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Abstract—Crohn’s disease is a type of inflammatory bowel
illness that is typically identified via computer-aided diagnosis
(CAD), which employs images from wireless capsule endoscopy
(WCE). While deep learning has recently made significant ad-
vancements in Crohn’s disease detection, its performance is still
constrained by limited labeled data. We suggest using contrastive
self-supervised learning methods to address these difficulties
which was barely used in detection of Crohn’s disease. Besides,
we discovered that, unlike supervised learning, it is difficult to
monitor contrastive self-supervised pretraining process in real
time. So we propose a method for evaluating the model during
contrastive pretraining (EDCP) based on the Euclidean distance
of the sample representation, so that the model can be monitored
during pretraining. Our comprehensive experiment results show
that with contrastive self-supervised learning, better results in
Crohn’s disease detection can be obtained. EDCP has also been
shown to reflect the model’s training progress. Furthermore, we
discovered some intriguing issues with using contrastive self-
supervised learning for small dataset tasks in our experiments
that merit further investigation.

Index Terms—Deep Learning, Self-Supervised Learning, Con-
trastive Learning, Crohn’s Disease, Medical images classification

I. INTRODUCTION

Crohn’s Disease is a common bowel disease [1]. Wireless
Capsule Endoscopy (WCE) is commonly used by doctors to
aid in diagnosis. However, counting and identifying lesions
of Crohn’s disease in WCE videos is time-consuming. Many
methods [2] have been developed to automatically detect in-
testinal abnormalities in WCE images, such as ulcer, bleeding,
and erosion. These methods can be divided into two main
categories. One is using Support Vector Machine(SVM) [3]–
[14] with manually designed features. The other is based
on deep learning [15]–[20]. In the early years, researchers
primarily used SVM as classifiers based on manually designed
features such as local binary pattern [21], scale invariant
feature transform [21], texture feature [22], color feature [23],
etc. However, deep learning has demonstrated tremendous
power in a number of fields in recent years. The accuracy
of Crohn’s disease detection has increased significantly with
deep neural networks to over 90% [2].

As shown in Fig. 1, the images for Crohn’s disease detection
are taken from WCE video, thus there are numerous unlabeled
images. Nevertheless, because labeling WCE image is very
time-consuming and requires professional doctors, labelled
data is scarce. As a result, deep learning’s effectiveness in
the field of medical images, including Crohn’s disease detec-
tion, is massively diminished. In this situation, self-supervised
learning is a viable option. Given that it can train the network
with unlabeled data to make up for the lack of enough labeled
data. Self-supervised methods based on contrastive learning
have recently been proven to be more effective in image
classification tasks. The CrohnIPI [19] dataset that we use is
a professional public dataset that contains well-labeled data.
To the best of our knowledge, existing research works use
only self-supervised learning for Crohn’s disease detection.
Besides, most self-supervised studies use very large datasets as
benchmark, such as ImageNet [24]. However, WCE images are
usually small and have few categories which is very different
to ImageNet. Considering the gap between ImageNet and
WCE images, we compare several state-of-the-art contrastive
self-supervised learning methods’ performance on WCE data
to find out that whether self-supervised learning can improve
the performance of Crohn’s disease detection.

During our experiments, we discovered that self-supervised
training, also referred pretraining, unlike supervised training,
cannot use the validation set to observe the pretraining process.
This also makes selecting model of pretraining and conduct-
ing early-stopping impossible. We can only use finetuning
to verify the model’s performance after pretraining, which
significantly prolongs the model’s tuning process and makes
selecting the best model during the pretraining process for
downstream tasks difficult. Therefore, we propose evaluation
during contrastive pretraining (EDCP), a low-cost method
for real-time monitoring of pretraining progress. Based on
the Euclidean distance between sample representations, this
method computes a value that reflects how well network is
trained. We compare the EDCP to the results of few-epoch
finetuning and discovered that the EDCP results are consistent
with the few-epoch finetuning results, which demonstrats that
EDCP can be used effectively to monitor contrastive self-
supervised learning pretraining.978-1-6654-6819-0/22/ $31.00 ©2022 IEEE



Fig. 1. Traditional supervised learning (top), our contrastive self-supervised learning method (bottom). Evaluation During Contrastive Pretraining(EDCP) is
used to monitor pretraining(Bottom). The wireless capsule endoscopy (WCE) images are from CrohnIPI [19].

