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Tools of the Table Crackers: Using Quantitative
Methods to Analyze Historical Numerical Tables

Glen V Bl, Matthieu Hsso
and Clemency Moll

1. Introduction: Defining the Issues

The content of numerical tables presents technical and historical challenges
for those who seek to analyse them. However, such endeavors can be reward-
ing to historians. Table values provide a unique insight into the practices of
historical table makers, beyond the usual textual content. As well as illumi-
nating the practices of historical table-makers, tabular entries can also reveal
something of the users of the tables and their priorities.

Tabular manuscripts can reveal new historical information that may not be
explicit in other historical sources. One might be able to retrieve information
about the original numerical methods, algorithms, and hand computations
used to construct the entries. Other historical information might also be re-
stored, including the author’s sources, the abilities of those who compiled
them and their priorities, the intended audience (who used it), the table’s
application (how it was used), the underlying theory (astronomical, physical
or mathematical), transmission both to and from other sources, and depen-
dence on other tables and traditions. In some cases, analyses of tables can
even prompt scholars to propose new chronologies or dating.

Typically, table analysis efforts are directed primarily toward ancient and
early sources, rather than modern. Generally the older the table, the less in-
formation we have surrounding its numerical data. With the passing of time,
historical documents may be destroyed, damaged, separated, or corrupted.
Documentation that surrounds the tables might not survive; tables might be
incomplete. Furthermore, ancient cultures of inquiry may have had different
priorities and incentives from their modern counterparts in presenting and
promulgating scientific results. Often historical table makers were little mo-
tivated to reveal their techniques and methods of construction. All of this
makes recourse to the results of table cracking even more valuable.

To reflect the complexity of the process of seeking the underlying struc-
ture of a table, as well as the epiphany once the content has been unlocked,
table analysis has often been dubbed ‘table cracking’. Table cracking involves
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the manipulation of a table’s entries to retrieve information about the table.
Typically this includes the use of modern quantitative methods, arithmetical
or statistical, to glean underlying features of the numerical data. This line of
inquiry is often far removed from the original historical context in which the
table was constructed. Nonetheless these features can be relevant to a proper
historical understanding of the table and its context.

Despite the new information table cracking offers, many historians remain
skeptical. Some feel uneasy or unqualified to assess the appropriateness of the
sophisticated statistical procedures that are often employed. Others object to
the number or scope of the assumptions that must be made, the apparent
ad hoc nature of the process, or of the occasional imprecision or excessive
precision of the results. Some are wary of the historical interpretations that
have been proposed as a result of table cracking analysis.

We seek here to consider and classify the various processes that have fallen
under the rubric of ‘table cracking’. We will analyze through selected exam-
ples the procedures involved and the results they have generated. We will
outline some of the advantages and pitfalls of this approach, advance some
preliminary general standards for those who want to appreciate table crackers’
results, present guidelines to evaluate them critically, and provide references
to help readers begin to develop their own skills.

1.1. Accounting for Tabular Errors

The manual copying of literary texts invariably introduces errors or discrep-
ancies; textual critics use this principle when they produce a critical edition
of a text and determine the stemmatic relation between manuscripts. Errors
also can be illuminating to table crackers.1 Numerical tables are subject to
the same discrepancies when they are copied. These types of error can help
determine stemmatic relations between various copies of the same table and
other related tables. Moreover, these discrepancies can take on additional sig-
nificance. Indeed, errors in tabular values can be caused by significant factors
other than unintentional copying mistakes.

The most obvious errors in tabulated data are scribal errors. These are ac-
cidental mistakes and alterations that are introduced when a table is copied.
Usually the result of a moment of inattention or carelessness by the scribe,
they can reveal something of the process of copying and other aspects of the
original sources, such as common confusions between various symbolic nota-
tions or poor layouts. Another class of error is computational errors. These
discrepancies can indicate idiosyncratic decisions made at intermediary steps

1 See van Dalen, Ancient and Mediaeval Astronomical Tables, pp. 12-18; Neugebauer, Astro-
nomical Cuneiform Texts, p. 27.
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of computation, simple arithmetic mistakes, rounding conventions, the preci-
sion desired, or even differences in the nature of the function supposed to
have been tabulated. These errors can be evidence of the difference between
the algorithm expressed in the text and its tabular implementation.

Common ways of detecting errors include: comparing a recomputed tabu-
lar value with the original, examining first (or sometimes second) differences,
and plotting the function values on a graph and looking for aberrations or
irregularities. Sometimes one can trace the cause of an error back to some
intermediary computational step, although given the variety of decisions that
are made when implementing an algorithm, this is often very difficult in prac-
tice. Correcting errors can be more contentious; in some situations (especially
where there may be several alternative computational models), it can be un-
clear precisely what the correct value corresponding to a given entry should
be. In fact, computational discrepancies can challenge the notion that there
is an original correct table underlying the existing one. One can then imag-
ine the challenges that might arise in producing a critical edition of such a
table.

2. Table Cracking I: Restoring the author ’ s sources and methods

The term ‘table cracking’ has been interpreted in a variety of ways; almost
the only constant between them is the use of the table’s entries to gain his-
torical information, usually in a quantitative manner. These meanings divide
roughly into two categories. Firstly, one may learn about the means by which
the table was constructed. This includes ascertaining the theoretical models
underlying the table, determining the use of certain historically attested nu-
merical parameters or other underlying tables, and reconstructing the process
of computation. These goals reflect the table’s origins, the scientific activity
and authorial process that resulted in the table’s production. Secondly, ta-
ble crackers attempt to restore information about how the table must have
been used or evaluated after it was constructed. Activities related to autho-
rial process, in particular, tend to share certain methodological features that
deserve close attention. Thus we survey efforts to uncover a table’s mathemat-
ical origins in Section 2.2 and make evaluative methodological observations in
Section 2.3, before proceeding to restoring the table’s applications in Section
2.4.

2.1. Understanding the theoretical models underlying a table

Reconstructing the theoretical model according to which a table was com-
puted is often challenging. The text that accompanies the table, known as
paratext, can offer some evidence about the underlying structure. But the
task can be more difficult in the typical case when the historical sources
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Tabular data First differences
Date sign deg min deg min
1 Jan 9 20 22
2 Jan 9 21 24 1 2
3 Jan 9 22 25 1 1
4 Jan 9 24 27 1 2

...
...

...
...

...
...

1 March 11 20 55
2 March 11 21 55 1 0
3 March 11 22 54 0 59
4 March 11 23 54 1 1

...
...

...
...

...
...

1 July 3 18 26
2 July 3 19 23 0 57
3 July 3 20 20 0 57
4 July 3 21 17 0 57

Table 1: An excerpt from Cortés’ Table of the true place, with first differences

describing the tables give contradictory, vague, or misleading reports. The nu-
merical entries themselves are usually the starting point; they often provide
table crackers with sufficient information to recover the table’s mathemati-
cal framework. We consider in detail an example of a reconstruction of the
model underlying a pair of tables in which the layout of the tables proves to
be misleading.

The Spanish cosmographer Martin Cortés de Albacar’s (1510–1582) Arte
de Navigar  (1551) became one of the most popular navigation manuals by
the beginning of the  seventeenth century. Many aspects of astronomical nav-
igation are detailed in this treatise.  We concentrate here on two tables de-
signed for the computation of the sun’s true  longitude at noon, a necessary
step in the determination of one’s terrestrial latitude. 

In this example, as with most others in this chapter, the author was work-
ing in a  geocentric astronomical system inspired by Ptolemy’s Almagest. In
this tradition, the  standard procedure to determine the true solar longitude
involves two steps. The first  employs a set of tables that give the sun’s mean
longitude. Since it is assumed that the sun  travels along the ecliptic at a con-
stant velocity, the table computes a linear function with  respect to time. The
second step uses a table that computes a correction factor, called the  solar
equation, that adjusts the longitude from mean to true based on the sun’s
position in  its orbit (so that both the argument and the function are mea-
sured in degrees). A  geometric model (see Figure 2 on p. 31) allows the solar
equation to be calculated  trigonometrically for any argument. Did Cortés fol-
low this model of computation in the  Arte de Navigar? 
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Tabular data First differences Tabular data First differences
years deg min deg min years deg min deg min
1545 1 0
1546 0 45 0 −15 1558 0 50 0 −15
1547 0 30 0 −15 1559 0 35 0 −15
1548 0 15 0 −15 1560 0 21 0 −14
1549 1 2 0 +47 1561 1 7 0 +46
1550 0 47 0 −15 1562 0 52 0 −15
1551 0 32 0 −15 1563 0 37 0 −15
1552 0 18 0 −14 1564 0 23 0 −14
1553 1 4 0 +46 1565 1 9 0 +46
1554 0 49 0 −15 1566 0 54 0 −15
1555 0 34 0 −15 1567 0 39 0 −15
1556 0 19 0 −15 1568 0 25 0 −14
1557 1 5 0 +46 1569 1 11 0 +46

Table 2: An excerpt from Cortés’ ‘solar equation’ table, with first differences

The caption of the first table in the Spanish edition is Tabla del verdadero
lugar del sol, which was incompletely translated in the first English edition
(1561) as The table of the true place. Just as in mean motion tables, this table’s
argument is in time units and its entries are in degrees of arc, giving values
for each day of an unspecified year. However, a quick examination of the first
differences of the entries verifies that the tabulated function is not linear (see
Table 1). 

