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Optimal dual quantizers of 1D log-concave

distributions: uniqueness and Lloyd like algorithm ∗

Benjamin Jourdain † Gilles Pagès ‡

Abstract

We establish for dual quantization the counterpart of Kieffer’s uniqueness result for com-
pactly supported one dimensional probability distributions having a log-concave density (also
called strongly unimodal): for such distributions, Lr-optimal dual quantizers are unique at each
level N , the optimal grid being the unique critical point of the quantization error. An example
of non-strongly unimodal distribution for which uniqueness of critical points fails is exhibited.
In the quadratic r = 2 case, we propose an algorithm to compute the unique optimal dual
quantizer. It provides a counterpart of Lloyd’s method I algorithm in a Voronoi framework
(see [13, 14]). Finally semi-closed forms of Lr-optimal dual quantizers are established for power
distributions on compacts intervals and truncated exponential distributions.

1 Introduction

Optimal Delaunay or dual quantization has been introduced in [19] in a one dimensional setting
for probabilistic numerical purposes, in order to produce a fast algorithm for pricing credit derivative
products in finance. It was then developed in higher dimension in [20] as a possible alternative to
optimal Voronoi (or primal) quantization (see [5, 6, 17, 16] for introduction) to solve various non-
linear problems in quantitative finance (American option pricing and δ-hedging, stochastic control
for portfolio management, etc). Both quantization modes are spatial discretization methods of
probability distributions or random vectors, one relying on Voronoi diagrams and the other on
Delaunay triangulation (in 2-dimension). Delaunay quantization is limited to compactly supported
distributions but shares a universal “stationarity property” (see further on) which makes it much
more flexible when used as a numerical tool. This paper is essentially focused on the 1-dimensional
setting. Our aim is to prove for Delaunay quantization some uniqueness and convergence results
related to optimal quantizers and their numerical computation for strongly unimodal distributions
known in optimal Voronoi quantization as Trushkin’s and Kieffer’s theorems (see e.g. [23] and [11]
respectively).

Let us briefly explain what Delaunay quantization is in a one dimensional setting. It answers
the question: how to spatially discretize a compactly supported random variable with support
(contained in) [a, b] using a finite subset Γ = {x1, . . . , xN} ⊂ [a, b] with x1 = a < x2 < · · · <
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xN−1 < xN = b. The basic idea to discretize a random variable X is the following: when X :
(Ω,A,P) → [a, b] falls into the interval [xi, xi+1], one replaces the value of X by X̂ which takes

values xi, xi+1 with respective probabilities xi+1−X
xi+1−xi and X−xi

xi+1−xi . These probabilities come as the
coefficients when writing X as of the linear interpolation of xi and xi+1 since

X =
xi+1 −X
xi+1 − xi

xi +
X − xi
xi+1 − xi

xi+1.

This leads to introduce the so-called Delaunay projection (or splitting operator) defined for every
ξ∈ [a, b] and u∈ (0, 1) by

ProjdelΓ (ξ, u) = a1{a}(ξ) +
N−1∑
i=1

[
xi · 1{

0<u<
xi+1−ξ
xi+1−xi

} + xi+1 · 1{ xi+1−ξ
xi+1−xi

≤u<1
}]1(xi,xi+1](ξ) (1.1)

so that
X̂ = X̂Γ,dual = ProjdelΓ (X,U) with U ∼ U

(
(0, 1)

)
, U ⊥⊥ X

where ⊥⊥ stands for independence. The above formula can be taken as a definition for a Γ-valued
dual quantizer of X.

Note that, owing to the above remark that aimed at its construction

∀ i∈ {1, . . . , N},
∫ 1

0
ProjdelΓ (ξ, u)du = ξ

or, equivalently,
E
(
X̂ |X

)
= X (1.2)

which is a stationarity property dual from that satisfied by quadratic optimal primal (or Voronoi)
quantization (see (1.3) below). In particular X ≤cvx X̂ (convex ordering). Applications of dual
quantization were first mostly devoted to provide efficient numerical schemes and fast algorithms
to solve non-linear problems arising in numerical probability applied to finance like the pricing and
hedging of multi-asset American style options (see e.g. [21]) or the the pricing of credit deriva-
tives (see [19]), basically as a competitor of Voronoi quantization and other methods (regressions,
Malliavin Monte Carlo). Its dual behaviour with respect to convex order provides an informal way
to provide lower and upper-bounds in various stochastic control problems. More recently, with
the development of martingale optimal transport problems in finance, both Voronoi and Delaunay
quantization methods have been shown as a systematic tool to design time discretization schemes
that preserve convex order (see [10]) and more generally to solve numerically discrete time martin-
gale optimal transport problems (see [9]) which turns out to be a quite challenging problem (see
[1], [3], [4], [7], [8]).

The distribution of X̂Γ,dual is entirely characterized by its value set Γ and the weights pΓ
i =

P(X̂Γ,dual = xi) given for every i = 1, . . . , N , by

pΓ
i = 1{i=1}P(X = a) + 1{i 6=1}E X−xi−1

xi−xi−1
1{X∈(xi−1,xi]} + 1{i 6=N}E xi+1−X

xi+1−xi1{X∈(xi,xi+1]}.
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If we introduce the cumulative distribution function (c.d.f.) F (x) = P
(
X ∈ (−∞, x]

)
and the

first partial moment K(x) = EX1X∈(−∞,x], then these weights write

pΓ
i = 1{i=1}P(X = a) + 1{i 6=1}

∫
(xi−1,xi]

ξ−xi−1

xi−xi−1
µ(dξ) + 1{i 6=N}

∫
(xi,xi+1]

xi+1−ξ
xi+1−xiµ(dξ)

= 1{i=1}F (a) + 1{i 6=1}
[K]xixi−1

− xi−1[F ]xixi−1

xi − xi−1
+ 1{i 6=N}

[F ]
xi+1
xi xi+1 − [K]

xi+1
xi

xi+1 − xi

where, for simplicity, we will denote for a function g : R → R and two real numbers x ≤ y,
[g]yx = g(y)− g(x).

The Lr-mean error induced by replacing X by its dual quantization X̂Γ,dual is naturally defined
by

‖X − X̂Γ,dual‖rr =

∫ b

a
E |ξ − Projdelx (ξ, U)|rµ(dξ)

=
N−1∑
i=1

∫
(xi,xi+1)

(
(ξ − xi)r

xi+1 − ξ
xi+1 − xi

+ (xi+1 − ξ)r
ξ − xi

xi+1 − xi

)
µ(dξ).

The basic application of dual quantization, like its historical counterpart in the Voronoi sense,
is to produce quadrature formulae adapted to the distribution µ of the random variable X since
for a function g : R→ R and a Γ-quantization X̂Γ of X

E g(X) ' E g
(
X̂Γ
)

=

N∑
i=1

pΓ
i g(xi)

where the weights pΓ
i depend on the quantization mode (primal or dual). If X ∈ L2(P), and g is

C1 and its gradient is Lipschitz continuous with constant [∇g]Lip , writing

g(X)− g(X̂) =

∫ 1

0

(
∇g(X̂ + α(X − X̂))−∇g(X)

)
.(X − X̂)dα+∇g(X).(X − X̂)

and using the stationarity property (1.2) to get rid of the expectation of the second term in the
right-hand side, one obtains ∣∣E g(X)− E g(X̂)

∣∣ ≤ 1
2 [∇g]LipE|X − X̂|2

(see [21]). Note that the counterpart of such a second order error bound in Voronoi quantization
only holds for optimal quadratic quantizers. Nevertheless, this quadrature formula emphasizes the
need for quantizers inducing, at a given level N ≥ 3, an as small as possible quantization error.
That is a grid Γ such that E|X−X̂|2 is minimum. This is the main purpose of optimal quantization
and in fact such optimal “minimizing” grids do exist, see Theorem 1.1 below. Let us specify the
example of optimal quantizations for U([0, 1]). It follows from [20], Section 5.1 (see also the remark
after Theorem 2.1), that the Lr-optimal dual quantizer of U([0, 1]) (does not depend on r and) is
given at level N ≥ 2 by

Γ(N),del =
{
i−1
N−1 : i = 1, . . . , N

}
3



with weights p1 = pN = 1
2(N−1) and p2 = p3 = · · · = pN−1 = 1

N−1 whereas, for Voronoi quantiza-

tion, the Lr-optimal quantizer of U([0, 1]) does not depend on r either and is given (see [16]) at
level N ≥ 1 by

Γ(N),vor =
{

2i−1
2N : i = 1, . . . , N

}
with all weights given by pi = 1

N . Note that the optimal Voronoi N -quantizer is made up with the
midpoints of the optimal Delaunay (N+1)-quantizer. Consequently, in this elementary framework,
Voronoi optimal N -quantizers correspond to midpoint quadrature formula for numerical integration
over [0, 1] whereas Delaunay quantization yields the trapezoid quadrature formula. Such a property
no longer holds for general distributions.

When X is an Rd-valued random vector with compactly supported distribution µ, d ≥ 2, one
considers grids Γ = {x1, . . . , xN} ⊂ Rd such that supp(µ) ⊂ conv(Γ) and the Delaunay projection
operator is defined on a hyper-triangulation of conv(Γ) sharing some minimality properties. The
main feature of such dual quantization in higher dimension is that it still satisfies for every grid
Γ the above dual stationarity property. This has been established in [20] in full generality with a
natural extension to unbounded random vectors (to the price of a partial loss of the stationarity
property).

Then, for any fixed r∈ [1,+∞), one may define the lowest possible Lr-error induced by replacing
X by any of its dual quantization X̂Γ,dual where Γ runs over grids of size (or cardinality) at most
N . To keep sense one should assume that N ≥ dµ+1 where dµ denotes the dimension of the vector
space spanned by supp(µ) in Rd. So we define for N ≥ dµ + 1, the Lr dual quantization error
modulus by

dr,N (X) := inf
{∥∥X − X̂Γ,dual

∥∥
r
, conv(Γ) ⊃ supp(µ), card(Γ) ≤ N

}
.

It turns out (see again [20]) that it satisfies the more general bound

dr,N (X) = inf
Y

{∥∥X − Y ∥∥
r

: Y : (Ω× Ω0,A⊗A0,P⊗ P0)→ Rd,

card(Y (Ω× Ω0)) ≤ N and EP⊗P0
(Y |X) = X

}
.

which emphasizes the connections with martingale optimal transport explored in other papers [9, 10]
on the one hand and with Voronoi/primal quantization.

Indeed if one replaces the above Delaunay projection by a (Borel) nearest neighbour projection
on the grid Γ, denoted ProjvorΓ and if we set if X̂Γ,vor = ProjvorΓ (X) for some Lr-integrable random
vector, then

er,N (X) := inf
{∥∥X − X̂Γ,vor

∥∥
r
, card(Γ) ≤ N

}
= inf

Y

{∥∥X − Y ∥∥
r

: Y : (Ω,A,P)→ Rd, card
(
Y (Ω)

)
≤ N

}
.

