes exist in
the literature. Dombry et al (2018) introduced the extremal concurrence prob-
ability for the analysis of extremal dependence, which was especially designed
for max-stable processes. It has properties similar to the pairwise extremal
coefficient, but it has the advantage of being a probability measure, which
makes it more interpretable and axiomatic. The extremal concurrence proba-
bility focuses on the occurrence times of extremes, which means whether the
record maxima occurs simultaneously, i.e., at the same time for all locations.
It can be interpreted as the chance of a single extreme event affecting all the
locations and being responsible for the record maximum.

It is based on the spectral representation of the max-stable processes. The idea
behind this metric can be explained as follows.

Recall the spectral representation in Equation (4). We say that the extremes
are concurrent at locations s1,---,8, € S if

X(Sj):@l(sj)ajzla'“ , M (7)

for some ¢ > 1. This means that the values of the process {X(s),s € S} at
locations s1,- -, s, come from the same spectral function ¢,.
The extremal concurrence probability is defined as

Pr(S1,- -, Sm) = P{for some £ > 1: X(s;) = @e(s;), j=1,--- ,m} (8)

According to Theorem 3 in Dombry et al (2018), the bivariate extremal
concurrence probability estimation coincides with Kendall’s 7 statistic:

%1) > sien{Xi(s1) =X (s1) }sign{ Xi(s2) = X;(2)},

Dr(s1,82) =7 = i )3
1<i<j<n
(9)
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where {X;(s),s € S,i=1,--- ,n} are n independent copies of {X(s),s € S}.
The bivariate extremal concurrence probability for max-stable processes sat-
isfies p,(s;,s;) = 0 if and only if X(s;) and X(s;) are independent, and
pr(si,s;) = 1 if and only if X (s;) and X(s;) are almost surely equal. These
properties were stated and proved in Proposition 1 of Dombry et al (2018).

3 Spectral clustering : an overview

Spectral clustering is a technique used in machine learning and data analysis
for clustering data points into groups based on the similarity between them.
It is based on the concept of spectral graph theory, which is the study of the
properties of graphs using linear algebra.

Spectral clustering has several advantages, as it can handle high-dimensional
data, which is often a limitation for other clustering algorithms. This is done by
reducing the high-dimensional data to a lower-dimensional space using eigen-
value decomposition. Furthermore, it can handle different kinds of similarity
measures, which makes it flexible and adaptable to different types of data.
Also, it does not make any assumptions on the shape or size of clusters.
Spectral clustering considers the dataset as a graph, where each data point
xi,i = 1,---,n represents a vertex in an undirected weighted graph. An
undirected graph G = (V,E,S) is generally defined by a set of vertices
V = {v1,v2, -+ ,v,}, a set of edges E = {(v;,v;)|vi,v; € V} between these
vertices, and a similarity matrix . An element s;; € S represents the amount
of similarity between the vertices v;,v; and the weight that will be assigned
to each edge. It is important to note that since the graph is undirected, the
similarity matrix should be symmetric. If s;; = 0, this means that there is no
edge between the vertices v;,v;. Each vertex v; in the graph has a degree d;:

d; = Z Sij- (10)
j=1

The degrees dy, - - - ,d, represent the elements of a diagonal matrix called the
degree matrix of the graph D.

Spectral clustering aims to separate the main graph G into sub-graphs so
that the weights of the edges between these sub-graphs are small, indicating
dissimilarity between the clusters, while the weights of the edges connecting
nodes within each sub-graph are relatively high, indicating similarity within
the clusters.

3.1 Steps of spectral clustering algorithm
In general, any spectral clustering algorithm involves the following three steps.

1. Pre-processing
Construct the similarity matrix S from the dataset using a measure that
takes into account the aim of clustering, and then construct the similarity
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graph. There are different ways to do this depending on the pairwise sim-
ilarity s;;. The aim is to model the neighborhood relation among the data
points z1,--- ,x,. These ways are summarized as follows:

¢ ¢ -neighborhood graph: In this graph, the vertices v;, v; will be con-
nected by an edge if they are similar enough, ie if s;; > ¢, € is a
pre-defined non-negative real number. Usually, this graph is considered
as an unweighted graph.