Furthermore, we observed some contrastive learning tech-
niques that are useful on large datasets but are ineffective or
even harmful for Crohn’s disease detection in experiments.
A larger batch size, for example, will generally produce
better results [25], but it has no effect on Crohn’s disease
detection, and even too many negative sample pairs will de-
grade the model’s performance. These anomalous phenomena
merit further investigation, as they may improve the model’s
performance and have some reference significance for similar
classification tasks of small dataset.

The following are our primary contributions: (i)We are
the first to apply self-supervised learning to the detection
of Crohn’s disease in images. (ii) We outperform traditional
supervised learning in the detection of Crohn’s disease. (iii)
We propose using evaluation during contrastive pretraining
(EDCP) to track the progress of contrastive self-supervised
training.

II. PRELIMINARY AND RELATED WORK

Crohn’s Disease Detection. Computer-aided diagnosis
(CAD) has become an active search area in the past few years.
WCE is crucial for the diagnosis of Crohn’s disease because
it allows medical professionals to see inside the patient’s
bowel in order to identify Crohn’s disease as soon as possible.
However, diagnosing with WCE images takes a long time for
medical experts. Many methods for automatically detecting
diseases in WCE based on deep learning have recently been
proposed, and excellent results have been obtained [2]. Deep
learning methods based on convolutional neural networks
(CNN) have been proven to outperform prior machine learning
methods which based on support vector machines (SVM)
and manually designed features. However, there is still room
for improvement due to the lack of labeled data. In fact,
insufficient labeled data is a common issue in the medical

imaging field. For example, Seguı́ et al [26] found that 10-
fold cross-validation increase in training data size improved
the accuracy by 3% for motility movement classification in
WCE. WCE images have the significant advantage of being
easy to obtain a large number of unlabeled images since tens
of thousands of frames are contained in each WCE video. To
make use of these unlabeled data, we employ self-supervised
learning.

Contrastive Self-Supervised Learning. Self-supervised
learning (SSL) has recently achieved great success in a va-
riety of fields. Liu et al. [27] summarize the mainstream
self-supervised learning into three broad categories: gener-
ative, contrastive, and generative-contrastive. In generative
tasks such as image colorization [28] and inpainting [29],
generative and generative-contrastive learning are particularly
effective. Contrastive learning, on the other hand, outperforms
in classification tasks, particularly in computer versions (CV).
Among contrastive learning methods, instance-instance con-
trast is proved perform better than context-instance contrast
[27]. Many instance-instance [25], [30]–[35] have performed
admirably on various CV benchmarks. The object of contrast
in contrastive learning is commonly referred to as negative
samples and positive samples. The different embeddings pro-
duced by transforming one image are referred to as positive
samples from each other, whereas the embeddings produced
by transforming different images are referred to as negative
samples from each other. To obtain positive and negative
samples, the contrastive learning network typically has two
similar branches, and is therefore also known as siamese
network [36]. The objective of contrastive learning is to
maximize the similarity of negative pairs while minimize the
similarity of positive pairs. InfoNCE [37] loss is commonly
used to achieve this goal. The InfoNCE loss for sample q with
distance measured by dot product is:



Lq = − log
exp (q · k+/τ)∑K
i=0 exp (q · ki/τ)

, (1)

where τ is a temperature hyper-parameter. The sum is over one
positive sample k+ and K negative samples. Many studies
[25], [30], [33] have shown that having a sufficient number
of negative samples is critical for model performance and
avoiding clloaps during pretraining.