One has er,n(X) ≤ dr,N (X) when both moduli make sense since dual quantization takes into account
the additional martingale transport property between X and its quantization. Note that in fact
both dr,N (X) and er,N (X) only depend on the distribution, say µ, of X so that we will also denote
dr,N (µ) (and er,N (µ)).
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It is classical background (see [6] or [17]) that the infimum is in fact a minimum and that at
each level N there exist an optimal grid Γr,vorN such that er,N (X) =

∥∥X − X̂Γr,vorN ,vor
∥∥
r
. It should

be noticed that, whereas all dual quantizations satisfy the above stationarity equation (1.2), only
Lr-optimal Voronoi quantizers with r = 2 satisfy a stationarity property, namely a reverse one

E
(
X | X̂Γ2,vor

N ,vor
)

= X̂Γ2,vor
N ,vor. (1.3)

Likewise, as soon as dr,N (X) < +∞, it is established in [20] that dr,N (X) holds as a minimum

i.e. dr,N (X) =
∥∥X − X̂Γr,dualN ,dual

∥∥
r
. To be more precise we state the original existence result for

dual quantization, see [20].

Theorem 1.1 (Existence of optimal dual quantizers) Let r ∈ [1,+∞) and let µ be a com-
pactly supported distribution on (Rd,Bor(Rd)). For every level N ≥ dµ + 1, there exists at least
one Lr-optimal grid Γr,del

N
with size at most N i.e. satisfying

dr,N (µ) =

(∫
Rd×[0,1]

|ξ − Projdel
Γr,delN

(ξ, u)|rµ(dξ)du

)1/r

=
∥∥X−Projdel

Γr,delN

(X,U)
∥∥
r
, (X,U) ∼ µ⊗U([0, 1]).

Moreover conv
(
Γr,del
N

)
⊃ supp(µ). If supp(µ) has at least N elements, then Γr,del

N
has full size N

and dr,N (µ) decreases to 0 as long as it does not vanish, which never occurs if supp(µ) is infinite.

Finally, we recall below the main result established in [22] which is counterpart for dual quan-
tization of the celebrated Zador theorem ruling the sharp rate of decay to 0 of the optimal Lr-
quantization error and its non-asymptotic version, counterpart of Pierce’s lemma. It rules the dual
quantization error rate in a quite similar way for bounded random vectors.

Theorem 1.2 (Rate of decay of optimal dual quantization) (a) Sharp rate for dual quan-

tization: Let X ∈ L∞Rd(Ω,A,P) be a bounded random vector with distribution PX = ϕ.λd
⊥
+ νX

where λd denotes the Lebesgue measure and νX denotes its singular component. Then, for every
r∈ (0,+∞),

lim
N→+∞

N
1
ddr,N (X) = J̃deld,r

(∫
Rd
ϕ

d
d+r dλd

) 1
d

+ 1
r

where J̃deld,r = inf
N≥1

N
1
ddr,N

(
U([0, 1]d)

)
≥ J̃vord,r = inf

N≥1
N

1
d er,N

(
U([0, 1]d)

)
.

When d = 1, J̃del1,r =
(

2
(r+1)(r+2)

)1/r
whereas J̃vord,r =

(
1

(r+1)2r

)1/r
. Hence,

J̃del1,r

J̃vor1,r

=
(

2r+1

r+2

)1/r
↑ 2

as r ↑ +∞.

(b) Non-asymptotic bound: Let r, η > 0. For every dimension d ≥ 1, there exists a real constant
C̃deld,η,r > 0 such that, for every random vector X : (Ω,A,P)→ Rd, L∞(P)-bounded,

dr,N (X) ≤ C̃deld,η,rN
− 1
dσr+η(X) (1.4)

where, for every p > 0, σp(X) = infa∈Rd ‖X − a‖p < +∞.
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Remark. Note that claim (b) remains true if the support of PX does not span Rd as an affine
space, but Aµ with dimension d′ < d. However, if such is the case (1.4) is suboptimal since it still
holds with N−1/d′ replacing N−1/d in the right-hand side.

One of the first striking theoretical results on optimal Voronoi quantization, beyond the exis-
tence of optimal quantizers for general distributions in any dimension and at any level, was obtained
by Trushkin who proved (see [23], see also [11]) the following uniqueness result for one dimensional
strongly unimodal distributions.

Theorem 1.3 (Trushkin, 1982) Let r ∈ {1, 2}. Assume that µ has a finite r-moment and µ =
f.λ where f : R → R+ is a log-concave density on the real line. For every integer N ∈ N, there
exists a unique Lr-optimal grid Γr,vorN = {x1, . . . , xN} ⊂ conv

(
supp(µ)

)
of size N such that for

X ∼ µ,
er,N (X) =

∥∥X − X̂Γr,vorN ,vor
∥∥
r
.

For extensions to more general loss functions see again [23] or [2]. As a second step, Kieffer
established in the quadratic case r = 2, the convergence of the so-called Lloyd’s Method I (or
Lloyd’s algorithm, see [13]) at an exponential rate for strongly unimodal distributions whose log-
density is not piecewise affine i.e. for strongly log-concave densities (see [11]).

The first main result of this paper is to prove that Trushkin’s uniqueness theorem remains
true for Lr-dual quantization under the same strong unimodal assumption, even for any r ≥ 1.
Then, we propose, still in 1-dimension, a kind of counterpart of the Lloyd’s Method 1, to compute
optimal quadratic dual quantizers and we prove that this algorithm converges at an exponential
rate, uniformly in the starting point, under a strong unimodality property.

Finally, we also provide more specific fast algorithms to compute Lr-optimal dual quantizers for
two families of distributions : power distributions over a compact interval and truncated exponential
distributions.

2 Uniqueness of optimal scalar Lr-dual quantizers r ≥ 1

Our aim is to establish uniqueness of Lr-optimal dual quantizers for every r ≥ 1 under suitable
assumptions on µ. We exclude the trivial case when µ(dξ) = δx(dξ) for some x ∈ R and the
optimal grid at each level N is {x}. To enable dual quantization, we suppose that µ is compactly
supported and denote by a < b the real numbers such that [a, b] = conv

(
supp(µ)

)
. For N ≥ 2,

a dual quantization grid Γ with card(Γ) ≤ N writes Γ = {x1, . . . , xN} for x1 ≤ x2 ≤ . . . ≤ xN
satisfying x1 ≤ a and xN ≥ b. Then, since µ(R \ [a, b]) = 0, for X ∼ µ,

‖X − X̂Γ,dual‖rr =

N−1∑
i=1

∫
(xi∨a,xi+1∧b)

(
|ξ − xi|r

xi+1 − ξ
xi+1 − xi

+ |xi+1 − ξ|r
ξ − xi

xi+1 − xi

)
µ(dξ).
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When ξ ∈ (xi ∨ a, xi+1 ∧ b), then, by convexity of x 7→ |ξ − x|r, one has

|ξ − xi ∨ a|r ≤ |ξ − xi|r
xi+1 − xi ∨ a
xi+1 − xi

+ |xi+1 − ξ|r
xi ∨ a− xi
xi+1 − xi

|ξ − xi+1 ∧ b|r ≤ |ξ − xi|r
xi+1 − xi+1 ∧ b
xi+1 − xi

+ |xi+1 − ξ|r
xi+1 ∧ b− xi
xi+1 − xi

so that

|ξ − xi ∨ a|r
xi+1 ∧ b− ξ

xi+1 ∧ b− xi ∨ a
+ |xi+1 ∧ b− ξ|r

ξ − xi ∨ a
xi+1 ∧ b− xi ∨ a

≤ |ξ − xi|r
xi+1 − ξ
xi+1 − xi

+ |xi+1 − ξ|r
ξ − xi

xi+1 − xi

with strict first inequality if xi < a (by strict convexity of x 7→ |ξ−x|r when r > 1 and, when r = 1,
since ξ − xi and xi+1 − ξ have opposite signs), strict second inequality if xi+1 > b and therefore
strict third inequality if xi < a or xi+1 > b. Hence ‖X − X̂Γ,dual‖rr is not smaller than

N−1∑
i=1

∫
(xi∨a,xi+1∧b)

(
|ξ − xi ∨ a|r

xi+1 ∧ b− ξ
xi+1 ∧ b− xi ∨ a

+ |xi+1 ∧ b− ξ|r
ξ − xi ∨ a

xi+1 ∧ b− xi ∨ a

)
µ(dξ),

and even larger if there exists i ∈ {1, . . . , N − 1} such that xi < a < xi+1 or xi < b < xi+1 (because
of the support condition, µ gives positive weight to any interval [a, x] and [x, b] with a < x < b).
Therefore the optimal grid for N = 2 is {a, b} and, when N ≥ 3, the grid {a∨x1∧ b, . . . , a∨xN ∧ b}
outperforms Γ or performs as well but contains at most N−1 points. If supp(µ) contains at least N
points, by Theorem 1.1, any optimal grid with size at most N contains N points and we deduce that
such a grid writes {a, x2, . . . , xN−1, b} with a < x2 < . . . < xN−1 < b. Let Sa,bN = {(x2, . . . , xN−1) ∈
(a, b)N−2 : x2 < . . . < xN−1} with closure Sa,bN = {(x2, . . . , xN−1) ∈ [a, b]N−2 : x2 ≤ . . . ≤ xN−1}
and for x = (x2, . . . , xN−1) ∈ Sa,bN ,

LN (x) := ‖X − X̂Γ,dual‖rr where Γ = {a, x2, . . . , xN−1, b}.

We will of course use the natural convention x1 = a and xN = b in what follows. The optimal grids,
which exist according to Theorem 1.1, are of the form {a, x2, . . . , xN−1, b} with x = (x2, . . . , xN−1) ∈
Sa,bN minimizing LN over Sa,bN when supp(µ) contains at least N points.

Theorem 2.1 (Uniqueness of critical points of LN) Let N ≥ 3 and r ∈ [1,+∞). Assume

that µ([a, b]) = 1 and µ is atomless. Then the function LN : Sa,bN → R+ defined just above is

differentiable and its gradient ∇LN admits a continuous extension on Sa,bN . If µ admits a density
f with respect to the Lebesgue measure which is positive and log-concave on the interval (a, b) and

vanishes outside, then the continuous extension of ∇LN has a unique zero x? and x? ∈ Sa,bN .

We deduce the following result.

Corollary 2.2 (Uniqueness of Lr-quantizers) Let N ≥ 3 and r ∈ [1,+∞). Assume that µ
is atomless and conv

(
supp(µ)

)
= [a, b] with −∞ < a < b < +∞. Then the Lr-optimal dual

quantization grids at the level N are of the form {a, x2, . . . , xN−1, b} with (x2, . . . , xN−1) ∈ Sa,bN
solving the master equation ∇LN (x2, . . . , xN−1) = 0. If, moreover, µ admits a density f with
respect to the Lebesgue measure which is positive and log-concave on the interval (a, b) and vanishes
outside, then the unique Lr-optimal dual quantization grid at level N of µ is {a, x?2, . . . , x?N−1, b}
where x? is the unique critical point of LN in Sa,bN .
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Notice that by concavity of x 7→ log f(x) on (a, b), this function is continuous on (a, b) and admits
limits in {−∞} ∪R as x→ a+ and x→ b− so that f is continuous on (a, b) and admits limits in
R+ as x → a+ and x → b−. The density f is continuous on R iff both limits are equal to 0. In
any case, f is bounded on R.

