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INFLUENCE OF COVARIANCE MATRIX MISMATCH ON POLARIMETRIC DETECTORS FOR LOW-GRAZING ENDO-CLUTTER DETECTION
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This paper explores the performances of polarimetric detectors for endo-clutter detections with a ground-based radar in a lowgrazing geometry. We analyse the time series of the covariance matrices of the measured clutter and study the influence of these variations on a benchmark of polarimetric detectors as well as an original detector based on the comparison of the eigenvalues of the clutter polarimetric covariance matrix. Eventually, we predict the performances of each detectors for a given clutter and then assess which class of detector is the best-suited one.

Introduction

In the past couple of decades, there has been a large increase in the prevalence of Unmanned Aerial Systems (UAS). These aircrafts usually have a small Radar Cross Section (RCS), can fly very slowly, and thus, can have a Doppler signature analog to clutter. This is called an endo-clutter target, and in the following this term designs a target at a speed of 0m/s. Detection techniques involving the Doppler signature of the UAS's propeller blades have already been discussed [START_REF] Hoffmann | Micro-Doppler based detection and tracking of UAVs with multistatic radar[END_REF]. However, this Doppler signature can be absent either because the RCS of the blades is too low or even because the blades are concealed; some operational UAS already have concealed propellers (For instance US army's RQ-16A). In this paper we use polarimetric detectors to make endoclutter detections assuming the Doppler signature of the target does not differ from the clutter. It means we assume the target has the same speed as the clutter and no blade flashes are visible. There is no comprehensive model for ground clutter in low-grazing angle geometry, as it varies widely from scene to scene. Most detectors with constant false alarm properties use the covariance matrix to model the clutter against which the target is to be detected. Unfortunately, the polarimetric signature of the clutter is not stable, leading to a mismatch between the covariance matrices of the secondary data and the covariance matrix of the cells under test. The effects of a mismatch of covariance matrices have been studied for detections in a Gaussian noise, and have shown important variations of false alarm rates ensued if the detector is not modified to address the problem. Unfortunately if the covariance matrices do not satisfy any precondition (and in particular do not satisfy the generalized eigenrelation), it seems impossible to maintain a strictly constant false rate [START_REF] Besson | Impact of Covariance Mismatched Training Samples on Constant False Alarm Rate Detectors[END_REF]. In this case, it was shown to equate to a signal plus interference to noise ratio loss [START_REF] Raghavan | A CFAR Detector for Mismatched Eigenvalues of Training Sample Covariance Matrix[END_REF]. Watts [START_REF] Watts | The effects of covariance matrix mismatch on adaptive CFAR performance[END_REF], shows this effect in the context of sea clutter, the mismatch leads to a variation of the false alarm rate of several order of magnitude with minimal effect on the probability of detection, except if the detector's threshold is adjusted to ensure a constant false alarm rate, which causes high detection losses. In the case of the steering matrix for polarimetric detection the mismatch again leads to an effective loss of signal plus interference to noise ratio [START_REF] Shen | Robust Polarimetric Adaptive Detector Against Target Steering Matrix Mismatch[END_REF]. In this paper, we focus on this mismatch of the covariance matrices of the polarimetric clutter using both real-world data and simulation to assess its effect on the performances of the polarimetric detectors. Thanks to the data gathered in a measurement campaign, we propose a mathematical description of the measured ground clutter based on the eigenvalue distributions of its covariance matrix. We propose a measure of the mismatch of the covariance matrices. Then, we present classical detectors and propose a new detector to study the effect of the mismatch. The simulation results combined with the measured data shows that mismatchindependent detectors provide good performances in unstable clutter. Conversly, mismatch-dependant detectors perform well in stable clutters, but need to be supplemented in case of sudden change in the polarimetric signature of the clutter.

Polarimetric Clutters: Presentation, Analysis and Mathematical Description.

This work presents the results of a measurement campaign using the HYCAM radar [START_REF] Brouard | Hycam: A new S band surface radar testbed[END_REF] situated in ONERA's Palaiseau site in France. This campaign aimed at gathering data to develop and assess the performances of polarimetric detectors for endo-clutter targets, by measuring both a UAS in flight and ground clutter in a semi-urban environment.

Radar and measurement campaign

HYCAM is a testbed MIMO polarimetric radar operating in S band with an instantaneous maximum bandwidth of 500 MHz. HYCAM is a fully digital radar composed of an transmitting antenna with 6 independent elements and a receiving antenna of 16 independent channels. It has a maximum peak power of 700 W [START_REF] Brouard | Hycam: A new S band surface radar testbed[END_REF].