The caption of the second table is Tabla de las equaciones del sol, cor-
rectly translated in the first English edition as Table of the equations of the
sunne. But this table is nothing like a solar equation. Its argument is in cal-
endar years  (running from 1545 to 1688), rather than degrees; and the table’s
entries form a roughly  linear trend rather than trigonometric (see Table 2).
Thus, despite the titles, Cortés does  not follow Ptolemy. 

Cortés instructs his readers how to use the tables using a worked example.
To determine  the sun’s true longitude on 22 February 1568, select the entry
corresponding to 22  February in the first table; then select the entry corre-
sponding to 1568 in the second  table. Add these two entries together, and
the result is the sun’s true longitude. This  method of computation confirms
what we just saw: Cortés is not using Ptolemy’s tabular  approach. However,
this does not imply that the underlying geometrical model is  fundamentally
different. Further exploration is needed. When Cortés’ tables were  compiled,
the Parisian Alfonsine tables were dominant in Europe and would have been
 readily available to Cortés or his sources. The models underlying Alfonsine
astronomy are  well known.2 So we begin by hypothesizing that the tables can

2 See for example Chabás and Goldstein, The Alfonsine Tables of Toledo.
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Tabular data Alfonsine position (1483) Difference
Date sign deg min sign deg min min
1 Jan 9 20 22 9 20 23 1
2 Jan 9 21 24 9 21 24 0
3 Jan 9 22 25 9 22 25 0
4 Jan 9 23 26 9 23 27 1

...
...

...
...

...
...

...
...

1 March 11 20 55 11 20 57 2
2 March 11 21 55 11 21 57 2
3 March 11 22 54 11 22 56 2
4 March 11 23 54 11 23 56 2

...
...

...
...

...
...

...
...

1 July 3 18 26 3 18 27 1
2 July 3 19 23 3 19 24 1
3 July 3 20 20 3 20 21 1
4 July 3 21 17 3 21 18 1

Table 3: Sample of Cortés’ Table of the true place compared with the true position of the sun
computed according to the editio princeps of the Parisian Alfonsine Tables

be reconstructed from  Alfonsine material. If this hypothesis proves correct,
then both the model and parameters  originate in Alfonsine astronomy.

Let us begin with the Table of the true place, which gives the position of
the sun for each  day of a full year. The first differences of the entries in this
table vary, indicating that the  table does not provide mean positions. But it
may provide true solar positions. In fact, it  appears that it does. We recom-
puted the true solar position for each day of the year   1545, the first argu-
ment of the equation table, according to the Parisian Alfonsine Tables  as they
are presented in the 1483 Ratdolt edition (princeps). The difference between
 these recomputations and the values given by Cortés are within 2 arcminutes
(see Table 3).3 More advanced table-cracking techniques may help us analyse
whether the  discrepancies between Cortés’ values and the recomputed ones
show any significant  pattern,4 but this fit is good enough to demonstrate that
the table computes Alfonsine true  solar positions for 1545. 

Turning to the entries of the equation table, we find a clear pattern: each
value is about 15  minutes smaller than the preceding one for a sequence of
three entries; then, at the fourth  entry (a leap year) the value increases by
46 or 47 minutes; and the cycle repeats. So this  table does not represent

3 In this table we have expressed the Alfonsine positions using 30° increments in order to
follow Cortés’ practice and to avoid confusion. The Parisian Alfonsine Tables, however, use
60° increments.

4 For instance, one may notice that all differences are positive. This may be caused by a
different epoch value.
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a solar equation, but rather a quantity that makes an adjustment  every leap
year. It seems likely that the table gives the total displacement of the mean
(or  true) sun on the ecliptic for the year: that is, the difference between the
mean (or true)  sun’s longitude at the beginnings of years n and n+ 1. The
numerical effect of the  distinction between mean and true displacement of
the sun is only around 2 arcminutes in  longitude. So, to confirm the link
between Cortés’ tables and those of the Parisian  Alfonsine tradition, we may
chose either hypothesis. Tentatively, we guess mean  displacement. 5

A variety of methods have been developed to derive mean motion pa-
rameters from mean motion tables.6 Here we adopt a simple calculation,
dubbed ‘squeezing’ by  Neugebauer and Kennedy,7 and refer the reader to
the next section for descriptions of  more sophisticated parameter derivation
techniques. Computing the  difference between mean solar positions over the
largest possible range consisting of a multiple of  four years in Cortés’ equa-
tion table (1545 to 1685), we can derive a daily mean motion  parameter
by simply adding this difference to 50,400 (360× 104, i.e., the 140 com-
plete  revolutions of the sun in 140 years) and dividing the result by 51,135
(365;25× 140, i.e., the number  of days in 140 Julian years). This gives us
a parameter value of 0;59,8,19,38 ◦/day. If we assume that  the table values
were rounded to the last place, we obtain lower and upper bounds for  the
solar mean motion parameter of 0;59,8,19,36 ◦/day and 0;59,8,19,40 ◦/day.8

The  parameter used in the Alfonsine tradition of 0;59,8,19,37,19,13,56 ◦/day
lies within this  interval.9 On the other hand, the second plausible historical
parameter, the sidereal motion of 0;59,8,11,28,27 ◦/day used in the Toledan
tradition, does not lie within the interval. The same holds for Ptolemy’s
0;59,8,17,13,12,31 ◦/day and al-Battānī’s 0;59,8,20,47 ◦/day (corresponding to
a solar year of 365;14,26 days). Therefore this rough estimate is enough to
confirm our hypothesis that the equation table depends  on Alfonsine mean
motions. 

Historians often encounter considerably more complex cases. When study-
ing a set of fourteenth-century Latin tables by John Vimond, José Chabás
and Bernard R. Goldstein were  faced with peculiar layouts, headings, and

5 The hypothesis that the equation table gives the true position (rather than the mean) is
less likely because it would make little sense to use a position specific for the first day of the
year as an adjustment for every position of that same year.

6 See, for instance, Mielgo, ‘A Method of Analysis’, and van Dalen, ‘Origin of the Mean
Motion Tables’.

7 See, for example, Kennedy, ’A Survey’, p. 20.
8 These bounds do not constitute a confidence interval as they are not derived from sta-

tistical analysis. However they can be heuristically used in a similar fashion.
9 This number may seem unreasonably precise to us but it actually reflects the actors’

practices.
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entries, and no accompanying instructions.10  These tables includes elements
to compute latitudes and longitudes of the planets and  luminaries, syzygies,
and material on the fixed stars. Using mathematical tools similar to  those
described below (reconstruction of computations, parameter estimation,  com-
parison of results with historically attested sources), Chabás and Goldstein
were able to uncover the underlying theoretical model and parameters. This
analysis revealed that Vimond’s set is the earliest known Parisian tabular ma-
terial related to the Alfonsine tradition. 

In other cases, issues can arise from the number and complexity of the
possible underlying models. For instance, in sixteenth-century Vienna, John
Angelus computed ephemerides on the basis of Peurbach’s planetary tables.
Richard Kremer and Jerzy Dobrzycki analyzed the discrepancies between the
ephemerides and the planetary positions derived from the standard Alfonsine
tradition.11 The differences revealed that Peurbach must have known of some
of the geometrical models developed in Maragha, at least in the form of a
diagram. 

Restoring missing entries in tables
Especially in ancient studies, the historian may be confronted with a numeri-
cal table in a fragmentary state. Cuneiform tables, for instance, are frequently
broken, manuscripts can be torn or crumbling, or the surface of a document
may be damaged by wear, water, or mould, rendering part of the text illegible.
Despite this, table crackers often are able to reconstruct the missing entries.
This is because the table’s numerical content, unlike (say) the text of prose
or poetical works, generally has an underlying theoretical model and compu-
tational algorithm that determines the entries. Thus, in principle, it can take
as little as one entry and its argument (and sometimes partial at that) to
establish the underlying pattern, and consequently restore the missing entries.