To prove Theorem 2.1, we will rely on the following two classical results, tailored variants of
the celebrated Mountain pass lemma and Gershgorin’s lemma respectively.

Theorem 2.3 (Mountain pass Lemma) Compact case (see [15]) Assume that K⊂ Rn is the

closure of a nonempty compact convex open set O (then
◦
K= O) and that L : K −→ R is C1 on

◦
K, ∇L admits a continuous extension on K satisfying {∇L= 0}⊂

◦
K and for every small enough

ε > 0, (Id − ε∇L)(
◦
K)⊂

◦
K. If two distinct zeros of ∇L are (strict) local minima, then ∇L has a

third zero which can in no case be a local minimum.

Proposition 2.4 (À la Gershgorin Lemma) (a) Let A = [aij ] be an n × n symmetric matrix
with dominating diagonal i.e.

∀ i∈ {1, . . . , n}, ∀ j∈ {1, . . . , n} \ {i}, aij ≤ 0 and Λi :=

n∑
j=1

aij ≥ 0.

Then all eigenvalues of A are non-negative.

(b) If moreover, A is tridiagonal with aii±1 < 0, for i = 2, . . . , n− 1, a12, ann−1 < 0, Λ1 or Λn > 0,
then all eigenvalues of A are positive.

Proof. Let λ ∈ R be an eigenvalue of the symmetric matrix A and x = (x1, . . . , xn) one of its
eigenvectors. Let i0 ∈ argmax1≤i≤n|xi|. We may assume without loss of generality that xi0 = 1.
Also note that aii ≥ 0, i = 1, . . . , n.

(a) We have |xj | ≤ 1 for all j = 1, . . . , n so that

λ = ai0i0 +
∑
j 6=i0

ai0jxj ≥ ai0i0 +
∑
j 6=i0

ai0j |xj | ≥ Λi0 ≥ 0.

(b) If λ = 0, then under the convention a10 = ann+1 = 0 and x0 = xn+1 = 1, we have

0 = λ = ai0i0 + ai0i0−1xi0−1 + ai0i0+1xi0+1 ≥ ai0i0 + ai0i0−1|xi0−1|+ ai0i0+1|xi0+1| ≥ Λi = 0

so that xi0±1 = |xi0±1| = 1. Then, by induction, we show that xi = 1 for all i = 1, . . . , n i.e. x = 1.
But then, if L1 = a11 + a12 > 0,

λ = λx1 = a11x1 + a12x2 = a11 + a12 > 0

which yields a contradiction. One concludes likewise if Λn > 0. Hence λ > 0. 2

In order to prove Theorem 2.1 we will follow the strategy originally developed in [15] for Voronoi
optimal quantizers.

Proof. In the proof, the hypotheses on µ will only be gradually reinforced to those made in the
statement.

8



We first assume that µ([a, b]) = 1. We know that, for every ξ∈ [xi−1, xi] and every u∈ [0, 1],

Projdelx (ξ, u) =

N∑
i=2

1
{0≤u< ξ−xi−1

∆xi
}
xi + 1

{ ξ−xi−1
∆xi

≤u≤1}
xi−1, ∆xi = xi − xi−1, i = 2, . . . , N.

Now

LN (x) =

∫ xi

xi−1

[
|ξ − xi−1|r

xi − ξ
∆xi

+ |xi − ξ|r
ξ − xi−1

∆xi

]
µ(dξ)

=
N∑
i=2

(∆xi)
r

∫ xi

xi−1

$r

(ξ − xi−1

∆xi

)
µ(dξ) (2.5)

where
$r(u) = ur(1− u) + (1− u)ru, u∈ [0, 1],

(See Figure 2). Note that $r

(
xi−xi−1

∆xi

)
µ({xi}) = 0 = $r(

xi−1−xi−1

∆xi
)µ({xi−1}) so that the notation∫ xi

xi−1
$r

(
ξ−xi−1

∆xi

)
µ(dξ) makes sense even if µ weights points. The function $r when extended under

the same notation by the value 0 outside the interval [0, 1] is continuous and bounded by 1/2 on
the real line. As a consequence, Lebesgue’s theorem ensures that (y, z) 7→

∫ z
y $r(

ξ−y
z−y )µ(dξ) =∫

R$r(
ξ−y
z−y )µ(dξ) is continuous on {(y, z) ∈ R2 : y < z}. Moreover, for y < z, 0 ≤ (z −

y)r
∫ z
y $r(

ξ−y
z−y )µ(dξ) ≤ (z−y)r

2 . We deduce that LN is continuous on Sa,bN and can be continuously

extended to its closure K = Sa,bN .
When µ has a density f , an elementary change of variable in each integral yields the alternative

formulation

LN (x) =

N∑
i=2

(∆xi)
r−1

∫ 1

0
$r(z)f

(
xi−1 + z∆xi

)
dz. (2.6)

Since the extended function $r is differentiable outside {0, 1} with a bounded derivative,
Lebesgue’s theorem ensures that (y, z) 7→

∫
R$r(

ξ−y
z−y )µ(dξ) admits a partial derivative with respect

to its first (resp. second) variable equal to
∫
R

ξ−z
(z−y)2$

′
r(
ξ−y
z−y )µ(dξ) (resp.

∫
R

y−ξ
(z−y)2$

′
r(
ξ−y
z−y )µ(dξ))

at each point (y, z) such that y < z and µ({y}) = 0 (resp. µ({z}) = 0). Hence, for i = 2 : N − 1

and x ∈ Sa,bN such that µ({xi}) = 0, LN admits a partial derivative with respect to xi at x given by

∂xiLN (x) = (∆xi)
r−1

∫
(xi−1,xi]

Ψr

(ξ − xi−1

∆xi

)
µ(dξ)− (∆xi+1)r−1

∫
[xi,xi+1)

Ψr

(xi+1 − ξ
∆xi+1

)
µ(dξ),

(2.7)

where the function Ψr is defined by

∀u ∈ (0, 1), Ψr(u) = r$r(u)− u$′r(u) = (r − 1)u(1− u)r + ur+1 + ru2(1− u)r−1 > 0 (2.8)

and by Ψr(0) = 0 and Ψr(1) = 1 + 1{r=1}.

9



By Fubini’s theorem and since Ψr(0) = 0,∫
(xi−1,xi]

Ψr

(ξ − xi−1

∆xi

)
µ(dξ) =

∫
(xi−1,xi]

∫ 1

0
1
{z< ξ−xi−1

∆xi
}
Ψ′r(z)dzµ(dξ)

=

∫ 1

0
Ψ′r(z)

(
F (xi)− F (xi−1 + z∆xi)

)
dz.

Hence, dealing in a similar way with the second term in the right-hand side of (2.7), we obtain the
following second form of ∂xiLN (x) :

∂xiLN (x) = (∆xi)
r−1

∫ 1

0
Ψ′r(z)

(
F (xi)− F (xi−1 + z∆xi)

)
dz

− (∆xi+1)r−1

∫ 1

0
Ψ′r(1− z)

(
F (xi + z∆xi+1)− F (xi)

)
dz. (2.9)

When µ is atomless, then LN is differentiable on Sa,bN and we easily deduce from the continuity of

F and (2.9) that ∇LN is continuous on Sa,bN and admits a continuous extension on Sa,bN .
When µ has a density f , then the partial derivative is also equal to

∂xiLN (x) = (∆xi)
r

∫ 1

0
Ψr(z)f

(
xi−1 + z∆xi

)
dz − (∆xi+1)r

∫ 1

0
Ψr(1− z)f(xi + z∆xi+1

)
dz.

(2.10)

Note that each of these three forms of partial derivatives ∂xiLN (x) yields a version of the master
equation for dual quantization at level N , ∇LN (x) = 0.

From now on, we assume that µ has a density f which is du a.e. positive on (a, b). If x ∈ Sa,bN
solves the master equation then by (2.10), (∆xi)

r = 0 ⇔ (∆xi+1)r = 0 for i = 2, . . . , N − 1 and

since x1 = a < b = xN , necessarily ∆xi > 0 for i = 2, . . . , N i.e. x ∈ Sa,bN =
◦
K.

When the density f is continuous on (a, b), the cumulative distribution function F is contin-
uously differentiable on this interval and it follows from (2.9) that the Hessian of LN does exist

on Sa,bN and has a symmetric tridiagonal structure. However in order to apply the refined Gersh-
gorin Lemma (Lemma 2.4(b) with n = N − 2), we need to show that the sub-diagonal terms are
non-positive and the sum of its lines i.e.

∑
`=0,±1 ∂

2
xixi+`

LN (x), i = 2 : N − 1 (with the obvious
convention that ∂x1 [. . .] = ∂xN [. . .] = 0). We assume that the density f is also continuous and rely
on (2.9) to derive that

∂2
xi−1xiLN (x) = −(r − 1)(∆xi)

r−2

∫ 1

0
Ψ′r(z)

(
F (xi)− F (xi−1 + z∆xi)

)
dz

− (∆xi)
r−1

∫ 1

0
Ψ′r(z)(1− z)f(xi−1 + z∆xi)dz

= −(∆xi)
r−1

∫ 1

0
ϑr(z)f(xi−1 + z∆xi)dz (2.11)

where, for every z∈ (0, 1),

ϑr(z) = (r−1)Ψr(z)+(1−z)Ψ′r(z) = (r+1)
(
z(1−z)r +zr(1−z)

)
+(r−1)

(
zr+1 +(1−z)r+1

)
> 0.
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Hence, f being du-a.e. positive on (a, b), ∂2
xi−1xiLN (x) < 0.

Similar computations show, still assuming that f is continuous, that

∂2
x2
i
LN (x) = Ψr(1)f(xi)

(
(∆xi)

r−1 + (∆xi+1)r−1
)

+ (∆xi)
r−1

∫ 1

0
ϑ̃r(z)f

(
xi−1 + z∆xi

)
dz + (∆xi+1)r−1

∫ 1

0
ϑ̃r(1− z)f

(
xi + z∆xi+1

)
dz

(2.12)

(Ψr(1) = 1 + 1{r=1}) where

ϑ̃r(z) = (r − 1)Ψr(z)− zΨ′r(z).

Let us introduce for every i = 2, . . . , N − 1, the quantity

Si = Ψr(1)
(
(∆xi)

r−1 + (∆xi+1)r−1
)
f(xi)

− (∆xi)
r−1

∫ 1

0
Ψ′r(z)f(xi−1 + z∆xi)dz − (∆xi+1)r−1

∫ 1

0
Ψ′r(1− z)f(xi + z∆xi+1)dz.

One derives from (2.11), (2.12) and the obvious fact ϑ̃r − ϑr = −Ψ′r that

Si =
∑

`=0,±1

∂2
xixi+`

LN (x) =
N−1∑
j=2

∂2
xixjLN (x) for i = 3 : N − 2.

(We could have taken advantage of the anti-symmetries induced by the fact that ∂xi∆xi+∂xi−1∆xi =
0 to compute Si without computing ∂2

x2
i
LN (x) but we will need a closed form of the diagonal term

of the Hessian for the counterexample below).
Moreover, one checks that by positivity of ϑr on (0, 1) and of f on (a, b),

N−1∑
j=2

∂2
x2xjLN (x) =

∑
`=0,1

∂2
x2xi+`

LN (x) = S2 + (∆x2)r−1

∫ 1

0
ϑr(z)f(x1 + z∆x2)dz > S2 and

N−1∑
j=2

∂2
xN−1xj

LN (x) =
∑

`=−1,0

∂2
xN−1xN−1+`

LN (x) = SN−1 + (∆xN )r−1

∫ 1

0
ϑr(z)f(xN−1 + z∆xN )dz > SN−1.

