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Abstract

Modeling extreme events require some knowledge on the spatial station-
ary of dependence structures in order to construct reliable statistical
models. For spatial processes, assuming stationarity of the dependence
structure may not be reasonable due to topology of the region under
study for example. In this study, we present an adapted spectral
clustering algorithm for spatial extremes by considering the extremal
concurrence probability as a similarity metric of the dependence struc-
ture among the stations. This algorithm involves a heuristic method able
to determine whether the dependence structure of the spatial process is
stationary or not. It is furthermore able to detect the number of clusters
k with high accuracy. In non stationary dependence structure case, the
algorithm clusters the stations into k regional clusters with similar depen-
dence structure. In order to validate our proposed methodology, we tested
it on different simulation cases based on one or more max-stable models.
The accuracy of the results encouraged us to apply it on two real data
set: rainfall data in the east coast of Australia and rainfall over France.

Keywords: Max-stable processes, Non-stationary dependence structures,
Extremal concurrence probability, Spectral clustering

1



Springer Nature 2021 LATEX template

2 Spectral clustering for spatial stationarity detection

1 Introduction

Constructing a reliable statistical model for environmental extreme events like
rainfall, temperature and so on, is very important to understand the behavior
of this events and thus to predict its occurrence accurately. Max-stable pro-
cesses are natural models for spatial extremes since they are natural extensions
of the Extreme Value Theory (EVT) to spatial domains. They are powerful
statistical models for extreme events in a continuous space and thus assess the
risk in area that do not contain stations. One basic assumption used in mod-
eling is the stationarity of the dependence structure. This assumption may be
incorrect and thus may lead to construct meaningless models. In particular,
if the data sets are taken from a large region or from regions with complex
spatial features, it is plausible that the dependence structure will appear non
stationary (Richards and Wadsworth (2021)). So, it is necessary to check the
stationarity of the dependence structure of the spatial process before the mod-
eling.
In fact, dealing with non stationary spatial dependence structures is difficult
in practice. There are few approaches presented for modeling non stationary
dependence structures like in Huser and Genton (2016), Castro-Camilo and
Huser (2020) and Richards and Wadsworth (2021). These methods are math-
ematically complex.
The challenge is to find simple and fast in implementation methods capa-
ble to detect changes in spatial dependence. To this aim, clustering was used
recently to create regionalisations of the extreme events. Clustering is an unsu-
pervised machine learning tool that is widely used in data analysis to discover
sub-groups with similar interesting features. It has applications in computer
science, statistics, biology and also in climate sciences.
In the context of spatial extremes, few studies used the clustering to parti-
tion the whole region into homogeneous sub-regions depending on similarity in
dependence structure. For instance, Bernard et al (2013) presented a novel clus-
tering algorithm for maxima. In this algorithm, The similarity measure used
is the F- madogram introduced by Cooley et al (2006). Combined F- mado-
gram with a partitioning around medoids (PAM) algorithm lead to clustering
depending on the dependence strength among the maxima. This algorithm
was applied to analysis the rainfall over France. After that, this algorithm was
applied by Bador et al (2015) on large regions and with different variables.
They analyzed the maxima of summer temperature over Europe. Saunders
et al (2021) expanded the work of Bernard et al (2013): they showed that the
PAM algorithm is sensitive to stations density. For that reason, they proposed
to use hierarchrical clustering with F-madogram. The proposed algorithm was
applied on rainfall stations in Australia and the resulting clusters were com-
pared with ones obtained by the PAM algorithm.
The main goal of our work is to investigate if a spatial process under study
has a stationary dependence structure or not, and if so, the spatial process is
clustered into k regional clusters, each with a stationary dependence structure.
To achieve our goal, we adapt the spectral clustering for spatial extreme by
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combined it with the extremal concurrence probability introduced by Dombry
et al (2018). Also, we propose a heuristic method to determine the number of
clusters. This combination of tools makes the proposed algorithm efficient to
determine automatically the number of clusters and also clustering accurately
each station to its own group. The validation of our method is done in a sim-
ulation study. We apply our method on two sets of real data. The first one is
the rainfall data in the east coast of Australia. The second is the rainfall over
France provided by Météo-France.
The outline of the paper is as follows. Section 2 is dedicated to a presenta-
tion of Max-stable processes. An overview of spectral clustering is exposed in
Section 3. Section 4 is dedicated to describe the adapted spectral clustering
for spatial extremes. We present a simulation study in Section 5. Application
on real data: rainfall over east coast of Australia and rainfall over France are
presented in Section 6. Finally, discussion and conclusions of our study is given
by Section 7.