State of the Art (SOTA) Methods. In the field of con-
trastive self-supervised learning, method iteration has been
remarkably rapid in recent years. InvaSpread [38] presents
an end-to-end method for contrastive learning. Following In-
vaSpread, SimCLR made significant progress through refining
the experiment and network structure including adding MLP
head, more epochs of pretraining, much bigger batch size
and more complex data augmentations. These manipulations
are straightforward and effective, and they are followed by
methods proposed later. Meanwhile, MoCo [30] introduced
momentum encoder to reduce inconsistency caused by rapidly
changing encoder, based on InstDisc [39], which proposed
memory bank that use a small amount of computational
resources while producing a large number of negative samples.
MoCo v2 later combined the useful SimCLR strategies on the
basis of moco to achieve better results. Positive and negative
pairs are sample-based in MoCo v2 and SimCLR, whereas in
Barlow Twins [33], they are based on filters that generate em-
beddings. They believe that this will allow filters to learn more
different features and reduce the redundancy of information.
Barlow Twins does not require a large batch size or memory
bank, but it does require more channels in the MLP layer
in order to obtain enough negative samples. Most contrastive
self-supervised learning methods proposed prior to BYOL
[34] require negative samples to avoid trivial solutions. For
example, if the network only needs to reduce the similarity of
positive pairs, regardless of the input, the network can output
the same feature vector. BYOL produces excellent results
with only positive sample pairs and its performance is robust
to small batch sizes. Soon after, SimSiam [36] proposed a
simplified version of BYOL which remove momentum encoder
and the predictor head while slightly reducing performance.

III. METHODS

A. Baseline

Our aim is to find out whether contrastive self-supervised
learning can improve the performance of Crohn’s disease
detection. For comparison, the traditional supervised learning
method is used. Following [19], the network structure of
baseline consists of an encoder and a fully connected layer.
The encoder is ResNet [40] without final fully connected layer.

B. Contrastive Self-Supervised Methods Comparison

SOTA methods mentioned in II can be divided into three cat-
egories according to the factors contrasted: positive and nega-
tive pairs based on instances(MoCo, MoCo v2, SimCLR, etc.),
positive and negative pairs based on filters(Barlow Twins), and
only positive pairs based on instances(BYOL, SimSiam). The

TABLE I
TOP-1 AND TOP-5 ACCURACIES (IN %) UNDER LINEAR EVALUATION ON

IMAGENET. ALL MODELS USE RESNET-50 AS ENCODER. THE BATCH SIZE
IS FOR PRETRAINING. THESE RESULTS ARE COME FROM CORRESPONDING

PAPERS.

Method Top-1 Top-5 Batch Size
Supervised 76.5 - -
MoCo 60.6 - 256
SimCLR 69.3 89.0 4096
MoCo v2 71.1 - 256
SimSiam 71.3 - 256
Barlow Twins 73.2 91.0 4096
BYOL 74.3 91.6 4096

best methods from each of these three categories for detecting
Crohn’s disease detection will be chosen.

We are primarily concerned with two aspects when com-
paring methods: performance and robustness to batch size.
A general comparison of the performance of self-supervised
learning is to compare the performance of linear evaluation
on ImageNet which is shown in Table I. According to the
Table I, it can be seen that MoCo v2, SimSiam, Barlow Twins,
and BYOL perform well. Barlow Twins and BYOL stand out
among them. When comparing the robustness of methods to
batch size, the study [33] in Barlow Twins shows that the
performance of Barlow Twins and BYOL are still good when
the batch size decreases, while the performance of SimCLR
drop a lot. Because the loss strategy in the BYOL and Barlow
twins determines that their performance is less dependent on
a large number of negative samples. MoCo v2’s performance
is also robust to batch size since its negative samples are
primarily drawn from memory bank which is not influenced
by batch size. As a result, three methods were chosen from
the three categories based on their good performance and
robustness of batch size: MoCo v2, BYOL, and Barlow Twins.
Since the hyperparameters of each method are carefully tuned,
we will try to keep the original hyperparameters of these
methods during the experiment for fairness.

C. Framework

The three methods have similar structure which shown in
the Fig. 2. The input image is augmented t and t′ to produce
two distinct views for two branches. The network’s goal is
that the representations generated by two branches for two
views of the same image are similar, while the representations
generated for different input images are dissimilar. The net-
work, with the exception of the BYOL predictor, is made up
of two symmetrical branches. Each branch is made up of an
encoder f , which is a CNN followed by an projector network
MLP. The encoder structure of the three networks is ResNet
without final full-connected layer, but the projector structure is
different. The projector MLP structures of MoCo v2, BYOL,
and Barlow Twins are 512-128, 4096-256, and 8192-8192-
8192, respectively. Following SimCLR, the projector MoCo
v2 consists in a linear layer with output size 512 follwed by
rectified linear units (ReLU) and a final linear layer with output
dimension 256. The projector of BYOL consists in a linear