Assume now that f is positive and right differentiable on (a, b) with right derivative f ′r. Then, by
an integration by part, one shows that

Si = (∆xi)
r

∫ 1

0
Ψr(z)f

′
r(xi−1 + z∆xi)dz − (∆xi+1)r

∫ 1

0
Ψr(1− z)f ′r(xi + z∆xi+1)dz

= (∆xi)
r

∫ 1

0
Ψr(z)

f ′r(xi−1 + z∆xi)

f(xi−1 + z∆xi)
f(xi−1 + z∆xi)dz

− (∆xi+1)r
∫ 1

0
Ψr(1− z)

f ′r(xi + z∆xi+1)

f(xi + z∆xi+1)
f(xi + z∆xi+1)dz.
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Now if, furthermore, f is log-concave then f is right differentiable and f ′r
f is non-increasing so

that f ′r
f ≤

f ′r
f (xi) on (xi, xi+1) and f ′r

f ≥
f ′r
f (xi) on (xi−1, xi). Since Ψr is positive on (0, 1), we

deduce that

Si ≥
f ′r
f

(xi)

(
(∆xi)

r

∫ 1

0
Ψr(z)f(xi−1 + z∆xi)dz − (∆xi+1)r

∫ 1

0
Ψr(1− z)f(xi + z∆xi+1)dz

)
where the second factor in the right-hand side is equal to 0 when x ∈ Sa,bN is solution to the master

equation (derived from) (2.10). Consequently,
∑N−1

j=2 ∂2
xjxiLN (x) = Si ≥ 0 for i = 3 : N − 2 and∑N−1

j=2 ∂2
xjxiLN (x) > Si ≥ 0 for i ∈ {2, N − 1}. It follows from Proposition 2.4 that the Hessian

∇2LN (x) at an equilibrium point x ∈ Sa,bN has a strictly positive spectrum and x is consequently

a strict local minimum of LN on Sa,bN . If we can prove that (Id − ε∇L)(Sa,bN ) ⊂ Sa,bN for small
enough ε, then we may apply (the variant of) the Mountain Pass Lemma (Theorem 2.3) to the

convex compact Sa,bN of RN−2 with non empty interior to conclude that LN admits at most one
equilibrium point x ∈ Sa,bN . This is the purpose of the next lemma, the hypothesis of which is
satisfied when the density f is positive and log-concave on (a, b) since, according to the remark just
after Corollary 2.2, f is then bounded.

Lemma 2.5 Let r∈ [1,+∞). If the density f satisfies

f bounded if r = 1 or

∫ b

a
f

1
r−1 (ξ)dξ < +∞ if r∈ (1, 2),

then, for ε > 0 small enough, (Id− ε∇LN )(Sa,bN )⊂ Sa,bN .

Proof. Let x ∈ Sa,bN .

Assume r∈ (1, 2). Then, for every u, v∈ [a, b], Hölder’s inequality implies∫ v

u
f(ξ)dξ ≤

(∫ b

a
f

1
r−1 (ξ)dξ

)r−1

(v − u)2−r.

On the other hand, for i = 2, . . . , N − 2, it follows from (2.10) that

∂xi+1LN (x)− ∂xiLN (x) ≤ (∆xi+1)r
∫ 1

0

(
Ψr(z) + Ψr(1− z)

)
f(xi + z∆xi+1

)
dz

≤ ∆xi+1Cr(∆xi+1)r−2

∫ xi+1

xi

f(ξ)dξ

≤ ∆xi+1Cr

(∫ b

a
f

1
r−1 (ξ)dξ

)r−1

where Cr = supz∈[0,1]

(
Ψr(z) + Ψr(1 − z)

)
< +∞ according to (2.8). Consequently for ε <(

Cr

(∫ b
a f

1
r−1 (ξ)dξ

)r−1 )−1

xi − ε∂xiLN (x) < xi+1 − ε∂xi+1LN (x), i = 2 : N − 1.
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If r = 1, this inequality follows likewise by replacing
(∫ b

a f
1
r−1 (ξ)dξ

)r−1
by ‖f‖∞.

If r ≥ 2, just note that (∆xi+1)r−2
∫ xi+1

xi
f(ξ)dξ ≤ (b− a)r−2 and choose ε ≤

(
Cr(b− a)r−2

)−1
.

It remains to prove that x2 − ε ∂x2L(x) > a and xN−1 − ε ∂xN−1L(x) < b. In fact

x2 − ε ∂x2L(x) > x2 − ε(∆x2)r
∫ 1

0
Ψr(z)f(a+ z∆x2)dz

≥ x2 −∆x2ε‖Ψr‖sup(∆x2)r−2

∫ x2

a
f(ξ)dξ.

Inspecting the same cases as above, one shows under the assumptions made on f for r∈ [1, 2], that
for ε∈ (0, ε′r] small enough (independently of x),

x2 − ε ∂x2L(x) > x2 − (x2 − a) = a.

The second inequality follows likewise. This completes the proof of the lemma. 2

The following counterexample shows that uniqueness of critical points of LN may fail when the
density f is continuous, du-a.e. positive and (left and) right differentiable, but not log-concave.

Counter–example. The idea to devise this counter-example is to find a distribution µ with a
periodic density on the interval [0, 1] that trivially makes x? =

(
k−1
N−1

)
k=1,...,N

an equilibrium at

level N but which assigns much mass in between the codewords x∗k = k−1
N−1 so that this equilibrium

cannot be a local minimum of LN . As a consequence there will be at least one further equilibrium
point: the minimum of LN known to lie in S0,1

N
.

Figure 1 – The probability density g for r = 2 and N = 5 (see (2.14)). Red bulllets are the 5
codewords x∗k, k = 1 : 5.

Let r ≥ 1 and let g∈ C([0, 1],R+) a probability density function satisfying g(z) = g(1− z) and
g(0) = 0. We define for a fixed N ≥ 2 the probability measure

µ(du) := g
(
{(N − 1)u}

)
du

where {·} denotes the fractional part function. This defines an absolutely continuous probability
measure µ on the unit interval with an a.e. positive continuous density.

One checks that x? :=
(
k−1
N−1

)
k=1,...,N

satisfies ∇LN
(
x?
)

= 0 using the master equation derived

from (2.10) and the obvious facts that ∆xi = 1
N−1 , i = 2, . . . , N , and

∫ 1
0 Ψr(z)g(z)dz =

∫ 1
0 Ψr(1−

z)g(z)dz.
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Elementary computations starting from (2.11) and (2.12) show that the Hessian ∇2LN (x?) is a
symmetric tridiagonal (N − 2)× (N − 2) matrix of the form

∇2LN (x?) = (N − 1)−(r−1)A with A =



2a b 0 · · · · · · 0

b 2a b 0 · · ·
...

0
. . .

. . .
. . . . . . 0

...
. . . b

. . . 2a b
0 . . . . . . 0 b 2a


∈ S(N − 2,R).

with

a =

∫ 1

0
ϑ̃r(z)g(z)dz and b = −

∫ 1

0
ϑr(z)g(z)dz < 0

(since both ϑr and g are positive on (0, 1)). It is classical background that (real) eigenvalues of
such a symmetric tridiagonal matrix A are

λk = 2
(
a+ b cos

(
kπ
N−1

))
, k = 1, . . . , N − 2, (2.13)

so that its lowest eigenvalue is λmin(N) = 2
(
a+ b cos( π

N−1)
)

(obtained with k = 1).

Using again that ϑr − ϑ̃r = −Ψ′r,

a+ b =

∫ 1

0
(ϑ̃r − ϑr)(z)g(z)dz = −

∫ 1

0
Ψ′r(z)g(z)dz.

Now, we note that Ψ′r(z) + Ψ′r(1 − z) = −$′′r (z), z ∈ [0, 1], so that, taking advantage of the fact
that g(1− z) = g(z), we derive∫ 1

0
Ψ′r(z)g(z)dz =

∫ 1

0

Ψ′r(z) + Ψ′r(1− z)
2

g(z)dz = −1

2

∫ 1

0
$′′r (z)g(z)dz = −

∫ 1/2

0
$′′r (z)g(z)dz

since both g and $′′r are symmetric (w.r.t. 1/2) on [0, 1]. If we assume that g is also differentiable
on (0, 1), then an integration by part yields

a+b =

∫ 1/2

0
$′′r (z)g(z)dz = g(1/2)$′r(1/2)−g(0)$′(0)−

∫ 1/2

0
$′r(z)g

′(z)dz = −
∫ 1/2

0
$′r(z)g

′(z)dz

since g(0) = 0 and, by symmetry w.r.t 1/2, $′r(1/2) = 0. Finally setting

g = cr$r (2.14)

so that g is a probability density, one has

a+ b = −cr
∫ 1/2

0
($′r(z))

2dz < 0,

hence a+b
b > 0 since b < 0. Consequently, λmin(N) < 0 for any N large enough such that

cos
(

π
N−1

)
> 1− a+ b

b
.
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Then, as some of the eigenvalues of the Hessian of LN at x? are negative, this point cannot be a
local minima of LN . The function LN also has a local minima lying in Sa,bN since supp(µ) = [0, 1],
namely any Lr-optimal dual N -quantizer. Hence, uniqueness of the solution to the master equation
fails.

However, note that this only stands as a counter-example to uniqueness of solutions of the
master equation: the set of local minima may still be reduced to a single N -tuple.

Figure 2 – Functions $r for (from left to right) r = 1, 1.5, 2, 3, 4, 6, 10.

Remarks • The conclusion of the above counterexample holds true for any symmetric probability
density g on [0, 1] such that g(0) = 0 and∫ 1/2

0
g′(z)$′r(z)dz > 0.

• If µ = U([a, b]) then the master equation e.g. derived from (2.9) reads (∆xi)
r = (∆xi+1)r,

i = 2 : N−1 since
∫ 1

0 Ψr(z)dz =
∫ 1

0 Ψr(1−z)dz. Hence ∆xi = b−a
N−1 , i = 2 : N , so that one retrieves

the fact that the unique Lr-optimal dual N -quantizer of U([0, 1]) is always x?,N =
(
i−1
N−1

)
i=1:N

for
all r ≥ 1.

• If r is an integer, then Ψr(z) is a polynomial function with degree at most r + 1. To be more
precise one checks that its term of degree r is always 0 and that the coefficient (−1)r

(
(−1)r−1

)
zr+1

of its term of degree r + 1 is 0 if and only if r is even. Hence d0 Ψr = r − 1 if r is an even integer
and r + 1 if r is an odd integer.