2 Max-stable processes

In this section, we give a brief overview of max-stable processes and provide a
definition of the extremal concurrence probability which will be a central tool
in our study.

2.1 Definition of Max-stable processes

Let Z1(s), Z2(s) · · · be a sequence of independent replication of a spatial process
{Z(s), s ∈ S},S ⊂ Rd, d ≥ 1. If there exists continuous functions An(s) > 0
and Bn(s) ∈ R such that

maxi=1,··· ,n Zi(s) −Bn(s)

An(s)

d
= X(s), s ∈ S, n → ∞, (1)

is non-degenerate, then {X(s), s ∈ S} is a max stable process (see De Haan
and Pereira (2006)). The univariate maxima X(s) at location s, follows a
Generalized Extreme Value distribution (GEV), i.e for all x ∈ R,

P(X(s) ≤ x) = exp[−(1 + ξ(s)
x− µ(s)

σ(s)
)−1/ξ(s)], (2)

where µ(s) ∈ R is the location parameter, σ(s) > 0 is the scale parameter and
ξ(s) ∈ R is the shape parameter. These parameters are possibly different from
one location to another. Setting µ(s) = σ(s) = ξ(s) = 1, lead to consider unit
Fréchet distributions, i.e P(X(s) ≤ x) = exp[−1/x], x > 0, and {X(s), s ∈ S}
is called a simple max-stable process (see Ribatet (2017) and Ribatet et al
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(2016)). De Haan (1984) provided the spectral representation for simple max-
stable processes {X(s), s ∈ S} as follows,

X(s) = max
i≥1

ζiYi(s), s ∈ S,S ⊂ Rd, d ≥ 1 (3)

where {ζi, i ≥ 1} is a Poisson point process on (0,∞), with intensity ζ−2dζ
and Y1(s), Y2(s), · · · denotes a sequence of independent replication of a positive
process {Y (s), s ∈ S} with E[Y (s)] = 1 for all s ∈ S.
It may be more suitable to re-write Equation (3) as:

X(s) = max
φ∈Φ

φ(s), s ∈ S (4)

where Φ = {φi(s) = ζiYi(s) : s ∈ S, i ≥ 1} is a Poisson point process on C0,
the space of non-negative continuous functions on S (see Ribatet (2017)).
Let S be a set of m spatial locations : S = {s1, · · · , sm} ⊂ S, then the
multivariate maxima distribution is given by

P{X(s1) ≤ x1, · · · , X(sm) ≤ xm} = exp{−VS(x1, · · · , xm)}, (5)

where

VS(x1, · · · , xm) = E
{

max
j=1,··· ,m

Y (sj)

xj

}
, (6)

is called the exponent measure, which characterizes the dependence structure
of X(s1), · · · , X(sm). Since the exponent measure is homogeneous of order -
1, we can get a useful relation by setting xj = x for all j = 1, · · · ,m and
we get VS(1, · · · , 1) = θS where θS is the extremal coefficient which gives
us a summary of the dependence structure (see Schlather and Tawn (2003)
and Smith (1990)). In particularly, when S = {s1, s2} the extremal coefficient
satisfies θS = VS(1, 1) ∈ [ 1, 2] , the lower bound refers to variables X(s1)
and X(s2) are completely dependent and the upper bound corresponds to
independent.
Many models for max-stable process have been presented based on this spectral
representation, such as Brown-Resnick (see Brown and Resnick (1977)), Smith
(see Smith (1990)), Schlather (see Schlather (2002)) and Extremal-t (see Opitz
(2013)).