The measurement campaign took place the 3 rd of July 2020 and involved a UAS flying with predetermined flight patterns. The radar antenna aimed at the centre of the UAS trajectory. The scene was measured with a SIMO waveform using the six transmitting elements, with a 10° transmission antenna aperture. The waveform alternated between H polarization and V polarization transmission (H and V denoting respectively the transmission of Horizontal and Vertical polarization). The waveform parameters are detailed in Table 1. We used one receiving element for each polarization: one in h polarization and the other in v polarization (h and v denoting respectively the reception of horizontal and vertical polarization).

The environment was a semi-urban clutter, featuring fields, forests, built areas and roads. (Figure 1) 

/s Table 1 Measurement campaign parameters

The received radar signal undergoes a pulse compression and a Doppler processing to reject non-clutter data (where clutter is signal in the 0 m/s speed bin). The processed signal is the means of the received radar signal over 10 ms for each polarization. We write for each time and range cell the following polarimetric vector:

, = { , , , },
where is the received clutter signal of the Y transmitted polarization and z received polarization. Since the gathered data show that Hv and Vh do not perfectly correlate, we use both cross-polarizations to describe the clutter in the article. This is due to the receiving elements for the horizontal and vertical polarization not having the exact same apertures and not being exactly collocated.

Covariance matrix representation

We compute the covariance matrix of the polarimetric clutter with the SCM (Sample Covariance Matrix) estimator by sampling the polarimetric vector along the time axis:
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where # is the time step and $ the number of samples over which the covariance matrix is estimated. We estimate the sample covariance matrices over 50 samples, as it is a good compromise between a short integration time, necessary in rapidly varying clutter, and an accurate estimation of the covariance matrix The range cells contain a large number of diverse backscatterers due to the width of the antenna aperture and the range resolution.

Clutter power and polarimetric signature quickly vary with the range and are more stable along the time axis as the nature and the number of back-scatterers is less prone to change along the time axis. Therefore, we chose to compute the covariance matrix along the time axis instead of the range axis, as usually done.

In order to characterize the covariance matrices, we perform the eigenvalue decomposition of the estimated covariance matrix:
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with: ' = )* {+ " , + , + , , + -}, 3 + is the sorted eigenvalues and U the eigenvectors basis.

Distance definition between covariance matrices

In order to characterize the influence of a mismatch between covariance matrices on the detector performances, we need to choose a distance between matrices. We define the angle between two matrices as:
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Using the canonical inner product for square matrices: < 6, 7 >= Tr 67 , 5

and ‖•‖ its associated norm. This angle is our metric for the mismatch of the covariance matrix; we call it the mismatch angle. The distributions of the eigenvalues of the covariance matrices is a characteristic of our clutter. For a given distribution of eigenvalues, the mismatch angle varies with respect to the eigenvectors. The mismatch angle thus measures the variation of the polarimetric signature uncorrelated with the variation of total clutter power.

Analysis of measured covariance matrices mismatch

In Figure 2 we present the time series of the eigenvalues for two given range cells which represent two different clutter, one is stable and the other is unstable. Eigenvalues have a stable mean over time and therefore the ratios between consecutive eigenvalues are stable over time. The eigenvalues follow a lognormal distribution with a given standard deviation in accordance with one of the model for the amplitude of non-polarimetric clutter developed in [START_REF] Shnidman | Generalized radar clutter model[END_REF]. We assess how much the polarimetric signature of the clutter changes during the time using the mismatch angle of the matrix couple:
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Figure 3 presents the mismatch angle for the range cells as Figure 2, and shows that this mismatch angle can vary sharply with time. This means that even though the eigenvalues distribution seems stable, the polarimetric signature is not necessarily stable. Figure 3a and Figure 3b show that the stability of the polarimetric signature depends on the range cell. We further study the influence of this mismatch angle on the performances of the polarimetric detectors.

Detectors

Detection framework

In the following, we consider A B ~DE F, B is a realisation of the clutter in the secondary data cells and A~ℂH F, is a realisation of the clutter in the cells under test. The two hypotheses we test with our detectors are
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With ) being a scalar, M the polarimetric vector of the target and ‖M‖ = &, A L being clutter realisations. We compute the covariance matrix estimate using:
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Signal to Clutter Ratio (SCR) designates the following ratio: TUV = )

WTrQ B PPPP R . 10

Tested detectors 3.2.1 Span detector:

The span is based on the incoherent power of the signal received [START_REF] Novak | Studies of target detection algorithms that use polarimetric radar data[END_REF] and is written as follow:

Tr TrQ B PPPP R J ≷ J " Z " , 11 
with [ F the detection threshold and J ≷ J " \, means that if > \ we verify hypothesis J , conversely < \ means we are in a case were hypothesis J " is true. As this detector is solely based on power, it is invariant by a rotation of the polarization basis. We expect mismatched polarimetric signature does not affect its performances as long as the power of both clutters are the same.