The mathematical corpus of Mesopotamia has benefited especially from
such reconstruction efforts. Cuneiform texts from this region were inscribed
on clay tablets, by now several millennia old. When excavated, more often
than not they are broken (sometimes into many pieces), the clay surface is
worn, and the imprinted cuneiform signs are illegible. In the case of numer-
ical tables, reconstruction of the missing content is sometimes a trivial task
(e.g., fragmentary multiplication tables or reciprocal tables); however, in cases
where the underlying mathematical relation is unexpressed or unclear, it can
be difficult or impossible. If the table is the only one of its kind, scholars
usually are able to restore it only after prolonged and painstaking analysis, if
at all.

10 See Chabás and Goldstein, ‘Early Alfonsine Astronomy in Paris’.
11 Dobrzycki and Kremer, ‘Peurbach and Maragha Astronomy?’.
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Richard Kremer and Jerzy Dobrzycki analyzed the discrepancies between the
ephemerides and the planetary positions derived from the standard Alfonsine
tradition.11 The differences revealed that Peurbach must have known of some
of the geometrical models developed in Maragha, at least in the form of a
diagram. 

Restoring missing entries in tables
Especially in ancient studies, the historian may be confronted with a numeri-
cal table in a fragmentary state. Cuneiform tables, for instance, are frequently
broken, manuscripts can be torn or crumbling, or the surface of a document
may be damaged by wear, water, or mould, rendering part of the text illegible.
Despite this, table crackers often are able to reconstruct the missing entries.
This is because the table’s numerical content, unlike (say) the text of prose
or poetical works, generally has an underlying theoretical model and compu-
tational algorithm that determines the entries. Thus, in principle, it can take
as little as one entry and its argument (and sometimes partial at that) to
establish the underlying pattern, and consequently restore the missing entries.

The mathematical corpus of Mesopotamia has benefited especially from
such reconstruction efforts. Cuneiform texts from this region were inscribed
on clay tablets, by now several millennia old. When excavated, more often
than not they are broken (sometimes into many pieces), the clay surface is
worn, and the imprinted cuneiform signs are illegible. In the case of numer-
ical tables, reconstruction of the missing content is sometimes a trivial task
(e.g., fragmentary multiplication tables or reciprocal tables); however, in cases
where the underlying mathematical relation is unexpressed or unclear, it can
be difficult or impossible. If the table is the only one of its kind, scholars
usually are able to restore it only after prolonged and painstaking analysis, if
at all.

10 See Chabás and Goldstein, ‘Early Alfonsine Astronomy in Paris’.
11 Dobrzycki and Kremer, ‘Peurbach and Maragha Astronomy?’.
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Figure 1: John Britton reconstructs a table of fourth powers based on a very small fragment.
Reproduced from the Journal of Cuneiform Studies 43–45 (1991–93), p. 75.
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2]3 22 30 52 44 3 45
]36

]18 45 52 44 3 45
]26 29 16 11 44 31 36 17 46 40

]41 0 59 40 24 57 36
1]8 37 59 52 58 6 47 7 59 0 44 26 40
5]8 10 47 45 14 3 45

]37 44 3 45
]35 36 57 36
1]0 13 14 59 53 42 41 10 28 37 25 16 2 57
]2 42 14 14 34 29 52 44 56 29 3 45

]5 45 55 7 56 41 51 21

]30 14 3 45

]16 49 24 21 47 21 33 31 48 59 3

]25 3 21 36

]20 26 44 0 14 3 45

Table 4: A transcription of the extant numbers on BM 55557

One impressive reconstruction was a small fragment of a cuneiform tablet
(BM 55557) dating from some time in the first millennium BCE. The signif-
icance of the numerical entries in this fragment eluded scholars until recently
(see Figure 1 and Table 4). Smoothness on two contiguous edges of the frag-
ment revealed that the extant piece came from the top right hand corner of
the original tablet. Strings of numbers remained on both sides of the tablet,
evidently the tail ends of long entries in sexagesimal numeration. After some
careful number crunching, data matching, failed attempts, and a few key hy-
potheses, assyriologist John Britton discovered a surprising relation between
these strings.12

The key to Britton’s reconstruction was a pattern in the tail ends of the
sexagesimal strings. He noticed that almost all the terminal values were 36,
45, or 40; a significant number of those ending in …45 ended in …44,3,45.
These and other similar observations led him to conclude that the numbers
are ‘regular’; that is, they have only 2, 3, or 5 as prime factors. Regular num-
bers played an important role in Mesopotamian mathematics partly because
their reciprocals have a finite representation in the sexagesimal number sys-
tem. There is much evidence of their properties being explored by ancient

12 Britton, ‘A Table of Fourth Powers’.
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12 Britton, ‘A Table of Fourth Powers’.
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practitioners; for instance, there exist in the cuneiform corpus tables of recip-
rocals of regular numbers, as well as tables of the squares of regular numbers.

Armed with this insight, Britton consulted a massive tabulation of 11-digit
regular sexagesimal numbers N = 2p3q5r and their reciprocals compiled by
Gingerich, over 36 pages in length, listed according to various values of the
powers p, q, r.13 For those N that ended in the string …44,3,45, Britton no-
ticed similarities in the corresponding values of p, q, r. In particular, the value
N(0, 16, 40) = . . . 23,22,30,52,44,3,45 matched line 1 of his text. In the same
way, Britton identified the numbers in lines 3 and 9, and from this followed
yet more lines. Once a handful of numbers had been identified, Britton no-
ticed that the values of p, q, r were all divisible by 4. This leads naturally to
the conclusion that the numbers are the tail ends of fourth powers of regu-
lar sexagesimal numbers. At this point it was easy to reconstruct the leading
sexagesimal places (around eight) of the broken entries, and complete entries
that had been broken off of the table altogether. Furthermore, based on the
tablet’s physical dimensions he also proposed that there were three additional
columns that preceded the fourth powers.14 These columns, he argued, in-
cluded a row count, the regular numbers themselves, and their factorisation
details.

Because of the damage to the tablet (only 2 partial edges remained: top
right and far right edge), Britton could only hypothesize where the fourth
powers began and where they ended. Now that the nature of the table was
confirmed, he could compare with tables of similar functions (such as recip-
rocal tables and the so-called ‘double six place’ tables). This led to the surmise
that the original tablet contained fourth powers of regular numbers running
from 1,1,2,6,33,45 to 1,58,31,6,40. Britton noted that while contextual con-
siderations such as these can be helpful, they can also raise more questions
than they solve. BM 55557 is the only fourth power tablet of its kind in the
extant record, and there are no mathematical problems in the entire corpus
that call for the computation of a fourth power or its root. Thus, despite the
reliable reconstruction of the tablet’s numerical content, issues concerning its
purpose still remain outstanding.

Mathieu Ossendrijver recently faced a similar challenge.15 The fragments
he was studying appeared to be without parallel in the primary literature and
exhibited remarkable mathematical virtuosity, seemingly unconnected to any
practical application. Some tablets contained numbers with up to 30 sexages-
imal places, making them the longest numbers appearing in the cuneiform

13 Gingerich, Eleven-Digit Regular Sexagesimals.
14 This was supported by the curvature of the existing fragment, which suggested the over-

all size of the original table. See Britton, ‘A Table of Fourth Powers’, pp. 71–72.
15 Ossendrijver, ‘Powers of 9’.
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corpus (and possibly antiquity!). Ossendrijver noticed that the final sexages-
imal places in one of these lists of numbers, so-called text A, alternated be-
tween 9 and 21, suggesting a relation to powers of 9 expressed in sexagesimal
form. From this clue, he identified text A as a special sort of factorization ta-
ble for 946, namely sexagesimal representations of 9n, 0 ≤ n ≤ 46.16 In a like
manner, the final places of a similar text, the so-called text B, alternated be-
tween 12, 36, 48, and 24, which suggested factors of 5. (The factors of 5
had emerged because 12 is the reciprocal of 5 in base 60.) Text B turned out
to be a factorization table for 911 · 12n (n ≥ 39). These tablets reveal a new
sort of mathematical activity in the ancient Near East, hitherto unknown to
modern scholars.