2.2 Extremal concurrence probability

Other indices in order to measure the dependence between extremes exist in
the literature. Dombry et al (2018) introduced the extremal concurrence prob-
ability for the analysis of extremal dependence, which is especially designed for
max-stable processes. It has properties similar to the pairwise extremal coeffi-
cient but it has the advantage of being a probability measure, and this make
it more interpretable and axiomatic. The idea of this metric can be explained
as follows.
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Recall the spectral representation in Equation (4), we say that the extremes
are concurrent at locations s1, · · · , sm ∈ S if

X(sj) = φℓ(sj), j = 1, · · · ,m (7)

for some ℓ ≥ 1. This means that the values of the process {X(s), s ∈ S} at
locations s1, · · · , sm come from the same spectral function φℓ.
The extremal concurrence probability is defined as

pr(s1, · · · , sm) = P{for some ℓ ≥ 1 : X(sj) = φℓ(sj), j = 1, · · · ,m} (8)

Remark that, pr(si, sj) = 0 iff X(si) and X(sj) are independent, and
pr(si, sj) = 1 iff X(si) and X(sj) are completely dependent.
Dombry et al (2018) present a simple estimator for this dependence measure
in the bivariate case. This estimator is unbiased and coincides with Kendall’s
τ statistic:

p̂r(s1, s2) ≡ τ̂ =
2

n(n− 1)

∑
1≤i<j≤n

sign{Xi(s1)−Xj(s1)}sign{Xi(s2)−Xj(s2)},

(9)
where {Xi(s), s ∈ S, i = 1, · · · , n} are n independent copies of {X(s), s ∈ S}.

3 Spectral clustering : an overview

Spectral clustering became one of the most popular modern technic in clus-
tering analysis due to the simplicity of implementation, and the efficiency in
addressing graph based clustering problems. This method is also flexible and
does not have any assumption on the shape/size of the clusters.
It deals with the dataset as a graph. Each data point xi, i = 1, · · · , n rep-
resents a vertex in an undirected weighted graph. Generally, an undirected
graph G = (V,E, S) is defined by V = {v1, v2, · · · vn} a set of vertices,
E = {( vi, vj)|vi, vj ∈ V } a set of edges between these vertices and S the simi-
larity matrix: sij ∈ S is the amount of similarity between the vertices vi, vj . It
represents the weight that will be assign to each edge. Since the graph is undi-
rected, the similarity matrix should be symmetric. Note that sij = 0, means
no edge between the vertices vi, vj . Each vertex vi in the graph has degree di :

di =

n∑
j=1

sij . (10)

The degrees d1, · · · , dn represent the elements in the diagonal matrix D called
degree matrix of the graph.
The aim of clustering methods is to separate the main graph G into sub-graphs
in such a way that the weights of the edges between these sub-graphs are small
(this means that the clusters are dissimilar to each other), while the weights
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of the edges within the sub-graphs are large (this means that there is a large
similarity within the clusters).
In general spectral clustering algorithms follow three steps described below.

1. Pre-processing
Evaluate the similarity matrix S from the dataset by a measure taking into
account the aim of clustering, then construct the similarity graph. There
are different ways to do that depending on pairwise similarity sij . The
common aim is to model the neighborhood relation among the data points
x1, · · · , xn. These ways are summarized as follows:

� ε -neighborhood graph: The vertices vi, vj will connected by an edge
if they are similar enough, i.e if sij > ε, ε is a pre-defined non negative
real number. Usually this graph is considered as an unweighted graph.

� k-nearest neighbor graphs: In this graph, the distance between each
pair of vertices is computed. The most popular distance metric used is
the Euclidean distance. Then, the vertices vi, vj is connected by an edge
if vj is among the k nearest neighbors of vi or vice versa, the edge is
weighted by the similarity sij . The neighborhood relationship of data
points is controlled by k, k is pre-defined integer number.

� The fully connected graph: Each vertex will connected with all
other vertices by edges, these edges are weighted by the similarities
sij . This type of graph is useful only if the similarity function can
models the neighborhood relation among the data points. The similar-
ity function commonly used is the Gaussian similarity function sij =

exp(−∥xi − xj∥2/2σ2), where the neighborhood relation is controlled by
σ.

For more details about the similarity graphs see Von Luxburg (2007) and
Parodi (2012).

2. Spectral representation
This step uses the graph Laplacian matrix, which is an essential tool of the
spectral clustering. There are two different definitions for this matrix as
follows.
(a) Unnormalized graph Laplacian matrix L: L = D − S.
(b) Normalized graph Laplacian matrix Lsym: Lsym = D− 1

2LD− 1
2 .