Fig. 2. The architecture of MoCo v2, BYOL and Barlow Twins. The black part represents the structure shared by all three methods, the red part represents
MoCo v2, and the blue part represents BYOL. θ are the trained weights, ξ are exponential moving average of θ and sg denotes stop-gradient. At the end of
training, everything except fθ is discarded, and yθ is used as the image representation. The embeddings used for calculating loss by three methods are shown
in the lower left corner.

layer with output size 4096 followed by batch normalization,
ReLU, and a final linear layer with output dimension 256. The
predictor of BYOL uses the same architecture as projector.
The projector of Barlow Twins has three linear layers, each
with 8192 output units. A batch normalization layer and ReLU
are placed after the projector’s first two layers. We can see
that Barlow Twins require large output dimension to provide
a large number of negative samples in order to perform well.
Besides, despite the simplicity of MoCo v2’s MLP structure,
MoCo v2 requires memory banks to provide a large number
of embeddings as negative samples.

The parameters of Barlow Twins are all updated by back-
propagation. However, in the network structure of BYOL and
MoCo v2, the stop gradient operation is performed at the end
of one branch, and the parameter ξ of this branch is updated by
exponential moving average (EMA) strategy which formulated
by (2).Back-propagation updates the parameter θ of another
branch.

ξ ← τξ + (1− τ)θ (2)

where τ ⊂ [0, 1) is a coefficient.
The embeddings used by the three methods to calculate

the loss are different, as shown in the Fig. 2. MoCo v2
employs InfoNCE loss between projection zθ and embedding
zm sampled from the memory bank. The loss in BYOL
is calculated as the mean squared error between the l2-
normalized projection sg(z′ξ) and the prediction qθ(zθ). After
normalize the embeddings along the batch dimension, Barlow
Twins cleverly transposes one projection zθ and multiplies
it with another projection z′ξ to produce a cross-correlation
matrix with diagonal and off-diagonal elements representing
the cosine similarity of positive and negative sample pairs,
respectively. The identity matrix is used as the label, and

the loss is calculated as the mean square error of the cross-
correlation matrix and the identity matrix in Barlow Twins.

D. Evaluation During Contrastive Petraining (EDCP)
The validation set is commonly used in supervised training

to monitor training progress in order to avoid overfitting or
insufficient training, and it can also be used to select models.
However, because the evaluation of self-supervised learning is
finetuning when pretraining is finished, evaluating the network
during pretraining is difficult. Finetuning after each epoch
during pretraining is a simple and straightforward method,
but it adds a significant amount of time and computational
resource consumption. Another straightforward approach is
to monitor pretraining process directly through observing the
loss, but these losses are not related to the classification task.
First, this is an indirect method. There is inconsistency because
the downstream task uses only the encoder rather than the
entire pretraining network. Second, the loss may gradually
decrease with training due to the strategy of some methods.
During pretraining, for example, the momentum of BYOL
will gradually increase, resulting in closer parameters of the
two branches of the network, which brings the generated
representation closer to each other and eventually leads to a
smaller loss.

To address this problem, we design a method for real-time
monitoring of model training progress that can be quickly
computed and widely used in any contrastive learning pretrain-
ing process, called evaluation during contrastive pretraining
(EDCP).

Based on the goal of contrastive learning, which is to
decrease the positive sample pair’s feature similarity close
and increase the negative sample pair’s feature similarity.
Euclidean distance is used to measure similarity. We input



a small amount of labeled data into the encoder to get
the corresponding representations, and then calculate the Eu-
clidean distance of the positive and negative sample pairs.
Two subsets are sampled with no overlap, each subset has
the same number of samples with different labels, and they
are converted into representations set M,N by the encoder.
Then subtract the distance of the negative representation pairs
from the distance of the positive sample pair to get SEDCP .
For example, for a representation ml from M with label l,
find the closest representation ml′ in M with different label l′

and the closest representation nl, n′
l from N . Then use (5) to

calculate the L2 distance of ml and other representations to get
d(ml,m

′
l),d(ml, nl) and d(ml, n

′
l). Then subtract d(ml, n

′
l)

and d(ml,m
′
l) by d(ml, nl) to get the distance value for ml.

Sum and all distance for each representation in M,N will get
SEDCP . The calculation process is as follows:

SEDCP (M,N) =
1

K
[D(M,N) +D(N,M)] (3)

D(M,N) =
∑
i

[min
j

d(mi,l, nj,l)−
1

2
(min

j
d(mi,l, nj,l′)

+min
j

d(mi,l,mj,l′))]

(4)
d(m,n) = ∥m− n∥2 (5)

Where ml,i is i-th sample of M with label l, nj,l is j-th sample
of N with label l, K is the sum number of M,N .