¢ k-nearest neighbor graphs: In this graph, the distance between each
pair of vertices is computed using the Euclidean distance. Then, the
vertices v;,v; are connected by an edge if v; is among the k& nearest
neighbors of v; or vice versa, and the edge is weighted by the similarity
s;5. The neighborhood relationship among data points is controlled by a
pre-defined integer number k.

¢ The fully connected graph: In this graph, each vertex is connected to
all other vertices by edges, and these edges are weighted by the similar-
ities s;;. This type of graph is useful only if the similarity function can
model the neighborhood relation among the data points. The commonly
used similarity function is the Gaussian similarity function, which is
defined as s;; = exp(—||z; — z; I?/20%), where the neighborhood relation
is controlled by o.

For further information on similarity graphs, we refer to Von Luxburg
(2007) and Parodi (2012).

. Spectral representation

Compute the Laplacian matrix of the graph, which is an essential tool
to identify clusters in the data using spectral clustering. It is a matrix
that characterizes the connectivity of a graph. It captures the relationships
between the nodes, and can be used to identify the nodes that are most
closely connected to each other. There are two different definitions for this
matrix, depending on the degree matrix D and the similarity matrix S of
the graph, as follows.

(a) Unnormalized Laplacian matrix L: L =D — S.

(b) Normalized Laplacian matrix Lv™: L™ = D=2 D"z,

The choice of Laplacian matrix type to use with spectral clustering depends
on the application and the problem to be solved. Spectral clustering is often
used to optimize two objective functions: Ratio Cut (Rcut) and Normalized
Cut (Ncut). Both of these objective functions measure the quality of the
partition of a graph into clusters. Let C; be a subset of vertices i.e C; C
V,i = 1,---,k and its complement C; := V\C;, the Ratio Cut function
(Recut) ( Hagen and Kahng (1992)) is defined as:

k —
Rcut(C:l’... DC’C) :ZM (11)
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Where o
cut(C,C) = Z Sij
i€C,jeC
|C;| := number of vertices in C;

In this function, the size of a subset C; is measured by its number of vertices.
Using the unnormalized Laplacian matrix L with spectral clustering leads
to minimizing the Ratio Cut function.

In contrast, the Normalized cut function(Ncut)(Shi and Malik (2000)) is

defined as: .

Ncut(Cy,--+ ,C) = Z W (12)

P vol(

where
vol(C) := Z d;
ieC
In the Normalized cut function, the size of a subset C; is measured by the
weights of its edges. Using the normalized Laplacian matrix LY with spec-
tral clustering leads to minimizing the Normalized cut function. For more
details see Von Luxburg (2007).
The matrices L and L*¥™ have some important properties: they are sym-
metric and positive semi-definite matrices; the n eigenvalues A1, --- , A\, of
these matrices are non negative real-valued, so 0 = A\; < Ao < -+ < \y; the
multiplicity &k of the value 0 as an eigenvalue of these matrices is equal to
the number of connected components C1i,--- ,Cy in the graph. (for more
details, see Mohar et al (1991), Mohar (1997) and Chung (1997)).
The eigenvalues of the graph Laplacian matrix and its associated eigen-
vectors are computed. Then, the eigenvectors are used to constitute a
low-dimensional representation of the data, where the clusters are more
separated. Typically, the k eigenvectors corresponding to the k smallest
eigenvalues are used to construct a k-dimensional representation of the data,
as they capture the structure of the graph and important features of the
data (see Wierzchon and Klopotek (2018)). Reducing dimension can reveal
hidden patterns in the data that may be difficult to distinguish in higher
dimension.
3. clustering
Apply the k-means clustering algorithm to the low-dimensional representa-
tion to group the data points into k clusters.

3.2 A heuristic method to determine the number of
clusters k

In spectral clustering, a specific heuristic method has been proposed for choos-
ing the number of clusters k. This method relies on the gap between two
consecutive eigenvalues, with the number of clusters determined by the value of
k that maximizes the eigengap dx: 0k =| Ag+1 — Ak | » £ > 2 (see Von Luxburg
(2007)). This method is effective in determining the number of clusters when
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the dataset is well separated. However, choosing k greater than or equal to
2 leads to clustering the dataset into at least two groups, which may not be
appropriate if the goal is to verify whether the dataset can be considered a
single group (more precisely, if the spatial process has a stationary dependence
structure). To address this issue, we propose to add another heuristic method-
ology as the first step to check if the data can be considered as a single group
before making clusters.