The graph Laplacian matrix is used in the approximation of graph clustering
problems. Let Ci be a subset of vertices i.e Ci ⊂ V, i = 1, · · · , k and its
complement Ci := V \Ci, two common objective functions are considered
in graph clustering problems. The first one is RatioCut ( Hagen and Kahng
(1992)) defined as:

RatioCut(C1, · · · , Ck) =

k∑
i=1

cut(Ci, Ci)

|Ci|
. (11)
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Where
cut(C,C) :=

∑
i∈C,j∈C

sij

|Ci| := number of vertices in Ci

In this function, the size of a subset Ci is measured by its number of vertices.
The approximate minimizer of RatioCut may is obtained by using spectral
clustering with the unnormalized graph Laplacian matrix L. The second
objective function is Normalized cut(Ncut)(Shi and Malik (2000)) which is
defined as:

Ncut(C1, · · · , Ck) =

k∑
i=1

cut(Ci, Ci)

vol(Ci)
. (12)

where
vol(C) :=

∑
i∈C

di

Here the size of a subset Ci is measured by the weights of its edges.
Using the normalized graph Laplacian matrix Lsym in spectral cluster-
ing gives approximate minimizer of Normalized cut. For more details see
Von Luxburg (2007).
The matrices L and Lsym have some important properties: they are sym-
metric and positive semi-definite matrices; the n eigenvalues λ1, · · · , λn of
these matrices are non negative real-valued, so 0 = λ1 ≤ λ2 ≤ · · · ≤ λn; the
multiplicity k of the value 0 as an eigenvalue of these matrices is equal to
the number of connected components C1, · · · , Ck in the graph. (for more
details, see Mohar et al (1991), Mohar (1997) and Chung (1997)).
The spectrum λ (i.e. eigenvalue) of the graph Laplacian matrix and its
associated eigenvectors are computed. Then the eigenvectors are used
to constitute a low-dimensional representation of the data, typically k-
dimensional representation is used, where k equals the number of clusters.
(see Wierzchoń and K lopotek (2018)).

3. clustering
Apply a k-means clustering algorithm on the low-dimensional representa-
tion in order to assign the data points to a number of clusters.

4 Adapting spectral clustering for spatial
extremes

Let {X(s), s ∈ S},S ⊂ Rd, d ≥ 1 be a max-stable process. In order to apply
spectral clustering in a spatial extreme context, the locations s ∈ S have to
be considered as the vertices in a fully connected graph. These vertices are
connected with each other by edges. The weights (similarity values) of such a
graph will be the dependence strength among the locations.
Selecting the appropriate metric in order to construct the similarity matrix
is an essential point in the clustering algorithm. In this study the spatial
dependence measure used is the extremal concurrence probability introduced
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by Dombry et al (2018) (see Section 2.1). After many attempts, this metric
showed its ability to represent the spatial dependence for our purpose, com-
pared with other extremal measures.
The similarity matrix represents the pairwise extremal concurrence probabil-
ity matrix, we denote it by CP ∈ Rm×m. For a pair (s, s′) ∈ S×S the element
of the matrix CP is given by

cp(s, s′) =
2

n(n− 1)

∑
1≤i<j≤n

sign{Xi(s) −Xj(s)}sign{Xi(s
′) −Xj(s

′)} (13)

4.1 A heuristic method to determine the number of
clusters

In spectral clustering, a specific heuristic method for choosing the number of
clusters k was proposed. It depends on the gap between two consecutive eigen-
values. The number of clusters is given by the value of k that maximize the
eigengap δk: δk =| λk+1 − λk | , k ≥ 2 (see Von Luxburg (2007)). Determining
k to be larger than or equal to 2 leads to surely cluster the dataset to at least
two groups.
This method determines the number of clusters successfully only if the dataset
is well separated, and this is not always achieved. Furthermore, it is not suit-
able for our goal since we want to check if we can consider the dataset as one
group (i.e the dependence structure can be considered as stationary), and in
that case, it makes no sense to cluster the data. For that, we propose another
heuristic methodology.
The idea of this heuristic methodology came from the fact that the second
smallest eigenvalue λ2 of the Laplacian matrix corresponds to the algebraic
connectivity or simply to Fiedler value. It reflects how well the overall graph
is connected (see Fiedler (1973)). It informs about the intensity of the con-
nections between the nodes of the graph. Thus a low λ2 value suggest the
existence of well separated sub-graphs (clusters) and vice versa (see Wierz-
choń and K lopotek (2018)). So, when the graph is well connected, λ2 will be
far from the first eigenvalue λ1 and if we check the outlier values in the set
of first ten eigenvalue set we will see that λ1 is the only outlier value. This
case indicates that the graph is well connected and the data has a station-
ary dependence structure. On the contrary, the graph can be clustered into
sub-graphs and since we are interested in the smallest eigenvalues, a relative
eigengap REk is used: REk = λk+1−λk

λk
, k ≥ 2.