3 A Lloyd like algorithm for dual quantization in the quadratic
case

A fixed point formulation of the master equation. In this section, we specialize to the
quadratic r = 2 case and take advantage of this specialization to derive a more convenient expression
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of the distortion of the dual grid Γ = {a, x2, . . . , xN−1, b} parametrized by (x2, . . . , xN−1) ∈ Sa,b
N

:

LN (x) =

∫
[a,b]

µ(dξ)

∫ 1

0
du|ξ − ProjdelΓ (ξ, u)

∣∣2 =

∫
[a,b]

µ(dξ)

∫ 1

0
du
(
ProjdelΓ (ξ, u)

)2 − ∫
R
ξ2µ(dξ)

=
N−1∑
i=1

∫
(xi,xi+1]

µ(dξ)
[
xi+1−ξ
xi+1−xix

2
i + ξ−xi

xi+1−xix
2
i+1

]
−
∫
R
ξ2µ(dξ)

=

N−1∑
i=1

∫
(xi,xi+1]

(
(xi+1 + xi)ξ − xi+1xi

)
µ(dξ)−

∫
R
ξ2µ(dξ) (3.15)

=
N−1∑
i=1

(
(xi + xi+1)[K]

xi+1
xi − xixi+1[F ]

xi+1
xi

)
−
∫
R
ξ2µ(dξ), (3.16)

where, we recall that F (x) = µ((−∞, x]) and K(x) =
∫

(−∞,x] ξµ(dξ) respectively denote the cumu-

lative distribution function and the first partial moment of µ and for a function g : R→ R and two
real numbers x ≤ y, [g]yx = g(y)−g(x). Then, it follows from (3.15) that the mapping x 7→ LN (x) is
continuously differentiable at x when the distribution µ is atomless (i.e. F and K are continuous)
with

∂xiLN (x) = [K]
xi+1
xi−1 −

(
xi+1[F ]

xi+1
xi + xi−1[F ]xixi−1

)
, i = 2 : N − 1, (3.17)

The master equation for optimal quadratic quantizers reads x1 = a, xN = b and

∇x2:N−1LN (x) = 0 (3.18)

that is
[K]

xi+1
xi−1 = xi+1[F ]

xi+1
xi + xi−1[F ]xixi−1

, i = 2 : N − 1. (3.19)

Using Fubini’s theorem for the second equality, we obtain that

[K]
xi+1
xi−1 =

∫
(xi−1,xi+1]

∫
(xi−1,xi+1]

1{y<ξ}dy µ(dξ) + xi−1[F ]
xi+1
xi−1

=

∫
(xi−1,xi+1]

(
F (xi+1)− F (y)

)
dy + xi−1[F ]

xi+1
xi−1

= −
∫ xi+1

xi−1

F (y)dy + xi+1F (xi+1)− xi−1F (xi−1).

We deduce the following more synthetic form for the master equation

(xi+1 − xi−1)F (xi) =

∫ xi+1

xi−1

F (ξ)dξ, i = 2 : N − 1

which may also be deduced from the case r = 2 in (2.9) using Ψ′2 = 1 and performing a change of
variables in each integral. Equivalently, we have

F (xi) =

∫ xi+1

xi−1
F (ξ)dξ

xi+1 − xi−1
, i = 2 : N − 1. (3.20)
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Assume from now on that the distribution µ is atomless with support [a, b]. Then F : [a, b]→ [0, 1] is
an increasing homeomorphism and we may define its inverse F−1 so that the above equation (3.20)
can also be written as the fixed point equation

(x2, . . . , xN−1) = T (x) =
(
T2(x), . . . , TN−1(x)

)
where, for every x∈ Sa,bN ,

T (x) =

(
F−1

(∫ xi+1

xi−1
F (ξ)dξ

xi+1 − xi−1

))
i=2:N−1

. (3.21)

Since F is continuous and increasing from F (a) = 0 to F (b) = 1, T (x) ∈ Sa,bN for each x ∈
Sa,bN . By Corollary 2.2, any quadratic optimal dual quantization grid at level N is of the form

{a, x2, . . . , xN−1, b} with (x2, . . . , xN−1) ∈ Sa,bN solution to the master equation ∇LN (x) = 0 or
equivalently fixed point of T . If µ admits a density f with respect to the Lebesgue measure which
is positive and log-concave on the interval (a, b) and vanishes outside, then there is a unique such
point (x?2, . . . , x

?
N−1).

One checks that T can be continuously extended to the closure Sa,bN of Sa,bN . Indeed xi−1 = xi <
xi+1 or xi−1 < xi = xi+1, the extension of Ti(x) is straightforward and if xi−1 = xi = xi+1, set
Ti(x) = xi (in both cases with x1 = a and xN = b).

From such a fixed point identity, one can devise an iterative fixed point procedure which can
be seen as the counterpart of so-called Lloyd’s method I procedure for dual quantization:

x[`+1] = T
(
x[`]
)
, ` ≥ 0, x[0]∈ Sa,bN . (3.22)

When µ admits a density f positive and log-concave on (a, b) and vanishing outside, while
proving that this procedure converges at a geometric rate to x?, we are going to check that T
admits a unique fixed point in Sa,bN thus providing an alternative argument for the uniqueness
statement in Theorem 2.1.

Convergence of the dual Lloyd algorithm. First note that if F is continuously differentiable
on (a, b) i.e. µ has a continuous density f on (a, b), then the mapping T is itself continuously

differentiable at any x∈ Sa,bN with a Jacobian matrix JT (x) =
[
∂Ti
∂xj

(x)
]
2≤i,j≤N−1

where ∂Ti
∂xj

(x) = 0

if |i− j| ≥ 2 and

∂Ti
∂xi−1

(x) =
1

f ◦ F−1
(∫ xi+1

xi−1
F (ξ)dξ

xi+1−xi−1

) ×
∫ xi+1

xi−1
(F (ξ)− F (xi−1))dξ

(xi+1 − xi−1)2
> 0, i = 3, . . . , N − 1, (3.23)

and

∂Ti
∂xi+1

(x) =
1

f ◦ F−1
(∫ xi+1

xi−1
F (ξ)dξ

xi+1−xi−1

) ×
∫ xi+1

xi−1
(F (xi+1)− F (ξ))dξ

(xi+1 − xi−1)2
> 0, i = 2, . . . , N − 2. (3.24)

The main result of this section is the following.
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Theorem 3.1 Let −∞ < a < b < +∞. Assume that µ admits a density f with respect to the
Lebesgue measure which is positive and log-concave on the interval (a, b) and vanishes outside.

Then T admits a unique fixed point x? in Sa,bN and x? ∈ Sa,bN . Moreover, {a, x?2, . . . , x?N−1, b} is the
unique quadratic optimal dual quantization grid at level N of µ and

∃ρ ∈ [0, 1), ∀x[0] ∈ Sa,bN ,∀` ∈ N, |x[`]−x?|`∞ ≤

{
|x[0] − x?|`∞ρb`/Ñc where Ñ = dN2 e − 1

|x[0] − x?|`∞ρ` if f is strictly log-concave on (a, b).

As a preamble, we first establish an equivalence between two characterizations of strong uni-
modality, one being the log-concavity of the density of the distribution, whereas the other (see
below) will be extensively used in what follows. Then we establish a general result about fixed
point of locally contracting transforms from a compact set in itself.

Lemma 3.2 Let −∞ < a < b < +∞ and let f : (a, b)→ (0,+∞) be a positive probability density
on (a, b) with cumulative distribution function [a, b] 3 x 7→ F (x) =

∫ x
a f(ξ)dξ and quantile function

F−1. The function f is log-concave (resp. strictly log-concave) on (a, b) iff f ◦ F−1 is concave
(resp. strictly concave) on (0, 1).

Proof. The cumulative distribution function F being continuous and increasing on [a, b] with
F (a) = 0 and F (b) = 1, it admits a continuous and increasing inverse F−1 : [0, 1]→ [a, b].

Let us suppose that f is log-concave (resp. strictly log-concave). Then log f is continuous and
admits a non-increasing (resp. decreasing) right-hand derivative (log f)′r as a real-valued concave
(resp. strictly concave) function. By composition with the exponential, f = exp ◦ log f also admits
a right-hand derivative equal to f×(log f)′r. Since f is continuous and positive, the function F and
its inverse F−1 are continuously differentiable with respective derivatives f and 1

f◦F−1 . We conclude

that f ◦F−1 admits a right-hand derivative equal to f×(log f)′r
f ◦F−1 = (log f)′r ◦F−1 which is non-

increasing (resp. decreasing) as the composition of the non-increasing (resp. decreasing) function
(log f)′r with the increasing function F−1. Therefore f ◦ F−1 is concave (resp. strictly concave).

When f ◦ F−1 is concave (resp. strictly concave), then this function is continuous and, by
composition with the continuous function F , f is continuous so that F and F−1 are continuously
differentiable with respective derivatives f and 1

f◦F−1 . Moreover f = (f ◦ F−1) ◦ F admits a

right-hand derivative equal to f ′r = (f ◦ F−1)′r ◦ F × f . Then log f admits a right-hand derivative

equal to f ′r
f = (f ◦ F−1)′r ◦ F which is non-increasing (resp. decreasing) as the composition of the

non-increasing (resp. decreasing) function (f ◦ F−1)′r with the increasing function F . Therefore
log f is concave (resp. strictly concave). 2

Proposition 3.3 Let K be a convex compact subset of Rd, equipped with a norm ‖ · ‖, and let
T : K → K be a ‖ · ‖ − 1-Lipschitz continuous mapping such that for some k ∈ N∗, the mapping
T k obtained by iterating T k-times satisfies

ρk := sup
y∈K, y 6=y?

‖Tk(y)−y?‖
‖y−y?‖ < 1

for some fixed point y? of T (the set of fixed points is non empty by Brouwer’s theorem). Then y?

is the unique fixed point of T and for every y0∈ K, the sequence recursively defined for n ∈ N by
yn+1 = T (yn) geometrically converges to y? :

∀n ∈ N, ‖yn − y?‖ ≤ ‖y0 − y?‖ρbn/kck .
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Proof. The inequality ‖T k(y) − y?‖ ≤ ρk‖y − y?‖ valid for each y ∈ K with ρk < 1 implies that
every fixed point of T k and therefore of T is equal to y?. Moreover, using that y? is a fixed point
of T then the 1-Lipschitz property of T and last the previous inequality, we obtain that

‖yn − y?‖ = ‖Tn−bn/kck(ybn/kck)− Tn−bn/kck(y?)‖ ≤ ‖T k(y(bn/kc−1)k)− y?‖

≤ ρk‖T k(y(bn/kc−2)k)− y?‖ ≤ ρ
bn/kc
k ‖y0 − y?‖.

2

Proof of Theorem 3.1. Since K = Sa,b
N

is a convex and compact subset of RN−2, by Brouwer’s

fixed-point theorem, the set of fixed points of the continuous map T : Sa,b
N
→ Sa,b

N
is non empty.

Let x ∈ Sa,b
N

and x1 = a, xN = b. If Ti(x) = xi−1 or Ti(x) = xi+1 for some i = 2, . . . , N − 1,
then, since F is increasing and continuous on [a, b], xi−1 = xi = xi+1. If moreover T (x) = x,
then one deduces that Ti+1(x) = xi if i ≤ N − 2 and Ti−1(x) = xi if i ≥ 3, so that by induction
x1 = x2 = . . . = xN−1 = xN which contradicts x1 = a < b = xN . Hence the non-empty set of
fixed points of T is included in Sa,b

N
. Let x? ∈ Sa,b

N
be one of these fixed points. We are going to

check that the assumptions of Proposition 3.3 are satisfied with y? = x? and with k = 1 in the
strictly log-concave case and k = Ñ is the log-concave case. The conclusions but the link between
x? and the unique quadratic optimal dual quantization grid at level N of µ then follow from this
proposition. This link is a consequence of Corollary 2.2 and the fact that x ∈ Sa,b

N
is a critical point

of LN iff it is a fixed point of T .