Maximum Likelihood (ML) detector (Polarimetric Whitening Filter):

The maximum likelihood detector uses the secondary data to estimate the power distribution of the clutter. It whitens the signal according to the secondary data to filter out the clutter signal [START_REF] Novak | Studies of target detection algorithms that use polarimetric radar data[END_REF]. It writes:
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Polarimetric Generalized Likelihood Ratio Test detector (P-GLRT):

We introduce the P-GLRT detector, an adaptation of the GLRT to the polarimetric case. While ML detector assumes the target steering vector is the same vector as the measured data, P-GLRT maximizes the detector output according to the steering vector:

1 max a ]a B PPPP & L ] b ]a B PPPP & a] !" J ≷ J " Z " . 13 
To adapt the GLRT detector to the polarimetric case we define the polarimetric steering vector as a = a cde ∘ a g (where ∘ is the Hadamard product). a cde ∈ a i is the amplitude part of the steering vector defining how the target's power is distributed among the polarizations and a g = j1, k l mn , k l mn ol nn , k l mm p represents the phases between the polarizations. Here q rr is the phase between the two co-polar channels, q rs the phase between the co-polar and cross-polar channels and q ss between the two cross-polar channels. We use the Monte-Carlo algorithm to generate steering vectors to maximize the output of the detector.

EigenValues (EVa) detector:

We propose the eigenvalues detector. This detector isolates a specific eigenvalue, assuming that the target influence is greater on one eigenvalue than on the sum of the eigenvalues. It writes:

max + + t J ≷ J " Z " . 14 
With + and + t , respectively the sorted eigenvalues for the cells under test and the secondary data cells. Since the eigenvalues set are identically distributed in our representation of a clutter cell, this detector is also invariant with rotation of the polarization basis.

Simulation results

Simulation Framework

To test the influence of the mismatch angle, we generate clutter covariance matrices couples: one matrix for the clutter data of the cells under test and one matrix for the clutter data of the cells used as secondary data.

Both matrices have the same eigenvalues distribution. Each eigenvalues is distributed with a lognormal distribution, parametrized by its median + u and its standard deviation v . We use the median instead of the mean as it is more relevant for lognormal distributions. The centre of the eigenvalues distribution of a covariance matrix are separated by a fixed ratio as described in part 2.2. B and the covariance matrices for the secondary data and cells under test write:
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with ' = diag { , '′ = diag {′ and l and l' distributed as: }, } w ~~•*E €• P , diag ' ƒ . 17

U and U' are both randomly generated to ensure a homogenous sampling of the eigenbasis.

For each angle bin we have "… † matrix couples. We generate † ‡ˆ † set of clutter data {A L } L and jA L B p L of clutter polarimetric vector for each couple. The detectors are tested †‰ † = "… † × † ‡ˆ † times to get the simulation results for each angle bin. To assess the detectors performances, we use ‹ OE0 (Probability of False Alarm) and ‹ • (Probability of Detection) as metrics.

Simulations results

The following simulations use the parameters in Table 2. 2 Parameters used for the simulations 2 ," tests were done per angle bin ensuring an accurate assessment of the performances of the detectors down to a ‹ OE0 of 10 Ž , since we respect the condition †‰ † = "" • •' .

1 st Simulation (unstable clutter):

The first simulation corresponds to an unstable clutter with eigenvalues relatively close from one another. Figure 4a shows the Receiver Operating Characteristics (ROC) curve for an SCR of 0 dB and a mismatch angle of 0° and Figure 4b shows the same curve for a mismatch angle of 37°, a typical angel bin of the stable clutter, and a SCR of 0 dB. The performances of P-GLRT and ML detectors clearly depend on the mismatch angle, whereas the performances of the EVa and span detectors are independent of the mismatch angle. Thus for closely aligned matrices the ML and P-GLRT detectors are the best detectors of this benchmark. Contrarily, in case of misaligned covariance matrices the EVa detector gives better the performances than ML and P-GLRT. The Figure 5 shows the ‹ • for each detectors for a fixed ‹ OE0 of 10 Ž as a function of the mismatch angle of and B and as a function of the SCR. This figure confirms the decrease in performances with the angle for both P-GLRT and ML detectors. As stated, the performances of the span and EVa detectors' performances do not vary significantly with the angle. Span detector shows slightly better performances than the EVa detector. However, the ‹ • of the EVa detector is more robust to a loss of SCR.