If we do not have additional informations, we will use a highest value of REk

to determine the number of clusters. A simulation study in Section 5 validates
this method based on the highest value of REk. The steps of this heuristic
methodology is described in Algorithm 1
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Algorithm 1 Heuristic method to determine the number of clusters k

Require: Vector of eigenvalues λ.
Ensure: Number of clusters k.
1: Find the outliers value in the eigenvalues set (λ1, · · · , λ10).
2: If λ1 is the only outlier value, then k = 1. Else, go to step 3.
3: Calculate the relative eigengaps REk = λk+1−λk

λk
,k ≥ 2.

4: k is correspond to the highest value of REk.

4.2 Description of the proposed spectral clustering
algorithm

Let Xi(sj), sj ∈ S, S ⊂ Rd, d = 2, i = 1, · · · , n be a sequence of n inde-
pendent and identically distributed max stable processes at different locations
sj , j = 1, 2, · · · ,m. Firstly, we have to construct the similarity matrix CP
according to Equation (13) then use it to compute the graph Laplacian matrix.
We use the normalized graph Laplacian matrix Lsym because we want the size
of the resulting clusters to depend on the strength of the dependence structure
(i.e the weights of the graph edges). The spectrum λ of Lsym is then computed
and will be the input in Algorithm 1 in order to determine the number of clus-
ters k. If k ≥ 2, the eigenvectors q1, · · · , qk are used to constitute k-dimensional
representation for the data. This is done by representing these eigenvectors as
columns of an m×k matrix denoted Q. Each row in Q represents a location sj :
sj → (qj,1, · · · , qj,k) j = 1, · · · ,m, this is called spectral mapping (see Wierz-
choń and K lopotek (2018)). Normalizing each row of Q to norm 1, results in
the matrix denoted Y ∈ Rm×k. According to Ng et al (2001) this last step
improves the performance of clustering algorithm. We used Gaussian Mixture
Model (GMM) to cluster the rows of Y instead of k-means that is usually used
at this step. GMM clusters the datapoints based on probability distribution.
It considers that the datapoints come from a Gaussian mixture. Each clus-
ter has a Gaussian distribution model with parameters mean and covariance.
Taking the covariance into account make GMM more robust than k-means
which depends only on the cluster mean. For more details about GMM see for
example Bouveyron et al (2019). We sum up these steps in Algorithm 2.

5 Simulation study

In order to assess the accuracy of our algorithm, we test it on three simu-
lation cases. In each cases, we implemented the algorithm on several spatial
processes simulated from one or more max-stable models: Smith, Schather,
Brown-Resnick and Extremal-t with parameters chosen randomly. Further-
more, the correlation functions for Schlather and Extremal-t models are chosen
randomly from one of the following correlation functions: Cauchy, powered
exponential and Whittle-Matérn. The number of observations is fixed to 1000
at each location sj , j = 1, 2, · · · ,m. To avoid any effect of the number of loca-
tions m on the algorithm’s work, m is chosen randomly at each simulation. We
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Algorithm 2 Proposed spectral clustering

Require: The similarity matrix CP ∈ Rm×m, constructed according to
Equation (13) .

Ensure: Clusters {C1, · · · , Ck}.
1: Compute the normalized Laplacian matrix Lsym = D− 1

2 (D − CP )D− 1
2 .

2: Compute the spectrum of Lsym and use Algorithm 1 in order to determine
k. If k = 1, the algorithm stops. Else, go to step 3.

3: Compute the k smallest eigenvectors q1, q2, · · · , qk of Lsym, and arrange
these vectors in columns to be a matrix Q, where Q ∈ Rm×k.

4: Normalize the rows of Q to norm 1, resulting the matrix Y ∈ Rm×k:
Yjl = Qjl/(

∑
l Q

2
jl)

1
2 , j = 1, · · · ,m, l = 1, · · · , k.

5: Consider each row of Y as a point in Rk and implement Gaussian Mixture
Model (GMM) to cluster them into k clusters.