A contrasting technique for reconstructing the contents and circumstances
of cuneiform tabular texts was developed by Neugebauer when he was work-
ing on what would eventually be called the Astronomical Cuneiform Texts
(ACT) in the 1930s. Neugebauer was faced with many fragments of tabular
astronomical ephemerides, some dated, some not. In cases where he had both
a dated fragment and a fragment of the same type but undated, he developed
a method of dating the undated fragment called the ‘Linear Diophant.’17 In a
nutshell, Neugebauer computed the function tabulated on the dated text for-
ward and backward in time until he reached a value (or modulo thereof, for
periodic functions) that corresponded to a value in the undated text. From
this he could calculate the time interval from the dated tablet to the un-
dated one, and thus establish the date of the undated fragment. Of course,
many of the fragments concerned functions that were periodic. These were
typically computed via linear zigzag functions or step functions, so that the
Linear Diophant method would furnish infinitely many possible dates for the
undated fragment. However, almost always only one solution was historically
plausible. Concerning his procedure and its connection to the tasks of the
historian of astronomy, he was quite emphatic:

The method … has nothing to do with astronomy, nor with history. It only fulfills a
task for a certain group of astronomical cuneiform texts which would otherwise fall
on the custodian of a museum [namely, joining tablet fragments] … It is essential
to emphasize that the solution of this task becomes possible here without any hy-
pothesis about the content of the texts, since nothing else is used but the generative
laws of the series of numbers that are empirically derived from the fragments.18

16 Here, Ossendrijver postulates that a table such as this one could have been a way to
double check 946 is correctly computed by repeatedly multiplying it by 6;40, i.e. the reciprocal
of 9, until 1 is reached; this is the sense in which ‘factorisation’ is invoked.

17 For details, see Neugebauer, Astronomical Cuneiform Texts, pp. 35–37.
18 Ossendrijver, ‘Translating Babylonian Mathematical Astronomy’, p. 335.
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Figure 2: The solar equation q(am)

2.2. Reconstructing a table’s numerical parameters

Most mathematically computed astronomical tables rely on functions with
built-in numerical parameters. For instance, the solar equation, the difference
between mean solar motion and true solar motion, is found in Ptolemaic
astronomy according to

q(am) = arctan
e sin am

60+ e cos am
, (1)

where the radius of the deferent (the circle on which the sun orbits the earth)
is set equal to 60, the mean anomaly am increases at a constant rate, and e is
the distance from the earth to the center of the deferent (see Figure 2). Dif-
ferent astronomers used different values for e; Ptolemy used 2;29,30, while al-
Battānī used 2;4,45. A common parameter in Islamic tables, related to the Zīj
al-ʿAlāʾ ī, was to choose e so that the maximum solar equation (which occurs
at am ≈ 92◦) has exactly the value 1;59; this occurs when e ≈ 2;4,35,29,51.
However, medieval authors did not often report their parameter values; they
simply presented the completed table. Determining the parameter used by a
certain astronomer from his table of the solar equation would help to place
that astronomer into a tradition of astronomical inquiry.

Van Dalen has developed a pair of statistical tools that allow the scholar to
input a historical table and receive back an estimate of a numerical parameter
embedded within it.19 Briefly, the first method works as follows: take the
180 entries in the solar equation table, substitute them one at a time with

19 van Dalen, ‘A Statistical Method’.
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the appropriate value of am into (1), and solve for e. The resulting values
of e will differ slightly from each other, due to errors caused by rounding
and approximation at various stages of the calculation. Some values will be
more reliable than others; for instance, q(1◦) = 0;2,0 is a small number and
rounding will have a larger relative effect on it than on other entries. Van
Dalen thus computes a weighted average of the estimates, with the weights
chosen corresponding to a measure of the reliability of the estimate. He then
uses a technique related to least squares20 to generate an interval around the
estimator that is 95% likely to contain the true value of e (provided certain
statistical assumptions are satisfied21).

Van Dalen’s second approach is a maximum likelihood estimator. Sup-
pose that the table has q(1◦) = 0;2,0. Presumably this is the rounded result
of a calculation that produced a number somewhere between 0;1,59,30 and
0;2,0,30. Back calculating from these two values produces an interval of pos-
sible values for e. In a perfect world, intersecting the intervals produced in
this way from every entry in the table provides a very small interval of val-
ues of e that could have led to this table. Unfortunately, due to errors in
computation and rounding, this seldom occurs. Instead one takes an estimate
derived from the values of e that correspond to the largest number of these
intervals. Van Dalen points out that this criterion is most effective for ta-
bles with few errors, and especially for mean motion tables (for which the
underlying function is linear).

Van Dalen has applied these methods to a number of situations with suc-
cess. We report here one case in his original paper, the solar equation ta-
ble in the popular 13th-century Shāmil Zīj. For the solar eccentricity his
weighted estimator yields e= 2;4,35,29,29, with the 95% confidence interval
(2;4,35,26 , 2;4,35,35). The maximum likelihood estimator yields similar re-
sults, with an interval of (2;4,35,29,29 , 2;4,35,32,56). This clearly rejects both
e values given by Ptolemy and al-Battānī, but confirms strongly the parame-
ter generated by a maximum solar equation of 1;59. Van Dalen has published

20 Other table cracking researchers have used least squares techniques; see for instance
Kremer, ‘Marcus Schinnagel’s Winged Polyptych’ (cf. p. 45). The basic idea is to fit a mathe-
matical model to a set of data, and choose the parameters of the model in order to minimize
the sum of the squares of the deviations of the data from the model’s prediction.

21 The most important of these assumptions is statistical independence of the individual
estimates for e, which can lead to problems. For instance, if a stretch of ten entries was
computed by interpolating linearly between the two ‘node’ entries preceding and following
them, then the estimates of e generated by these ten entries will be related to each other for
two reasons: all ten entries are affected by the errors in the entries at the two nodes, and
the quantity being tabulated is a linear function between the nodes rather than the function
itself. In this situation these estimates would fail the assumption of statistical independence.
Van Dalen is careful to check for the use of interpolation before applying his methods.
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results based on these and similar methods elsewhere,22 and has also recon-
structed several parameters at once from al-Khwārizmī’s table for the equation
of time.23

2.3. Determining dependences between tables

The nature and process of the transmission of knowledge is fundamental to
the study of the history of science. However, transmission of numerical tables
often occurred through means that left no documentary evidence behind: for
instance, an author finds a table of interest to his current project in his per-
sonal library, and uses it to compute a new table for some other purpose. Sel-
dom is the debt to the original table acknowledged in the manuscripts. Such
a transmission might happen within or across cultures, between two different
stages of a single author’s career, or even within a collection of tables. The
latter is the case for the sine and tangent tables in the 13th-century Baghdādī
Zīj, which van Dalen ascribes to Abū l-Wafāʾ.24 As the argument of the tan-
gent function approaches 90◦, its values grow without bound. If the tangent
is calculated the conventional way, according to tan θ = sin θ/ sin(90◦ − θ),
the values for the sine in the denominator become very small, and rounding
produces a large relative error. Through recomputation, van Dalen shows that
the large errors in the tangent table (up to more than eleven units in the
second-last sexagesimal place) are almost completely accounted for by com-
putation from the values in the sine table. This verifies that the tangent table
derived from the sine table.

Usually, however, the errors in table entries are much smaller, and the de-
pendence is not so obvious. One such situation is found in the works of
14th-century Syrian astronomical timekeeper Shams al-Dīn al-Khalīlī, whose
occupation was to use mathematical astronomy to guide the Muslim faithful
to pray at the appointed times of day, in the direction of Mecca (the qibla).
Al-Khalīlī composed one of the most accurate and thorough tables for the
qibla of the medieval period.25 Separately, he constructed a set of auxiliary
tables, which in various combinations allow the reader to solve a variety of
problems in spherical astronomy, including the qibla.26 Al-Khalīlī’s auxiliary
functions were

f (φ, θ) = sin θ
cos φ , g(φ, θ) = sin θ tan φ, and G(x, y) = arccos x

cos y . (2)

22 For examples, see van Dalen, Islamic Astronomical Tables.
23 van Dalen, ‘Al-Khwārizmī’s Astronomical Tables’.
24 van Dalen, ‘Islamic and Chinese Astronomy’, pp. 349–51.
25 King, ‘Al-Khalīlī’s Qibla Table’.
26 King, ‘Al-Khalīlī’s Auxiliary Tables’.
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Figure 3: The dependence of the values in one table on the values of another. Consider the
three vertical number lines aligned so that moving horizontally between them corresponds
to precise computation. The � symbols represent the historical table values; gR is back com-
puted from fH. In this instance gR is much closer to gH than to gC, providing evidence for
dependence.

Van Brummelen27 hypothesized that al-Khalīlī’s table for f was computed from
the entries in the table for g, according to the relation

f (φ, φ̄± n) = cos n± g(φ, n).