– Srictly log-concave setting. It follows from (3.23) and (3.24) that, for every x ∈ Sa,b
N

and i =
3, . . . , N − 2,

∂Ti
∂xi−1

(x) +
∂Ti
∂xi+1

(x) =
1

f ◦ F−1
(∫ xi+1

xi−1
F (ξ)dξ

xi+1−xi−1

) × F (xi+1)− F (xi−1)

xi+1 − xi−1
.

As f is strictly log-concave, f ◦F−1 is strictly concave by Lemma 3.2, hence it follows from Jensen’s
inequality that, under the convention x1 = a and xN = b, for every i = 2, . . . , N − 1

f ◦ F−1

(∫ xi+1

xi−1
F (ξ)dξ

xi+1 − xi−1

)
>

∫ xi+1

xi−1
f(ξ)dξ

xi+1 − xi−1
=
F (xi+1)− F (xi−1)

xi+1 − xi−1
(3.25)

with a strict inequality since the probability measure 1[xi−1,xi+1](ξ)dξ is not a Dirac mass and F is

not constant over [xi−1, xi+1]. As a consequence, for every x∈ Sa,bN ,

∀i = 3, . . . , N − 2,
∂Ti
∂xi−1

(x) +
∂Ti
∂xi+1

(x) < 1, (3.26)

∂T2

∂x3
(x) =

∫ x3

a (F (x3)− F (ξ))dξ

(x3 − a)2f ◦ F−1
(∫ x3

a F (ξ)dξ

x3−a

) < 1

f ◦ F−1
(∫ x3

a F (ξ)dξ

x3−a

) × F (x3)− F (a)

x3 − a
< 1, (3.27)

∂TN−1

∂xN−2
(x) =

∫ b
xN−2

(F (ξ)− F (xN−2))dξ

(b− xN−2)2f ◦ F−1
(∫ b

xN−2
F (ξ)dξ

b−xN−2

) < 1

f ◦ F−1
(∫ b

xN−2
F (ξ)dξ

b−xN−2

) × F (b)− F (xN−2)

b− xN−2
< 1.

(3.28)
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Since ∂Ti
∂xj

(x) ≥ 0 with equality if |i − j| ≥ 2, it is easy to deduce that, if RN−2 is equipped with

the `∞-norm | · |`∞ ,

∀x∈ Sa,bN , |||JT (x)|||`∞ < 1 (3.29)

where |||·|||`∞ denotes the operator norm with respect to the `∞-norm.

Now let x ∈ Sa,bN and y ∈ Sa,bN with y 6= x. Then for each t ∈ [0, 1), tx + (1 − t)y ∈ Sa,bN and
t 7→ T (tx+(1− t)y) is continuous on [0, 1] and differentiable on [0, 1) so that, with the integrability
consequence of (3.29),

T (x)− T (y) =

∫ 1

0
JT
(
tx+ (1− t)y

)
(x− y)dt, ∀(x, y)∈ Sa,bN × S

a,b
N . (3.30)

By the triangle inequality for integrals, the definition of the |||·|||`∞-norm and (3.29), one deduces
that ∣∣T (x)− T (y)

∣∣
`∞
≤
∫ 1

0

∣∣∣∣∣∣JT (tx+ (1− t)y
)∣∣∣∣∣∣

`∞
dt |x− y|`∞ < |x− y|`∞ . (3.31)

Approximating y ∈ Sa,bN by a sequence of elements in Sa,bN , we deduce that T is |.|`∞ 1-Lipschitz
continuous. Moreover, for the choice y equal to the fixed point x? of T , (3.30) writes

∀x ∈ Sa,bN , T
(
x
)
− x? = A[1]

x

(
x− x?

)
with A[1]

x :=

∫ 1

0
JT
(
x? + t(x− x?)

)
dt. (3.32)

Since x 7→ A
[1]
x is continuous on the compact set Sa,bN and

∀x ∈ Sa,bN ,
∣∣∣∣∣∣∣∣∣A[1]

x

∣∣∣∣∣∣∣∣∣
`∞
≤
∫ 1

0

∣∣∣∣∣∣JT (tx+ (1− t)x?
)∣∣∣∣∣∣

`∞
dt < 1,

we have sup
x∈Sa,bN

∣∣∣∣∣∣∣∣∣A[1]
x

∣∣∣∣∣∣∣∣∣
`∞

< 1. With (3.32), we deduce that the hypotheses of Proposition 3.3

are satisfied with k = 1 and ρ1 = sup
x∈Sa,bN

∣∣∣∣∣∣∣∣∣A[1]
x

∣∣∣∣∣∣∣∣∣
`∞

.

– log-concave setting.
The main difference is that the inequality in (3.25) is no longer strict. As a consequence, in

(3.26)-(3.28), < 1 should now be replaced by ≤ 1 so that |||JT (x)|||`∞ ≤ 1. This still ensures that

T is |·|`∞-1-Lipschitz continuous on Sa,b
N

and (3.32) still holds. To overcome the lack of strict

contraction of RN−2 3 u 7→ JT (x)u, we are going to take advantage of the inequalities ∂T2
∂x3

< 1 and
∂TN−1

∂xN−2
< 1 still valid on Sa,b

N
since the first inequalities in (3.27)-(3.28) remain strict.

For k ≥ 1 we can iterate (3.32) to obtain

∀x ∈ Sa,bN , T k
(
x
)
− x? = A[k]

x A
[k−1]
x . . . A[1]

x

(
x− x?

)
(3.33)

where, for ` ≥ 1, A
[`]
x =

∫ 1
0 JT

(
x? + t(T l−1(x) − x?)

)
dt is a tridiagonal matrix

[
a

[`]
ij

]
2≤i,j≤N−1

satisfying

a
[`]
ii = 0, i = 2, . . . , N − 1, a

[`]
ii±1 > 0, a

[`]
ii−1 + a

[`]
ii+1 ≤ 1, i = 3, . . . , N − 2,

and 0 < a
[`]
23, a

[`]
N−1N−2 < 1.

(3.34)
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Let u = (u2, . . . , uN−2) ∈ RN−2 with |u|`∞ > 0. Let I1 =
{
i : |A[1]

x u| = |u|`∞
}

. It is clear

that 2, N − 1 /∈ I1 since
∣∣(A[1]

x u)2

∣∣ = a
[1]
23 |u3| < |u3| ≤ |u|`∞ (idem for the other term). Now let

I2 =
{
i :
∣∣(A[2]

x A
[1]
x u)i

∣∣ = |u|`∞
}

. It is still clear that 2, N − 1 /∈ I2. Now(
A[2]
x A

[1]
x u
)

3
= a

[2]
32

(
A[1]
x u
)

2
+ a

[2]
34

(
A[1]
x u
)

4
.

As a
[2]
32 , a

[2]
34 > 0 and a

[2]
32 +a

[2]
34 ≤ 1 and 2 /∈ I1, |(A[2]

x A
[1]
x u)3| < |u|`∞ . One shows likewise that N−2 /∈

I2. Then one shows the same way round by induction that, 2, . . . , k+1, N−(k+1), . . . , N−1 /∈ Ik ={
i :
∣∣(A[k]

x · · ·A[1]
x u)i

∣∣ = |u|`∞
}

which implies that IdN
2
e−1 = ∅ i.e.

∣∣A[dN
2
e−1]

x · · ·A[1]
x u
∣∣
`∞

< |u|`∞ .

Consequently setting Ñ = dN2 e − 1, we have

∀x ∈ Sa,b
N
,
∣∣∣∣∣∣∣∣∣A[Ñ ]

x · · ·A[1]
x

∣∣∣∣∣∣∣∣∣
`∞

< 1.

Note that a more quantitative bound in terms of the coefficients of the matrices is derived in

Proposition 3.4 below. With the continuity of x 7→ A
[Ñ ]
x · · ·A[1]

x over the compact set Sa,b
N

and

(3.33), we deduce that the hypotheses of Proposition 3.3 are satisfied with k = Ñ and ρ
Ñ

=

sup
x∈Sa,b

N

∣∣∣∣∣∣∣∣∣A[Ñ ]
x · · ·A[1]

x

∣∣∣∣∣∣∣∣∣
`∞

< 1. 2

To evaluate in sharper way ρ
Ñ

, one might rely on the following Proposition which provides a
quantitative bound for the |||·|||`∞-norm of a product of our tridiagonal matrices of interest.

Proposition 3.4 (Quantitative bound) Let N ≥ 3 and set Ñ = dN2 e−1. Let A[`] = [a
[`]
ij ]2≤i,j≤N−1,

l ∈ {1, . . . , Ñ}, be tridiagonal matrices whose entries satisfy the above conditions (3.34). Then∣∣∣∣∣∣∣∣∣A[Ñ ] · · ·A[1]
∣∣∣∣∣∣∣∣∣
`∞
≤ max

2≤i≤Ñ

(
1− a[Ñ ]

ii−1a
[Ñ−1]
i−1i−2 · · · a

[Ñ+3−i]
32 (1− a[Ñ+2−i]

23 )

)
∨ max
bN

2
c≤i≤N−1

(
1− a[Ñ ]

ii+1a
[Ñ−1]
ii+2 · · · a

[Ñ+i+2−N ]
N−2N−1 (1− a[Ñ+1+i−N ]

N−1N−2 )

)
< 1.

Proof. For a matrix B = [bij ]1≤i≤n, 1≤j≤d ∈ Rn×d
+ and for y, z ∈ Rd such that |yi| ≤ zi, i = 1 : d,

we have

‖By‖`∞ = max
1≤i≤n

∣∣∣∣ d∑
j=1

bijyj

∣∣∣∣ ≤ max
1≤i≤n

d∑
j=1

bijzj = ‖Bz‖`∞ .