6: Assign the location sj to cluster l if and only if row j of the matrix Y is
assigned to cluster l.

simulate it uniformly between 30 and 100 locations. The locations are gener-
ated randomly and uniformly in [0, 1]

2
. The three simulation cases are detailed

as follows.

� Case 1: stationary dependence structure
In this case, we simulate 100 spatial processes from one of the max-stable
models chosen randomly.

� Case 2: non-stationary dependence structure / different models
In this case, we considered three sub-cases where the number of clusters
equals 2, 3 or 4. For each of these sub-cases, 100 spatial processes are sim-
ulated from two (three and four respectively) different max-stable models
chosen randomly.

� Case 3: non-stationary dependence structure / one model with different
parameters
In this case, we considered three sub-cases where the number of clusters
equals 2, 3 or 4. For each of these sub-cases, 100 spatial processes with two
(three and four respectively) clusters are simulated from the same max-
stable model chosen randomly. The parameters of each cluster are chosen
randomly and are different from the parameters of other clusters.

We assess the accuracy of our proposed algorithm using two evaluation mea-
sures. The first one is the accuracy of our proposed heuristic method in order
to determine the number of clusters. For simplicity we will denote it by Ak:

Ak =
#k̂t
T

× 100 (14)

where T is the total number of spatial processes tested and k̂t, t ⊂ T is the
correctly estimation the number of clusters.
The second one is the accuracy of our proposed spectral clustering algorithm in
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clustering the locations correctly. That means, its ability to group the locations
simulated from the same model in the same cluster. At the same time we justify
the reason for choosing GMM in step 5 of the algorithm instead of k-means
used in traditional spectral clustering. We will compare the accuracy of our
proposed spectral clustering algorithm with GMM and with k-means in step
5. For simplicity we will denote this evaluation measure by Ac:

Ac =
#ĉh
H

× 100 (15)

where H is the total number of spatial processes with number of clusters deter-
mined correctly and ĉh, h ⊂ H is the correctly clustering the locations. The
two evaluation measures, Ak and Ac are computed for all simulation cases
considered. The results are presented in Table 1.
Regarding the performance of our proposed heuristic method (first row of

Table 1 The evaluation measures for the proposed spectral clustering within all
simulation cases

Stationary 1 Non-stationary 2 Non-stationary 3

Evaluation
measures - k = 2 k = 3 k = 4 k = 2 k = 3 k = 4

Ak 100% 100% 95% 93% 100% 93% 99%
Ac(GMM) - 100% 100% 100% 100% 100% 100%
Ac(k-means) - 100% 83.16% 75.26% 100% 91.39% 82.83%

1Simulation case 1
2Simulation case 2
3Simulation case 3

Table 1) it appears accurate in detecting whether the spatial processes has a
stationary dependence structure or not. For non-stationary dependence struc-
tures, it is also able to determine the correct number of clusters k̂ with high
accuracy between 93% and 100%.
The second row of Table1 shows that our proposed spectral clustering algo-
rithm is accurate at 100% in clustering the locations according to the model
from which they were simulated. This accuracy is the same for the two sim-
ulation cases of non-stationary dependence structure and for all number of
clusters that tested. This reinforces the reason for using GMM instead of k-
means in step 5 of the algorithm. Indeed, k-means is accurate 100% only when
the number of clusters equals 2 but its accuracy decreases as the number of
clusters increases as we note in row three in Table 1.
Since the results on simulation appear satisfactory, we can use this technics
in order to detect stationary extreme area for precipitation in East Australia
and in France.
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Fig. 1 Geographic locations of 40 stations on the east coast of Australia in the left panel,
and proposed spectral clustering in the right panel.

6 Application on real data

This section is devoted to two real data application: one on rainfall in Australia
east coast; the other one on rainfall in France.

6.1 Rainfall over east coast of Australia

We begin by a brief description of the data, then we apply our clustering
method and comment the results.

6.1.1 Description of the data

This data represents daily rainfalls measured (in millimeters) at 40 stations
on the east coast of Australia, recorded during the winter season (April −
September) from 1972 to 2019. This leads to 183 * 48 = 8784 observations
at each stations. The geographic locations of the 40 stations are illustrated in
the left panel of Figure 1. The altitude of these stations was chosen from 2 to
540 m. For more details about this data see for example Ahmed et al (2022),
Bacro et al (2016), Ahmed et al (2017) and Abu-Awwad et al (2020).These
data are freely available on the website http://www.bom.gov.au.