The smaller the value of SEDCP , the better the encoder
is trained. So that monitoring process of pretraining can be
achieved by observing the curve of SEDCP . And the encoder
at the point where SEDCP reaches a minimum is likely
to be the best pretrained encoder. Meanwhile, to assess if
the trend of curve of SEDCP is correct, we conduct one-
epoch-finetuning during pretraining. Because Crohn’s disease
detection is a relatively simple task that requires only a
small number of epochs to complete finetuning, one-epoch-
finetuning can, to some extent, represent the final result of
finetuning at a lower cost. Therefore, the ability of EDCP to
reflect the encoder’s pretraining trend can be determined by
comparing the results of EDCP and one-epoch-finetuning.

IV. EXPERIMENT

To explore whether contrastive self-supervised learning can
achieve better performance than traditional supervised learning
on Crohn’s disease detection, we first performed a baseline
experiment to obtain results for comparison. Then, for each of
the three contrastive self-supervised learning methods, perform
pretraining and finetuning. The finetuning and baseline settings
are the same. EDCP and one-epoch-finetuning are used during
pretraining. All of our experiments were conducted on a 16GB
Tesla T4.

A. Dataset.

For baseline and finetuning experiments, 3484 labeled im-
ages of CrohnIPI [19] are used, including 1360 pathological

images and 2124 non-pathological images. For pretraining,
35053 unlabeled images were obtained from two WCE videos,
different from the labeled images. It is worth noting that the
majority of the datasets used in the WCE image detection task
research are private datasets or unspecified subsets of public
databases. However, CrohnIPI is a publicly available and well-
labeled dataset that can be widely used as a benchmark for
Crohn’s disease detection.

B. Baseline & Finetuning

Image Augmentations. The input image will be resized to
256x256 for training after a random horizontal flip, vertical
flip, and rotation. During testing, the images are resized to
256x256.

Optimization. Following the settings in CrohnIPI [19],
ResNet is used as the encoder, followed by a fully connected
layer as the classification head. For back-propagation, we use
the cross-entropy loss. Adam optimizer is used to optimize the
cross-entropy loss. For the entire network, we use a learning
rate of 0.0003 and train for 300 epochs. We use a batch size of
16 and 5-fold cross-validation. For data splitting, there is 20%
labeled data for testing and the rest for training and validation.
The ratio of the images used for training and validation is
1:4. We use validation set to validate the model after each
training epoch and select the model with the highest validation
accuracy for test.

C. Pretraining

For fair comparison, we use the same encoder, number of
epochs and batch size when pretraining the three contrastive
learning methods, which are resnet18 (without the final clas-
sification layer), 300, and 96, respectively

Image Augmentation. The data augmentation of pretrain-
ing comes after the augmentation in SimCLR [25]. First, a
random patch of the image is chosen and resized to 256x256
with a random horizontal flip, then color distortion is applied
with a random sequence of brightness, contrast, saturation,
hue, and optional grayscale conversion adjustments. Gaussian
blur and solarization are applied to the patch as a final step.

MoCo v2 on CrohnIPI. For optimization, MoCo v2 uses
SGD as optimizer. The momentum of SGD is 0.9, and the
weight decay of SGD is 0.0001. At 120 and 160 epochs, the
learning rate was multiplied by 0.1. The learning rate is set to
0.03. A learning rate schedule based on cosine is used. The
memory bank size is changed to 65472 instead of 65536 to
accommodate the batch size of 96. Because the size of memory
bank must be an integer multiple of the batch size

BYOL on CrohnIPI. BYOL uses LARS Optimizer [41]
with a cosine decay learning rate schedule and 10 warm-
up epochs. The baseline learning rate was set to 0.2 and
was linearly scaled [42] with batch size (LearningRate =
0.2 × BatchSize/256). BYOL uses a global weight de-
cay parameter of 1.5 · 10−6 while omitting the biases and
batch normalization parameters from both LARS adaptation
and weight decay. The target network’s exponential moving
average parameter τ starts at 0.996 and is raised to one



TABLE II
TEST ACCURACY OF BASELINE WITH DIFFERENT ENCODERS.

encoder ResNet-18 ResNet-34 ResNet-50
Test accuracy(%) 93.8 93.6 93.1

during training. BYOL specifically set k the current train-
ing step and K the maximum number of training steps to,
τ ≜ 1− (1− τbase ) · (cos(πk/K) + 1)/2.