Therefore denoting by 1 the vector in RN−2 with all coordinates equal to 1, we have
∣∣∣∣∣∣∣∣∣A[Ñ ] · · ·A[1]

∣∣∣∣∣∣∣∣∣
`∞
≤

‖A[Ñ ] · · ·A[1]1‖`∞ . To conclude, we check by induction on k ∈ {1, · · · , Ñ} that the entry (A[k] · · ·A[1]1)i
is nonnegative and not greater than
a

[k]
ii+1 + a

[k]
ii−1

(
a

[k−1]
i−1i + a

[k−1]
i−1i−2

(
a

[k−2]
i−2i−1 + a

[k−2]
i−2i−3(. . .+ a

[k+3−i]
32 (a

[k+2−i]
23 + 0))

))
if 2 ≤ i ≤ k + 1

1 if k + 2 ≤ i ≤ N − (k + 1)

a
[k]
ii−1 + a

[k]
ii+1

(
a

[k−1]
i+1i + a

[k−1]
i+1i+2

(
a

[k−2]
i+2i+1 + a

[k−2]
i+2i+3(. . .+ a

[k+i+2−N ]
N−2N−1 (a

[k+i+1−N ]
N−1N−2 + 0))

))
if N − k ≤ i ≤ N − 1
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where, by the assumptions made on the entries of the matrices, by induction on i ∈ {2, · · · , k+ 1},

a
[k]
ii+1 + a

[k]
ii−1

(
a

[k−1]
i−1i + a

[k−1]
i−1i−2

(
a

[k−2]
i−2i−1 + a

[k−2]
i−2i−3(. . .+ a

[k+3−i]
32 (a

[k+2−i]
23 + 0))

))
≤ 1− a[k]

ii−1a
[k−1]
i−1i−2 · · · a

[k+3−i]
32

(
1− a[k+2−i]

23

)
< 1

and, by backward induction on i ∈ {N − k, · · · , N − 1},

a
[k]
ii−1 + a

[k]
ii+1

(
a

[k−1]
i+1i + a

[k−1]
i+1i+2

(
a

[k−2]
i+2i+1 + a

[k−2]
i+2i+3(. . .+ a

[k+i+2−N ]
N−2N−1 (a

[k+i+1−N ]
N−1N−2 + 0))

))
≤ 1− a[k]

ii+1a
[k−1]
i+1i+2 · · · a

[k+i+2−N ]
N−2N−1

(
1− a[k+i+1−N ]

N−1N−2

)
< 1.

In the induction on k, we use the first bound to get that (A[k+1] · · ·A[1]1)i ≤ a[k+1]
ii+1 +a

[k+1]
ii−1 (A[k] · · ·A[1]1)i−1

for 3 ≤ i ≤ k+1 and the second one to get that (A[k+1] · · ·A[1]1)i ≤ a[k+1]
ii−1 +a

[k+1]
ii+1 (A[k] · · ·A[1]1)i+1

for N − k ≤ i ≤ N − 2. 2

Remarks. • Note that, as all the entries of the matrix A
[1]
x such that T (x) − x? = A

[1]
x (x − x?)

are non negative, it is clear that if x ≥ x? (resp. x ≤ x?) componentwise then T (x) ≥ x? (resp.
T (x) ≤ x?) componentwise so that if x[0] ≥ x? (resp. x[0 ≤ x?) componentwise then the whole
sequence x[`] will satisfy the same inequality.

• This theorem shows the geometric convergence of this dual Lloyd procedure for the (log-concave)
truncated exponential distributions toward its unique quadratic optimal dual quantizer. A specific
family of procedures which works for the search of the Lr-optimal dual quantizer of power distri-
butions for any r ≥ 1 and truncated exponential distributions for r ∈ {1, 2} is developed in the
next section.

• In the log-concave example of the uniform distribution, say on the unit interval [0, 1], one checks

that the mapping T is affine and reads on Sa,b
N

Ti(x) =
xi−1 + xi+1

2
, i = 2, . . . , N − 1,

with the convention x1 = 0 and xN = 1 so that T (x) = Ax + b with A = [aij ]2≤i,j≤N−1 satisfying
ai,i±1 = 1

2 , i = 3, . . . , N − 2, a2,3 = 1
2 = aN−1,N−2 and aij = 0 otherwise and b = 1

2(0, · · · , 0, 1)∗

(with N − 2 components). The eigenvalues of the symmetric matrix A are
(

cos( kπ
N−1)

)
1≤k≤N−2

(see (2.13)). Therefore, for the Euclidean norm,

∀x ∈ RN−2, |Ax| ≤ cos

(
π

N − 1

)
|x|.

Hence the sequence x[`+1] = T
(
x[`]
)
, ` ≥ 0, converges toward the unique equilibrium point(

k−1
N−1

)
k=2,...,N−1

with the geometric rate cos
(

π
N−1

)
uniformly with respect to x[0] ∈ Sa,bN .

4 Computation of one-dimensional dual grids for specific distri-
butions

4.1 Power distributions on compact intervals

Let µ be a probability measure compactly supported on [0, 1] with density f and such that

0 < µ([0, x]) < 1 for all x ∈ (0, 1). Then x
(N)
1 = 0 and x

(N)
N = 1. To characterize the other points
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(x
(N)
i )2≤i≤N−1 in the optimal dual grid when N ≥ 3, we use the master equations written with the

expression (2.10) of the gradient of the distortion :

(∆x
(N)
i+1)r

∫ 1

0
Ψr(1− z)f(x

(N)
i + z∆x

(N)
i+1

)
dz = (∆x

(N)
i )r

∫ 1

0
Ψr(z)f

(
x

(N)
i−1 + z∆x

(N)
i

)
dz, i = 2 : N − 1

where Ψr(z) = (r − 1)z(1− z)r + zr+1 + rz2(1− z)r−1. For power distributions, f(x) = αxα−1 for

some α > 0, so that dividing the master equation by α(x
(N)
i )r+α−1 yields

(
∆x

(N)
i+1

x
(N)
i

)r ∫ 1

0
Ψr(1− z)

(
1 +

z∆x
(N)
i+1

x
(N)
i

)α−1

dz (4.35)

=

(
∆x

(N)
i

x
(N)
i

)r ∫ 1

0
Ψr(z)

(
1 +

(z − 1)∆x
(N)
i

x
(N)
i

)α−1

dz, i = 2 : N − 1.

We are going to check that the ratios λi =
x

(N)
i

x
(N)
i+1

do not depend on N ≥ i+ 1 (they of course depend

on r ≥ 1 but we do not make this dependence explicit in the notation). This is a consequence of

the equality
x

(N)
1

x
(N)
2

= 0 valid for each N ≥ 2 and which yields λ1 = 0. Since x
(N)
N = 1, we then have

x
(N)
i =

∏N−1
j=i λj for i = 1 : N − 1 and even for i = N under the usual convention

∏N−1
j=N λj = 1.

Performing the change of variable y = 1 − z in the integral in the right-hand side of (4.35), we
obtain

χr(λ
−1
i − 1) = χr(λi−1 − 1) (4.36)

where

χr(x) =

{
xr
∫ 1

0 Ψr(1− z)(1 + zx)α−1dz if x ≥ 0

(−x)r
∫ 1

0 Ψr(1− z)(1 + zx)α−1dz if x∈ [−1, 0].

To conclude that starting from λ1 = 0, the values of λi can be computed inductively for i = 2 : N−1
from this equation, it is enough to check that χr is one to one on the interval (0,+∞) where

x
(N)
i+1/x

(N)
i − 1 stands. For x ∈ (0,+∞), we have

χ′r(x) = xr−1

∫ 1

0
Ψr(1− z)(r + (r + α− 1)zx)(1 + zx)α−2dz

where the right-hand side is positive since r ≥ 1 and Ψr is non-negative. Notice that we obtain
uniqueness for the master equation and therefore uniqueness of the Lr-optimal dual quantization
grid at level N even when α ∈ (0, 1) and the density is not log-concave. In the quadratic r = 2

case, since Ψ2(z) = z, αχ2(x) = (1+x)1+α

1+α −x− 1
1+α . Of course when for a < b, µ admits the density

1[a,b](x)α(x−a)α−1

(b−a)α (resp. 1[a,b](x)α(b−x)α−1

(b−a)α ) then for i = 1 : N , x
(N)
i = a + (b − a)

∏N−1
j=i λj (resp.

x
(N)
N+1−i = b− (b− a)

∏N−1
j=i λj).

Numerical example. The optimal quadratic dual 10-quantizer of µ(dx)=1[0,1](x) dx
2
√
x

is given by

{0, 0.0744614, 0.1675381, 0.2704687, 0.3804786, 0.4961058, 0.6164311, 0.7408177, 0.868795, 1}.
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Notice that even if the density is log-convex on the interval (0, 1), the Lloyd-like iterative algorithm
introduced in Section 3 still numerically converges to the corresponding unique solution to the
master equation in S0,1

10 .

The derivation of an equation not depending on x
(N)
i relating λi to λi−1 was permitted by the

key structure condition

∀(x, y) ∈ (0, 1]× [0, 1], f(y) = g(x)h
(y
x

)
(4.37)

satisfied by the power density for g(x) = αxα−1 and h(z) = zα−1. Under this structure condi-
tion, (4.36) remains valid for the following generalized definition of χr :

χr(x) =

{
xr
∫ 1

0 Ψr(1− z)h(1 + zx)dz if x ≥ 0

(−x)r
∫ 1

0 Ψr(1− z)h(1 + zx)dz if x ∈ [−1, 0].

When the functions g and h are differentiable, the structure condition is only satisfied by power

distributions. Indeed, differentiating with respect to x in (4.37), we obtain xg′(x)
g(x) =

y
x
h′( y

x
)

h( y
x

)
. We

deduce that the two functions xg′(x)
g(x) and zh′(z)

h(z) are both equal to some constant α − 1. Then

g(x) ∝ xα−1 and h(z) ∝ zα−1 so that f(y) ∝ yα−1.

We could also assume that f(y) = g(x)h(y − x), which is typically satisfied when f(x) = |λ|eλx
eλ−1

for λ ∈ R∗ (we may then choose h(z) = eλz) but then it is not so easy to decouple the use of

the two boundary conditions x
(N)
1 = 0 and x

(N)
N = 1 which permits an inductive resolution of the

master equation under the former structure condition (4.37). We are nevertheless able to design an
almost explicit procedure for these truncated exponential distributions, at least when λ > 0 and
r ∈ {1, 2}.

4.2 Truncated exponential distributions

Let µ(dx) = 1[a,b](x)λe
−λ(x−a)

1−e−λb dx be a truncated exponential distribution with parameter λ > 0
on [a, b], ∞ < a < b < +∞. Note that if λ < 0, it suffices to solve the problem for the image

µ̃ = 1[−b,−a](x) |λ|e
−|λ|(x+a)

e|λ|b−1
dx of µ by the linear transform x 7→ −x and transport the resulting dual

quantizer by this involution.
The distribution µ is a log-concave distribution (though not strictly log-concave) so that, for

every r ≥ 1, the Lr-optimal dual quantizer, solution to the Lr-master equation (2.10) is unique
at every level N ≥ 3. Let N ≥ 3 and let x = (x1, . . . xN ), x1 = a, xN = b and ∆xi = xi − xi−1,
i = 2, . . . , N . The master equation (2.10) reads

Φr(λ∆xi+1) = Φr(−λ∆xi), i = 2, . . . , N − 1, x1 = a, xN = b, (4.38)

with

Φr(x) = |x|re−x
∫ 1

0
Ψr(z)e

xzdz, x∈ R.

If xN,λ,a,b denotes the solution to this equation (where the dependence on r ≥ 1 is not made
explicit), one easily checks, taking advantage of uniqueness of the solution, that

xN,λ,a,b = a · 1 +
1

λ
xN,1,0,λ(b−a)
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so we only need to solve the equation with λ = 1 and a = 0 with limit condition xN,1,0,bN = b.

– Quadratic case (r = 2). We first consider the quadratic case r = 2, most commonly (sic) used
in applications. Then, Ψ2(z) = z, so that

Φ2(x) = x2e−x
∫ 1

0
zexzdz = e−x − 1 + x, x∈ R.