If this were to be verified, it would effectively demonstrate that Muslim as-
tronomers were sufficiently aware of issues in numerical computation to de-
vote intellectual resources to seeking out mathematical techniques for improv-
ing computational speed: the same sort of thinking that in Europe produced
prosthaphairesis and, eventually, logarithms. Since the relation is mathemati-
cally correct, recomputation of the entries proves nothing — any mathemati-
cally valid method should produce correct function values. Rather, to demon-
strate the hypothesis one must locate traces of the errors in the entries of the
table for g in the entries of the table for f.

A general procedure to test hypotheses such as this was developed by Van
Brummelen.28 Applied to this example, it works as follows. Let g(x) be the
function of the purported underlying table, and let f (g(x)) be the function
of the hypothesized dependent table with argument g(x). For each entry of
g and the conjectured dependent entry in f, define the following quantities:

• fC and gC, the correct values of the functions;

27 Van Brummelen, ‘The Numerical Structure’.
28 Van Brummelen and Butler, ‘Determining the Interdependence’.
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27 Van Brummelen, ‘The Numerical Structure’.
28 Van Brummelen and Butler, ‘Determining the Interdependence’.
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• fH and gH, the values of the entries in the historical tables;
• gR = f −1(fH), a reconstructed value of the underlying g derived from

fH.
The question hinges on whether gR lies closer to gH or to gC (see Figure 3).

• If gR is closer to gH than to gC, a trace of the error in g is present in
f, and we have evidence for dependence.

• If gR is closer to gC than to gH, the dependent entry is more accurate
than one would expect from the use of the underlying entry, and we
have evidence that the dependent table is too accurate to derive from
the underlying table.

For each pair of underlying and dependent entries the quantity | gH − gR| −
| gC − gR| is computed, and the resulting data are tested for a mean differ-
ent from zero. For this purpose Van Brummelen chooses the non-parametric
Wilcoxon signed-rank test; while it is less powerful than the traditional sta-
tistical procedures described elsewhere in this article, it is robust against the
possibility of scribal errors and other disturbances in the data.

Each page of the auxiliary tables gives entries for f and g for a fixed
value of φ and θ = 1◦, 2◦, . . . , 90◦, so a separate test was performed for the
columns with φ = 5◦, 10◦, . . . , 55◦ (the highest value of φ in the table). The
test for φ = 5◦ gave a p-value of 0.2% in favor of dependence,29 and for
φ = 45◦ the p-value was 1.4%; all other p-values were less than 0.05. Thus
Van Brummelen concluded strongly in favor of dependence.

This episode has a surprising epilogue. In 2000, David King discovered an-
other set of tables authored by al-Khalīlī. In a rare instance of statistical meth-
ods verified by later historical sources coming to light, the new manuscript
confirmed that al-Khalīlī had computed his tables according to the method
asserted by the statistical procedure.

2.4. Reconstructing the process of computation

For some tables, it is possible to reconstruct the computational process that
generated the table in more detail than identifying parameters or underly-
ing tables. The possibilities here are endless and depend on the context. They
might include deciding between several possible mathematical paths to the
solution, detecting the use of interpolation, or identifying the use of an ap-
proximate method at a certain moment in the process of computation. Since
most tables represent functions defined mathematically, the errors in the en-
tries are usually the only basis on which to decide these questions, along with

29 A p-value measures the probability of obtaining a result at least as far from the expected
value as the observed result, under the null hypothesis that no effect exists.
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Figure 4: Third and last page of al-Kāshī’s incomplete double-argument table of the latitudes
of Venus. For the first page, see Plate 11; for the second page, see p. 339.  © The British
Library Board, MS India Office 430, fol. 154v. 
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of Venus. For the first page, see Plate 11; for the second page, see p. 307.  © The British
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the collection of historically plausible techniques that bear on the problem.
We seldom read of table construction in the primary literature or see a table
partly completed. One nice exception to this (see Figure 4), part of a double-
argument table of latitudes for Venus in Jamshīd al-Kāshī’s early 15th-century
Khāqānī Zīj, illustrates that we may not assume that a computer started with
the first entry and simply worked his way through to the end.30

Since the possibilities for how a table may have been constructed are so
varied, general techniques are not usually available. Usually researchers work
by comparing the results of the various plausible methods of calculation with
the pattern of errors in the table. It is both easy and difficult to measure the
success of a certain method: easy, since one may declare victory by choosing
the method that best fits the entries among the historically plausible alterna-
tives; difficult, because one’s confidence in that assertion cannot be measured
easily in a quantitative way. Fortunately, in many cases the result of the re-
computation is so clear that an unequivocal decision is easy to make.

One simple example of this is the sine table in a manuscript of a Latin
translation of al-Khwārizmī’s zīj. This table uses a base circle radius of R =
150, of Indian origin. But Benno van Dalen has pointed out that almost all
the entries in the table end in 0, 2, 5, or 7.31 This suggests that the table was
generated by multiplying a sine table with the Ptolemaic parameter R= 60 by
2½.32 In this case the generated table is in fact precisely equal to the original
table scaled by a constant. Other instances have been discovered where a new
table was generated from an existing table by means of a scaling factor, but
the results are only approximately correct.33 In these cases, presumably the
table’s author either wanted to save time and effort, or was not capable of
computing the new table directly.

Another example of a clear reconstruction is the sine table in al-Samawʾal’s
12th-century Exposure of the Errors of the Astronomers. Al-Samawʾal criticizes
traditional sine tables for using approximative methods, forced on table mak-
ers by the use of a circle divided into 360 parts, i.e., degrees. Al-Samawʾal’s
table uses 480◦, seemingly bypassing the problem. However, a distinctive er-
ror pattern (every fourth entry correct, and errors bulging in the negative
direction between them) is almost precisely matched by computation of the
table by interpolating between entries in a traditional sine table.34

30 See Van Brummelen, ‘The Tables of Planetary Latitudes’.
31 van Dalen, ‘Al-Khwārizmī’s Astronomical Tables’, p. 206.
32 Hogendijk, ‘Al-Khwārizmī’s Table of the “Sine of the Hours”’, p. 11, reconstructs the sine

table used by al-Khwārizmī to generate his table of the ‘sine of the hours’; this underlying sine
table actually does use R= 150.

33 See for instance Van Brummelen, Mathematical Tables, pp. 176-79, and Dorce, ‘The Tāj
al-azyāj’.

34 Van Brummelen, Mimura and Kerai, ‘Al-Samaw’al’s Curious Approach’.
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c g(c) Error
12 0,24 [ −7]
24 2,16 [+12]
36 4,32 [ −6]
48 8,18 [ +7]
60 12,26 [−11]
72 17,44 [ −7]
84 23,24 [−19]
96 29,49 [−10]
108 36,14 [ −9]
120 42,38 [ +1]
132 48,18 [ −1]
144 53,12 [ +2]
156 56,36 [−17]
168 59, 4 [ −8]
180 60, 0 0

Table 5: Excerpt from the Almagest lunar interpolation table. (The full table is given for
arguments in multiples of 6◦ up to c= 90◦, and in multiples of 3◦ thereafter.) Errors, given
in square brackets, are in terms of the last place. Thus, for instance, the correct value of g(c)
is 0,31.

A typical example of a slightly more sophisticated reconstruction comes
from Ptolemy’s Almagest. Most of the Almagest’s tables are difficult to study
for their computational secrets, because the tables’ entries tend to be accurate
to within one or two units in the last place. This is not true of one group of
tables. To determine the longitudes of the moon or one of the planets, the
equation of anomaly p must be tabulated. However, it is a function of two
arguments. To avoid tabulating a gigantic rectangular grid of entries, Ptolemy
devises an approximative process that requires the tabulation of four single-
argument functions. One set of these tables, the interpolation coefficient g(c),
contains unusually large errors in the last place (see Figure 5).

Now, the function g(c) is computed fairly directly from pmax(c), the max-
imum equation of anomaly. For the lunar table, Van Brummelen35 back com-
puted a set of values of pmax(c) from the values of g(c), and discovered a clear
pattern: the third sexagesimal places of these values cluster strongly around 0,
15, 30, and 45 (see Figure 5). Thus Ptolemy used values of pmax(c) rounded to
units of 0;0,15. (Further examination revealed that this step size was caused
by an application of linear interpolation; Ptolemy had directly computed val-
ues of pmax(c) only for multiples of 12◦.) Thus Van Brummelen was able to
reconstruct a small table of pmax(c) for the moon. Similar results were ob-
tained when the same method was applied to the planetary tables.

35 Van Brummelen, ‘Lunar and Planetary Interpolation Tables’.
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Figure 5: Clustering of the third sexagesimal place of back-computed values of pmax(c).