The underlying idea behind this heuristic methodology comes from the fact
that the second smallest eigenvalue A5 of the Laplacian matrix corresponds to
the algebraic connectivity, also known as the Fiedler value. This value reflects
how well the overall graph is connected (Fiedler (1973)) and provides informa-
tion about the intensity of the connections between the nodes of the graph.
If Ao is small, it suggests that the graph is nearly disconnected, and vice
versa (see Wierzchoni and Klopotek (2018)). In other words, when the graph
is well connected, Aq is large and far from the first eigenvalue. Since we have
0=XA <)Xy <. <\, for a graph Laplacian matrix, if we examine the first
ten eigenvalues in the set, we will observe that A\; is the only outlier value.
This scenario indicates that the graph is well-connected, and the data is a sin-
gle group. Conversely, if the graph can be partitioned into sub-graphs, we can
use the largest eigengap dx to determine the number of clusters k. A simula-
tion study in Section 5 validates this method based on the largest value of .
The steps of this heuristic methodology are described in Algorithm 1.

Algorithm 1 Heuristic method to determine the number of clusters &

Require: Vector of eigenvalues .

Ensure: Number of clusters k.

: Find the outliers value in the eigenvalues set (A1,-- -, A1g)-

: If A1 is the only outlier value, then £ = 1. Else, go to step 3.
: Calculate the eigengap 0g: 0k =| A1 — A |, & > 2.

: k corresponds to the largest value of Jy.

B~ W N =

4 Adapting spectral clustering for spatial
extremes

Let X;(sj),s; € S, S C RY d =2,i=1,---,n be a sequence of n inde-
pendent and identically distributed max stable processes at different locations
sj,j = 1,2,--- ,m. In order to apply spectral clustering in a spatial extreme
context, locations sq,--- ,s,, are considered as vertices in a fully connected
graph. Each vertex is connected to all others by edges, and the weights (sim-
ilarity values) of these edges represent the dependence strength among the
locations. For viewing purposes, let us assume that the max-stable process
consists of 15 locations. The fully connected graph is shown in Figure 1.

Selecting an appropriate metric to construct the similarity matrix is essential
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Fig. 1 Fully connected graph with 15 vertices. Each vertex represents a location in the
max-stable process

in the spectral clustering algorithm, especially when using a fully connected
graph. It is important to choose a spatial dependence measure that can accu-
rately model the neighborhood relations among the locations. In this study,
we used the extremal concurrence probability, as introduced by Dombry et al
(2018) (see Section 2.1). The similarity matrix represents the pairwise extremal
concurrence probability matrix, denoted by C P € R™*™_ where m is the num-
ber of locations. For a pair (s,s') € S x S, the element of the matrix CP is
given by:

2
n(n —1)

Y sign{Xi(s) — X;(s)}sign{X(s') — X;(s)} (13)

1<i<j<n

ﬁT(S7 5/) =

After constructing the similarity matrix CP according to Equation (13), it
is used to compute the graph Laplacian matrix. Using the normalized graph
Laplacian matrix L*¥™ helps to achieve our goal of making the size of the
resulting clusters dependent on the strength of the dependence structure (i.e.,
the weights of the graph edges). The spectrum A of L%¥™ is then computed
and used as input in Algorithm 1 to determine the number of clusters k. If
k > 2, the eigenvectors q1, - - , g are used to constitute a k-dimensional rep-
resentation for the data. This is done by representing these eigenvectors as
columns of an m X k matrix denoted (). Each row in @ represents a loca-
tion s;: s; — (gj1, - ,qk),J = 1,---,m, this is called spectral mapping
(see Wierzchoni and Klopotek (2018)). Normalizing each row of @ to norm 1
results in a matrix denoted Y € R™**. According to Ng et al (2001), this last
step improves the performance of the clustering algorithm. Instead of using k-
means, which is usually used at this step, we used a Gaussian Mixture Model
(GMM) to cluster the rows of Y. GMM clusters the datapoints based on prob-
ability distribution, considering that the datapoints come from a Gaussian
mixture. Each cluster has a Gaussian distribution model with parameters mean
and covariance. Taking the covariance into account makes GMM more robust
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than k-means, which depends only on the cluster mean. For more details about
GMM, see for example Bouveyron et al (2019). We summarize these steps in
Algorithm 2.