The function Φ2 is C1 and if we set Φ̌2(x) = Φ2(−x), then Φ2|R+
and Φ̌2|R+

are both increasing
C1-diffeomorphisms of R+ and (with an obvious abuse of notation) Equation (4.38) reads in a
forward way on R+

∆xi+1 = θ2(∆xi), i = 2, . . . , N − 1 with θ2 = Φ−1
2 ◦ Φ̌2.

As Φ′2(x) = x− Φ2(x), one checks that

θ′2 =
Φ̌′2

Φ′2(Φ−1
2 (Φ̌2))

=
Id|R+

+ Φ̌2

θ2 − Φ̌2

so that θ2 satisfies the ordinary differential equation (ODE)

1
2(θ2

2)′ = Id|R+
+ Φ̌2 · (1 + θ′2).

At this stage, noting that, for every x∈ R+,

Φ̌2(x) = ex − 1− x =
∑
k≥2

xk

k!
,

we aim at solving this ODE by power series i.e. we assume that

θ2(x) =
∑
k≥1

akx
k

since θ2(0) = Φ−1
2 ◦ Φ̌2(0) = 0. By standard arguments, we see that

1
2(θ2

2)′(x) =
∑
k≥1

bkx
k with bk = k+1

2

k∑
`=1

ak+1−`a`

and

x+ Φ̌2(x)
(
1 + θ′2(x)

)
=
∑
k≥1

ckx
k with ck =

( k−2∑
`=0

`+ 1

(k − `)!
a`+1 +

1

k!

)
1{k≥2} + 1{k=1}.

One derives that a2
1 = 1 so that a1 = 1 since θ2 is non-decreasing, a1+1

2 = 3a1a2 which implies
a2 = 1

3 and

ak =
1

k + 1

(
2

k!
+
k−1∑
`=2

`

(k + 1− `)!
a`

)
− 1

2

k−1∑
`=2

a`ak+1−`, k ≥ 3.
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As a consequence, we can compute θ2(x) with an arbitrary accuracy. Then, the master equation
reduces to the scalar boundary condition

N−2∑
k=0

θ◦k2 (∆x2) = b

which can be solved numerically by various elementary zero search methods like dichotomy, Newton-
Raphson algorithm, etc, since for k ≥ 1 the k-fold composition θ◦k2 of θ2 is continuous and increasing

on R+ from θ◦k2 (0) = 0 to θ◦k2 (+∞) = +∞. Then xN,1,0,bk =
∑k−2

j=0 θ
◦j
2 (∆x2) for k = 1, . . . , N .

Numerical example. The optimal quadratic dual 11-quantizer of the truncated exponential
distribution with parameter λ = 1 over the unit interval (a = 0, b = 1) is given by

x11,1,0,1 = (0, 0.086271, 0.17510, 0.26663, 0.36105, 0.45853, 0.55929, 0.66355, 0.77156, 0.88361, 1).

CPU time on a 1.8 MHz processor with Matlab: 6.10−3 s (using a dichotomy algorithm to determine
∆x2).

– General case (r ∈ (1,+∞)). Set Φ̌r(x) = Φr(−x) for every x ≥ 0. By an obvious change of
variable, one has

Φ̌r(x) = xr
∫ 1

0
Ψr(1− z)ezxdz, x ≥ 0,

so that Φ̌r(0) = 0, Φ̌r is increasing on R+, goes to infinity at infinity by the monotone convergence
theorem since Ψr > 0 on (0, 1). As a consequence it is a C1 homeomorphism of (0,+∞) (in fact
a diffeomorphism since Φ̌′r is never 0 on (0,+∞)). Equation (4.38) can be written in a backward
way

∆xi = θ̃r(∆xi+1), i = 2, . . . , N − 1 with θ̃r = (Φ̌r)
−1 ◦ Φr.

Now let us focus for a while on Φr itself on R+. As Ψr(z) ≥ zr+1 on [0, 1] (see (2.8)), one has for
every x > 0,

Φr(x) ≥ xre−x
∫ 1

0
zr+1exzdz = x−2e−x

∫ x

0
zr+1ezdz

= xr−1 − (r + 1)x−2e−x
∫ x

0
zrezdz

≥ xr−1 − (r + 1)xr−2(1− e−x) ≥ 1
2x

r−1 for x ≥ 2(r + 1).

Hence limx→+∞Φr(x) = +∞ which in turn implies that limx→+∞ θ̃r(x) = +∞. Consequently the

continuous function x 7→
∑N−1

k=1 θ̃
◦(N−k)
r (x) is null at 0 and goes to infinity at infinity so that the

equation
N−2∑
k=0

θ̃ ◦kr (x) = b

always has a solution xr,b and we may set ∆xi = θ̃
◦(N−i)
r (xr,b), i = 2, . . . , N . We know that the

solution is unique by Theorem 2.1.
Unfortunately, we have no semi-closed form for θ̃r like in the quadratic case for θ2 since we

could not find an ODE satisfied by θ̃r in full generality.

26



When r is an integer, then Ψr is a polynomial function with degree r − 1 if r is even and r + 1
if r is odd, whose coefficients of degrees 0 and r are always 0. Then, having in mind that

∀n∈ N, e−x
∫ x

0
znezdz = (−1)nn!

( n∑
k=0

(−1)k
xk

k!
− e−x

)
it follows that Φr reads

Φr(x) = sign(x)r
(
Pr(x)− e−x

( cr
x2

+Qr(x)
))

where Pr and Qr are polynomial functions with degree r − 1 and r − 2 respectively that can be
computed explicitly and cr = 0 if r is even.

– Case r = 1. When r = 1, θ1(z) = 2z(1− z) so that Ψ1(z) = 2z2. Hence

Φ1(x) =
2 sign(x)

x2
e−x

∫ x

0
z2ezdz =

4 sign(x)

x2

(x2

2
− x+ 1− e−x

)
,

Φ̌1(x) =
4 sign(x)

x2

(
ex − 1− x− x2

2

)
. (4.39)

In particular, Φ1 is increasing on R+, C1, with limx→+∞Φ1(x) = 2 so that Φ1 is a C1-diffeomorphism
from (0,+∞) to (0, 2). Moreover, it is clear that Φ̌1 is a C1-diffeomorphism of (0,+∞).

In that case we can again write the equation in a forward way

∆xi+1 = θ1(∆xi), i = 2, . . . , N − 1 where θ1 = Φ−1
1 ◦ Φ̌1

is defined, C1, increasing on
[
0, (Φ̌1)−1(2)

)
non-negative, satisfies θ1(0) = 0 and limx→Φ̌−1

1 (2) θ1(x) =

+∞. Consequently the mapping x 7→
∑N−1

k=1 θ◦k1 (x) is defined on an open bounded interval with
left endpoint 0, null at 0 and goes to infinity at its right endpoint so that the equation

N−2∑
k=0

θ ◦k1 (x) = b

always has a solution x1,b and we may set ∆xi = θ
◦(i−2)
1 (x1,b), i = 2, . . . , N .

Moreover, Φ1 satisfies the following ODE on R \ {0},

Φ′1(x) = −
(2

x
+ 1
)

Φ1(x) + 2 sign(x)

from which we derive that, for x > 0 small enough,

θ′1(x) =
(Φ̌1)′

Φ′1 ◦ θ1
(x) =

Φ̌′1(x)

2−
(

2
θ1(x) + 1

)
Φ1(θ1(x))

=
Φ̌′1(x)

2−
(

2
θ1(x) + 1

)
Φ̌1(x)

which can be rewritten (in a neighbourhood of 0 on R+) as the non-linear ODE

2Φ̌1(x)θ′1(x)− (θ2
1)′(x)

(
1− 1

2 Φ̌1(x)
)

+ θ1(x)Φ̌′1(x) = 0, θ1(0) = 0.
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This ODE can be solved as a power series with positive convergence radius. First note that

∀x ≥ 0, Φ̌1(x) =
∑
k≥1

bkx
k and bk =

4

(k + 2)!

(so that b1 = 2
3 , b2 = 1

6 , etc) owing to (4.39). Assume a priori that θ1 can be expanded as

θ1(x) =
∑
k≥1

akx
k, x ≥ 0.

Then, if we set

ã
(2)
k = (k + 1)

k∑
`=1

a`ak+1−`, k ≥ 1, so that (θ2
1)′(x) =

∑
k≥1

a
(2)
k xk,

elementary though tedious computations show that the sequence (ak)k≥1 satisfies the following
induction formula (with the convention

∑
∅ = 0)

a1 = 1, ak =
3

2(k + 2)

(
k−1∑
`=1

(
ã

(2)
`

bk−`
2

+ (k − `+ 1)a`bk−`+1

)
− (k + 1)

k−1∑
`=2

a`ak+1−`

)
, k ≥ 2,

Remark. Another (less tractable) inductive formula can be derived by dealing directly with the
identity Φ1 ◦ θ1 = Φ̌1.

5 Concluding and provisional remarks

In this paper we established for dual (or Delaunay) quantization uniqueness of the critical
points (hence of the optimal quantizer) of its Lr-quantization errors at level N under a log-concave
assumption on the (density of) the distribution under consideration. This is the exact counterpart
of Trushkin’s Theorem established for primal (or Voronoi) quantization, except for the bounded
support intrinsic restriction inherent to Delaunay quantization. We also devised an avatar of the
celebrated Lloyd algorithm (also known as k-means or Forgy’s algorithm in its batch version) for
Delaunay quantization in the quadratic setting. This avatar also converges at an exponential rate
still under this strong unimodal assumption. We finally propose a way to exploit the ”master
equations ” for specific distributions, possibly in non-quadratic settings.

Future investigations should focus on a tractable Lr-extension of this ”Delaunay” Lloyd-like
algorithm. The main asset of Delaunay quantization compared its Voronoi counterpart is the fact
that any dual quantization is unbiased, regardless of its optimality, which is for instance an impor-
tant advantage when using quantization for unbiased information transmission and more recently
for federated computation (see e.g. [12] among many others). But this still requires algorithms to
design the underlying (hyper-)triangulation (see [20]) which is quite demanding as the dimension
grows. On the other hand, for numerical purposes, the optimality remains crucial in medium di-
mension. Therefore elucidating the structure of optimal dual quantizers (rather than looking for a
hopeless uniqueness result) as well as proposing efficient algorithms to compute them remain major
challenges. Note that these issues have not been satisfactorily solved so far for Voronoi quantization
either.
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Séminaire de Probabilités XLVIII, C. Donati, A. Lejay, A. Rouault eds, LNM 2168, Springer, Cham,
33–96.

[19] Pagès, G. and Wilbertz, B. (2012). Dual Quantization for random walks with application to credit
derivatives, J. Comp. Finance, 16(2):33–60.

[20] Pagès, G. and Wilbertz, B. (2012). Intrinsic stationarity for vector quantization: foundation of
dual quantization. SIAM J. Numer. Anal. 50(2):747–780.

29



[21] Pagès, G. and Wilbertz, B. (2012). Optimal Delaunay and Voronoi quantization schemes for pricing
American style options. Numerical methods in Finance, 171–213, Springer Proc. Math., 12, Springer,
Heidelberg.

[22] Pagès, G. and Wilbertz, B. (2018). Sharp rate for the dual quantization problem, Séminaire de
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