3. Methodological Considerations

3.1. The moment of decision

Mathematical methods applied to answer questions in the history of science
have been at a minimum controversial, and at worst have been ignored by the
historical community. This is due partly to the technical ‘smoke screen’ that
often makes it very difficult to understand the procedures without months of
training. Skepticism has only increased when some of the conclusions reached
through quantitative methods have been wildly at odds with results achieved
by conventional historical inquiry. It is irrational to reject these methods out-
right simply because one does not understand them; nevertheless, it is incum-
bent on quantitative researchers to make their results, and the strengths and
weaknesses of their conclusions, available to the community. This has seldom
been done, so we provide a road map here.

The general practice of a table cracker usually follows the same path. The
researcher hopes to draw a historical conclusion from a set of historical quan-
titative data (say, the reconstruction of an underlying table of pmax in the
Almagest planetary interpolation tables in the preceding section). This data
is manipulated in some way, often to undo mathematical processing of the
data that had been performed by the historical author (e.g., back computing
from the interpolation table’s values to a set of values for pmax). The trans-
formed data reveals, or does not reveal, a pattern (e.g., clustering of the last
sexagesimal place of the reconstructed pmax values around multiples of 15).
A moment of decision is reached. The researcher concludes that the pattern
is not a coincidence, and must therefore be explained (if it is decided the
pattern isn’t there, the result usually is not published). Finally, the researcher
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asserts a cause for the pattern (e.g., the pmax values originally had multiples
of 15 in the last place), and makes a historical interpretation (e.g., Ptolemy
used the underlying table of pmax).

The moment of decision must be parsed carefully to evaluate the relia-
bility of the researcher’s conclusion. Two distinct stages must be considered.
The first is an evaluation of the assumptions made when concluding that the
pattern is a genuine artifact; the second is a consideration of the integration
of the pattern with the available historical context. The quality of a result
seldom relies on the details of the researcher’s computations: the devil is ei-
ther in the assumptions made prior to the calculations, or in the historical
interpretations when they are done.

Every identification of a pattern involves certain assumptions, implied or
not. Although many of these assumptions are benign, they are not always ob-
vious, and it is difficult to bring them to the surface. In the case of Ptolemy’s
interpolation tables, we assumed that the back calculation of pmax should pro-
duce a uniform distribution of values in the third sexagesimal place. More
subtly, we assumed that each back calculation is an independent witness to
the underlying event. If for some reason the fact that the last sexagesimal
place of the first pmax value is close to a multiple of 15 would imply that the
next one will also be, then we might look at Figure 5 with more skeptical
eyes.

To agree upon a conclusion, the pattern must be sufficiently clear that
the researcher and the reader agree that it must be there. In the case of
general statistical procedures such as van Dalen’s parameter estimation and
Van Brummelen’s table dependence test, the assumptions embedded in the
moment of decision are more explicit — part of the discipline of statistics
— and thus are associated with standard practices of evaluation. Usually they
are the following:

• The data points are statistically independent; that is, the value of any
one data point does not influence the value of another.

• The data points are identically distributed.

• The data set is normally distributed.
The first of these assumptions is the most difficult in practice. For instance,
if a table was computed with the aid of linear interpolation, then most en-
tries might be in error in the same direction, and van Dalen’s parameter
estimation may produce a confidence interval for the parameter that is sys-
tematically too low or too high. Thus, before employing his method, van
Dalen checks for the use of interpolation procedures. The second assumption
is often safer in table cracking than it is in, say, matches of historical data
to physical phenomena, but it must still be considered. For instance, in Van
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Brummelen’s table dependence test, the back calculation from fH to the un-
derlying gR, rather than the more intuitive forward calculation of gH to an fR
value, is done to avoid the potential skewing of distributions that might result
from the computation from g to f. Finally, the normal distribution assump-
tion is not difficult to satisfy due to the Central Limit Theorem; if a data
set contains 40 or more data points, this assumption is almost always benign.
However, if the data set is small, or if scribal errors possibly affect a number
of tabular values, the assumption can be bypassed using non-parametric tests
(such as that used by Van Brummelen with respect to table dependence).

Statistical conclusions come in two varieties, both often misinterpreted. A
95% confidence interval (such as that produced by van Dalen’s parameter
estimation) gives an interval of values that contains the correct parameter
95% of the time the procedure is performed, as long as the assumptions are
met. A test (such as Van Brummelen’s table dependence procedure) concludes
with a p-value. This number reflects the probability that a result as unusual
as the observed one would arise by random chance. It is not the probability
that the result is false. In typical scientific practice, a p-value of < 5% is
considered strong enough evidence to reject the random chance hypothesis.

No historical investigation, quantitative or not, is free of assumptions or
doubt. The advantage of quantitative methods is that the reliability of the
assumptions may often be evaluated directly. It is the responsibility of the
researcher to make these assumptions as explicit and verifiable as possible.
Studies of tabular data tend to be the most straightforward in this respect,
since the data have a strict mathematical structure and are not usually subject
to the vagaries of physical phenomena.

The second stage, the historical interpretation of the pattern, depends on
the specific situation being studied, and usually cannot be framed in a quan-
titative analysis. Often the interpretation is obvious. In the case of the pmax
calculations, one may question whether or not Ptolemy actually compiled the
reconstructed pmax values into tabular form, or whether it was Ptolemy him-
self who performed these computations, but there is no further controversy.
Generally, one hopes that the quantitative result is coherent with historical
evidence from other sources. In some cases the result may lean against the
weight of previously-established historical analysis. In these situations, both
the quantitative and the historical assumptions must be examined for a reso-
lution. In some cases the result might be explained by more than one histor-
ical interpretation.36 The more dramatically the quantitative result varies from

36 See, for example, a debate most recently between Chabás/Goldstein, Samsó/Castelló,
and Poulle on the origin of a value for precession of 17;8◦ in the star catalogue in the Libro
de las estrellas de la ochuaua espera, a 13th-century text. Poulle, ‘The Alfonsine Tables’, assigns
the parameter to a pre-Alfonsine theory of precession; Samsó and Castelló, ‘An Hypothesis
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established wisdom, the clearer that result must be; as the aphorism says, ex-
traordinary claims require extraordinary evidence.

3.2. General versus specific techniques

By now the reader may have recognized an important methodological dis-
tinction. Some procedures (Sections 2.2 and 2.3) apply generally to a class of
tables, while others (especially from Sections 2.1 and 2.4) apply to specific
situations. General techniques can be applied uniformly to multiple contexts,
can sometimes be automated, and allow easy comparison between different
sources. Specific techniques have complementary advantages: they are adapt-
able to particular sources and particular historical scenarios.

Each type of procedure has its cautions. While general methods tend to
rely on clearly stated assumptions, a single unstated and flawed assumption
might undermine many conclusions at once. Also, while interpreting results
applied to a spectrum of tables, one runs the risk of assuming (dangerously)
that all the tables were constructed using similar computational norms. Fi-
nally, general procedures have tended to be more cautious and conservative,
less likely to make historically dramatic assertions.

On the other hand, the reliability of ad hoc methods designed to apply
to specific situations can be inherently difficult to evaluate. Assumptions are
not often stated clearly, and the moment of decision must occur through the
instinct of the table cracker rather than the result of a statistical test. Never-
theless, it should be noted that disagreements have seldom arisen in practice
due to this shortcoming; when a specific method has identified a pattern,
respondents usually have agreed that the pattern is in fact there. When con-
troversies arise they are almost always at the stage of historical analysis, in
cases where more than one explanation may be proposed to reconcile the
pattern with the historical narrative.

The choice between the two types of method will always depend on local
conditions (the nature of the table, the question that is being asked). Argu-
ments will be more convincing if they rely on well tested general methods
whenever possible, and use specific ones only when no other option is avail-
able. Regardless of the procedure used, the researcher must make explicit the
underlying assumptions and demonstrate their validity (or at least their in-
significance).

on the Epoch’, p. 118, shows that it might arise from an erroneous dating of Ptolemy’s star
catalogue by the Alfonsine astronomers; while Chabás and Goldstein, The Alfonsine Tables of
Toledo, pp. 234-35, derive it from a Castilian source.
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4. Table Cracking II: Restoring Tabular Context

Coming to terms with a historical numerical table requires the determination
of the processes that led to its creation, but it is also crucial to understand
the role that the completed table played for its author and its users. This in-
formation can be elusive; sometimes all that remains in the manuscript record
is the table itself (or just part of it), with little or no trace of the paratext.
Even when the paratext exists it must be treated with caution. (One exam-
ple is al-Kāshī’s double-argument planetary latitude table, part of which is
shown in Figure 4; the table’s instructions have the arguments reversed.) Fi-
nally, even an intact and correct paratext may not be sufficient to answer
contextual questions: the author may not have felt the need to describe the
users and purpose of the table, or the users may themselves have found their
own new applications.