After multiple attempts, the extremal concurrence probability has demon-

Algorithm 2 Proposed spectral clustering

Require: The similarity matrix CP € R™*™_ constructed according to
Equation (13) .
Ensure: Clusters {Cy,---,Cy}.
1: Compute the normalized Laplacian matrix L™ = D2 (D — CP)D_%.
2: Compute the spectrum of L*¥™ and use Algorithm 1 in order to determine
k. If k =1, the algorithm stops. Else, go to step 3.
3: Compute the k smallest eigenvectors ¢i,qs, -+ ,qr of L*¥™ and arrange
these vectors in columns to be a matrix @, where Q € R™**.
4: Normalize the rows of Q to norm 1, resulting the matrix ¥ €
Yrﬂ :le/(ZlQ?l)%’ ] = 17 , M, l= 17 >k'
5. Consider each row of Y as a point in R¥ and implement Gaussian Mixture
Model (GMM) to cluster them into k clusters.
6: Assign the location s; to cluster [ if and only if row j of the matrix Y is
assigned to cluster .

Rmxk.

strated its ability to detect different types of spatial dependence when used as
a similarity matrix in spectral clustering, compared to other extremal depen-
dence measures. In order to illustrate this point, we have simulated two spatial
processes with 15 locations generated randomly and uniformly in [0,1]%. The
number of observations was set to 1000. In the first simulation, we randomly
selected 5 locations and used them to simulate a Brown-Resnick model, while
the remaining 10 locations were used to simulate a Schlather model. The
parameters for both models were arbitrarily chosen. In the second simula-
tion, we randomly chose six locations (five and four, respectively) to simulate
a Brown-Resnick max-stable model with parameters arbitrarily chosen. Then
we attempted to use different spatial dependence measures as a similarity
matrix, such as the extremal concurrence probability (Dombry et al (2018)),
extremal coefficient (Schlather and Tawn (2003)), and F-madogram (Cooley
et al (2006)). We have computed their normalized Laplacian matrix and plot-
ted their eigenvalues against eigenvectors in order to compare the ability of
these measures to detect different types of dependence structures in the data.
In the case of the first simulation, Figure 2 shows a plot of eigenvalues against
eigenvectors for the normalized Laplacian matrix of the pairwise extremal con-
currence probability matrix, pairwise extremal coefficient matrix, and pairwise
F-madogram matrix, respectively. The left panel in Figure 2 shows that Ay
has a low value, suggesting that the graph is nearly disconnected. The maxi-
mum eigengap lies between A3 and Ag, indicating that the data consists of two
groups, each with a different type of dependence structure. This is consistent
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Eigenvalues

Eigenvectors. Eigenvectors Eigenvectors.

Fig. 2 The eigenvalues against eigenvectors for the normalized Laplacian matrix of the
pairwise extremal concurrence probability matrix, pairwise extremal coefficient matrix, and
pairwise F-madogram matrix in the left, middle, and right panels, respectively, for the first
simulation.

with the data of the first simulation. Figure 3 shows the pairwise extremal
concurrence probability matrix for this simulations data before and after using
the proposed spectral clustering to cluster the locations. On the other hand,
the middle and right panels in Figure 2 reveal that A5 has a high value, indi-
cating a well-connected graph and only one type of dependence structure,
which contradicts the expected result with two groups. In the case of the sec-

Fig. 3 The left panel shows the pairwise extremal concurrence probability matrix for the
data of the first simulation before clustering, while the right panel shows the matrix after
using the proposed spectral clustering to cluster the locations.

ond simulation, Figure 4 shows a plot of eigenvalues against eigenvectors for
the normalized Laplacian matrix of the pairwise extremal concurrence proba-
bility matrix, pairwise extremal coefficient matrix, and pairwise F-madogram
matrix, respectively. In the left panel in Figure 4, A5 has a low value, and the
maximum eigengap is between A4 and A3. This indicates that the data consists
of three groups, each with a different type of dependence structure, which is
consistent with the data of the second simulation. Figure 5 shows the pairwise
extremal concurrence probability matrix for this simulation data before and
after using the proposed spectral clustering to cluster the locations. While the
middle and right panels in Figure 4 show that the data has only one type of
dependence structure, which contradicts the expected result with three groups.
This indicates that the extremal coefficient and F-madogram measures are
not appropriate to construct the similarity matrix, since they cannot detect
different types of dependence structures in the data.
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Fig. 4 The eigenvalues against eigenvectors for the normalized Laplacian matrix of the
pairwise extremal concurrence probability matrix, pairwise extremal coefficient matrix, and
pairwise F-madogram matrix in the left, middle, and right panels, respectively, for the second
simulation.