6.1.2 Detecting the stationarity of Australia rainfall
dependence structure

We shall apply our proposed spectral clustering algorithm described in Section
3 Algorithm 2 to detect the stationarity of rainfall dependence structure. In
order to show the effect of the block maxima size on the detection of station-
arity in the dependence structure we take different sizes of block maxima. We
take them as in Ahmed et al (2022) to discuss the results. The block maxima
sizes taken are 183 days, 30 days, 15 days, 10 days, 5 days, 3 days and 1 day.
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Table 2 shows results in detecting the stationarity of the dependence struc-
ture for Australia rainfall data for each size of block maxima. We observe that
the block maxima size affects the detection of stationarity in the dependence
structure. The rainfall dependence structure is detected as stationary when
the block maxima size is greater than or equal to 15 days. We can use only one
model for the whole spatial data when modeling these data with these block
sizes.
Ahmed et al (2022) used Convolutional Neural Networks (CNN) to classify

Table 2 Detecting the stationarity of the dependence structure for Australia rainfall data
with different sizes of block maxima.

Spectral clustering implementation outputs

Block size Stationary Non-stationary No. of clusters
dependence structure dependence structure

183 days ✓ - -
30 days ✓ - -
15 days ✓ - -
10 days - ✓ k = 2
5 days - ✓ k = 2
3 days - ✓ k = 2
1 day - ✓ k = 2

the dependence structure between Asymptotic Dependence (AD) and Asymp-
totic Independence (AI). They trained their network on AD (resp. AI) by
simulating the data from one of the max-stable models (or inverse max-stable
models). They also considered max-mixture models constructed with AD and
AI models chosen randomly. Their CNN classified the dependence structure
of this data with these block maxima sizes as asymptotic independence. Since
the CNN training for asymptotic independence was based on one model, this
means the data has one type of dependence structure and this confirms the
result we obtained which is the data with block maxima size greater than or
equal to 15 days has stationary dependence structure.
The rainfall dependence structure is non-stationary when the block maxima
size is less than or equal to 10 days. Our proposed heuristic method determines
that the number of cluster is equal to 2 for all these block sizes as illustrated
in Figure 2. The spectral clustering algorithm clustered the 40 locations to
two clusters each with stationary dependence structure. These clusters are the
same for each of these block sizes and illustrated in the right panel of Figure 1.
So, it is suitable to use two models when modeling this data with these block
maxima sizes.
Predicting the class of the dependence structure for block size 5 days is not

conclusive in Ahmed et al (2022), while for 3 days and daily block size, their
CNN classified the dependence structure as mixture between AD and AI.
Depending on CNN training, this means that the data include a mixture of
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Fig. 2 The value of the relative eigengap associated with each number of clusters (red line
refers to the number of clusters) for Australia data with four different block maxima sizes.
The left panel in the first row for 10 days block maxima and the right one for 5 days block
maxima. While the left panel in the second row for 3 days block maxima and the right one
for one day block maxima.

two type of dependence structure. For that our results for 3 days and daily
block size are in accordance with in Ahmed et al (2022). Furthermore, the
daily rainfall has been studied by Bacro et al (2016), Ahmed et al (2017) and
Abu-Awwad et al (2020). They showed that max-mixture models are suitable
for modeling this data.

6.2 Rainfall over France

This subsection is devoted to the study of rainfall data in France.

6.2.1 Description of the data

This data are provided by Météo-France and represent the hourly precipitation
recorded at 80 French monitoring stations. The data were measured during the
period 1993 - 2021 over fall season (September,October and November). At
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Fig. 3 Geographic locations of 80 stations over France region

each stations there are 91 * 29 = 2639 observations. The geographic locations
of these stations were chosen in order to cover all the French metropolitan
regions. Figure 3 illustrates the geographic locations of the 80 stations. This
data was studied by Bernard et al (2013) on the period 1993 - 2011.

6.2.2 Detecting the stationarity of France rainfall
dependence structure

To detect the stationarity of rainfall dependence structure, we implement our
proposed spectral clustering on the data. Also we study the effect of the block
maxima size on the stationary of the dependence structure. The block sizes
we consider are : annual, monthly, 2 weeks, weekly and 5 days. The results
obtained with our spectral clustering on this data for each block maxima size
are showed in Table 3.
It is clear that for both annual and monthly block sizes, the rainfall has station-

Table 3 Detecting the stationarity of the dependence structure for France rainfall data
during the period (1993 - 2021) with different sizes of block maxima.