Secondly, many tables were designed to model or represent some sort of
physical phenomenon, often (but not always) astronomical. The extent of a
table’s predictive success often can provide useful information concerning the
table’s context. What specific phenomenon was the table meant to reproduce?
How concerned would the authors and users have been about successes and
failures in the table’s predictive power? What concerns, other than accuracy,
might have motivated judgments about a table’s quality? This section consid-
ers the activities of table crackers in answering these contextual questions.

4.1. Reconstructing a table’s purpose

Many numerical tables from early sources have come down to us as they are,
with no accompanying information. In these cases, establishing a plausible
interpretation of the tabular data is not always straightforward: sometimes,
numerical patterns may correspond to multiple interpretations. As the fol-
lowing example illustrates, table crackers have had difficulties for centuries.
In the eighteenth century, the Sanskrit astronomer Kevalarāma was commis-
sioned by Jayasiṃha, regent of Jaipur (1699-1743), to translate Philippe de La
Hire’s Tabulae Astronomicae, which had come to the court of Jayasiṃha in
the possession of Portuguese astronomer Pedro da Silva, into Sanskrit.37 The
part of Kevalarāma’s translation (Dṛkpakṣasāriṇī, 1725) on how to compute
true planetary positions with de La Hire’s tables was a disaster. Kevalarāma
failed to understand the proper use of de La Hire’s tables, especially their use
of logarithms. Kevalarāma, unfamiliar with logarithms (and probably poorly
advised by the visiting European scholars), simply ignored the steps that in-
voked them. As a result, his reasoning and procedures became completely

37 See Pingree, ‘Philippe de La Hire’s Planetary Theories’, for an account.
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senseless. Since de La Hire’s tables of logarithms came without any explana-
tion of the rules of how to manipulate them, Kevalarāma’s confusion wasn’t
entirely his own fault.38

More recently, perhaps the most famous mathematical document subjected
to this sort of table cracking is the Old Babylonian tablet Plimpton 322. The
surviving fragment contains four columns of numbers. Neugebauer39 instigated
interest in the tablet by noticing that three of the columns (once the first has
been heavily reconstructed) follow the pattern

d2

l2
, b, d,

where b and d are Pythagorean numbers (integer solutions to d2 = b2+ l2).
This was pursued further by Aaboe, Neugebauer, and Sachs, arguing for an

underlying theory of generating functions where the columns were sums and
differences of certain squares (p and q), their selection subject to mathematical
criteria.40 Other scholars, perhaps prompted by a short remark by Neugebauer
and Sachs, argued that Plimpton 322 was in fact a trigonometric table, since
it appears to measure the lengths of sides of right triangles.41

Eleanor Robson has taken these accounts to task for various technical and
historical shortcomings.42 However, before delving into the arguments, she
enumerates six conditions that must be satisfied in any hypothesis that pur-
ports to explain any tabular text: historical sensitivity, cultural consistency,
calculational plausibility, physical reality (respect for the physical dimensions
of the original archaeological artifact), textual completeness (the explanation
should account for the paratext as well as the entries), and tabular order (sen-
sitivity to the logical order of the columns).43 None of these criteria should be
emphasized at the expense of another. These categories reflect a more general
movement in the history of mathematics in recent decades toward a greater
sensitivity to contexts outside of the purely scientific content of the text.

Robson’s interpretation of Plimpton 322 (taking a cue from work by Bru-
ins and Høyrup) considers the context of administrative tabular documents
written in the early second millennium BCE. Readings of the column titles

38 Not long afterward, de La Hire’s work was translated again twice. One of these trans-
lations, Phiraṅgicandracchedyopayogika (1734 or 1735), correctly reported the procedures, pos-
sibly due to the influence of Father Boudier, who was visiting Jayasiṃha’s court at the time.

39 Neugebauer, The Exact Sciences in Antiquity, pp. 36 ff.
40 Aaboe, Episodes, pp. 30–31; Neugebauer and Sachs, Mathematical Cuneiform Texts,

pp. 38–41.
41 See Joyce, ‘Plimpton 322’, and Calinger, A Contextual History.
42 Robson, ‘Neither Sherlock Holmes nor Babylon’; Robson, ‘Words and Pictures’.
43 Robson, ‘Neither Sherlock Holmes nor Babylon’, p. 176.
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senseless. Since de La Hire’s tables of logarithms came without any explana-
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d2

l2
, b, d,
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pp. 38–41.
41 See Joyce, ‘Plimpton 322’, and Calinger, A Contextual History.
42 Robson, ‘Neither Sherlock Holmes nor Babylon’; Robson, ‘Words and Pictures’.
43 Robson, ‘Neither Sherlock Holmes nor Babylon’, p. 176.
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turned out to provide significant inspiration in her analysis. She argues that
the numbers in the table relate to reciprocal pairs (numbers whose product
is 60), shows that they apply in procedures of the so-called concrete geom-
etry,44 and concludes that they provide numerical examples to help teachers
generate problems for their students. Robson’s work has been followed by
analyses also inspired by contextual considerations, such as Friberg and Brit-
ton, Proust, and Shnider.45 In the latter, the authors argue that Plimpton 322
is a problem text that includes a complete worked solution. The problem con-
cerns ‘normalized sexagesimal rectangles’ — that is, this tablet was produced
from a desire to generate a series of finite sexagesimal rectangles from a ba-
sic algorithm. Their interpretation is that Plimpton 322 was generated via the
following problem:46 ‘Make a list of all the rectangles with length equal to
1 and width and diagonal equal to finite sexagesimal numbers, and represent
the dimensions in reduced form, without a common sexagesimal factor.’ The
mathematical theory underlying the numbers uses the diagonal rule for rect-
angles (how to find the diagonal of a rectangle in terms of the sides) and
the process of completing the square. Their account is supported by a com-
parison with related non-tabular mathematical documents such as MS 3971,
which describes related procedures based on reciprocal pairs and produces a
sexagesimal rectangle.

In the case of Plimpton 322, since so little information accompanies the
table, questions regarding its purpose arise mostly by examining its numeri-
cal content. In other cases, an abundance of accompanying information can
(paradoxically) lead to even more issues for the table cracker. Such is the case
with the 1489 polyptych47 by Marcus Schinnagel, recently studied by Richard
Kremer.48 Fully opened, the polyptych is more than 3 meters wide; its cen-
tral panel measures 140 by 130 cm (see Plate 1). This polyptych is filled not
with the usual Christian iconography, but rather with calendrical, astronomi-
cal and astrological tables and related material. Such a unique document gives
rise to several questions. What sources participated in its realization? What
could have been the author’s and supporters’ purpose? Was it intended as a
practical astronomical tool?

Kremer begins his study of the polyptych not with table cracking, but with
an analysis of the prose found within it. Other than Schinnagel’s signature in

44 Cut-and-paste geometrical procedures that manipulate geometrical shapes in a concrete
manner.

45 Friberg, A Remarkable Collection, and Britton et al., ‘Plimpton 322: A Review’.
46 Britton et al., ‘Plimpton 322: A Review’, pp. 558–559.
47 A polyptych is a large artistic display, usually a collection of paintings, divided into

panels. Common in early modern central Europe, polyptychs are often found as altarpieces in
cathedrals.

48 Kremer, ‘Marcus Schinnagel’s Winged Polyptych’.
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Latin at the top of the central panel, the entire text is in German; it consti-
tutes a primer for the horoscope-maker or the phlebotomist (a medical spe-
cialist on blood-letting). Next, turning to the tables, Kremer identifies their
layout and a sequence of oddities and inconsistencies, mostly consequences
of graphical constraints in a panel’s layout or of mistakes by the artist. Once
the tables have been identified, Kremer sets about determining the sorts of
computations that can be done with them (along with a geometric instru-
ment also found on the polyptych). He concludes that the polyptych may
be used to determine planetary longitudes (to degrees) from 1489 to 1526,
times of true syzygy (to minutes) from 1475 to 1512, and times and magni-
tudes of eclipses from 1489 to 1551. However, certain parts of the polyptych
are inconsistent with practical use. For instance, without a solar mean motion
table, the solar equation table that appears on the polyptych is useless. Next,
using techniques similar to those outlined in Section 2.2, Kremer identifies
the sources and numerical parameters underlying the tables. He concludes that
the various sources were compiled with little care for mathematical and as-
tronomical coherence. When predictions can be achieved, the polyptych pro-
duces results comparable to the Parisian Alfonsine tables with an accuracy of
degrees rather than minutes. In this respect it matches the accuracies of al-
manachs and ephemerides made in Europe at this time for horoscope making
and medicine.