Fig. 5 The left panel shows the pairwise extremal concurrence probability matrix for the
data of the second simulation before clustering, while the right panel shows the matrix after
using the proposed spectral clustering to cluster the locations.

5 Simulation study

In order to assess the accuracy of our algorithm, we tested it on three sim-
ulation cases. In each case, we implemented the algorithm on several spatial
processes simulated from one or more max-stable models: Smith, Schlather,
Brown-Resnick and Extremal-t, with parameters chosen randomly. Further-
more, the correlation functions for Schlather and Extremal-t models were
chosen randomly from one of the following correlation functions: Cauchy, pow-
ered exponential and Whittle-Matérn. The number of observations was fixed
to 1000 at each location s;,j = 1,2,--- ,m. To avoid any effect of the num-
ber of locations m on the algorithm performance, m was chosen randomly
for each simulation, uniformly between 30 and 100 locations. The m locations
were generated randomly and uniformly in [0,1]*. The three simulation cases
are described in detail below.

® (Case 1: stationary dependence structure
We simulated 100 spatial processes. In each simulation, we randomly selected
one of the max-stable models and simulated it on the m locations.

¢ (Case 2: non-stationary dependence structure / different models
We considered three sub-cases where k equals 2, 3, and 4 respectively. For
each sub-case, we simulated 100 spatial processes. In each simulation, we
randomly partitioned the m locations into k£ groups, so that 25:1 my = m.
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We then randomly selected k different models from the max-stable models
and used my locations to simulate model /.

¢ Case 3: non-stationary dependence structure / one model with different
parameters
We considered three sub-cases where k equals 2, 3, and 4 respectively. For
each sub-case, we simulated 100 spatial processes. In each simulation, we
randomly partitioned the m locations into k groups, so that 25:1 my =
m. We then randomly selected one of the max-stable models and used my
locations to simulate it, with the parameters of model ¢ chosen randomly
and differing from the parameters of other clusters.

We assess the accuracy of the proposed algorithm using two evaluation mea-
sures. The first one is the accuracy of the heuristic method for determining
the number of clusters, which we will denote as A for simplicity:

k
Ay = L“TT ! (14)
where T is the total number of spatial processes tested and ke = 1 if the

estimation of the number of cluster is correct, while k; = 0 otherwise.

The second one is the accuracy of our proposed spectral clustering algorithm
in correctly grouping the simulated locations from the same model into the
same cluster. To evaluate this, we used the clustering purity measure (Schiitze
et al (2008)). It calculates the ability of a clustering method to recover known
groups. Clustering purity is applicable even when the number of clusters k
is different from the number of known groups. It is computed by assigning a
label to each cluster based on the most frequent group in it, and then sum
the number of correct group labels in each cluster and divide it by the total
number of data points. Depending on the specific clustering issue at hand,
the formula for the purity measure is:

L

Purity(C,P) = - ; i£7§¥7g|05 N P (15)
Where C = {C, -+, Cy} is the set of identified clusters by spectral clustering,
P = {P1,---,P,} is the set of simulated groups, |Cy N P;| is the number of
locations of cluster ¢ being in group i and m is the total number of locations.
Clustering purity is a real number in [0,1]. A higher value of purity indicates
better clustering performance, meaning that the algorithm can accurately iden-
tify clusters that correspond to the true groups of locations.
We computed the purity of the proposed spectral clustering algorithm using
GMM and k-means in step 5 of the Algorithm 2. Since we applied the clus-
tering method to 100 different spatial processes for each sub-case of the
non-stationary dependence structure, we took the average purity. We com-
puted both evaluation measures, A and average purity, for all simulation cases
considered and presented the results in Table 1. Note that, for simplicity, we
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denote the average purity of spectral clustering with GMM and k-means by
P-SC(GMM) and P-SC(k-means), respectively.