Spectral clustering implementation outputs

Block size Stationary Non-stationary No. of clusters
dependence structure dependence structure

Annual ✓ - -
Monthly ✓ - -
2 Weeks - ✓ k = 2
Weekly - ✓ k = 2
5 days - ✓ k = 2

ary dependence structure, while non-stationarity in the dependence structure
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appears when the block size is less than or equal to 2 week.
The number of clusters determined by the proposed heuristic method and the
clustering of stations obtained by spectral clustering for each block size lead-
ing to non stationary dependence structure are illustrated in Figure 4, where
the first (second and third) row is related to block maxima size equals to 2
weeks (weekly and 5 days respectively).
We will start our discussion with weekly block maxima since it was studied by
Bernard et al (2013). Implemention of spectral clustering on the data with this
block size shows that the rainfall has a non stationary dependence structure.
Our spectral clustering divides France into north/south regional areas along
Loire valley line, each of these regions has a different dependence structure as
explained by left panel in the second row of Figure 4. This can be interpreted
easily. The extreme rainfall in north of France is produced by disturbances
from the Atlantic, this affects Brittany, Paris and also other areas in the north
of France. While in the south of France, the extreme rainfall are caused by the
Mediterranean sea, it affects the coastal area and especially on Cévennes and
the Montagne Noire.
The results are similar to those obtained by Bernard et al (2013), where the
selection criterion for the number of clusters in Bernard et al (2013) indicated
that k = 2. The locations clustering result are illustrated in the right panel
in the second row of Figure 4. It is relatively close to Bernard et al (2013),
where France were divided into north and south regions. This indicates that
the behavior of the data has not changed since 2011.
The right panel in the first row of Figure 4 shows the stations clustering result
when the size of block maxima equals to 2 weeks. It is clear that the south
region is smaller than ones in weekly block maxima. This change in the size
of clusters is due to the fact that the size of block maxima had become larger
compared with the weekly block maxima. This indicates that the larger size
of block the nearest to stationary in dependence structures.
In case of 5 days block maxima, the stations clusters is quite similar to the
weekly block maxima case. This can be seen on the right panel in the third
row of Figure 4.

7 Discussion and Conclusion

Stationarity of dependence structure is an essential matter in modeling envi-
ronmental extreme events. In most studies, it is assumed that the dependence
structure is stationary. This may be incorrect especially in large regions and
regions with complex geographical or climatic patterns. Finding a method
able to detect regions with similar dependence structure is thus useful. In this
study, we proposed to take advantage of spectral clustering in clustering regions
which have similar dependence structure together. So, we combined spectral
clustering with extremal concurrence probability to create a simple clustering
method for max-stable processes. Also, we proposed a heuristic method able
to determine if the dependence structure of the data are stationary or not, and
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Fig. 4 The value of the relative eigengap associated with each number of clusters (red line
refers to the number of clusters) in the left panel, the result of proposed spectral clustering
for the France rainfall data along the period (1993 - 2021) with each block maxima size in
the right panel. The first row relates to 2 week block maxima. The second row relates to
weekly block maxima. The third row relates to 5 days block maxima.

to determine the number of clusters with high accuracy. The validation of the
proposed spectral clustering algorithm was done via a simulation study. Then
two environmental dataset has been studied, the first one is the daily rainfall
data over east coast of Australia. We found that this data has a stationary
dependence structure when the size of block maxima is larger than or equals
to 15 days. The data has the same two regional clusters when the block size
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is smaller than or equals to 10 days. The second dataset is the hourly precip-
itation over France. we found that the stationarity appeared for large block
maxima sizes (monthly and annual). While non-stationary dependence struc-
tures is plausible for block size less than or equal to 2 weeks. The regional
clusters is not the same for all these block sizes. From the foregoing, we con-
clude that the size of block maxima affects the stationarity of the dependence
structures and sometimes make changes in the regional clusters too. So, this
must be taken into account in the modelization. Finally, despite the simplicity
of our proposed algorithm, it is powerful. As a future direction of this study,
one can study other variables like temperature. Another direction is to state
the efficiency of this algorithm when applied it to very large region like the
whole of Australia or the continent of Europe.
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