Barlow Twins on CrohnIPI. Barlow Twins follow the
optimization procedure outlined in BYOL [34] which use
LARS optimizer for optimization. They utilize learning rates
of 0.0048 for the biases and batch normalization parameters
and 0.2 for the weights. They divide the learning rate by 256
and then multiply the result by the batch size. After a 10-
epoch warm-up period, they employ a cosine decay schedule
to reduce the learning rate by a factor of 1000 [43]. The trade-
off parameter λ is set to 5 ·10−3. A weightdecay parameter of
1.5·106 is used. The biases and batch normalization parameters
are excluded from LARS adaptation and weight decay.

D. Evaluation During Contrastive Pretraining

From the labeled dataset, we extracted two subsets. Each
subset has 100 total images, of which 50 are pathological and
50 are non-pathological. We feed the image into the encoder
every 20 epochs of pretraining to generate the corresponding
representation. The SEDCP is calculated using (3). At the
same time, we perform one-epoch-finetuning every 20 epochs
and get value of accuracy. Theoretically, accuracy rises as
SEDCP increases and vice versa. By comparing the trend of
SEDCP and the trend of accuracy of one-epoch-finetuning,
it is possible to demonstrate whether the EDCP method can
be used to monitor the process of contrastive self-supervised
learning pretraining.

V. EXPERIMENT RESULTS

A. Baseline

We have tried use Resnet18, Resnet34 and Resnet50 and
find that the network with Resnet18 as encoder get best
performance as shown in Table II. And the curve of validation
and training accuracy shown in Fig. 3 demonstrates that
50 epochs are sufficient for the network to converge. Since
detecting Crohn’s disease is not a difficult task and the labeled
dataset is small, the model can converge and achieve good
accuracy without training for a long time.

B. Contrastive Self-Supervised Training

We utilize ResNet-34 as the encoder and pretrain MoCo v2.
BYOL and Barlow Twins for 300 epochs with a batch size of
96. After pretraining, we finetuning with encoder initialized by
pretrained parameters for 50 epochs. The results of finetuning
are shown in Table III.

It can be seen from Table III that BYOL gets best perfor-
mance in three self-supervised methods. It is intriguingly to
find that MoCo v2 get relative lower performance. The reason
may be due to the large number of positive samples considered

Fig. 3. Training, validation and test accuracy of baseline (with ResNet-18
encoder) to the number of training epochs in one of 5-fold cross-validation.

TABLE III
FINETUNING ACCURACY FOR MOCO V2 BYOL AND BARLOW TWINS.

THE ENCODER IS RESNET35.

Methods Accuracy (%)
MoCo v2 90.6
BYOL 93.2
Barlow Twins 91.5

as negative samples in binary classification tasks. This issue
will be further investigated in VI-A.

According to studies on contrastive self-supervised learning,
the batch size, encoder size, and number of pretraining epochs
could all have a significant impact on performance. According
to the result of baseline experiment, smaller encoder could
have better performance. Therefore, based on BYOL, we
compare the performance with different encoder, epochs and
batch size. The results are shown in Table IV which also
includes the baseline results for comparison.

From Table IV, about the size of encoder we can see that
the performance is in line with baseline, that the smaller en-
coder performs better. Unlike in the contrastive self-supervised
learning research on ImageNet, the larger encoder gets better
performance does not work here. Furthermore, we discover
that more epochs in BYOL pretraining can improve encoder
training while larger batch size does not. When the ResNet-18
is pretrained after 600 epochs with 256 batch size, its perfor-
mance outperforms the baseline which is inspiring. This result
prove that contrastive self-supervised learning can improve the
performance of Crohn’s disease detection. However, there is
still a lot of room for improvement. Since our primary goal
is to investigate whether contrastive self-supervised learning
is effective for Crohn’s disease detection and which kind of
contrastive method is more effective, we haven’t done much
tuning of the network structure and training parameters. We
believe that many operations, such as training for longer
epochs, using smaller encoders and simpler MLP layers, and
using more specifically aimed data augmentation for WCE
images could improve performance.