Table 1 The evaluation measures for the proposed spectral clustering within all
simulation cases

Stationary ! Non-stationary 2 Non-stationary 2
Evaluation
measures - k=2 k=3 k=4 k=2 k=3 k=4
Ak 1 1 1 0.99 1 1 1
P-SC(GMM) - 1 1 0.9993  0.9994 1 1
P-SC(k-means) - 1 0.9495  0.9481  0.9994 0.9386  0.9082

ISimulation case 1
2Simulation case 2

3Simulation case 3

Regarding the performance of the proposed heuristic method (first row of Table
1), it appears to be accurate in detecting whether the spatial process has a
stationary dependence structure or not, as well as in determining the correct
number of clusters, I;:, in the non-stationary cases.

The second row of Table 1 shows that the proposed spectral clustering algo-
rithm has a high accuracy in clustering the locations according to the model
from which they were simulated. This includes the two simulation cases of
non-stationary dependence structure with all tested numbers of clusters.

One can also note that the accuracy of spectral clustering with GMM and k-
means is the same when the number of clusters equals 2, while for a number
of clusters equal to 3 and 4, the spectral clustering with GMM is more accu-
rate. In fact, the accuracy of spectral clustering with k-means decreases as the
number of clusters increases, as noted in row three of Table 1.

Since the results of the simulations appear satisfactory, we can use this tech-
nique to detect stationary extreme areas for precipitation in East Australia
and France.

6 Application on real data

This section is devoted to two real data applications: one on rainfall in
Australia’s east coast, and the other on rainfall in France.

6.1 Rainfall over east coast of Australia

We will begin with a brief description of the data, followed by the application
of our clustering method and a discussion of the results.

6.1.1 Description of the data
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Fig. 6 Geographic locations of 40 stations on the east coast of Australia in the left panel,
and proposed spectral clustering in the right panel.

This data represents the daily rainfall totals (in millimeters) measured over
a 24-hour period at 40 stations on the east coast of Australia during the
winter season (April to September) from 1972 to 2019, resulting in a total of
183 * 48 = 8,784 observations at each station. The altitude of these stations
ranges from 2 to 540 meters. The geographic locations of the 40 stations are
illustrated in the left panel of Figure 6. More information about this data can
be found in references such as Ahmed et al (2022), Bacro et al (2016), Ahmed
et al (2017), and Abu-Awwad et al (2020). The data is freely available on the
website http://www.bom.gov.au.

6.1.2 Detecting the stationarity of Australia rainfall
dependence structure

We will apply our proposed spectral clustering algorithm, described in Section
3 Algorithm 2, to detect the stationarity of rainfall dependence structure. To
demonstrate the effect of the block size on the stationarity of the dependence
structure, we will use different sizes of block. We will use the same sizes as
Ahmed et al (2022). Specifically, we will test block sizes of 183 days, 30 days,
15 days, 10 days, 5 days, 3 days, and 1 day. Table 2 shows the results for
detecting the stationarity of the dependence structure for Australia’s rainfall
data for each block size. We observe that the block size has an impact on the
stationarity of the dependence structure. The rainfall dependence structure
is identified as stationary when the block size is greater than or equal to 15
days. By using these block sizes, we can model the entire spatial data with a
single model.

The rainfall dependence structure is non-stationary when the block size is
less than or equal to 10 days. The heuristic method determines that the num-
ber of clusters is equal to 2 for all these block sizes. The spectral clustering
algorithm clustered the 40 locations to two clusters each with stationary
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Table 2 The results of detecting the stationarity of the dependence structure for
Australia’s rainfall data using different block sizes.

Spectral clustering implementation outputs

Block size Stationary Non-stationary No. of clusters
dependence structure dependence structure

183 days v - -

30 days v - -

15 days v - -

10 days - v k=2

5 days - v k=

3 days - v k=2

1 day - v k=2

dependence structure. These clusters are the same for each of these block
sizes and illustrated in the right panel of Figure 6. So, it is suitable to use
two models when modeling this data with these block sizes. One model for
the North and one for the South.

6.2 Rainfall over France

This subsection is devoted to the study of rainfall data in France.

6.2.1 Description of the data

This data is provided by Météo-France and represents the hourly precipitation
recorded at 80 French monitoring stations. The data was measured during the
fall season (September, October and November) over the period 1993 - 2021.
Each station has 91 * 29 = 2639 observations. The geographic locations of
these stations were chosen to cover all the French metropolitan regions. Figure
7 illustrates the geographic locations of the 80 stations. This data was studied
by Bernard et al (2013) during the period 1993 - 2011.