2 nd Simulation (stable clutter):

The second simulation corresponds to a more stable clutter, with a dominant eigenvalue and less dispersion in the distributions of eigenvalue. Figure 4 presents the ROC curves for a SCR of 0 dB and respectively, a mismatch angle of 0° for subfigure (c) and a mismatch angle of 37° for subfigure (d). It shows the same behaviour as far as Span, P-GLRT and ML detectors are concerned. But EVa performs better in this case. The Figure 6 shows that the EVa detector outperforms the span detector in this type of clutter. Both ML and P-GLRT give very good performances, which is expected as the covariance matrix is close to be a rank 1 matrix, the ideal case for such detectors.

Adaptation of the detectors with the clutter cells

The mismatch angle allows us to predict the performances for each detector (for a fixed SCR and ‹ OE0 ). We compare the predicted performances on real-world data for the two most performant detector of each class (angle dependant and independent detectors). It allows us to assess the best detector to use for the clutter in presence for both scenarios. The angle independent detector serves as a reference detector and Figure 7 plot the ‹ • of the P-GLRT, a blue color means the P-GLRT outperforms the reference detector and the red color means it underperforms it.

Unstable clutter case

For the range cell containing unstable clutter in Figure 7a, we compare the ' " of the span and the P-GLRT. The mismatch angle map shown in Figure 3a and the performance map of the Figure 5a and 5d allows computing the difference in ' " . The span gives better performances (the red surfaces in the plot) in most circumstances because of the large fluctuations of the angle. Nevertheless substantial improvements are made when the covariance matrices are aligned (The deep blue regions, for instance around t = 160 s, and # between 0 and 10 s), demonstrating the interest of the detectors like ML and P-GLRT (Figure 7a). 

Stable clutter case

For this range cell, containing the stable clutter, we compare P-GLRT to the EVa detector. The clutter in this simulation is the one of Figure 3b, it is more stable during time and the covariance matrices remain aligned longer. Figure 7b shows that the P-GLRT performs slightly better in this clutter. Rare clutter events causing a misalignment of the matrices induce a large performance drop for the P-GLRT compared to the EVa.

Conclusion

In this paper, we study the influence of the mismatch of the covariance matrices of the polarimetric clutter in a low grazing geometry. We introduce the mismatch angle defined by the canonical dot product of the covariance matrices as a metric for the mismatch of the polarimetric clutter covariance matrices. The proposed mathematical representation of this clutter shows two different behaviours for this clutter: one with large angle fluctuations with time, and the other with a more stable angle. Simulations of the performances of the detectors show a dependency of the P-GLRT and ML detectors with the mismatch angle of the cells under tests and the secondary data. We show span and EVa detector are not affected by this angle. Finally, we show that both classes of detectors bring complementary information about a given clutter cell. On the one hand, in a stable clutter P-GLRT and ML score better than the span and EVa detectors. On the other hand, EVa and span keep good performances even in case of covariance matrix mismatch. These results suggest that the fusion of detectors might improve the performances of endo-clutter detections.

Figure 1

 1 Figure 1 Map of the radar scene with the position of the radar (N48°43', E2°14') and the main transmission aperture (bearing: 305°). Parameter Value Carrier frequency ~3 GHz Bandwidth 10 MHz τ 10 µs PRI 100 µs Range cell resolution ~15m Range ambiguity ~15 km Speed ambiguity ~120 m/sTable 1 Measurement campaign parameters

Figure 2

 2 Figure 2 Eigenvalues time series for two different range cell. Each marker represents an eigenvalue. (a) At a range of 3.1km (b) At a range of 5.4km

Figure 3

 3 Figure 3 Variation of the mismatch angle as a function of # and time for two different range cells. (a) Range of 3.1km (unstable clutter) (b) Range of 5.4km (stable clutter)

Figure 4

 4 Figure 4 ROC curves for a SCR of 0 dB. (a) Unstable clutter, mismatch angle bin 0° (b) Unstable clutter, mismatch angle bin 37° (c) Stable clutter, mismatch angle bin 0° (d) Stable clutter, mismatch angle bin 37°

Figure 5 ‹

 5 Figure 5 ‹ • for a ‹ OE0 of 10 Ž for the 1 st simulation (unstable clutter case). (a) Span (b) ML (c) EVa (d) P-GLRT

Figure 6 ‹

 6 Figure 6 ‹ • for a ‹ OE0 of 10 Ž for the 2 nd simulation (stable clutter case). (a) Span (b) ML (c) EVa (d) P-GLRT

Figure 7

 7 Figure 7 Predicted ‹ • of the P-GLRT during time as a function of † and time a ‹ OE0 of 10 Ž , red means the reference detector outperforms and blue means P-GLRT outperforms. (a) ‹ • of P-GLRT for a SCR of 4.7 dB, span as reference (mean ‹ • = 0.7) (b) ‹ • of P-GLRT for a SCR of 0.9 dB, EVa as reference (mean ‹ • = 0.9)
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