C. Evaluation During Contrastive Pretraining

When the encoder is better pretrained, the accuracy of
one-epoch-finetuning should increase, while the representation



TABLE IV
OPTIMIZATION OF EPOCHS, BATCHS SIZE AND SIZE OF ENCODER OF

PRETRAINING. WHERE ACCURACY EXCEEDS THE BASELINE, IT IS
HIGHLIGHTED IN RED. BYOL IS USED AS PRETRAINING METHOD.

encoder number of epoch batch size accuracy(%)
Baseline ResNet-18 - - 93.8
Baseline ResNet-34 - - 93.5
ResNet-34 300 96 93.2
ResNet-18 300 96 93.6
ResNet-18 600 256 94.0
ResNet-18 300 256 93.6

Fig. 4. The curve of one-epoch-finetuning accuracy and distance S of ECDP
during pretraining. S is SEDCP in (3).

distance of positive samples decreases and the distance be-
tween negative sample pairs increases, resulting in a decrease
in sEDCP . The results of EDCP and one-epoch-finetuning
accuracy are shown in Fig. 4. The curves of Fig. 4 shows that
the trends in accuracy and sEDCP are roughly opposite. When
the training reaches 300 epoch, for example, the accuracy
and sEDCP reach a local maximum and a local minimum,
respectively. Besides, from the overall downward trend of
sEDCP , we can also know that the performance increases with
the increase of the number of epochs, and has not converged,
which is consistent with the results shown in the Table IV. As
a result, the curve demonstrates that sEDCP can effectively
reflect the training degree during the pretraining process and
can be used as an early-stopping and encoder selection tool in
pretraining.

VI. DISSCUSSION

A. Noisy Negative Samples of MoCo v2

According to study in MoCo [30], increasing the number of
features taken from the memory bank improves performance,
similar to increasing the batch size in SimCLR. However, in
our experiment, MoCo v2 does not perform well when there
are a large number of negative sample pairs, according to the
results shown in V-B. We believe that it is due to the noisy
sample pairs, in which many positive samples are misidentified
as negative samples. Because MoCo is an instance-instance
contrastive self-supervised learning method. During pretrain-
ing, all other samples are negative samples for a sample.
This strategy, however, is harmful for binary classification
tasks. Because there will be a large number of samples that
are considered negative during pretraining but positive during
finetuning. This causes the encoder to undergo conflicting

TABLE V
MEMORY BANK COMPARISON

Memory bank accuracy(%)
576 91.5
65536 90.6

training and it becomes more severe as the number of negative
samples increases when pretraining. There is no such issue in
BYOL or Barlow Twins. Because BYOL does not use negative
samples, and the negative samples used by the Barlow Twins
are based on filters. The results of Table V show that reducing
the number of negative samples improves the performance of
MoCo v2 on Crohn’s detection significantly. As a result, the
sample-based contrastive self-supervised method may not be
appropriate for binary classification or tasks on small dataset.
Furthermore, the noise cancellation for samples merits further
investigation.

B. Self-Supervised Learning on Small Dataset

Research on self-supervised methods is generally conducted
on large benchmarks, such as ImageNet, because this provides
a more objective evaluation of models and methods. Neverthe-
less, in the field of medical images, many datasets are small
and the data diversity is limited due to the focus on specific
disease or body part, such CrohnIPI. As a result, some methods
and techniques that work on ImageNet may not work on small
datasets. For instance, while a larger encoder and batch size
are typically effective in improving performance on ImageNet,
they are ineffective and even worsen performance in our
experiments. Network and training strategy design for small
datasets is lacking. These methods are critical in the practical
application of deep learning methods, such as classification
and segmentation of various medical image tasks. We hope that
this study inspires more research into self-supervised learning
on small datasets and we will also continue to investigate the
application of self-supervision on small data sets.

VII. CONCLUSION

To alleviate the lack of sufficient labeled data for Crohn’s
disease detection, we investigated the use of contrastive self-
supervised learning methods combined with unlabeled data,
which improved the accuracy to 94%. We also propose an
evaluation during contrastive pretraining (EDCP) method for
monitoring pretraining and model selection for self-supervised
pretraining. Finally, we observed some intriguing issues with
using contrastive self-supervised learning for small dataset
tasks in our experiments that merit further investigation.
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