6.2.2 Detecting the stationarity of France rainfall
dependence structure

In order to detect the stationarity of the rainfall dependence structure, we
implemented the proposed spectral clustering on the data. Additionally, we
studied the effect of the block size on the stationarity of the dependence
structure. The block sizes we considered are annual, monthly, 2 weeks, and
weekly. The results obtained with the spectral clustering on this data for each
block size are shown in Table 3.

It is clear that for both annual and monthly block sizes, the rainfall has a
stationary dependence structure, while non-stationarity in the dependence
structure appears when the block size is less than or equal to two weeks.

The clustering of stations obtained by spectral clustering for each block size
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Fig. 7 Geographic locations of 80 stations over France region

Table 3 Detecting the stationarity of the dependence structure for France rainfall data
during the period (1993 - 2021) with different sizes of block maxima.

Spectral clustering implementation outputs

Block size Stationary Non-stationary No. of clusters
dependence structure dependence structure

Annual v - -

Monthly v - -

2 Weeks - v k=2

Weekly - v k=2

leading to non-stationary dependence structure is illustrated in Figure 8,
where the left panel is related to block size equal to two weeks and the right
panel is related to the weekly block size.

We will begin our discussion with the weekly block size since it was studied
by Bernard et al (2013). Implementing spectral clustering on the data with
this block size shows that the rainfall has a non-stationary dependence struc-
ture. The spectral clustering divides France into two regional areas, north
and south, along the Loire valley line. Each of these regions has a different
dependence structure, as explained in the right panel of Figure 8. This can be
interpreted easily. The extreme rainfall in the north of France is produced by
disturbances from the Atlantic, which affect Brittany, Paris and other areas in
the north of France. In contrast, the extreme rainfall in the south of France is
caused by the Mediterranean sea, which affects the coastal areas, particularly
Cévennes and the Montagne Noire. The results are similar to those obtained
by Bernard et al (2013), where the selection criterion for the number of clus-
ters indicated that £ = 2. The locations clustering result is relatively close to
Bernard et al (2013), where France was divided into north and south regions.
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Fig. 8 The results of the proposed spectral clustering for the France rainfall data over the
period of 1993-2021 are presented in both the left and right panels, with a block size equal
to two weeks and the weekly block size, respectively.

This indicates that the behavior of the data has not changed since 2011.

The left panel of Figure 8 shows the stations clustering result when the size
of block equals two weeks. It is clear that the south region is smaller than the
ones in the weekly block size. This change in the size of clusters is due to the
fact that the size of block had become larger compared to the weekly block
size. This indicates that the larger size of block, the nearer to stationary in
dependence structures.

7 Discussion and Conclusion

The stationarity of the dependence structure is an essential matter in mod-
eling environmental extreme events. In most studies, it is assumed that the
dependence structure is stationary. However, this may be incorrect, especially
in large regions and regions with complex geographical or climatic patterns.
Therefore, finding a method that can detect regions with a stationary depen-
dence structure is useful. In this study, we combined spectral clustering with
extremal concurrence probability to create a simple clustering method for max-
stable processes. Additionally, we proposed a heuristic method to determine
whether the dependence structure of the data are stationary or not.

We validated the proposed spectral clustering algorithm through a simulation
study. Then we studied two environmental data sets. The first one is the daily
rainfall data over east coast of Australia. We found that this data has a sta-
tionary dependence structure when the block size is larger than or equal to
15 days. The data has the same two regional clusters when the block size is
smaller than or equal to 10 days. The second data set is the hourly precipi-
tation over France. we found that stationarity appeared for large block sizes
(monthly and annual), while non-stationary dependence structures are plau-
sible for block sizes less than or equal to two weeks. The regional clusters are
not the same for all these block sizes. Therefore, we conclude that the size of
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the block affects the stationarity of the dependence structures and can result
in changes in regional clusters. Thus, the difference in the dependence struc-
ture for small and large block sizes must be considered when modeling. For
instance, different models can be used for different block sizes. A stationary
model could be used for large block sizes, while for small block sizes, one could
either identify independent stationary regions through clustering or use a non-
stationary model.

Finally, despite the simplicity of the proposed algorithm, it is powerful. As a
future direction of this study, one can study other variables like temperature.
Another direction is to test the efficiency of this algorithm when applied to a
very large region, such as the whole of Australia or the continent of Europe.
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