Next, Kremer turns to the history of art to gauge the cultural meaning of
the polyptych, concluding that the work was commissioned by the von Reis-
chach family to convey a message about the harmony of the cosmos. As for
Schinnagel, his mission was likely one of self-promotion, seeking patronage
as he attempted to establish himself in Swabia.

The two examples of this subsection illustrate that in very different set-
tings, table cracking may be used to understand the role that the table played
among its practitioners, the table’s link to other tables of the period, and the
mathematical practices that would have been needed in its implementation.
Along with insights gained by more familiar historical techniques, this infor-
mation helps the researcher to frame a proper historical interpretation.

4.2. The table’s fit with its associated physical phenomenon

A number of modern studies of early astronomical tables compare the results
produced by the table with actual, physical celestial positions. This is done for
several reasons. The most obvious is to gauge a measure of the table’s predic-
tive success. For instance, one might compare a table of computed eclipse
possibilities with actual eclipses, or compare planetary visibility tables with
the actual planets’ visibilities. Some celestial phenomena are more amenable
to such comparisons (for instance, did an eclipse occur or did it not?), while
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some are more delicate (such as acronychal risings, planetary positions, and
stationary points; these are impossible to observe directly with any precision).
Researchers who seek such comparisons usually recompute estimates of these
quantities using modern scientific theory (taking into account effects such as
gravitational influences, refraction, and so on) and match these, sometimes
value for value, with those given in a historical table. The results allow in-
vestigators to make conclusions regarding the effectiveness of the historical
astronomical models and procedures.

However, caution must be applied when pursuing this sort of inquiry.
Conformity with a physical phenomenon was not always the primary goal.
In some cases the historical scientist might have been attempting to conform
instead with a dominant scientific theory, or even with observational data
generated by themselves or illustrious predecessors. In these cases it is all too
easy to leap to a conclusion of scientific fraud. As in modern times, historical
authors lived and worked in cultures where the interactions between theory,
observation, and authority were more nuanced than the textbook account of
the scientific method would have one believe.

One such case is the planetary theory and related tables of Ibn al-Shāṭir, a
14th-century Syrian astronomer. Ibn al-Shāṭir’s work is part of a lengthy sci-
entific tradition within medieval Islam questioning Ptolemy’s planetary mod-
els. Their critique was not the fit of these models to the planetary data;
rather, astronomers aimed their criticisms at Ptolemy’s violations of Aristote-
lian physics. In particular, to reproduce certain planetary phenomena Ptolemy
had been forced to introduce a new point in his models, called the equant.
The center of the epicycle was asserted to move around its orbit circle (the
deferent) uniformly, not around its own center (as required by Aristotle), but
around the equant point. Ibn al-Shāṭir’s tables instead built upon a geomet-
ric model of his own invention that avoids any such violations. Ibn al-Shāṭir’s
tables were considered an improvement on Ptolemy not because they fit the
observations any better, but because they conformed more closely to the gen-
eral principles of natural philosophy.

In another case, the priority of computability outranked that of fit with
the phenomenon. In the first half of the second century BCE, Hypsicles of
Alexandria composed the Anaphorikos, within which he set out a scheme to
compute a table of all oblique ascensions for a given local latitude (see Fig-
ure 6).49 Hypsicles’ scheme was based on the assumption that rising times can
be computed arithmetically — that is, by a linear sequence of values. The re-
sults produced by such a scheme could not hope to do more than model the
true oblique ascensions qualitatively, but the values would be very easy to

49 For a translation and technical commentary of this work, see Montelle, ‘The Anaphori-
cus of Hypsicles’.
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Figure 6: A transcription of the circular table displaying oblique ascensions for Alexandria
found in MS Vat. gr. 204, f. 135v, from Hypsicles’ Anaphorikos. Reproduced from V. de Falco
and Max Krause, ‘Hypsikles. Die Aufgangszeiten der Gestirne’, Abhandlungen der Akademie der
Wissenschaften in Göttingen, philologisch-historische Klasse, Dritte Folge, Nr. 62 (1966), p. 37.

compute. Using the local latitude of Alexandria, Hypsicles presents a worked
example; for successive zodiacal signs (and applying symmetry for signs 7 to
12), they are:

sign rising time sign
1 21;40 12
2 25 11
3 28;20 10
4 31;40 9
5 35 8
6 38;20 7

Note that the difference between oblique ascensions for successive signs is the
constant value 3;20.

Clearly, this scheme was very rough indeed.50 However, to dismiss it for
this reason is to neglect the elegance of the approach and its primary purpose

50 Several of the factors that contribute to this ‘roughness’ include: i) it is a linear arith-
metical scheme; ii) the value for the obliquity of the ecliptic ε is not made explicit by Hyp-
sicles; and iii) the ratio of 5 : 7 for the shortest to longest day (equivalent to a latitude of
φ ≈ 35;32◦) is too high for Alexandria, which is closer to φ = 30◦. For the purpose of com-
parison, we have recomputed the oblique ascensions using spherical trigonometry, assuming ε
to be Ptolemy’s 23;51◦. For φ = 30◦, there results: 20;59, 24;17, 29;57, 34;35, 35;31, 34;41,
34;41. When φ = 35;32◦, there results: 19;21, 22;54, 29;21, 35;11, 36;54, 36;19, 36;19.
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of computability. Hypsicles and many after him modelled rising times linearly,
and continued to do so even when more accurate spherical approaches be-
came available. Astrologers used it to compute oblique ascensions for their
local circumstances using only a single empirically derivable fact (the ratio of
longest to shortest day). Therefore, rather than rejecting a table or computa-
tional scheme that poorly reproduces a physical phenomenon as scientifically
inferior, the table cracker should evaluate the historical context to consider
the table maker’s goals in the light of the computing tools and empirical data
available, as well as the quantitative abilities of the table’s audience.

As delicate as the matter is, comparing tabular data with physical phenom-
ena has produced important results, especially when comparing two different
historical techniques against each other. For instance, scholars such as Steele
have investigated Babylonian tables used for the prediction of eclipses, to de-
termine whether the later methods improved in their ability to predict the
timing and circumstances of eclipses over the last millennium that they were
astronomically active. Using modern retrodictions, comparisons, and statisti-
cal trends, Steele concluded, surprisingly, that there is no evidence for an im-
provement in accuracy as time progressed.51 Building on Steele’s work, Mon-
telle considers the reckoning of eclipse possibilities in the so-called ‘ACT’
tabular cuneiform sources. Her comparison with actual eclipse possibilities
also suggests that these later ACT methods (which could contain up to 18
columns of intermediary tabulated data) were not able to predict correctly the
timing and circumstances of eclipses.52 In fact these tabulated predictions were
no more accurate than the earlier non-tabular sources, despite being more de-
liberate, taking into account more factors, working to greater precision, being
technically more elaborate, and showing more mathematical reasoning. This
reveals the prodigious difficulty early investigators were facing in producing
schemes that fit actual observed eclipses.

5. Concluding Remarks: Approaching a Table with Due Caution

When used appropriately, table cracking can reliably enhance existing histor-
ical methods and studies. It can help inform historians in their key lines of
inquiry: how tables were computed, how they were read and understood, and
how they were used. In some instances, table cracking is the only recourse we
have when generating historical information about the table’s creation, pur-
pose, and effectiveness. However, table cracking techniques are most powerful
when they are used in tandem with other historical information. Forwarding
a claim based on analytical means alone can lead to unwarranted conclu-
sions. Table crackers may initially produce results in apparent conflict with

51 Steele, Observations and Predictions.
52 Montelle, Chasing Shadows, pp. 94–97 and Appendix B.
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other more traditional inquiries. Through a process of balancing, evaluating,
and re-interpreting these sources of information within a wider context, the
table cracker can form a clearer impression of the contents and use of the
table.

Clearly, reliability of quantitative results will aid the researcher in con-
vincing her colleagues of the validity of her conclusions. General procedures
can accomplish this by using tried and tested statistical techniques. However,
every table is unique. When general methods fail to adapt to the local condi-
tions of the table or to the question asked by the researcher, techniques can
be adjusted to fit the situation.

Beyond the arrays of numbers lies the diligence of a compiler, the assidu-
ousness of a scribe, the expectations of a patron, the industry of a user. The
table embodies a combination of these influences in both direct and nuanced
ways. Traces of these are detectable to table crackers; however, no amount of
quantitative analysis will be able on its own to reconstruct fully the histor-
ical circumstances of a table. Thus table cracking efforts form but a part of
the tools historians can draw upon when investigating a numerical table.
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